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Abstract

In this paper, we introduce a class of local divergences between two proba-
bility distributions and illustrate its usefulness in model selection. Explicit
expressions of the proposed local divergences are derived when the under-
lying distributions are members of the exponential family of distributions
or they are described by multivariate normal models. In addition, a local
model selection criterion, termed the local divergence information criterion
(LDiv.IC), is proposed. Simulations and applications are presented in order
to study and exemplify the performance of the proposed criterion.
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1 Introduction

Model selection criteria provide asystematic and rigorous method that
allows statisticians to choose the most appropriate model from a collection
of possible models used to describe the data. The construction of such crite-
ria requires the creation of a measure of similarity between two entertained
models, which are typically described in terms of their distributions. This
can be achieved if an unbiased estimator of the expected overall discrepancy
is found, which measures the statistical distance between the true, but un-
known model, and the entertained model. Therefore, the smaller the value
of the criterion is, the more preferable the model is.

A rich class of similarity measures can be created using φ-divergence mea-
sures (Csiszár, 1963, 1967). Several cases of these measures have been uti-
lized in the creation of model selection criteria. In particular, the well-known
Kullback and Leibler (1951) measure of divergence was used by Akaike (1973)
in order to develop the Akaike information criterion (AIC). Since Akaike’s
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pioneering work, there has been a vast literature on the construction of
model selection criteria. We refer to Schwarz (1978), Konishi and Kitagawa
(1996), Spiegelhalter et al. (2002), Seghouane and Bekara (2004), Cavanaugh
(2004), Bengtsson and Cavanaugh (2006), Shang and Cavanaugh (2008),
Shang (2008), Mattheou et al. (2009), Toma and Broniatowski (2011) and
Toma (2014), and the references therein for the development and illustration
of many classic model selection criteria. An alternative approach to these
classic methods was presented in Claeskens and Hjort (2003), where the au-
thors allowed different methods to be selected for different parameters of
interest. Finally, the book by Claeskens and Hjort (2008) and the references
therein provides an exhaustive discussion of model selection criteria.

The standard approach to creating a criterion proceeds as follows; con-
sider the measurable space (X ,A) and let F = {Fθ} be a parametric family
of probability measures on (X ,A), indexed by the parameter θ ∈ Θ ⊆ Rk,
with k ≥ 1. Let G be the class of probability measures G on (X ,A), domi-
nated by a σ-finite measure μ on (X ,A), and let g = dG

dμ denote the Radon-
Nikodym derivative of G with respect to μ. For θ ∈ Θ, let Fθ << μ and
fθ = dFθ

dμ denote the corresponding Radon-Nikodym derivative. Similarly,

for a known ω ∈ Θ∗ ⊆ RM , let {Hω} be a parametric family of probability
measures on (X ,A) with Hω << μ and denote by hω = dHω

dμ the respective
Radon-Nikodym derivative. Following Avlogiaris et al. (2016a), the class of
local φ-divergences between g and fθ, driven by hω, is given by

Dω
φ (g, fθ) =

∫

X

hω(x)fθ(x)φ

(
g(x)

fθ(x)

)
dμ(x). (1.1)

As defined, the local φ-divergence is a measure of similarity between a mem-
ber of the family G and a member of the family F , and it is driven by another
measure (a kernel) that determines the weights and the area over which the
measure is calculated. The distribution hω can be chosen in such a way as
to smooth or exemplify certain features of the area over which the integral
is computed, and it does not necessarily belong to the parametric family
F = {Fθ} (cf. Avlogiaris et al., 2016a).

In order to avoid degenerate cases in definition (1.1), we restrict our
interest to real convex functions φ which are defined on the interval [0,∞)
and belong to the class of convex functions
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Φ =

{
φ : φ is strictly convex at 1, φ(1) = φ′(1) = 0, 0φ

(
0

0

)
= 0, 0φ

(u
0

)

= u lim
v→∞

φ(v)

v

}
. (1.2)

Based on Avlogiaris et al. (2016a), the local φ-divergence, defined by (1.1)
with φ ∈ Φ, satisfies the key property

Dω
φ (g, fθ) ≥ 0, with equality, if and only if g = fθ, (1.3)

regardless of hω, and therefore, Dω
φ (g, fθ) can be used as a measure of

divergence between g and fθ, in the area of their joint domain which is
specified by hω. It should be noted at this point that the set Φ con-
tains important cases of Csiszár’s φ-divergences, like Kullback and Leibler
(1951) divergence (φ(u) = u log u − u + 1, u > 0), Kagan (1963) diver-
gence (φ(u) = (u− 1)2, u > 0), Cressie and Read (1984) λ-power divergence(
φλ(u) =

uλ+1−u−λ(u−1)
λ(λ+1) , λ �= 0,−1

)
, and many more (cf. Avlogiaris et al.,

2016a).
A general measure of divergence between g and fθ was introduced in

Basu, Harris, Hjort, and Jones (BHHJ) (cf. Basu et al., 1998), defined by

Da(g, fθ) =

∫

X

(
f1+a
θ (x)−

(
1 +

1

a

)
g(x)fa

θ (x) +
1

a
g1+a(x)

)
dμ(x), (1.4)

where a > 0 is the index parameter. The limit of the BHHJ family, when
a → 0, is the Kullback–Leibler divergence and for a = 1 the divergence
in (1.4) reduces to the square of the standard L2 distance between g and
fθ. We focus on the BHHJ measures of divergence because their functional
expression is helpful to our work. In particular, in view of the BHHJ power
divergence defined in (1.4), its local version can be immediately obtained
from (1.1) for a particular choice of the convex function φa ∈ Φ given by

φa(u) = u1+a −
(
1 +

1

a

)
ua +

1

a
, a > 0. (1.5)

As a result, the form of the local BHHJ power divergence is

Dω
a (g, fθ) =

∫

X

hω(x)
(
f1+a
θ (x)−

(
1 +

1

a

)
g(x)faθ (x) +

1

a
g1+a(x)

)
dμ(x), a > 0. (1.6)
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In order to motivate the results and the necessity for a model selection
criterion in a local setting, we consider the following example. Figure 1 illus-
trates the exponential distribution with parameter λ = 1 and the log-normal
distribution with parameters μ = − 0.347, η = 0.833; these distributions are
analyzed and discussed in detail in terms of their local characteristics, in the
simulation study of Section 4. This problem has a long history in the sta-
tistical literature (see for example Vuong and Wang, 1993; Jiménez-Gamero
et al., 2011 and the references therein). It is clear from this Figure that
the models under consideration are dissimilar in some subsets of their joint
domain whereas they are very close in some other subsets or coincide in the
right tail. Therefore, an experimenter might reach the wrong conclusions
about the usefulness of a model depending on where they choose to focus
their attention. Typically, the comparison takes place over the whole do-
main of observation (globally) and parsimonious models that would provide
a good fit to the data locally (e.g., in the tails) are rejected. Therefore, it is
appealing to develop a method that selects the best model, among various
available candidate models, in some areas of X .

The latter can be achieved by using a divergence measure between the
true model g and a candidatemodel fθ from a parametric family of models

Figure 1: Cumulative distributions functions for log normal with μ = −0.347
and η = 0.833 and exponential with λ = 1 distributions
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F , that focuses on a specific subset of X . In particular, we need to choose
an appropriate driving density hω that leads to the desired subset of X .
A suitable divergence measure that meets these requirements is the local
measure of divergence (1.1), defined in Avlogiaris et al. (2016a) and further
applied in order to develop tests of hypotheses in a local setting in Avlogiaris
et al. (2016b). If the true distribution g belongs to the parametric family
F = {Fθ}, and θ̂ is a consistent and asymptotically normal estimator of
the parameter θ, on the basis of the random sample X1, . . . , Xn from g ∈
F , then the nonnegative quantity Dω

φ (g, fθ̂) can be regarded as the overall
discrepancy, which measures the distance between the true but unknown
model g and a fitted model fθ̂, in some areas of X . Following Burnham
and Anderson (2002), p. 363, among others, we must adopt the following
criterion:

“select the model fθ̂ to minimize Eg(D
ω
φ (g, fθ̂)).” (1.7)

Since Eg(D
ω
φ (g, fθ̂)) still depends on the unknown parameter θ, our aim

in this paper is to find an unbiased estimator, say Êg(D
ω
φ (g, fθ̂)), of the

expected overall discrepancy Eg(D
ω
φ (g, fθ̂)), in some areas of X . Clearly, if

the value of Êg(D
ω
φ (g, fθ̂)) is small then the entertained model should be

preferred locally, that is, the entertained model should be selected in the
subset of X , where the kernel density hω drives the mass of the integral
Dω

φ (g, fθ̂) for specific values of ω ∈ Θ∗.
A comment is in order about the choice of the kernel density hω. Clearly,

a normal kernel with some mean and variance is a standard choice, with the
values chosen based on expert opinions of experimenters (when available),
depending on where they want to focus their attention and the questions
they need to answer. In the absence of such input, one way is to choose
a rolling window across the domain as illustrated in our simulations and
applications. In theory, any type of kernel may be chosen, including normal,
uniform, or triangular, provided that hω is a proper density.

A more systematic way of selecting the kernel parameters can be con-
structed by considering the areas of the domain where the entertained model
g is the least or most favorable to provide a good fit to the model. That
is, given a suitable estimator ĝ of the true model g (e.g., a non-parametric
density smoother), we find the values of the kernel parameters such that
ωleast = argmaxDω

φ (ĝ, fθ̂) and ωmost = argminDω
φ (ĝ, fθ̂), and then report

on the support of the kernels hωleast
and hωmost as the areas of the domain
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where we achieve the best and the worst model fits. We will not present
this approach here since in the cases we consider for our simulations or
applications, we can simply inspect a scatter plot of the data and then
choose the kernel parameters that focus on a specific window of the domain
of observation. However, this approach can be particularly useful in the case
of multivariate data with more than two variables, where visual inspection
of the domain of observation is not feasible.

Based on the above discussion, the aim of this paper is twofold; first we
introduce a measure of the local divergence between two probability distri-
butions based on the BHHJ power divergence. On the other hand, we utilize
this local measure of divergence in order to develop a local model selection
criterion. In particular, the local BHHJ power divergences are introduced
in Section 2, including the derivation of explicit forms of the local BHHJ
power divergence between members of the exponential family of distribu-
tions. The case of multivariate normal distributions is also considered and
we discuss further extensions to mixtures of normal components. In Section 3,
local model selection criteria are developed using the local BHHJ power
divergence. Simulations are presented in Section 4 in order to evaluate the
performance of the proposedmodel selection criterion in a local setting. Section 5
presents two applications of the proposed methodology by analyzing real
data sets. Some concluding remarks are given in Section 6. Section 7 pro-
vides the proofs of the theoretic results of the paper.

2 Local BHHJ Power Divergence and Its Explicit Form for the
Exponential Family

The following proposition characterizes the lower bound of the local
BHHJ power divergence and it is established easily using Theorem 1, parts
(a) and (b) in Avlogiaris et al. (2016a).

Proposition 1. The quantity Dω
a (g, fθ) is a measure of divergence be-

tween the two models g and fθ, in the sense that (i) Dω
a (g, fθ) ≥ 0, for all

g, fθ and (ii) Dω
a (g, fθ) = 0 if and only if g = fθ a.e., regardless of the choice

of driving density hω.

Explicit expressions for the local BHHJ divergence in (1.6) are derived
in the rest of this section for the case of a parametric family F = {Fθ} with
members from the exponential family

fC(x, θ) = exp
{
θtT (x)− C(θ) + w(x)

}
, x ∈ X , (2.1)
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with natural parameters θ ∈ Θ ⊆ Rk and T (x) = (T1(x), . . . , Tk(x))
t, x ∈ X ,

where the superscript t is used to denote the transpose of a vector or a
matrix.

For two members of this family, fC(x, θi), θi ∈ Θ ⊆ Rk, i = 1, 2,
and taking into account (1.6), the local BHHJ power divergence is defined
by

Dω
a (θ1, θ2)=Eθ2

(
hω(X)faC(X, θ2)

)
−
(
1+

1

a

)
Ka,ω(θ1, θ2) +

1

a
Eθ1

(
hω(X)faC(x, θ1)

)
,

(2.2)

for a > 0, with

Ka,ω(θ1, θ2) =

∫

X

hω(x)fC(x, θ1)f
a
C(x, θ2)dμ(x), (2.3)

Eθi (hω(X)fa
C(X, θi)) =

∫

X

hω(x)f
a+1
C (x, θi)dμ(x), (2.4)

and θi ∈ Θ ⊆ Rk, i = 1, 2. Note that equations (2.2)–(2.4) depend on the
general form of the model fC(x, θ), and therefore, one can replace fC(x, θ)
with any model other than the exponential family model of equation (2.1). In
particular, in some of the applications that follow, we use a mixture of normal
components as the entertained model, e.g., fC(x, θ) =

∑m
j=1 pjφj(x;μj ,Σj),

where p = (p1, p2, . . . , pm) the component probabilities, with
∑m

j=1 pj = 1,

pj ≥ 0, μj ∈ Rd the jth component mean and Σj the jth component co-
variance matrix, j = 1, 2, . . . ,m. Then calculation of Dω

a (θ1, θ2) is straight-
forward using Monte Carlo integration or quadrature rules. The theoretical
development that follows is based on the model of equation (2.1) with explicit
forms for the measure and the local model selection criterion. In addition,
all quantities of interest under the mixture model will be obtained using the
Monte Carlo integration approach.

Consider a kernel density hω defined on X , that does not necessarily
belong to the class of densities (2.1). In view of (2.2), straightforward cal-
culations lead to the following result.
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Proposition 2. Let the kernel density hω be defined on X and consider
two members fC(x, θ1) and fC(x, θ2) of (2.1). If θ1+aθ2 ∈ Θ, for a > 0, then
the BHHJ local power divergence between fC(x, θ1) and fC(x, θ2), driven by
the density hω, is given by

Dω
a (θ1, θ2) = Eθ2 (hω(X)fa

C(X, θ2))− (1 + a−1)

× exp{M (1)
C,a(θ1, θ2)}Eθ1+aθ2(hω(X) exp{aw(X)})

+a−1Eθ1 (hω(X)fa
C(X, θ1)) , (2.5)

with
M

(1)
C,a(θ1, θ2) = C(θ1 + aθ2)− C(θ1)− aC(θ2), (2.6)

where Eθ1+aθ2 (hω(X) exp{aw(X)}), Eθi (hω(X)fa
C(X, θi), i = 1, 2, are de-

fined by (2.4).

The proposition that follows presents the analytic expression for Dω
a (θ1, θ2)

when the kernel density hω belongs to the class of densities (2.1). The proof
is omitted as it follows similar steps as those in Appendix B of Avlogiaris
et al. (2016a).

Proposition 3. Consider two members fC(x, θ1) and fC(x, θ2) of (2.1)
and assume that the kernel density hω(x) = fC(x, ω) is as in (2.1). Then,
subject to the assumptions aθi + ω ∈ Θ, i = 1, 2 and θ1 + aθ2 + ω ∈ Θ,
for a > 0, the BHHJ local power divergence between fC(x, θ1) and fC(x, θ2),
driven by hω(x), is given by

Dω
a (θ1, θ2) = exp{C(aθ2 + ω)− aC(θ2)− C(ω)}Eaθ2+ω (exp{aw(X)})

−(1 + a−1) exp{M (2)
C,a(θ1, θ2, ω)}Eθ1+aθ2+ω(exp{(a+ 1)w(X)})

+a−1 exp{C(aθ1 + ω)− aC(θ1)− C(ω)}Eaθ1+ω (exp{aw(X)}) ,
(2.7)

where

M
(2)
C,a(θ1, θ2, ω) = C(θ1 + aθ2 + ω)− C(θ1)− aC(θ2)− C(ω), (2.8)

with

Eaθi+ω(exp{aw(X)}) =
∫

X

exp{aw(X)}fC(x, aθi + ω)dμ(x), i = 1, 2, (2.9)
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and

Eθ1+aθ2+ω(exp{(a+1)w(X)}) =
∫

X

exp{(a+1)w(X)fC(x, θ1+aθ2+ω)dμ(x).

(2.10)

Our interest is now focused on the explicit form of the local BHHJ power
divergence, defined by (1.6), between two d-variate normal distributions,
Nd(μ1,Σ1) and Nd(μ2,Σ2). Let the kernel density hω be the multivariate
normal distributionNd(μ,Σ)withmean vector μ ∈ Rd and covariancematrix Σ.

The densities of the d-variate normal models with mean vectors μi ∈ Rd

and covariance matrices Σi, i = 1, 2, are given by

f(x;μi,Σi) = (2π)−d/2|Σi|−1/2 exp

(
−1

2
(x− μi)

tΣ−1
i (x− μi)

)
, i = 1, 2.

It is well known that the above d-variate normal distributions are included
in the exponential family of distributions (2.1) with

θi = (θi1, θi2) =

(
Σ−1
i μi,−

1

2
Σ−1
i

)
,

T (x) = (T1(x), T2(x)) =
(
x, xxt

)
, w(x) = 0, (2.11)

C(θi) = log
(
(2π)d/2|Σi|1/2

)
+

1

2
μt
iΣ

−1
i μi = log(2π)d/2

−1

2
log (| − 2θi2|)−

1

4
θti1θ

−1
i2 θi1,

where | . | is used to denote the determinant of a matrix. It should be
noted that the inner product of α = (u,M) and β = (v,N), which consists
of two parts, a vector part u and v and a matrix part M and N , is defined
by αtβ = utv + trace(M tN) (cf. Nielsen and Nock (2011, p. 6)).

Proposition 4. The local BHHJ power divergence, defined by (1.6), be-
tween two d-variate normal distributions Nd(μ1,Σ1) and Nd(μ2,Σ2), driven
by a d-variate normal distribution Nd(μ,Σ), is given by
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D(μ,Σ)
a

((μ1,Σ1), (μ2,Σ2)) = (2π)−ad/2|Σ−1 + aΣ−1
2 |−1/2|Σ|−1/2|Σ2|−a/2

× exp

{
−1

2
(μ− μ2)

t(Σ + aΣ2)
−1(μ− μ2)

}

−(1 + a−1)(2π)−(a+1)d/2|Σ|− 1
2 |Σ1|−

1
2 |Σ2|−

a
2

∣∣Σ−1
1 + aΣ−1

2 +Σ−1
∣∣− 1

2

× exp

{
−1

2

(
μtΣ−1μ+ μt

1Σ
−1
1 μ1 + aμt

2Σ
−1
2 μ2 −Bt

1B2B1

)}

+a−1(2π)−ad/2|Σ−1 + aΣ−1
1 |−1/2|Σ|−1/2|Σ1|−a/2

× exp

{
−1

2
(μ− μ1)

t(Σ + aΣ1)
−1(μ− μ1)

}
,

with

B1 = Σ−1
1 μ1 + aΣ−1

2 μ2 +Σ−1μ,

B2 =
(
Σ−1
1 + aΣ−1

2 +Σ−1
)−1

,

for a > 0.

The proof is omitted as it follows similar steps as those in Appendix C
of Avlogiaris et al. (2016a).

3 Local Model Selection Criterion

In this section, we construct a local model selection criterion by means of
the local BHHJ divergence defined by (1.6), applying the same methodology
as the one used in the construction of the AIC (cf. Burnham and Anderson,
2002) and the Takeuchi information criterion (cf. Takeuchi, 1976). For the
mathematical derivation of the local model selection information criterion
(LDiv.IC), consider a random sample X1, . . . , Xn from some distribution
G defined on a measurable space (X ,A), with true but unknown density
function g, and a candidate model Fθ, with density function fθ, from a
parametric family of probability measures F = {Fθ} (or densities {fθ}) in
(X ,A), indexed by an unknown parameter θ ∈ Θ ⊆ Rk, with k ≥ 1.

In order to construct the local criterion for a known ω ∈ Θ∗, consider a
probability measureHω in (X ,A) with respective density hω and the quantity

Wω
a (θ) =

∫

X

hω(x)f
1+a
θ (x)dμ(x)− (1 + a−1)

∫

X

hω(x)g(x)f
a
θ (x)dμ(x), a > 0,

(3.1)
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which can be written as

Wω
a (θ) = Dω

a (g, fθ)−
1

a

∫

X

hω(x)g
1+a(x)dμ(x), a > 0, (3.2)

where Dω
a (g, fθ) is the local BHHJ power divergence, defined by (1.6). We

notice that the term 1
a

∫
X
hω(x)g

1+a(x) dμ(x) remains constant regardless of

the model fθ used. Therefore, this quantity can be regarded as a measure of
the local discrepancy between g and fθ, which differs from the local BHHJ
power divergence only up to a constant (see Burnham and Anderson, 2002,
p. 364). Note that (3.1) can also be written as

Wω
a (θ) = Efθ(hω(X)fα

θ (X))− (1 + a−1)Eg(hω(X)fα
θ (X)), a > 0. (3.3)

We assume that the true model g belongs to the parametric family {fθ},
and consider a consistent and asymptotically normal estimator of the pa-
rameter θ based on the sample X1, . . . , Xn from the true model g ∈ {fθ}.
This estimator possesses the necessary properties required for the derivation
of the LDiv.IC. Such an estimator can be obtained either by maximizing
the loglikelihood function or minimizing the BHHJ divergence (cf. Basu
et al., 2011). In the latter case, the consistency, as well as, the asymptotic
normality of the estimator are verified by Theorem 4.2 in Basu et al. (1998).

For a given ω ∈ Θ∗, we define the weighted or local expected overall
discrepancy between g and fθ by

Eg(W
ω
a (θ̂)) = Eg(W

ω
a (θ)|θ= θ̂)

= Eg

(
Efθ̂

(hω(X)fα
θ̂
(X))

)
−(1+a−1)Eg

(
Eg(hω(X)fa

θ̂
(X))

)
, a>0,

(3.4)

where θ̂ is any consistent and asymptotically normal estimator of the param-
eter θ. Our aim here is to construct an asymptotically unbiased estimator of
the quantity Eg(W

ω
a (θ̂)) with g ∈ {fθ} (cf. Burnham and Anderson, 2002,

p. 363).
We begin by obtaining some lemmas that are necessary in order to ob-

tain the basic proposition of this section, which yields the desired estimator
of Eg(W

ω
a (θ̂)) with g ∈ {fθ}. Let ∇θlθ(·) denote the k-dimensional gradi-

ent vector of lθ(·) with respect to θ, and ∇2
θlθ(·) the corresponding k × k

Hessian Matrix, where lθ(·) is a scalar function. In what follows, in order
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to investigate the asymptotic behavior of the estimators, we consider the
standard regularity assumptions of asymptotic statistics (cf. Pardo, 2006, p.
58; Avlogiaris et al., 2016b).

Lemma 1. The gradient vector and the Hessian matrix of Wω
α (θ) are

given by

∇θW
ω
a (θ) = (a+1)

⎛
⎝
∫

X

hω(x)uθ(x)f
1+a
θ (x)dμ(x)− Eg(hω(X)uθ(X)fa

θ (X))

⎞
⎠,

(3.5)
and

∇2
θW

ω
a (θ)=(a+1)

⎧⎨
⎩(a+1)

∫

X

hω(x)uθ(x)u
t
θ(x)f

1+a
θ (x)dμ(x)

−
∫

X

hω(x)Ξθ(x)f
1+a
θ (x)dμ(x)

+Eg(hω(X)Ξθ(X)fa
θ (X))− Eg(ahω(X)uθ(X)utθ(X)fa

θ (X))

⎫⎬
⎭ ,

(3.6)

where uθ(x) = ∇θ log(fθ(x)) and Ξθ(x) = −∇2
θ log(fθ(x)).

The proof is similar to that of Lemma 2.1 of Mattheou et al. (2009) and
will be omitted. An immediate consequence of Lemma 1 is as follows: If the
true distribution g belongs to the parametric family {fθ} and θ0 represents
the true value of the parameter θ, then the gradient vector and the Hessian
matrix of the quantity Wω

α (θ) are given by

[∇θW
ω
a (θ)]θ=θ0

= 0, (3.7)

and

[∇2
θW

ω
a (θ)]θ=θ0

= (a+1)

∫

X

hω(x)uθ0(x)u
t
θ0(x)f

1+a
θ0

(x)dμ(x) = (a+1)Jω(θ0),

(3.8)
with

Jω(θ) =

⎛
⎝
∫

X

hω(x)f
1+a
θ (x)

∂ log fθ(x)

∂θi

∂ log fθ(x)

∂θj
dμ(x)

⎞
⎠

i,j=1,...,k

, (3.9)
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where uθ(x) = ∇θ log(fθ(x)).
The next lemma describes how the local expected overall discrepancy

Eg(W
ω
a (θ̂)) can be written via a Taylor expansion.

Lemma 2. If the true distribution g belongs to the parametric family {fθ}
and θ0 denotes the true value of the parameter θ, then the local expected
overall discrepancy Eg(W

ω
a (θ̂)) between g and fθ is given by

Eg(W
ω
a (θ̂)) = Wω

a (θ0)+
α+ 1

2
Eg((θ̂− θ0)

tJω(θ0)(θ̂− θ0))+Eg (Rn) , a > 0,

(3.10)

where Rn = o
(
‖θ̂ − θ0‖2

)
and Jω(θ0) as defined by (3.9).

The result is immediately obtained by applying a Taylor series expansion
to the function Wω

a (θ) about the true parameter θ0, taking θ = θ̂ and using
equations (3.7) and (3.8). As a consequence, we obtain

Wω
a (θ̂) = Wω

a (θ0) +
α+ 1

2
(θ̂ − θ0)

tJω(θ0)(θ̂ − θ0)) + o
(
‖θ̂ − θ0‖2

)
, a > 0,

(3.11)
and therefore, (3.10) is established.

Now, for a given ω ∈ Θ∗ and θ ∈ Θ, an estimator Qω
a (θ) of Wω

a (θ) is
obtained by replacing Eg(hω(X)fa

θ (X)) in the expression of Wω
a (θ) in (3.3)

by its sample analog. Consequently, the estimator Qω
a (θ) is given by

Qω
a (θ) =

∫

X

hω(x)f
1+a
θ (x)dμ(x)− (1 + a−1)

1

n

n∑
i=1

hω(Xi)f
a
θ (Xi), a > 0,

(3.12)
where X1, . . . , Xn is a random sample from g. The gradient vector and the
Hessian matrix for Qω

a (θ) with respect to θ are given in the following Lemma.
The proof follows similar steps as in the proof of Lemma 2.2 in Mattheou
et al. (2009, p. 231) and will be omitted.

Lemma 3. The gradient vector and the Hessian matrix of Qω
a (θ), in

(3.12), are given by

∇θQ
ω
a (θ) = (a+ 1)

⎛
⎝
∫

X

hω(x)uθ(x)f
1+a
θ (x)dμ(x)− 1

n

n∑
i=1

hω(Xi)uθ(Xi)f
a
θ (Xi)

⎞
⎠ ,

(3.13)
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and

∇2
θQ

ω
a (θ) = (a+1)

⎧⎨
⎩(a+1)

∫

X

hω(x)uθ(x)u
t
θ(x)f

1+a
θ (x)dμ(x)

−
∫

X

hω(x)Ξθ(x)f
1+a
θ (x)dμ(x)

+
1

n

n∑
i=1

hω(Xi)Ξθ(Xi)f
a
θ (Xi)−

1

n

n∑
i=1

ahω(Xi)uθ(Xi)u
t
θ(Xi)f

a
θ (Xi)

}
,

(3.14)

where uθ(x) = ∇θ log(fθ(x)) and Ξθ(x) = −∇2
θ log(fθ(x)).

The following lemma provides the last component required in order to
prove our main result.

Lemma 4. Under the assumption that the true model g belongs to the
parametric family {fθ}, the local expected overall discrepancy Eg(W

ω
a (θ̂)) is

given by

Eg(W
ω
a (θ̂)) = Eg

(
Qω

a (θ̂) + (a+ 1)(θ̂ − θ0)
tJω(θ0)(θ̂ − θ0) +Rn

)
, (3.15)

where Rn = o
(
‖θ̂ − θ0‖2

)
, θ0 is the true parameter and Jω(θ0) as in (3.9).

The proof of this Lemma is given in Section 7.1. The main result of this
section is described below.

Proposition 5. Under the assumption that the true model g belongs to
the parametric family {fθ}, the following hold:

(i) The local expected overall discrepancy Eg(W
ω
a (θ̂)) defined in (3.4), mul-

tiplied by n, is given by

nEg(W
ω
a (θ̂)) = nQω

a (θ̂) + n(a+ 1)(θ̂ − θ0)
tJω(θ0)(θ̂ − θ0), (3.16)

where θ̂ is any consistent and asymptotically normal estimator and
Qω

a (θ̂) is given by (3.12).

(ii) The expected value of the quadratic form n(θ̂ − θ0)
tJω(θ0)(θ̂ − θ0) is

given by

Eg[n(θ̂ − θ0)
tJω(θ0)(θ̂ − θ0)] =

r∑
i=1

βi, (3.17)
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where θ̂ is as in Theorem 4.2 in Basu et al. (1998) and β1, β2, . . . , βr
denote the non-zero eigenvalues of the matrix

Jω(θ0)AV ar(θ0),

where θ0 is the true value of the parameter θ and

r = rank(AV ar(θ0)J
ω(θ0)AV ar(θ0)).

The quantity Jω(θ0) is defined by (3.9), and

AV ar(θ0) = J−1(θ0)K(θ0)J
−1(θ0),

denotes the variance-covariance matrix of
√
n(θ̂−θ0), where J(θ0) and

K(θ0) are given by

J(θ0) =

∫
uθ0(x)u

t
θ0(x)f

1+a
θ0

(x)dμ(x),

and

K(θ0) =

∫
uθ0(x)u

t
θ0(x)f

1+2a
θ0

(x)dμ(x)

−
∫

uθ0(x)f
1+a
θ0

(x)dμ(x)

∫
utθ0(x)f

1+a
θ0

(x)dμ(x).

The proof of this Proposition is given in Section 7.2.

Remark 1. (Procedure for local model selection). Taking into account
the above discussion, the local divergence information criterion LDiv.IC is
defined by

Lω
a,n(θ̂, β1 . . . βr) = nQω

a (θ̂) + (a+ 1)
r∑

i=1

βi. (3.18)

and the general approach to local model selection is as follows: assume
that the true distribution g belongs to the parametric family {fθ}, and θ̂
is a consistent and asymptotically normal estimator of the parameter θ,
on the basis of the random sample X1, . . . , Xn from g ∈ {fθ}. Then for a
given ω ∈ Θ∗ and a > 0, the value Lω

a,n(θ̂, β1 . . . βr), where Qω
a (θ̂) is de-

fined in (3.12) and β1, β2, . . . , βr are as in Proposition 5, provides us with
a criterion to choose the most appropriate model from a collection {fθ} of
possible models, in some area of X , which is specified by the density hω.
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In particular, we measure the value of LDiv.IC between two entertained
models f1

θ1
and f2

θ2
from the truemodel g, locally, we compute Lω

a,n(θ̂1, β1 . . . βr)

and Lω
a,n(θ̂2, a1 . . . as) on the basis of a random sample X1, . . . , Xn, and if

Lω
a,n(θ̂1, β1 . . . βr) < Lω

a,n(θ̂2, a1 . . . as), (3.19)

then, fθ̂1 is a more appropriate model than fθ̂2 . This procedure is illustrated
in the application section.

Remark 2. When θ̂ is taken to be the MLE, the variance-covariance
matrix of

√
n(θ̂− θ0) is the inverse of the Fisher information matrix I−1

F (θ0)
and β1, β2, . . . , βr denote the non-zero eigenvalues of the matrix

Jω(θ0)IF (θ0)
−1,

where

r = rank(IF (θ0)
−1Jω(θ0)IF (θ0)

−1).

What distinguishes the MLE from the BHHJ estimator is the fact that it is
computationally much faster and much more precise (cf. Mattheou et al.,
2009, p. 233). This feature will become apparent in the simulation section.

Remark 3. The limit of the divergence in (1.6) when a → 0 is the local
Kullback-Leibler divergence (cf. Avlogiaris et al., 2016a) given by

Dω
0 (g, fθ) = lim

a→0
Dω

a (g, fθ) = Efθ (hω(X))− Eg(hω(X)) +

∫

X

hω(x)g(x) log
g(x)

fθ(x)
dμ(x).

(3.20)

The proof of (3.20) is given in Section 7.3. Therefore, when a → 0, we have

Wω
a (θ) = Efθ(hω(X))− Eg(hω(X) log(fθ(X))), (3.21)

and

Qω
a (θ) = Efθ(hω(X)− 1

n

n∑
i=1

hω(Xi) log(fθ(Xi)). (3.22)

In this case, the LDiv.IC reduces to what we aptly call local Akaike criterion
(LAIC), given by

LAIC = nQω
a (θ̂) +

r∑
i=1

βi. (3.23)
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Remark 4. The matrices Jω(θ0) and IF (θ0) can be estimated by replac-
ing the true but unknown parameter θ0 with an estimator θ̂ based on the
observed data as follows:

IF (θ̂) =

⎛
⎝
∫

X

fθ(x)
∂ log fθ(xi)

∂θi

∂ log fθ(xi)

∂θj
dμ(x)

∣∣∣∣
θ=θ̂

⎞
⎠

i,j=1,...,k

, (3.24)

and

Jω(θ̂) =

⎛
⎝
∫

X

hω(x)f
1+a
θ (x)

∂ log fθ(x)

∂θi

∂ log fθ(x)

∂θj
dμ(x)

∣∣∣∣
θ=θ̂

⎞
⎠

i,j=1,...,k

.

(3.25)
When the integrals above are intractable, i.e., not available in closed form,
then we can employ the empirical observed information matrix to approxi-
mate (3.24) (e.g., McLachlan and Peal, 2000, section 2.15.3) and use a similar
approach for (3.25). Alternatively, one can approximate both integrals using
Monte Carlo integration based on realizations from the estimated model fθ̂.

4 Simulation Study

4.1. Univariate Case In order to evaluate the performance of the pro-
posed local divergence information criterion, we performed a Monte Carlo
simulation study using the LDiv.IC. We consider the problem of choosing
between an exponential model, with density

f(x;λ) = fλ(x) = λ exp(−λx), x > 0, λ > 0,

and a log-normal model with density

k(x;μ, η) = kμ,η(x) =
1

xη
√
2π

exp

(
−(log x− μ)2

2η2

)
, x > 0, μ ∈ R, η > 0,

locally. We are interested in investigating any differences between the two
models, by focusing on a specific area of the domain of observations where
the two models might differ. This problem has a long history in the statis-
tical literature, when the comparison is made globally, i.e., over the whole
domain of the distributions. See Vuong and Wang (1993), Jiménez-Gamero
et al. (2011), and the references therein. Figure 1 illustrates the exponen-
tial distribution with parameter λ = 1 and the log-normal distribution with
parameter μ = − 0.347, η = 0.833. The simulation study based on the
LDiv.IC has the following characteristics:
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– Generate 1000 samples of size n = 100, 250, 500, 1000 from

h(x; t) = tf(x; 1) + (1− t)k(x;−0.347, 0.833),

for t = 0.5, 1, 0, 0.75, 0.25.

– Estimate the parameters λ, μ, and η of the exponential distributions
and the log-normal distribution. The estimators of the parameters are
obtained either by minimization of the BHHJ measure defined by (1.4)
(and in this case, the parameter η is considered known and equal to
0.833, see Table 1), or by maximization of the loglikelihood function
(see Table 2). If the BHHJ method is used, there is no closed form
for the estimators of the parameters; instead, they are computed by
solving the equations

1

n

n∑
i=1

uθ(Xi)f
a
θ (Xi)−

∫

X

uθ(x)f
1+a
θ (x)dx = 0,

numerically (cf. Basu et al., 1998), where uθ(x) = ∇θ log(fθ(x)), for
a = 0.1.

– Calculate the value of the LDiv.IC for a = 0.1.

– Compute the percentage of times that the exponential was selected
and the log normal was selected for several values of the parameter
ω = (μω, σ

2
ω) of the truncated normal kernel. In particular, we choose

μω = 0.6, 1, 1.5, 2, 3 and use a constant standard deviation σ = 0.1.

The behavior of the BHHJ measures is as follows (see Basu et al., 1998):
parameter a controls the trade-off between robustness and asymptotic effi-
ciency of the parameter estimates. Choices of a near 0 tend to yield robust
estimators while retaining efficiency close to that of maximum likelihood.
The latter is the case for a = 0, i.e., when the BHHJ reduces to the Kullback-
Leibler divergence. Therefore, we choose a = 0.1 in our simulations and ap-
plications, so that our local estimators are close to MLE efficiency and some-
what robust, and therefore, the resulting LDiv.IC criterion is robust to the
parameter estimators. However, any of the standard methods can be used in
order to select a appropriately. For example, the minimum contrast method
(see, Diggle, 2013, p. 132) suggests minimization of a discrepancy measure,
e.g., select a such that the quantity Q(a) =

∫
Ω

(Dω
a (g, fθ)− D̂ω(g, fθ))

2dω, is

minimized with respect to a > 0, with ω the parameters of the kernel density,
ω ∈ Ω, and D̂ω(g, fθ) denotes a local divergence between g and fθ, that could
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Table 1: Displaying the percentages of selecting an Exponential or LogNormal candidate
models for several sample sizes and kernels using BHHJ estimators for λ and μ
n 100 250 500 1000

Candidate models Exp LogN Exp LogN Exp LogN Exp LogN

Driving kernel: truncated normal (μ, σ = 0.1)
(a) True model: 0.5Exp(1) + 0.5LogNormal(− 0.347, 0.833)
μ = 0.6 53.1 46.9 48.5 51.5 50.2 49.8 50.3 49.7
1 49.5 50.5 48.3 51.7 39 61 40 60
1.5 58.8 41.2 58.8 41.2 64.5 35.5 67.2 32.8
2 53.4 46.6 56.1 43.9 58.7 41.3 66.4 33.6
3 48 52 51.5 48.5 54.7 45.3 60.7 39.3

(b) True model: Exp(1 )
μ = 0.6 84.2 15.8 95.9 4.1 99.1 0.9 99.9 0.1
1 57 43 66.4 33.6 72.4 27.6 80 20
1.5 64.6 35.4 72.7 27.3 78. 21.1 87.2 12.8
2 67.3 32.7 78.3 21.7 85.1 14.9 94.3 5.7
3 61.4 38.6 66.8 33.2 79.9 20.1 89.5 10.5

(c) True model: LogNormal(− 0.347, 0.833)
μ = 0.6 16.4 83.6 6 94 1 99 0 100
1 36.6 63.4 28.3 71.7 19.9 80.1 7.7 92.3
1.5 55 45 49.5 50.5 44 56 42.2 57.8
2 42.6 57.4 34.8 65.2 28.3 71.7 21.2 78.8
3 28.4 71.6 27.7 72.3 26.6 73.4 22.4 77.6

(d) True model: 0.75Exp(1) + 0.25LogNormal(− 0.347, 0.833)
μ = 0.6 68.1 31.9 80.6 19.4 90.6 9.4 95.5 4.5
1 54.3 45.7 53.5 46.5 60.6 39.4 59.9 40.1
1.5 60.8 39.2 66.7 33.3 73.6 26.4 80.8 19.2
2 58.2 41.8 67.4 32.6 74.7 25.3 86.5 13.5
3 52.2 47.8 60.7 39.3 69.2 30.8 79.3 20.7

(e) True model: 0.25Exp(1) + 0.75LogNormal(− 0.347, 0.833)
μ = 0.6 28.7 71.3 21.8 78.2 13.8 86.2 4.5 95.5
1 44.3 55.7 36.4 63.6 30.1 69.9 22.5 77.5
1.5 56.1 43.9 54.2 45.8 54.1 45.9 51.5 48.5
2 43.1 56.9 47 53 46.1 53.9 40.3 59.7
3 37.1 62.9 41.8 58.2 41 59 41.3 58.7

The parameter η is considered known and equal to 0.833. The driving kernel is a truncated
normal with varying means μ and fixed σ = 0.1. The true models that generate the
data are displayed for each subsection of the table (i.e., cases a–e). See the text for the
interpretation of the results

be a parametricor non-parametric estimate, e.g., the local Kulback-Leibler
distance of Avlogiaris et al. (2016a). Clearly, the minimization is performed
via numerical methods.

The results of the simulations conducted are displayed in Tables 1 (BHHJ
estimators) and 2 (MLE), whereas Fig. 2 illustrates the true models used to
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Table 2: Displaying the percentages of selecting an Exponential or LogNormal candidate
models for several sample sizes and kernels using MLE for all parameters of the candidate
models
n 100 250 500 1000

Candidate models Exp LogN Exp LogN Exp LogN Exp LogN

Driving kernel: truncated normal (μ, σ = 0.1)
(a) True model: 0.5Exp(1) + 0.5LogNormal(− 0.347, 0.833)
μ = 0.6 39.7 60.3 24.4 75.6 12.1 87.9 4.2 95.8
1 67.1 32.9 74 26 77.8 22.2 87 13
1.5 64.2 35.8 65.4 34.6 70.6 29.4 75.5 24.5
2 52.1 47.9 54.1 45.9 55.1 44.9 57.4 42.6
3 47.1 52.9 43.9 56.1 43.8 56.2 37.9 62.1

(b) True model: Exp(1)
μ = 0.6 73.4 26.6 79.6 20.4 79.6 20.4 87.6 12.4
1 65.7 34.3 78.7 21.3 78.7 21.3 85.1 14.9
1.5 68.3 31.7 83.6 16.4 83.6 16.4 90.9 9.1
2 65.2 34.8 82.1 17.9 82.1 17.9 89.5 10.5
3 56.1 43.9 61.5 38.5 61.5 38.5 69 31

(c) True model: LogNormal(− 0.347, 0.833)
μ = 0.6 11.9 88.1 2.4 97.6 0.4 99.6 0 100
1 37.1 62.9 22 78 11.5 88.5 3.6 96.4
1.5 61.8 38.2 57 43 48.9 51.1 44.2 55.8
2 45 55 33.6 66.4 32.4 67.6 19.3 80.7
3 39.9 60.1 32.4 67.6 23.5 76.5 14.2 85.8

(d) True model: 0.75Exp(1) + 0.25LogNormal(− 0.347, 0.833)
μ = 0.6 44.5 55.5 50.1 49.9 61.1 38.9 41.1 58.9
1 83.2 16.8 74.1 25.9 72.2 27.8 89.5 10.5
1.5 78.6 21.4 71 29 66.5 33.5 85 15
2 70.1 29.9 59.9 40.1 58.5 41.5 78.2 21.8
3 50.9 49.1 51.7 48.3 49.2 50.8 55.6 44.4

(e) True model: 0.25Exp(1) + 0.75LogNormal(− 0.347, 0.833)
μ = 0.6 25.4 74.6 8.3 91.7 2.2 97.8 0.1 99.9
1 56.5 43.5 46 54 35.6 64.4 26.3 73.7
1.5 57.7 42.3 58.7 41.3 63.3 36.7 67.5 32.5
2 46.9 53.1 43.1 56.9 42.7 57.3 37.9 62.1
3 44.6 55.4 37.8 62.2 36.2 63.8 24.4 75.6

The driving kernel is a truncated normal with varying means μ and fixed σ = 0.1. The
true models that generate the data are displayed for each subsection of the table (i.e.,
cases a–e). See the text for the interpretation of the results

generate the samples. First we note that as the sample size increases, the
LDiv.IC is able to efficiently select the true model locally (see Tables 1
and 2, cases b and c). This is easily accomplished in areas of the domain
(driven by the kernel) where the candidate models are clearly different (e.g.,
cases b and c of Tables 1 and 2, for μ = 0.6, 1, 1.5, 2, and 3). For example,
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Figure 2: Plots of several densities used in the simulation study (see Tables 1
and 2)

for a kernel that focuses attention about μ = 0.6, the true model is selected
99.9 or 100% of the time (n = 1000).

In the case where the true model is a mixture of the entertained Exp(1)
and LogNormal(− 0.347, 0.833) models (see Tables 1 and 2, cases a, d, and
e), global selection criteria reject the usefulness of both models. However,
focusing on specific areas of the domain, the LDiv.IC is able to identify the
true model even if the data arises from the mixture model (e.g., cases d and
e in Table 1, for μ = 0.6 and n = 1000, or case e in Table 2, for μ = 0.6
and n = 1000). In addition, there are intervals where a certain model is
fit best, which is different compared with the model that is selected in the
whole domain according to the global selection criteria.

4.2. Multivariate Case: a Point Process Example Consider a region
W ⊂ R2 and suppose that we observe n points {xi}ni=1. To model this
collection of points as a point process, we consider the observed points
as arising from a model with two sources of randomness; the number of
points n, and conditional on knowing n, the points are randomly generated
over the region W. The observed points (events) are then called a point
pattern and are treated as a realization from a point process N over the
window W.

Similarly to the first moment for random variables, point processes can
be characterized by their corresponding intensity function λ(x), x ∈ W,
where λ(x)dx assumes the interpretation of the probability of observing a
point in an infinitesimal disc (sphere in Rd) centered at x, of volume dx. Of
course the first moment does not uniquely determine the point process in
general, unless certain conditions are met (e.g., Cressie, 1993).
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More precisely, letting N(W) denote the number of points over W, we
assume that N(W) � Poisson (Λ(W)), where Λ(W) denotes the first-order
measure of the point process, i.e., E(N(W)) = Λ(W). In addition, we as-
sume that counts over non-overlapping areas are independent random vari-
ables. These two assumptions lead to the most important point process
model, known as the inhomogenous Poisson point process (IPPP ) N with
intensity measure Λ, and if Λ is dominated by Lebesgue measure, there exists
a measurable function λ(x|θ) such that

Λθ(W) =

∫
W

λ(x|θ)dx, (4.1)

for some parameter vector θ. Then the joint distribution of the events ob-
served over some window W, given that N(W) = n, is given by

f(x1, . . . , xn|θ,N(W) = n) =
n∏

i=1

λ(xi|θ)
Λθ(W)

, (4.2)

for xi ∈ W , i = 1, . . . , n. The function λ(x|θ) is called the intensity function
and it uniquely identifies the point process distribution.

Our goal is to estimate θ in a robust way while we vary our focus over the
window of observation W. Following Micheas (2014), we choose to model
the intensity function using a multiple of a proper density λθ(x), i.e.,

λ(x|θ, ξ) = ξλθ(x), (4.3)

which is not a density in general, with ξ > 0.
In order to evaluate the performance of the proposed local divergence

information criterion, we performed a Monte Carlo simulation study using
the LDiv.IC. Figure 3 illustrates n = 1000 events observed in the window
W = (0, 1)×(0, 1), which arise as a realization of a nonhomogeneous Poisson
point process with ξ = 1025 and λθ(x) a mixture model of three normal
components. More precisely,

λθ(x) = 0.4N((0.25, 0.25),Σ)+ 0.3N((0.75, 0.25),Σ)+ 0.3N((0.5, 0.75),Σ),

with Σ =

(
0.005 0
0 0.005

)
. We consider the problem of choosing between

three candidate models, locally. As candidate models, we consider the bi-
variate normal components of λθ(x), i.e.,

f(x;μi,Σi) = (2π)−1|Σi|−1/2 exp

(
−1

2
(x− μi)

tΣ−1
i (x− μi)

)
,
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Figure 3: A realization of a nonhomogeneous Poisson point process with
ξ = 1025 and contours of the three different bivariate normal kernels. There
are n = 1000 events observed in the window (0, 1)× (0, 1)

with mean vectors μi, i = 1, 2, 3, covariance matrices Σi, i = 1, 2, 3. Using
the classic method of simulating from an IPPP by Lewis and Shedler (1979),
the simulation study based on the LDiv.IC has the following characteristics:

– Generate the number of pointsN(W) � Poisson (Λ(W)), where Λ(W) =∫
W ξλθ(x)dx. Say N(W) = n.

– Find λ∗ = max
x∈W

λθ(x).

– Generate a point x0 ∈ W on W uniformly and U � U(0, 1). Check
if U < λθ(x0)

λ∗ and keep the point. Repeat until we retain n-points.
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These points form a point pattern from the entertained Poisson point
process.

– Calculate the value of the AIC and DIC for a = 0.1.

– Compute the LDiv.IC for several kernels of the bivariate normal.
More precisely, we choose μ0 to be one of the vectors (0.25, 0.25),
(0.75, 0.75) and (0.5, 0.75), and for the variance-covariance matrix Σ0

we choose the matrix Σ0 =

(
0.01 0
0 0.01

)
.

We present the results in Table 3, where the values of the local criterion
are calculated for each kernel in the window W = (0, 1)× (0, 1). We notice
that in the area with center (0.25, 0.25), the first normal component is se-
lected, in the area with center (0.75, 0.25), the second normal component is
selected, whereas the third normal component is selected in the area with
center (0.5, 0.75). As a result, the true model is selected in each of the focus
areas.

In addition, we present the values of the AIC and DIC. It must be noted
that both global criteria (AIC and DIC) select the component with the
highest weight in the true model. Therefore, global selection criteria provide
erroneous results in this case since they lose track of the local characteristics
of a model, and such criteria do not involve a mechanism that can capture
local behavior. In contrast, the LDiv.IC is able by construction to iden-
tify and include local characteristics in making an informed decision about
competing models. Finally, note that the selection of the “best” model in
each focus area enables us to estimate the parameters of the model in a

Table 3: Displaying the values of the LDiv.IC for three candidate models and several
kernel choices

Model 1 Model 2 Model 3 Selection

Driving kernel: bivariate normal (μ0,Σ0 = [(0.01, 0), (0, 0.01)])
LDiv.IC LDiv.IC LDiv.IC Model selected

(0.25, 0.25) − 42416.8 − 5340.27 − 2933.20 1
(0.75, 0.25) − 4832.02 − 36591.1 − 2632.57 2
(0.5, 0.75) − 2805.56 − 2749.72 − 34964.1 3
AIC 30594.2 33136.6 37800.5 1
DIC − 7508.30 − 6865.79 − 6500.77 1

Model 1 refers to a bivariate normal that corresponds to the first normal component of the
mixture model, model 2 refers to the second component, and model 3 refers to the third
component. The driving kernel is a bivariate normal with varying means μ0 and fixed Σ0.
In the last column, we display the model selected. See the text for the interpretation of
the results
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“robust” way as the focus area changes, since we are able to recover the pa-
rameters of the true component that realizes the data every time. Although
this example is somewhat artificial, it serves the purpose in exemplifying the
aforementioned issues when performing model selection locally or globally.

5 Application

We discuss applications of the methodology developed to real life data.
Before we present the data analysis, we briefly discuss the use and inter-
pretation of simple differences of the local information criterion LDiv.IC,
following Burnham and Anderson (2002, p. 70). In particular, define
ΔLDiv.ICi = LDiv.ICi − LDiv.ICmin, where LDiv.ICi the value of the
local information criterion for model i, and LDiv.ICmin = min

j
LDiv.ICj .

Then, model i is estimated to be the best if it has ΔLDiv.ICi = 0. The
larger ΔLDiv.ICi is, the less likely it is that the ith model is the best locally.

Rough rules of thumb can be built in a similar fashion as in the (global)
AIC case. In particular, we conducted a simulation study based on the exam-
ples of the simulation section (results omitted), in order to help us identify
meaningful ranges of values for the ΔLDiv.ICi, since in these examples, we
know the true models, and therefore, we can validate the model selection cri-
teria. More precisely, our simulations showed that values of the ΔLDiv.ICi

in the [0, 1) range show strong support for model i, values in the interval
[1, 5) show marginal support for model i, whereas, values above 5 indicate no
support for model i. We compute and present these values in what follows
and use them as evidence to suggest the best model in each case. It should
be noted that the recommended intervals are a first attempt at identifying
these important ranges for the value of the ΔLDiv.ICi, and they are by no
means a panacea. Further study is required in order to fully appreciate the
behavior of the ΔLDiv.ICi and its range of values in different settings.

5.1. Univariate Case: Galaxy Data The galaxy data was first studied
by Postman et al. (1986). The data describe the velocity in km3/sec of 82
galaxies from the six conical areas of the corona Borealist constellation. In
1992, Roeder (cf. Roeder, 1992) was the first to apply a mixture model
to this data and since then, this has constituted a benchmark example for
papers working with mixture distributions. For a comparative presentation
on the different approaches using the Galaxy data, we refer to Aitkin (2001).

Most researchers believe that these observations arise from a mixture
model with normal components. Figure 4 presents a histogram of the data.
In this histogram, we can see several gaps within the main bulk of the obser-
vations (from 15 to about 26), as well as some outliers which are concentrated
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near velocities 10 and 32. Therefore, it is reasonable to assume that this is
a mixture of at least three components, and this observation is the only
one that several researchers seem to agree on. In particular, most papers in
the literature consider the estimate for the number of the components to be
between 3 and 8.

We consider five candidate models for this data: normal distribution,
mixture of two normal components, mixture of three normal components,
mixture of four normal components, and mixture of five normal components.
The data histogram as well as the densities of the five candidate models
is illustrated in Fig. 4, and in Table 4, we present the parameters of the
respective models. Note that the AIC suggests the mixture of four normal
components, with value AIC = 418.916. The results are similar in Table 5,
where we display the ΔLDiv.IC, with the values allowing us to easily and
quickly identify which is the best model proposed in each case.

Furthermore, we apply the local selection criterion (LDiv.IC) for several
normal kernels (see Table 4). Initially, we choose to divide the window of
observation based on three normal kernels with means 10, 20, and 30 and
constant standard deviation σ = 1.67, respectively. In this case and using
the local criterion, a different mixture of normal components is selected for
each interval as the best model, where the intervals are determined by the
driving normal kernel (see part a of Table 4).

Figure 4: Histogram of the galaxy data and the densities of the five candi-
date models, where model i consists of a mixture with i univariate normal
components, i = 1, . . . , 5
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Table 4: Displaying the values of the LDiv.IC for the galaxy data for selecting five
candidate models for several kernels using MLE
Galaxy data Model 1 Model 2 Model 3 Model 4 Model 5 Model selected

(a) Kernel: normal (μ0 = 10, 20, 30, σ2
0 = 1.672)

(10, 1.672) − 9.8125 − 9.9070 − 11.3280 − 11.3286 − 11.3127 4

(20, 1.672) − 78.9007 − 79.3333 − 79.7111 − 80.2637 − 80.3412 5

(30, 1.672) − 1.0762 − 1.5513 − 1.6083 − 1.5919 − 1.5102 3

(b) Kernel: normal (μ0 = 10, 16, 22, 28, σ2
0 = 12)

(10, 12) − 15.4213 − 15.3812 − 17.4966 − 17.4969 − 17.4888 4

(16, 12) − 4.0021 − 5.3062 − 5.2868 − 5.2169 − 5.2779 2

(22, 12) − 77.116 − 76.910 − 77.049 − 77.3723 − 77.2399 4

(28, 12) − 1.9359 − 2.6320 − 2.7668 − 2.7533 − 2.6161 3

(c) Kernel: normal (μ0 = 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, σ2
0 = 0.41752)

(10, 0.41752) − 23.2203 − 22.9663 − 25.6755 − 25.6759 − 25.6697 4

(12.5, 0.41752) 0.9708 0.2343 0.0054 0.0035 0.0755 4

(15, 0.41752) 1.9243 − 0.0748 − 0.1721 − 0.2238 − 0.0871 4

(17.5, 0.41752) 2.8029 0.1507 0.8093 − 0.0772 − 0.2833 5

(20, 0.41752) − 142.619 − 144.392 − 145.232 − 146.537 − 146.858 5

(22.5, 0.41752) − 85.8838 − 85.9618 − 86.5534 − 86.402 − 85.971 3

(25, 0.41752) − 20.4891 − 20.9452 − 20.8027 − 20.701 − 20.657 2

(27.5, 0.41752) − 2.9717 − 3.7274 − 3.7838 − 3.7863 − 3.6396 4

(30, 0.41752) 0.6793 0.2212 0.0676 0.0718 0.1642 3

AIC 484.676 472.553 424.360 418.916 422.132 4

The driving kernel is a normal with varying means μ0 and fixed σ2
0 . The models considered

are mixtures of univariate normals with 1–5 components. In the last column, we have
the model that is selected from the following candidate models: model 1: θ̂1 = (μ̂1,
σ̂1

2) = (20.83, 4.542), model 2: θ̂2 = (μ̂2, μ̂3, σ̂2
2, σ̂3

2, ŵ2, ŵ3) = (21.35, 19.36, 1.882,
8.152, 0.74, 0.26), model 3: θ̂3 = (μ̂4, μ̂5, μ̂6, σ̂4

2, σ̂5
2, σ̂6

2, ŵ4, ŵ5, ŵ6) = (33.04, 21.40,
9.71, 0.922, 2.202, 0.422, 0.037, 0.878, 0.085), model 4: θ̂4 = (μ̂7, μ̂8, μ̂9, μ̂10, σ̂7

2, σ̂8
2, σ̂9

2,
σ̂10

2, ŵ7, ŵ8, ŵ9, ŵ10) = (33.05, 21.94, 19.75, 9.71, 0.922, 2.272, 0.452, 0.422, 0.037, 0.665,
0.213, 0.085), and model 5: θ̂5 = (μ̂11, μ̂12, μ̂13, μ̂14, μ̂15, σ̂11

2, σ̂12
2, σ̂13

2, σ̂14
2, σ̂15

2, ŵ11,
ŵ12, ŵ13, ŵ14, ŵ15) = (33.04, 22.92, 21.85, 19.82, 9.71, 0.922, 1.022, 3.052, 0.632, 0.422,
0.036, 0.289, 0.245, 0.344, 0.085). See the text for the interpretation of the results

Next, we concentrate on finer areas of the domain by selecting a smaller
standard deviation in the normal driving kernel (σ = 1 and σ = 0.4175), and
consider similar means. In parts b and c of Table 4, we obtain the results
where different models are selected depending on the focus area (see column
5 parts b and c of Table 4). In particular, for all parts a, b, and c of the
table, the mixture with 4 normal components emerges as the model mostly
selected (7/16 times) regardless of the area we focus to compute the local
selection criterion. This conclusion is also supported by the AIC.
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Table 5: Displaying the values of the ΔLDiv.ICij for five candidate models j =
1, 2, . . . , 5, and sixteen kernels i = 1, 2, . . . , 16
Galaxy data Model 1 Model 2 Model 3 Model 4 Model 5 Model selected

(a)
ΔLDiv.IC1j 1.5161 1.4216 0.0006 0 0.0159 4
ΔLDiv.IC2j 1.4405 1.0079 0.6301 0.0775 0 5
ΔLDiv.IC3j 0.5321 0.0570 0 0.0164 0.0981 3

(b)
ΔLDiv.IC4j 2.0756 2.1157 0.0003 0 0.0081 4
ΔLDiv.IC5j 1.3041 0 0.0194 0.0893 0.0283 2
ΔLDiv.IC6j 0.2563 0.4623 0.3233 0 0.1324 4
ΔLDiv.IC7j 0.8309 0.1348 0 0.0135 0.1507 3

(c)
ΔLDiv.IC8j 2.4556 2.7096 0.0004 0 0.0062 4
ΔLDiv.IC9j 0.9673 0.2308 0.0019 0 0.0720 4
ΔLDiv.IC10j 2.1481 0.1490 0.0517 0 0.1367 4
ΔLDiv.IC11j 3.0862 0.4340 1.0926 0.2061 0 5
ΔLDiv.IC12j 4.2390 2.4660 1.6260 0.3210 0 5
ΔLDiv.IC13j 0.6696 0.5916 0 0.1514 0.5824 3
ΔLDiv.IC14j 0.4561 0 0.1425 0.2442 0.2882 2
ΔLDiv.IC15j 0.8146 0.0589 0.0025 0 0.1467 4
ΔLDiv.IC16j 0.6117 0.1536 0 0.0042 0.0966 3
ΔAICj 65.760 53.637 5.4440 0 3.2160 4

See the text for the interpretation of the results

5.2. Multivariate Case: Iris Data The iris data (Fisher, 1936) is per-
haps the best known data set to be found in the multivariate analysis liter-
ature. The iris data set was introduced by R. A. Fisher as an example for
discriminant analysis. The data set includes 3 categories of 50 cases each,
where each class refers to a type of iris plant. Measurements in centime-
ters were taken from each sample on the length and width of the sepal and
petals. In particular, the data contains the following variables: (1) sepal
length, (2) sepal width, (3) petal length, (4) petal width, and (5) class: iris
setosa, iris versicolor, and iris virginica. In our example we will only focus
on the variables petal width and petal length.

In order to evaluate the performance of the proposed local divergence
information criterion, we performed a study using the LDiv.IC in the iris
data. Figure 5 illustrates n = 150 observations for variables petal width
(x-axis) and petal length (y-axis). We assume that the observations arise
from a mixture model of three normal components given by

fθ(x) =
1

3
N((0.246, 1.462),Σ1) +

1

3
N((1.326, 4.260),Σ2) +

1

3
N((2.026, 5.552),Σ3),
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Figure 5: Plot of the variables petal width (x-axis) vs petal length (y-axis)
and contours of the three different bivariate normal kernels. The data set
contains 50 observations of each of the three species of iris, setosa (blue),
virginica (yellow), and versicolor (green)

with Σ1 =

(
0.0109 0.0059
0.0059 0.0296

)
, Σ2 =

(
0.0383 0.0716
0.0716 0.2164

)
and

Σ3 =

(
0.0739 0.0478
0.0478 0.2985

)
. The estimates of the mixture model parameter

means and covariance matrices were obtained using the data augmentation
approach (Dempster et al., 1977), whereas each component is given the same
probability (since each group has 50 cases).

We consider the problem of choosing between three candidate models,
locally. As candidate models, we consider the bivariate normal components
of fθ(x), i.e.,

f(x;μi,Σi) = (2π)−1|Σi|−1/2 exp

(
−1

2
(x− μi)

tΣ−1
i (x− μi)

)
,

with mean vectors μi and variance-covariance matrices Σi, i = 1, 2, 3. The
study based on the LDiv.IC has the following characteristics:

– Calculate the value of the AIC and DIC for a = 0.1.

– Compute the LDiv.IC for several kernels of the bivariate normal. More
precisely, we choose μ0 to be one of the vectors (0.25, 1.45), (1.35, 4.25),
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Table 6: Displaying the values of the LDiv.IC for selecting three candidate models for
several kernels
Iris data Model 1 Model 2 Model 3 Selection

Driving kernel: bivariate normal (μ0,Σ0 = [(0.05, 0), (0, 0.05)])
μ0 LDiv.IC LDiv.IC LDiv.IC Model selected
(0.25, 1.45) − 1114.76 0.00001 0 1
(1.35, 4.25) − 0.00152 − 805.079 − 6.74515 2
(2, 5.5) 0 − 3.80021 − 272.447 3

AIC 48426.18 2692.16 4358.32 2
DIC − 709.715 − 917.613 − 792.693 2

Model 1 refers to a bivariate normal that corresponds to the first normal component of
the mixture model, model 2 refers to the second component, and model 3 refers to the
third component. The driving kernel is a bivariate normal with varying means μ0 and
fixed Σ0. In the last column, we note the model selected by the LDiv.IC. See the text for
the interpretation of the results

and (2, 5.5), and for the variance-covariance matrix Σ0, we choose the

matrix Σ0 =

(
0.05 0
0 0.05

)
(see Table 6).

We present the results in Table 6, where the values of the local crite-
rion are calculated for each kernel. We notice that in the area with center
(0.25, 1.45), the first normal component is selected, in the area with center
(1.35, 4.25), the second normal component is selected, whereas the third nor-
mal component is selected in the area with center (2, 5.5). In addition, we
present the values of the AIC and DIC and notice that both global criteria
select the second component. Therefore, the global selection criteria tend
to select the model corresponding to the center of the data, since these pro-
cedures do not take into account local characteristics of the data. Similar
results are obtained using Table 7 via the ΔLDiv.IC values.

5.3. Local Model Selection for a Point Process: Redwoodfull Data Next
we evaluate the performance of the proposed local divergence information
criterion using an example from the point process literature, namely the
redwoodfull data. This data represents the locations of 195 seedlings and
saplings of California redwood trees in a square sampling region, and it was

Table 7: Displaying the values of the ΔLDiv.ICij for three candidate models j = 1, 2, 3,
and three kernels i = 1, 2, 3
Iris data Model 1 Model 2 Model 3 Selection

ΔLDiv.IC1j 0 1114.76001 1114.76 1
ΔLDiv.IC2j 805.077 0 798.334 2
ΔLDiv.IC3j 272.447 268.647 0 3
ΔAICj 45734.02 0 1666.16 2

See the text for the interpretation of the results
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Figure 6: Displaying locations of redwood trees in California. There are
n = 63 events observed

originally described and analyzed by Strauss (1975). In our study, we use
63 observations in the reduced window W = (0, 0.5)× (0, 0.5), presented in
Fig. 6.

The study based on the LDiv.IC has the following characteristics:

– As candidate models for the intensity of the Poisson process, we con-
sider six models of mixtures of bivariate normal models, where model i
consists of a mixture with i bivariate normal components i = 1, . . . , 6.

Table 8: Displaying the values of the LDiv.IC for six candidate models and several
kernels
Redwood Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Selection

Driving kernel: bivariate normal (μ0,Σ0 = [(0.01, 0), (0, 0.01)])
μ0 LDiv.IC LDiv.IC LDiv.IC LDiv.IC LDiv.IC LDiv.IC Model selected
(0.08, 0.25) − 2941.13 − 2958.20 − 3008.57 − 3050.93 − 3039.29 − 3010.76 4
(0.2, 0.45) − 1645.45 − 1647.45 − 1612.76 − 1659.03 − 1640.06 − 1612.99 4
(0.2, 0.15) − 3689.42 − 3690.03 − 3686.59 − 3738.56 − 3703.70 − 3670.25 4
(0.35, 0.35) − 3170.21 − 3200.66 − 3111.32 − 3260.05 − 3237.78 − 3209.04 4
(0.40, 0.40) − 2958.16 − 2994.83 − 2915.98 − 3078.63 − 3061.47 − 3032.35 4
(0.45, 0.10) − 1177.27 − 1197.46 − 1142.21 − 1183.27 − 1188.05 − 1122.75 2

AIC − 147.732 − 158.662 − 137.785 − 173.835 − 162.56 − 149.903 4

The driving kernel is a bivariate normal with varying means μ0 and fixed Σ0. In the last
column, we note the model selected by the LDiv.IC. See the text for the interpretation of
the results
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Table 9: Displaying the values of the ΔLDiv.ICij for six candidate models, j =
1, 2, . . . , 6, and six kernels i = 1, 2, . . . , 6
Redwood Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Selection

ΔLDiv.IC1j 109.80 92.73 42.36 0 11.64 40.17 4
ΔLDiv.IC2j 13.58 11.58 46.27 0 18.97 46.04 4
ΔLDiv.IC3j 49.14 48.53 51.97 0 34.86 68.31 4
ΔLDiv.IC4j 89.84 59.39 148.73 0 22.27 51.01 4
ΔLDiv.IC5j 120.47 83.80 162.65 0 17.16 46.28 4
ΔLDiv.IC6j 20.19 0 55.25 14.19 9.41 74.71 2
ΔAICj 26.10 15.17 36.05 0 11.28 23.93 4

See the text for the interpretation of the results

The estimated parameters of the six candidate models are given in the
Appendix (Section A.1).

– Calculate the value of the AIC for a = 0.1.

– Compute the LDiv.IC for several bivariate normal kernels. More pre-
cisely, we choose μ0 = (0.08, 0.25), (0.20, 0.45), (0.20, 0.15), (0.35, 0.35),
(0.4, 0.4), or (0.45, 0.10) and fixed variance-covariance matrix Σ0 =(

0.01 0
0 0.01

)
(see Table 8).

We present the results in Table 8, where the values of the local criterion
are calculated for each kernel. We notice that in the focus areas based on the
kernels with means μ0 = (0.08, 0.25), (0.20, 0.45), (0.20, 0.15), (0.35, 0.35),
(0.4, 0.4)), and fixed Σ0, model 4 is selected, whereas in the focus area with
mean μ0 = (0.45, 0.10), model 2 is selected. In addition, the AIC suggests
model 4 with value AIC = − 173.835. As a result, the model with 4 mixtures
of normal components emerges as the most appropriate both globally and
locally. We reach same conclusion by looking ΔLDiv.IC values presented
in Table 9.

6 Conclusions

In this paper, we introduced the concept of local model selection. In order
to create the local criterion, we introduced a broad class of local divergence
measures between two probability measures, based on the BHHJ power di-
vergence. Explicit expressions of the proposed local divergences were derived
when the underline distributions are members of the exponential family of
distributions or they are described by multivariate normal models.

The local model selection criterion (LDiv.IC) we developed was ex-
emplified via simulations and three classic examples from the literature.
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In particular, the LDiv.IC can be used to propose the best number of com-
ponents of a mixture model (locally), as well as provide a robust estimating
procedure of model parameters, e.g., for a point process model that is af-
fected by the choice of window over which we observe the point pattern, we
are able to perform model selection regardless of the focus area; we simply
select an appropriate driving kernel and then assess the performance of the
model in a particular area of the observation window. This criterion enables
us to select the “best” model among several candidate models, on a specific
area of their common domain. In our simulations and applications, we have
illustrated the robust behavior of the proposed local criterion, identifying
the true model locally regardless of the kernel choice.

Finally, there are several theoretical and practical considerations that we
have not fully explored in this paper. Firstly, the estimation methods used
in the calculation of the LDiv.IC are based on a specific local ϕ-divergence
measure (BHHJ), and therefore, in subsequent works, we will consider other
measures of similarity. Second, we have explored only a few cases where the
LDiv.IC was applied in practice. There are several areas where local model
selection is crucial, including extreme value theory (tail behavior), robust
estimation, spatial statistics, and time series analysis. Moreover, we have
not explored the Bayesian paradigm in the creation of local model selection
criteria. These are areas of great interest and will be explored elsewhere.

7 Proofs

This section presents the proofs of the main results of Section 3.
7.1. Proof of Lemma 4 This subsection provides a detailed proof of

Lemma 4.
Proof. Based on equation (9) of Mattheou et al. (2009), a Taylor ex-

pansion of the quantity Qω
α(θ) defined in (3.12), about the estimator θ̂, yields

the approximation:

Qω
a (θ) = Qω

a (θ̂) + (θ − θ̂)t[∇θQ
ω
a (θ)]θ=θ̂

+
1

2
(θ − θ̂)t[∇2

θQ
ω
a (θ)]θ=θ̂

(θ − θ̂)

+o
(
‖θ̂ − θ‖2

)
, a > 0. (7.1)

Moreover, based on equation (12) of Mattheou et al. (2009), and Lemmas 1
and 3, we have

[∇θQ
ω
a (θ)]θ=θ0

P−−−−→
n→∞

[∇θW
ω
α (θ)]θ=θ0 and [∇2

θQ
ω
a (θ)]θ=θ0

P−−−−→
n→∞

[∇2
θW

ω
α (θ)]θ=θ0 , (7.2)
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as n → ∞. By the fact that θ̂ → θ0, and formulas (3.7), (3.8) and (7.2), the
following holds

[∇θQ
ω
a (θ)]θ=θ̂

P−−−→
n→∞

0 and [∇2
θQ

ω
a (θ)]θ=θ̂

P−−−→
n→∞

(a+ 1)Jω(θ0). (7.3)

Taking into account (7.3), we reformulate (7.1) as

Qω
a (θ) = Qω

a (θ̂) +
a+ 1

2
(θ − θ̂)tJω(θ0)(θ − θ̂) + o

(
‖θ̂ − θ‖2

)
. (7.4)

Letting θ = θ0 in the above equation, we have

Qω
a (θ0) = Qω

a (θ̂) +
a+ 1

2
(θ0 − θ̂)tJω(θ0)(θ0 − θ̂) + o

(
‖θ̂ − θ0‖2

)
, (7.5)

and consequently

Eg(Q
ω
a (θ0)) = Eg(Q

ω
a (θ̂))+

a+ 1

2
Eg((θ0−θ̂)tJω(θ0)(θ0−θ̂))+Eg(Rn), (7.6)

where Rn = (‖θ̂ − θ0‖2). Moreover, using Lemma 2, we obtain

Eg(W
ω
a (θ̂)) = Wω

a (θ0) +
a+ 1

2
Eg((θ̂ − θ0)

tJω(θ0)(θ̂ − θ0)) + Eg(Rn). (7.7)

On the other hand, Eg(Q
ω
a (θ0)) = Wω

a (θ0). Indeed,

Eg(Q
ω
a (θ0)) = Eg

(
Efθ0

(hω(X)f1+a
θ0

(X))
)
− (1 + a−1)Eg

(
1

n

n∑
i=1

hω(Xi)f
a
θ0(Xi)

)

= Efθ0
(hω(X)f1+a

θ0
(X))− (1 + a−1)

1

n

n∑
i=1

Eg
(
hω(Xi)f

a
θ0(Xi)

)

= Efθ0
(hω(X)f1+a

θ0
(X))− (1 + a−1)

1

n

n∑
i=1

Eg
(
hω(X)faθ0(X)

)

= Efθ0
(hω(X)f1+a

θ0
(X))− (1 + a−1)Eg

(
hω(X)faθ0(X)

)
= Wω

a (θ0).

Now, combining equations (7.6) and (7.7), we have the desired result.
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7.2. Proof of Proposition 5 This subsection provides a detailed proof
of Proposition 5.

Proof. i) Lemma 4 and the fact that no
(
‖θ̂ − θ0‖2

)
= nop(n

−1) = op(1)

(cf. Pardo, 2006, p. 411–412) lead to the desired result.
ii) By Theorem 4.2 of Basu et al. (1998), we have that θ̂ is a consistent

estimator of the parameter θ, with

√
n(θ̂ − θ0)

L−−−→
n→∞

N(0, AV ar(θ0)),

and asymptotic variance

AV ar(θ0) = J−1(θ0)K(θ0)J
−1(θ0),

where J(θ0) and K(θ0) are given by

J(θ0) =

∫
uθ0(x)u

t
θ0(x)f

1+a
θ0

(x)dμ(x),

and

K(θ0) =

∫
uθ0(x)u

t
θ0(x)f

1+2a
θ0

(x)dμ(x)

−
∫

uθ0(x)f
1+a
θ0

(x)dμ(x)

∫
utθ0(x)f

1+a
θ0

(x)dμ(x).

In view of Corollary 2.1 of Dik and Gunst (1985), we obtain

n(θ̂ − θ0)
TJω(θ0)(θ̂ − θ0)

L−−−→
n→∞

r∑
i=1

βiZ
2
i ,

where Z1, . . . Zr, are iid standard normal random variables,

r = rank(AV ar(θ0)J
ω(θ0)AV ar(θ0)),

and β1, β2, . . . , βr denote the non-zero eigenvalues of the matrix

Jω(θ0)AV ar(θ0).

Taking into account the above discussion, we finally have

Eg[n(θ̂ − θ0)
tJω(θ0)(θ̂ − θ0)] =

r∑
i=1

βi. (7.8)
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7.3. Proof of (3.20) This subsection provides a proof of (3.20) in
Remark 3.

Proof. We have (cf. Basu et al., 1998),

Dω
0 (g, fθ) = lim

a→0
Dω

a (g, fθ)

= lim
a→0

⎧⎨
⎩
∫

X

hω(x)

(
f1+a
θ (x)− (1 +

1

a
)g(x)fa

θ (x) +
1

a
g1+a(x)

)
dx

⎫⎬
⎭

= lim
a→0

∫

X

hω(x)f
1+a
θ (x)dx− lim

a→0

∫

X

hω(x)g(x)f
a
θ (x)dx

+lim
a→0

∫

X

hω(x)
g(x)(ga(x)− fa

θ (x))

α
dx

=

∫

X

hω(x)fθ(x)dx−
∫

X

hω(x)g(x)dx+

∫

X

hω(x)g(x)lim
a→0

(ga(x)−fa
θ (x))

α
dx

= Efθ(hω(X))− Eg(hω(X)) +

∫

X

hω(x)g(x)lim
a→0

{ga(x) log g(x)

−fa
θ (x) log fθ(x)}dx

= Efθ(hω(X))− Eg(hω(X)) +

∫

X

hω(x)g(x) log
g(x)

fθ(x)
dx.
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Appendix A

A.1 Estimated Parameters of the Candidate Models in the
Redwood Trees Application

Model 1: bivariate normal with estimated parameters μ̂1 = (0.26, 0.25) and

Σ̂1 =

(
0.0170 0.0049
0.0049 0.0179

)
.

Model 2: mixture of two bivariate normal components with estimated pa-

rameters ŵ2 = 0.598, μ̂2 = (0.21, 0.17), Σ̂2 =

(
0.0156 −0.0032
−0.0032 0.0068

)
,

ŵ3 = 0.402, μ̂3 = (0.32, 0.36) and Σ̂3 =

(
0.0087 0.0007
0.0007 0.0056

)
.

Model 3: mixture of three bivariate normal components with estimated

parameters ŵ4 = 0.2764, μ̂4 = (0.12, 0.27), Σ̂5 =

(
0.0036 0.0040
0.0040 0.0084

)
,

ŵ6 = 0.2506, μ̂6 = (0.34, 0.36), Σ̂6 =

(
0.0083 −0.0016
−0.0016 0.0123

)
, ŵ7 =

0.4730, μ̂7 = (0.28, 0.22) and Σ̂7 =

(
0.0105 0.0079
0.0079 0.0142

)
.

Model 4: mixture of four bivariate normal components with estimated pa-

rameters ŵ8 = 0.1565, μ̂8 = (0.38, 0.18), Σ̂8 =

(
0.0055 0.0000
0.0000 0.0105

)
,

ŵ9 = 0.3004, μ̂9 = (0.34, 0.35), Σ̂9 =

(
0.0050 0.0047
0.0047 0.0071

)
, ŵ10 =
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0.2715, μ̂10 = (0.12, 0.29), Σ̂10 =

(
0.0040 0.0049
0.0049 0.0083

)
, ŵ11 = 0.2715,

μ̂11 = (0.22, 0.15) and Σ̂11 =

(
0.0053 0.0029
0.0029 0.0049

)
.

Model 5: mixture of five bivariate normal components with estimated pa-

rameters ŵ12 = 0.2588, μ̂12 = (0.12, 0.28), Σ̂12 =

(
0.0037 0.0046
0.0046 0.0077

)
,

ŵ13 = 0.1435, μ̂13 = (0.40, 0.17), Σ̂13 =

(
0.0045 0.0010
0.0010 0.0094

)
, ŵ14 =

0.2776, μ̂14 = (0.33, 0.34), Σ̂14 =

(
0.0050 0.0052
0.0052 0.0073

)
, ŵ15 = 0.0916,

μ̂15 = (0.24, 0.25), Σ̂15 =

(
0.0057 0.0057
0.0057 0.0095

)
, ŵ16 = 0.2284, μ̂16 =

(0.23, 0.15) and Σ̂16 =

(
0.0049 0.0034
0.0034 0.0055

)
.

Model 6: mixture of six bivariate normal components with estimated pa-

rameters ŵ17 = 0.2478, μ̂17 = (0.12, 0.28), Σ̂17 =

(
0.0036 0.0044
0.0044 0.0074

)
,

ŵ18 = 0.0883, μ̂18 = (0.25, 0.29), Σ̂18 =

(
0.0061 0.0067
0.0067 0.0108

)
, ŵ19 =

0.2527, μ̂19 = (0.33, 0.34), Σ̂19 =

(
0.0054 0.0059
0.0059 0.0083

)
, ŵ20 = 0.1372,

μ̂20 = (0.41, 0.16), Σ̂20 =

(
0.0039 0.0016
0.0016 0.0092

)
, ŵ21 = 0.1943, μ̂21 =

(0.23, 0.16), Σ̂21 =

(
0.0046 0.0042
0.0042 0.0067

)
,ŵ22 = 0.0797, μ̂22 =(0.24, 0.20)

and Σ̂22 =

(
0.0055 0.0059
0.0059 0.0090

)
.
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