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Abstract

In this paper, we consider the pretest, shrinkage, and penalty estimation pro-
cedures for generalized linear mixed models when it is conjectured that some
of the regression parameters are restricted to a linear subspace. We develop
the statistical properties of the pretest and shrinkage estimation methods,
which include asymptotic distributional biases and risks. We show that the
pretest and shrinkage estimators have a significantly higher relative efficiency
than the classical estimator. Furthermore, we consider the penalty estimator
LASSO (Least Absolute Shrinkage and Selection Operator), and numerically
compare its relative performance with that of the other estimators. A series
of Monte Carlo simulation experiments are conducted with different com-
binations of inactive predictors, and the performance of each estimator is
evaluated in terms of the simulated mean squared error. The study shows
that the shrinkage and pretest estimators are comparable to the LASSO es-
timator when the number of inactive predictors in the model is relatively
large. The estimators under consideration are applied to a real data set to
illustrate the usefulness of the procedures in practice.

AMS (2000) subject classification. Primary 62J07; Secondary 62F03, 62F10,
62J12.
Keywords and phrases. Asymptotic distributional bias and risk, Generalized
linear mixed models, LASSO, Likelihood ratio test, Monte Carlo simulation,
Shrinkage and pretest estimators

1 Introduction

Longitudinal data, also known as panel data, involving binary or count
responses is a frequent occurrence in many fields such as biology, economics,
and health research. For example, physicians may investigate the presence
of a particular drug side-effect which can be modelled as a binary outcome
(1 - yes; 0 - no) with factors pertaining to the patient’s diet and lifestyle.
Typically, the physician would observe the patient’s status prior to receiving
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the medication, during the treatment period, and shortly after the drug is
administered. In this case, analysis with the linear regression model cannot
be applied due to the non-normality of the error structure, and the lack of
independence among observations.

The generalized linear mixed models (GLMMs) is an extension of the
generalized linear models (GLMs) (Nelder and Wedderburn, 1972) that is
widely used to model correlated and clustered responses. The basic idea
of the GLMMs is that it incorporates the fixed effects formulation of the
GLMs, however it extends to include subject-specific random effects to cap-
ture the correlation within the data. Specifically, the GLMMs model the
conditional distribution of a response variable Y given the q × 1 vector of
unobserved random effects u, and a p × 1 vector of fixed effect covariates
x via the linear combination x�β + z�u. Here, β is a p × 1 vector of
unknown regression coefficients, and z is a q × 1 vector of random effect
covariates. Associated with the random effects is a κ × 1 vector θ of the
variance and covariance components. The aim here is to estimate the pa-
rameters associated with the fixed and random effects, however we proceed
to estimate β by using the likelihood procedure, and consider θ to be a nui-
sance parameter. The GLMMs require an established relationship between
the expected value of Y and x�β + z�u. Such a relationship exists when
the probability distribution of the response is a member of the exponential
family.

In this paper, we propose the shrinkage and pretest estimation approaches
to estimate the regression parameters of a GLMM. Basically, we estimate
the parameters when there are many potential covariates under investiga-
tion. Although we optimally select the active covariates in the model, there
are many situations in which over-modelling takes place, and one wishes to
reduce the number of active variables in the model. In doing so, emphasis is
placed on maximizing the predictive power while minimizing the number of
active variables in the model. The James-Stein shrinkage estimation strategy
is one such method that allows the researcher to achieve the aforementioned
goal because it incorporates information from the inactive covariates when
estimating the coefficients of the active covariates. Recently, Thomson et al.
(2014) considered shrinkage and penalty estimation strategies in the linear
regression model with autoregressive errors. Hossain et al. (2015) introduced
shrinkage and penalty estimators in a GLM when there are many active pre-
dictors and some of them may not have influence on the response. Thomson
et al. (2015) further extended this line of work by using shrinkage estima-
tion for time series following a GLMs. Many extensions of shrinkage estima-
tion and associated theoretical investigations have significantly boosted the
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popularityof this approach (Fallahpour et al., 2012; Lian, 2012; Hossain and
Ahmed, 2014). It is to the best of the authors’ knowledge that this problem
remains open.

The aim of this paper is to develop the James-Stein shrinkage estimation,
and the LASSO penalized estimation methods, and compare its performance
with the maximum likelihood estimate for a GLMM when some of the co-
variates may be subject to a linear restriction. The literature on penalty
estimators has been growing very rapidly in recent years; here we only give
a limited number of studies that are the most relevant to the present pa-
per. Tibshirani (1996) introduced the LASSO, which imposes a bound on
the L1 norm of the coefficients. This results in both shrinkage and variable
selection due to the nature of the constraint region which often results in
several coefficients becoming identically zero. Groll and Tutz (2014) im-
plemented the LASSO estimator to the GLMMs, where they use a gradi-
ent ascent algorithm to maximize the penalized log-likelihood. They show
that the LASSO estimator can be used in high-dimensional settings with sev-
eral covariates under consideration; this contrasts with common procedures.
For review articles on penalized regression, see Fan and Lv (2010). Recent
works involving the LASSO and other forms of penalized estimation with
GLMMs include Fahrmeir and Kneib (2011) & Schelldorfer et al. (2014).
For recent works involving the LASSO, see Simon et al. (2014), Zhang and
Zou (2014), Li and Shao (2015), Lu and Su (2016), & Arnold and Tibshirani
(2016).

The outline of this paper is as follows. Section 2 begins with preliminary
definitions, and proceeds with estimation strategies. Section 3 examines the
asymptotic distributional biases and risks of the various estimators, where
the risk comparisons and proofs are presented in the Appendix. In Section 4,
we use a Monte Carlo simulation to evaluate the numerical performance of
the various estimators with respect to the maximum likelihood estimator.
Section 5 follows with an application to a real data example. Section 6
provides a summary with concluding remarks.

2 Generalized Linear Mixed Models and Estimation

In this section, we implement the GLMMs to our proposed estimation
strategies. The GLMMs, Fisher information matrix, likelihood ratio test,
and various estimators are presented in the following subsections.

For i = 1, · · · , N and j = 1, · · · , ni, let yij denote the response for the
ith subject measured at the jth time points, so that yi = (yi1, · · · , yini)

�

denotes the ni × 1 vector of observations for the ith subject. Corresponding
to each yi is a p × 1 vector, and a q × 1 vector of covariates associated
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with fixed and random effects denoted by xij = (xij1, · · · , xijp)�, and zij =
(zij1, · · · , zijq)�, respectively. Also, let β = (β1, · · · , βp)� be the p×1 vector
of regression coefficients for the fixed effects, and ui = (ui1, · · · , uiq)� be the
q × 1 vector of random effects for the ith subject. Furthermore, suppose
that conditional on ui, the elements of yi are independent, and follows a
distribution in the exponential family:

fyij |ui
(yij |ui, β, φ) = exp

(
yijψij − b(ψij)

aij(φ)
+ c(yij ;φ)

)
, (1)

where aij(.), b(.), and c(.) are known functions with aij(φ) = φ
ωij

, ωij is

known as the prior weight, φ is a dispersion parameter, and ψij is the
canonical parameter of the distribution. We also assume that the vector
of unobserved random effects ui follows a distribution

ui ∼ fui(ui|θ), (2)

with parameters θ = (θ1, · · · , θκ)�, which is not functionally related with
the regression parameter β. In practice, fui(ui|θ) is considered to be mul-
tivariate normal with mean 0 and variance-covariance matrix comprised of
the components in θ along the main diagonal. However, there are scenarios
in which this assumption is violated, and we proceed without any specific
distributional assumptions of ui. Furthermore, assume that for some mono-
tone differential link function g(.), the conditional mean and variance of yij
given the random effects is

μij = E(yij |ui) = b′(ψij) = g−1(ηij) and Var(yij |ui) = aij(φ)b
′′(ψij), (3)

where ηij = x�
ijβ + z�

ijui is the linear predictor, and b′ = ∂b
∂ψij

.

By setting g(μij) = ψij = (b′)−1(μij), we may find the link function
pertaining to the conditional distribution of yij . A special case of interest
is the canonical link function g(μij) = ψij(μij) = ηij . This link function
includes many popular models for continuous and discrete data. When the
distribution of our response in (1) follows a normal distribution, the link
function is the identity function so that (3) simplifies to the natural linear
mixed model setup. In the following subsequent sections, we will focus our
attention on a discrete response. More specifically, when the response is
binary or a count of some occurrence.
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2.1. Maximum Likelihood Estimation From (1) and (2), the marginal
likelihood of the parameters γ = (β�,θ�, φ)�, given the vector of responses
y = (y�

1 , · · · ,y�
N )� is

L(γ|y) =
N∏
i=1

∫ ni∏
j=1

fyij |ui
(yij |ui,β, φ)fui(ui|θ)dui

=

N∏
i=1

∫
fyi|ui

(yi|ui)fui(ui|θ)dui. (4)

We see that (4) is comprised of the conditional distribution of yi given ui and
the marginal distribution of ui. This is done to model the joint distribution
of yi and ui, which is unobservable. Although we consider φ to be a nuisance
parameter, there are many cases such as binary or Poisson regression models
where the dispersion parameter is fixed at φ = 1. We therefore proceed as
in Davis et al. (2012), and assume that φ = 1, and take γ = (β�,θ�)�. In
cases of counts with over-dispersion, we may use the method of moments
estimator (McCulloch et al., 2008, chap. 5).

φ̂ =
1

N∗ − p

N∑
i=1

ni∑
j=1

yij − μij

b′′(ψij)
,

where N∗ =
∑N

i=1ni is the total number of observations.
To obtain the unrestricted score equations, we make use of the log-

likelihood function as

	∗(γ|y) = log(L(γ|y))

=
N∑
i=1

log

(∫
fyi|ui

(yi|ui)fui(ui|θ)dui

)
.

From this, we solve the corresponding score equations to obtain the unre-
stricted maximum likelihood estimators of β and θ. These score equations
appear in McCulloch et al. (2008), and are given as

Sβ(γ) =
N∑
i=1

E

(
∂ log fyi|ui

(yi|ui,β)

∂β
|yi

)
= 0, (5)

Sθ(γ) =
N∑
i=1

E

(
∂ log fui(ui|θ)

∂θ
|yi

)
= 0, (6)
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where the expectation is taken with respect to the conditional distribution
of ui given yi. These equations cannot be solved explicitly for either β
or θ, and the integration in (4) often lead to numerically intractable solu-
tions, whenever there are a large number of random effects (i.e. for large
q). Therefore, we solve (5) and (6) via numerical optimization to obtain
the maximum likelihood estimators. This can be done by using a Gauss-
Hermite approximation, or a Laplace approximation (see McCulloch et al.,
2008, chap. 14). We denote the unrestricted maximum likelihood estimator

(UE) of γ as γ̂ = (β̂
�
U , θ̂

�
U )

�. Although we obtained the estimate θ̂U , we
consider it as a nuisance parameter, and primarily focus on β̂U .

2.2. Fisher Information Matrix and Restricted Estimator We now pro-
ceed to obtain the observed Fisher information matrix as derived by Louis
(1982). Let 	(γ|y)=

∑N
i=1 log(fyi|ui

(yi|ui,β, φ)fui(ui|θ)) =
∑N

i=1 log(fyi|ui

(yi|ui)) +
∑N

i=1 log(fui(ui|θ)) be the complete data likelihood. Then the
information matrix is

I(γ|y) = −
N∑
i=1

E

(
∂ti(γ)

∂γ� |yi

)
−

N∑
i=1

E
(
ti(γ)ti(γ)

�|yi

)

+
N∑
i=1

E (ti(γ)|yi)E (ti(γ)|yi)
� ,

where ti(γ) = ∂�(γ|y)
∂γ , and the expectations are taken with respect to the

conditional distribution of ui given yi. For testing the particular hypothesis
on β, we partition the observed information matrix as

I(γ|y) =
[
I(β,β) I(β,θ)
I(θ,β) I(θ,θ)

]
. (7)

We work with such a partition as our inference is centred around β. Hence
we consider the general linear hypothesis

H0 : Aβ = c vs. H1 : Aβ �= c, (8)

where A is an r×p matrix of full row rank, r ≤ p, and c is an r×1 vector of
known constants. This motivates us to define the restricted parameter space
Ω = {(β�,θ�)�|Aβ = c}. In order to maximize the log-likelihood function
under Ω, we implement a modified version of the gradient projection (GP)
algorithm (Jamshidian, 2004) which searches through active constraint sets
to determine the optimal solution.
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The GLMMs are unlike the case in Jamshidian (2004), so we maximize
the marginal likelihood (4) under the equality constraint on the regression
parameters. Hence we use the observed information matrix obtained by
evaluating the conditional expectations in order to accommodate for the
mixed model situation.

Since the parameter vector γ is a function of β and θ, we take the inverse
of the observed information matrix (7)

I−1(γ|y) = W (γ) =

[
W 11(γ) W 12(γ)
W 21(γ) W 22(γ)

]
,

where

W 11(γ) =
(
I(β,β)− I(β,θ)I−1(θ,θ)I(θ,β)

)−1
,

W 22(γ) =
(
I(θ,θ)− I(θ,β)I−1(β,β)I(β,θ)

)−1
,

W 12(γ) = −I−1(β,β)I(β,θ)W 22(γ),

and W 21(γ) = W�
12(γ). With this, we are able to obtain the generalized

score vector

S∗(γ|y) = W (γ)
(
Sβ(γ)

�, Sθ(γ)
�
)�

=
(
S∗
1(γ)

�, S∗
2(γ)

�
)�

,

where S∗
1(γ) = W 11(γ)Sβ(γ)+W 12(γ)Sθ(γ), and S∗

2(γ) = W 21(γ)Sβ(γ)+
W 22(γ)Sθ(γ).

If the UE satisfies the constraint so that γ̂ ∈ Ω, then the restricted max-
imum likelihood estimator (RE) is equivalent to γ̂. Otherwise, we proceed
with the following modified algorithm of Jamshidian (2004) with an initial
value γ̂0, chosen from Ω. Following the steps below, this algorithm converts
the significant constrained set until no change in 	∗(γ|y).

1. Compute W (γ̂0) at the initial estimate γ̂0 of γ.

2. Compute B(γ̂0)=A� (
AW 11(γ̂0)A

�)−1
A and d = (d�

1 ,d
�
2 )

�, where
d1 = [I−W 11(γ̂0)B(γ̂0)]S

∗
1(γ̂0), and d2 = −W 21(γ̂0)B(γ̂0)S

∗
1(γ̂0)+

S∗
2(γ̂0).

3. (a) If d = 0, stop and declare convergence, otherwise

(b) Go to Step 4.
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4. Obtain a new estimate γ̂1 = γ̂0+αd by choosing α = argmaxα{	∗(γ̂0+
αd|y)}.

5. Replace γ̂0 with γ̂1, and go to Step 1.

Jamshidian (2004) observed that the gradient projection is a generalized
steepest ascent algorithm, and therefore, standard global convergence theory
of steepest ascent algorithms warrants its global convergence (Luenberger

and Ye, 2008, chap. 6). We will denote the RE as γ̂R = (β̂
�
R, θ̂

�
R)

�.
2.3. Likelihood Ratio Test Based on the estimators γ̂ and γ̂R, we con-

struct the likelihood ratio test statistic

DN = 2 (	∗(γ̂|y)− 	∗(γ̂R|y)) .
It is well known that under H0 in (8), the statistic DN asymptotically follows
a chi-square distribution with r degrees of freedom, see Davis et al. (2012).
Recently, Davis et al. (2012) used the likelihood ratio test statistic to eval-
uate linear inequality constraints in a GLMM, and assess the asymptotic
distribution of this test statistic under such constraints.

Observe that DN may also be used to test constraints involving the
variance components θ, provided that some certain regularity conditions
for the observed Fisher information matrix are satisfied. In this case, the
hypothesis in (8) can be extended by replacing β with γ = (β�,θ�)�, and
by adding κ columns to the matrix A.

In the subsequent subsections, the pretest and shrinkage estimators are
loosely defined by the likelihood ratio test statistic. The purpose of this
statistic is to place weights on the UE and RE in order to maximize the
predictive power while under the specified constraint in (8).

2.4. Pretest Estimator The pretest estimator (PT) of β based on β̂U

and β̂R is defined as

β̂P = β̂U − I(DN ≤ χ2
r,α)(β̂U − β̂R), r ≥ 1,

where I(A) is an indicator function of a set A, and χ2
r,α is the α-level critical

value of the approximate distribution of DN under H0. Based on the indi-
cator function, β̂P chooses β̂R or β̂U according to whether H0 is accepted
or rejected, respectively. It is important to note that β̂P is bounded and
performs better than β̂R in certain areas of the parameter space. For details,
see Judge and Bock (1978) & Ahmed et al. (2006).

2.5. Shrinkage and Positive Shrinkage Estimators The shrinkage esti-
mator (SE), β̂S and the positive shrinkage estimator (PSE), β̂+ are members
of the class of estimators

π̂(h) = β̂R + h(DN )(β̂U − β̂R).
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By taking h(x) = 1−
(
1− (r−2)

x

)
, for x > 0 and h(x) = max

{
0, (r−2)

x

}
, we

get β̂S and β̂+, respectively. More precisely, we have

β̂S = β̂R + (1− (r − 2)D−1
N )(β̂U − β̂R)

β̂+ = β̂R + (1− (r − 2)D−1
N )+(β̂U − β̂R),

with r ≥ 3 and z+ = max(0, z). The shrinkage estimator can be viewed as
a smoothed version of the pretest estimator which selects the UE, β̂U when
the statistic DN is large and the RE, β̂R otherwise.

2.6. Penalized Estimator: LASSO Penalized regression estimates are
obtained by maximizing the likelihood function (4) subject to a specified
constraint

argmax
β

{	∗(γ|y)− P λk
(.)},

where P λk
(.) is a penalty function, λk are the penalty parameters, and

k = 1, · · · , p. The LASSO estimator implements the penalty function P λk
(.)

as
P λk

(.) = λ‖β‖1,
where ‖.‖1 is the L1-norm, and λ ≥ 0 is the regularization parameter that
have to be determined via information criteria or cross-validation. To obtain
the LASSO estimator, we use the full gradient algorithm based on Goeman
(2010), in which the algorithm can amend to situations where subsets of
the parameter space are not penalized. The algorithm starts with a global
intercept model with random effect (i.e. g(μij) = β0 + z�

ijui), then iterates
the algorithm until convergence. The non-zero estimates are the combination
of the gradient decent and the Fisher scoring algorithms. See, Groll and Tutz
(2014) for details and implementation of the algorithm.

3 Asymptotic Properties of the Estimators

In this section, we derive the asymptotic joint normality for the UE and
RE. First note that under the regularity conditions listed in the Appendix A,√
N(Aβ̂U − c)

L−→ N (δ,AB−1A�), where B = limN→∞ I(β,β)/N con-
verges in probability to a non-random p×p positive definite matrix, and δ is
defined below. It is well known that the effective domain of risk dominance
of shrinkage estimators over the UE is near the null hypothesis H0 : Aβ = c;
and as we increase the sample size N , this domain becomes narrower. To
avoid asymptotic degeracy, we consider a sequence of local alternatives

K(N) : Aβ = c+
δ√
N

, (9)
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where δ = (δ1, δ2, · · · , δr)� ∈ 
r is fixed. Observe that δ = 0 implies
that Aβ = c for all N , which is a special case of (9). Under local K(N),
the following theorem facilitates the theoretical comparison and numerical
computation of the ADB and ADR of the estimators:

Theorem 3.1. Under some regularity conditions in the Appendix, and the
sequence of local alternative (9), we have the joint distributions:

(i).

[
η1

η2

]
∼ N2p

([
0

−J0δ

]
,

[
B−1 B−1 −B∗

B−1 −B∗ B−1 −B∗

])

(ii).

[
η2

η3

]
∼ N2p

([
J0δ
−J0δ

]
,

[
B∗ 0
0 B−1 −B∗

])
,

where η1 = limn→∞
√
n(β̂U −β), η2 = limn→∞

√
n(β̂U − β̂R), η3 = limn→∞√

n(β̂R − β), J0 = B−1A�(AB−1A�)−1, and B∗ = (I − J0A)B−1.
Using this theorem, we can obtain the main results of this section. We

present the asymptotic distributional bias (ADB) and asymptotic distribu-
tional risk (ADR) results. We begin with the bias.

3.1. Asymptotic Distributional Bias Consider a sequence of parameter
values β and a sequence of estimators β̂∗. Assume that

√
n(β̂∗−β) converges

in distribution as n → ∞ to some random variable X with distribution G̃.
Then the ADB of β̂∗ is defined by

ADB(β̂∗,β) = E [X] =

∫
xdG̃(x).

Here we define the notations in order to describe our ADB and ADR results.
Let Z1 and Z2 be χ2

r+2(Δ) and χ2
r+4(Δ) random variables, respectively. The

distribution function of a non-central χ2 variable with non-centrality param-
eter Δ and degrees of freedom g is denoted by Hg(x,Δ) = P

(
χ2
g(Δ) ≤ x

)
.

Let χ2
r,α be the α-level critical value of central χ2 distribution. In view of

Theorem 3.1, the asymptotic biases of the estimators give us the following
Theorem.

Theorem 3.1.1. If the condition of Theorem 3.1 hold, then:

ADB(β̂U ) = 0; ADB(β̂R) = −J0δ;

ADB(β̂P ) = −J0δHr+2(χ
2
r,α,Δ); ADB(β̂S) = −(r − 2)J0δE

(
Z−1
1

)
;

ADB(β̂+) = −J0δ
(
(r − 2)E

(
Z−1
1 (1− I(Z1 < r − 2))

)
+Hr+2(r − 2,Δ)

)
.
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Proof. See Appendix B.

Remark 3.1. To compare ADBs, let τ = −J0δ/
√
Δ where Δ = δT(AB−1

AT)−1δ. All of the ADB expressions in Theorem 3.1.1. is a scaler multiple
of Δ with the vector τ . Thus the value of τ remains the same except for
this change of scaler multiplication. Now to compare the ADBs of different
estimators it suffices to compare these scalar terms. The scalar term in the
ADB of β̂R is

√
Δ, which is an unbounded function of Δ. On the other hand,

the scalar terms in the ADBs of β̂P , β̂S, and β̂+ are bounded in Δ. For

example, since E(Z−1
1 ) is not an increasing function of Δ, the ADB of β̂S

starts from the origin, increases to a maximum, and then decreases towards
0 as Δ → ∞. The characteristics of β̂P , and β̂+ are similar to that of β̂S.
We now turn to the ADRs of the estimators.

3.2. Asymptotic Distributional Risk To derive expressions for the ADRs
of the estimators, we define a quadratic loss function

L(β̂∗;M) =
(√

N(β̂∗ − β)
)�

M
(√

N(β̂∗ − β)
)
,

where M is a nonnegative weight matrix (typically, M = Ip×p, which is
the usual quadratic loss). Using a general M provides a loss function that
weights other β’s differently. The expected loss function, or the risk function,

is defined as E
(
limN→∞ L(β̂∗;M)

)
. Let V̂ N be the variance-covariance

matrix of
√
N(β̂∗−β), and let RN (β̂∗;M) be the expected value of the loss

function, that is, the quadratic risk. We have

RN (β̂∗;M) = trace(MV̂ N ) +
(
ADB(β̂∗,β)

)�
M

(
ADB(β̂∗,β)

)
.

If limN→∞RN (β̂∗;M) exists, it is called asymptotic risk. In order to define
this quantity, let

√
N(β̂∗ − β) converges in distribution to Ξ as N tends to

infinity. The ADR of β̂∗ is defined as ADR(β̂∗;M) = E
(
trace(Ξ�MΞ)

)
.

This leads us to the following Theorem:

Theorem 3.2.1. If the condition of Theorem 3.1 hold, then:

ADR(β̂U ;M) = trace
(
MB−1

)
,

ADR(β̂R;M) = ADR(β̂U ;M)− trace
(
MB−1A�J�

0

)
+ δ�J�

0 MJ0δ,

ADR(β̂P ;M) = ADR(β̂U ;M)− trace
(
MB−1A�J�

0

)
Hr+2(χ

2
r,α,Δ)

− δ�J�
0 MJ0δ

(
Hr+4(χ

2
r,α,Δ)− 2Hr+2(χ

2
r,α,Δ)

)
,
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ADR(β̂S ;M) = ADR(β̂U ;M) + (r − 2)trace
(
MB−1A�J�

0

)

×
(
(r − 2)E(Z−2

1 )− 2E(Z−1
1 )

)
+ (r − 2)

×
(
(r − 2)E(Z−2

2 )− 2E(Z−1
2 − Z−1

1 )
)
δ�J�

0 MJ0δ,

ADR(β̂+;M) = ADR(β̂S ;M)− trace
(
MB−1A�J�

0

)

×E
(
(1− (r − 2)Z−1

1 )2I(Z1 < r − 2)
)

−E
(
(1− (r − 2)Z−1

2 )2I(Z2 < r − 2)
)
δ�J�

0 MJ0δ

+2E
(
(1− (r − 2)Z−1

1 )I(Z1 < r − 2)
)
δ�J�

0 MJ0δ.

Proof. See Appendix B.

Remark 3.2. From Theorem 3.2.1, we note that subject to some suit-
able weight matrix M , the ADR(β̂U ;M) and ADR(β̂R;M) follow directly
from Theorem 3.1; thus, we have ADR(β̂U ;M) = trace

(
MB−1

)
and ADR

(β̂R;M) = trace (MB∗) +δ�J�
0 MJ0δ. By comparing the risk of the es-

timators, we see that, as Δ moves away from 0, the risk of β̂R becomes
unbounded. Thus, β̂R may not behave well when the value of δ is different
from the specified 0 vector. For all Δ ∈ (0,∞), ADR(β̂U ) < trace

(
MB−1

)
,

hence β̂S provides greater estimation accuracy than β̂U . Indeed, the ADR
function of the SE is monotone in Δ, where the smallest value is achieved
at Δ = 0 and the largest is trace

(
MB−1

)
. Hence, β̂S outperforms β̂U and

is an admissible estimator when compared with β̂U . Furthermore, the PSE,
β̂+ asymptotically superior to β̂S in the entire parameter space induced by

Δ. Therefore, β̂+ is also superior to β̂U .
We next report on a simulation study, which compares the performance

of the estimators of this section and the penalty estimators for finite sample
sizes.

4 Simulation Study

In this Section, we assess the performance of the proposed estimators
with respect to the UE through a Monte Carlo simulation study. Our simu-
lations are based on the models

μij = (1 + exp(−ηij))
−1, and μij = exp(ηij),

for a binary and count response, respectively, where ηij = x�
ijβ + z�

ijui is
the linear predictor. We consider ni = 3 observations per subject, where
we have a total of N = 75 and N = 150 subjects for the count and binary
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response, respectively. In our study, we consider generating p = 7, 12, 17 and
21 fixed effect covariates, a random intercept, and a random effect covariate
generated from the standard normal distribution.

Each of the p fixed effect covariates xij = (xij1, · · · , xij,p)� were gener-
ated from a separate ni-multivariate normal distribution with mean 0 and
variance-covariance matrix σ2

xρx, where σ2
x = 0.21, and ρx is an exchange-

able correlation matrix with parameter ρ = 0.8. The purpose of selecting a
small σ2

x value is to generate manageable response values, and the objective
of generating correlated fixed effect covariates is to capture the between-
subject correlation. The basic idea is to then generate subject-specific ran-
dom effects in ηij which then acts as noise. This gives us the necessary
conditional independence, and establishes the GLMM framework.

To generate the random effects, we begin by specifying θ = (0.7, 0.7, 0)

as the variance parameters, that is, q = 2, and q(q−1)
2 = 1 covariance pa-

rameter. The random effects ui are then generated from a bivariate normal
distribution with mean 0, and variance-covariance matrix comprised of the
non-zero elements of θ.

We consider a special case of the hypothesis H0 : Aβ = c, where we par-
tition the fixed effect regression vector into two sub-vectors β = (β�

1 ,β
�
2 )

�,
where β1 and β2 are assumed to have dimensions p1 × 1 and p2 × 1, re-
spectively, such that p = p1 + p2 (i.e. p2 = r, and p1 = p − r). We are
interested in estimating the sub-vector β1 by incorporating the information
of β2 into the estimation procedure, where we consider the null hypothe-
sis to be H0 : β2 = 0. We specify p1 = 4 throughout the study, and set
β1 = (−1.85, 1.2,−1.3, 2.13)�, and β0 = 0.4 as the global intercept term.
The weight matrix M in the quadratic loss function from the previous Sec-
tion is set to the p× p identity matrix.

We define the parameter, Δ = ‖β − β(0)‖2, where ‖.‖ is the Euclidean
norm, β(0) = (β�

1 ,m
�)�, and m is a zero vector with various dimensions.

The samples were generated using Δ = (0, 0.03, 0.05, 0.07, 0.1, 0.3, 0.54,
1, 2), and Δ = (0, 0.03, 0.05, 0.07, 0.1, 0.3, 0.54, 1, 2, 4) for the count and
binary response, respectively. We used 1000 replications in the simulation,
as a further increase did not change the results significantly.

The objective here is to investigate the behaviour of the shrinkage esti-
mators for Δ ≥ 0, and the LASSO estimator for Δ = 0; Ahmed et al. (2012)
show that penalty estimators do not correctly estimate the model parame-
ters for Δ > 0. We combine the gradient ascent optimization with the Fisher
scoring algorithm similar to Goeman (2010) to find the entire solution path
for the LASSO estimator, where the optimal λ value is determined by the
BIC criterion.
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The criterion for comparing the performance of any estimator β̂∗ in our
study is the relative mean square efficiency (RMSE) of β̂∗ to β̂U and is defined
as RMSE(β̂∗) = MSE(β̂∗)/MSE(β̂U ), where β̂∗ is the proposed estimator.
Thus, a RMSE value less than 1 indicates risk reduction relative to β̂U .

The simulation results are presented in Figs. 1 & 2, and Table 1, where
the inactive set of parameters is β2 = (Δ,0), and 0 is the null vector of
length p2 − 1.

4.1. Binary Response We summarize our findings (with reference to
Fig. 1) of the simulation study with a binary response as follows:

(i) With the exception of p2 = 3, the minimum RMSE occurred at a slight
departure from the null hypothesis. This is attributed to sampling
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Figure 1: RMSEs of the estimators with respect to the UE when the subspace
misspecifies Δ as zero, N = 150, and the response is binary. Here, p2 is the
number of inactive predictors
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Figure 2: RMSEs of the estimators with respect to the UE when the subspace
misspecifies Δ as zero, N = 75, and the response is a count. Here, p2 is the
number of inactive predictors

error within the simulation study. In general, we observed that as p2
increases, the RMSE decreases. Due to the nature of the RE, it is the
optimal estimator over the entire parameter space.

(ii) The RMSE of the RE is diverging towards ∞ as Δ → ∞ at a slow
rate. The RMSE of the other estimators are bounded and converge to
1 as Δ → ∞ with RMSE(β̂P ) being the first to converge.

(iii) The LASSO estimator outperformed the PSE for p2 = 3. The relative
performance of the LASSO estimator over the PT cannot be deter-
mined.
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Table 1: RMSE of the RE, PT, SE, PSE, and LASSO estimator with respect
to the UE when the restricted parameter space is correct (i.e. Δ = 0)
Method p2 = 3 p2 = 8 p2 = 13 p2 = 17

Binary response (p1 = 4, N = 150)
RE 0.629 0.356 0.271 0.214
PT 0.699 0.457 0.385 0.375
SE 0.893 0.510 0.385 0.317
PSE 0.840 0.481 0.364 0.302
LASSO 0.676 0.549 0.397 0.338

Count response (p1 = 4, N = 75)
RE 0.498 0.284 0.187 0.140
PT 0.610 0.392 0.311 0.275
SE 0.870 0.467 0.321 0.249
PSE 0.775 0.418 0.282 0.224
LASSO 0.752 0.585 0.524 0.467

(iv) For Δ = 0 and small-to-medium values of p2, the PT is outperformed
by the PSE. However, this superiority of the PT over the PSE dimin-
ishes as p2 increases. For large p2, the PT underperformed with respect
to the PSE. Overall, the risk function decreases as p2 increases.

(v) The PSE outperformed the SE at 0 ≤ Δ < 2, and β̂S+ converges to

β̂S for Δ ≥ 2. Therefore, the PSE is declared to be superior over the
SE for all values of Δ. Overall, the greatest risk reductions occur for
parameter values near the restriction Δ = 0.

4.2. Count Response We summarize our findings (with reference to
Fig. 2) of the simulation study with a count response as follows:

(i) The minimum RMSE occurred at Δ = 0, see Table 1, with the excep-
tion of one case attributed to random error. In general, we have that
as p2 increases, the RMSE decreases. As Δ departs from 0, the RE
outperformed the other estimators. The only case that we observed
RMSE(β̂R) > 1 is when p2 = 3 at Δ = 2.

(ii) The RMSE of the RE diverges towards ∞ as Δ → ∞ at a slow rate.
The RMSE of the other estimators are bounded and approaches 1 as
Δ → ∞ with RMSE(β̂P ) being the first to converge.

(iii) The PSE outperformed the SE at 0 ≤ Δ < 1, and β̂S+ converges to

β̂S for Δ ≥ 1. Therefore, the PSE outperforms the SE for all values of
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Δ. However, the RE outperformed both the SE and PSE for medium
and large values of Δ.

(iv) For Δ = 0 and small-to-medium values of p2, the PT outperformed
the PSE. This superiority of the PT over the PSE diminishes as p2
increases. For large p2, the PT underperformed with respect to the
PSE.

(v) The LASSO estimator outperformed the PSE estimator for p2 = 3,
and underperformed for p2 > 4. Furthermore, the LASSO estimator is
declared inferior to the PT for all values of p2.

5 Example: Indonesian Preschool Respiratory Infections

The data was collected by Sommer et al. (1984), where they conducted
a study of over 3000 preschool children in the Aceh province of Indonesia to
determine the causes and effects of vitamin A deficiency within this demo-
graphic. This particular data set can be obtained from Diggle et al. (2002),
where 275 children were examined for up to six consecutive quarters, to
see whether they suffered from respiratory infection or xerophthalmia, an
ocular manifestation of vitamin A deficiency. This is a subset of a cohort
studied by Sommer et al. (1984). The purpose of this study is to determine
which health-related factors can best determine the presence of a respiratory
infection.

These longitudinal data consists of a binary response, yij , to indicate the
presence of a respiratory infection (1 - yes; 0 - no) for the ith child at time-
point j, where i = 1, · · · , 275, and j = 1, 2, · · · , 6. The reported covariates
pertaining to this data set is the observed height, weight, gender (1 - male;
0 - female), baseline age (in months), xerophthalmia, time, sin(time), and
cos(time). Diggle et al. (2002) provided an initial analysis of the data, where
they found based on a few fitted models that the prevalence of respiratory
infection is a function of age2 and is sinusoidally based on time. Furthermore,
they also found that there is a quadratic relationship between time and the
logarithm of the risk of respiratory infection. Therefore, we consider the
model

μij = E(yij |ui) = (1 + exp(−ηij))
−1,

ηij = β0 + β1Genderi + β2Heightij + β3Agei + β4Age
2
i + β5 cos j

+β6 sin j + β7Xerophthalmiaij + β8j + β9j
2 + ui,

where Heightij , and Agei are standardized.
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We propose several candidate models, and use the AIC & BIC as a
selection criteria, see Table 2. It shows the AIC and BIC values for the seven
models M1-M7. Based on these values, models 5 and 6 have the lowest AIC
and BIC values compare to the other models and model M6 is the preferred
one to explain the risk factors for respiratory infection. Model M6 shows
that Genderi, Heightij , Agei, Age

2
i , and cos j are the significant risk factors

and the other four may not be risk factors for this infection. Reminiscent to
the simulation study, we obtain the inactive set of parameters H0 : β2 = 0,
where β2 = (β6, β7, β8, β9)

� is a p2 × 1 vector, and p2 = 4. Observe that
xerophthalmia is one of the insignificant covariates, which is due to the
limited number of cases within the data.

5.1. Bootstrap A bootstrap sampling scheme (Wu and Chiang, 2000)
is conducted to compute the estimates, standard errors, and RMSEs of the
proposed estimates. We randomly sample 275 subjects with replacement
from the original data set, and let {Y ∗

i ,X
∗
i ,Z

∗
i ; 1 ≤ i ≤ 275, 1 ≤ j ≤ 6} be

the longitudinal bootstrap sample. The entire measurements of some sub-
jects in the original sample may appear multiple times in the new bootstrap
sample. We then refit the GLMM model using these data based on the same
method that would be applied in Section 5 to obtain bootstrap estimates
and conduct 1000 replications iteratively. The point estimates, standard
errors, and RMSEs of significant coefficients are reported in Table 3. The

Table 2: Seven different models (say, M1-M7) for the Indonesian pre-school
respiratory infections data, and their AIC and BIC values. This shows that
model 6 is the optimal model
Covariates M1 M2 M3 M4 M5 M6 M7

Fixed intercept Y Y Y Y Y Y Y
Gender Y Y N N Y Y Y
Height Y Y Y N Y Y Y
Age Y Y Y Y Y Y Y
Age2 Y Y Y Y Y Y Y
cos j N N N N Y Y Y
sin j N N N N Y N Y
Xerophthalmia N N N N N N Y
j N Y Y Y N N Y
j2 N Y Y Y N N Y
Random intercept Y Y Y Y Y Y Y
AIC 681.94 678.19 681.20 684.97 672.09 670.79 674.89
BIC 712.48 718.91 716.83 715.51 712.81 706.42 730.88
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Table 3: Estimates (first row) and standard errors (second row) for Genderi
(β1), Heightij (β2), Agei (β3), Age2i (β4), and cos j (β5)

Estimators β1 β2 β3 β4 β5 RMSE

UE −0.677 −0.429 −0.998 −0.551 −0.645 1.000
(0.282) (0.157) (0.214) (0.218) (0.282)

RE −0.689 −0.450 −0.989 −0.545 −0.677 0.550
(0.278) (0.146) (0.210) (0.216) (0.222)

PT −0.685 −0.442 −0.994 −0.548 −0.660 0.802
(0.280) (0.152) (0.213) (0.218) (0.246)

SE −0.681 −0.435 −0.996 −0.549 −0.655 0.766
(0.281) (0.154) (0.214) (0.219) (0.257)

PSE −0.681 −0.435 −0.996 −0.550 −0.655 0.740
(0.281) (0.152) (0.213) (0.217) (0.257)

LASSO −0.539 −0.246 −0.838 −0.578 −0.088 0.838
(0.220) (0.192) (0.209) (0.208) (0.224)

RMSEs of RE, PT, SE, PSE and LASSO with respect to UE are 0.55, 0.802,
0.766, 0.740 and 0.838, respectively. The findings are consistent with the
simulation results and asymptotic findings.

6 Conclusions

In this paper, we compared the relative performance of the RE, PT, SE,
PSE, and LASSO estimators with respect to the UE in the context of a
GLMM when some of the covariates may be restricted to a linear subspace.
In doing so, we have presented a closed form of the bias and risk expres-
sions, and used a Monte Carlo simulation study to explore the bias and risk
properties of the estimators under consideration. We conclude that the risk
improvement of the RE over all other estimators is substantial at and near
the restriction Aβ = c. However, the improvement diminishes as we move
away from this restriction. As Δ increases, the risk of the PT crosses the
risk of the UE, reaching a maximum, and then decreasing monotonically to
the risk of the UE. Furthermore, the PSE outperformed the UE in the en-
tire parameter space, and will outperform the restricted estimator for large
enough Δ. The risk of the pretest estimator is less than the UE at and
near the restriction. Finally, we applied the proposed estimation methods
to a real data example to evaluate the relative performance of the proposed
estimators. The findings are in agreement with the simulation study, and
theoretical results.
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Appendix A: Regularity conditions

(a) The parameter space Ω for γ = (β�,θ�)� is compact. The score
functions Sβ(γ) and Sθ(γ) are continuous functions of γ for all y and
measurable functions of y for each γ ∈ Ω.

(b) There exists unique MLE γ̂ in Ω for 	∗(γ). The moments of ∂	∗(γ)/∂β
exist at least up to the third order.

(c) The design matrices X and Z in model (3) are of full rank and all of
their elements are bounded by a single finite real number.

Appendix B: Proof of Theorems 3.1.1 and 3.2.1

The following Lemma is needed for the derivation of bias and risk func-
tions of Theorems 3.1.1 and 3.2.1:

Lemma 1. Let h be a Borel measurable and real-valued integrable function,
and X ∼ Np(δ,Σp), where Σp is a nonnegative definite matrix with rank
r ≤ p. Also Let R be a p × p nonnegative definite matrix with rank k
such that ΣpR is an idempotent matrix, RΣpR = R; ΣpRΣp = Σp; and
ΣpRδ = δ, and let W = R1/2W ∗R1/2, where W ∗ nonnegative definite
matrix, Then,

1) E
(
h
(
X�RX

)
WX

)
= E

(
h
(
χ2
r+2(δ

�Rδ)
))

Wδ
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2) E
(
h
(
X�RX

)
X�WX

)
= E

(
h
(
χ2
r+2(δ

�Rδ)
))

trace(RΣp)

+ E
(
H

(
χ2
r+4(δ

�Rδ)
))

δ�Wδ,

The outline of proof of this lemma is given in Chen and Nkurunziza (2015).

B.1: Proof of Theorem 3.1.1:

ADB(β̂U ) = lim
N→∞

E
(√

N(β̂U − β)
)
= 0.

ADB(β̂R) = lim
N→∞

E
(√

N(β̂R−β)
)
= lim

N→∞
E
(√

N(β̂U−β+β̂R − β̂U )
)

= 0− (B−1AT(AB−1AT)−1 lim
N→∞

E
(√

N(Aβ̂U − c)
)

= −B−1AT(AB−1AT)−1δ = −J0δ,

where J0 = B−1AT(AB−1AT)−1.

ADB(β̂P ) = lim
N→∞

E
(√

N(β̂P − β)
)

= lim
N→∞

E
(√

N(β̂U − I(DN ≤ χ2
r,α)(β̂U − β̂R)− β)

)

= −J0δE
(
I(χ2

r+2,α(Δ) ≤ χ2
r,α)

)
, by Lemma 1

= −J0δHr+2(χ
2
r,α,Δ).

ADB(β̂S) = lim
N→∞

E
(√

N(β̂S − β)
)

= lim
N→∞

E
(√

N(β̂R + (β̂U − β̂R)

−(r − 2)D−1
N (β̂U − β̂R)− β)

)

= −(r − 2)J0δE
(
χ−2
r+2,α(Δ)

)
, by Lemma 1

= −(r − 2)J0δE
(
Z−1
1

)
, where Z1 = χ2

r+2,α(Δ).

ADB(β̂+) = lim
N→∞

E
(√

N(β̂+ − β)
)

= lim
N→∞

E
(√

N(β̂S − β)
)

− lim
N→∞

E
(√

N(1− (r − 2)D−1
N )(β̂U − β̂R)I(DN < r − 2)

)

= −J0δ{(r − 2)E
(
Z−1
1 (1− I(Z1<r − 2))

)
+Hr+2(r − 2,Δ)},

by Lemma 1.
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B.2: Proof of Theorem 3.2.1:

The asymptotic MSE of β̂U is

MSE(β̂U ) = limN→∞E
(
N(β̂U − β)(β̂U − β)T

)
= B−1.

Hence, it follows that ADR(β̂U ;M) = trace
(
MB−1

)
. The asymptotic MSE

of β̂R is

MSE(β̂R) = lim
N→∞

E
(
N(β̂R − β)(β̂R − β)T

)

= lim
N→∞

E
(
N(β̂U − β)(β̂U − β)T +NJ0(Aβ̂U − c)

× (Aβ̂U − c)TJT
0 − 2NJ0(Aβ̂U − c)(β̂U − β)T

)
.

The first term can be written as limN→∞E
(
N(β̂U − β)(β̂U − β)T

)
= B−1,

for the second term, let D =
√
N(Aβ̂ − c), then

lim
N→∞

E
(
NJ0(Aβ̂U − c)(Aβ̂U − c)TJT

0

)
= lim

N→∞
E
(
J0DDTJT

0

)

= J0AB−1 + J0δδ
TJT

0 .

Finally the third term can be written as −2 limN→∞E
(
NJ0(Aβ̂U − c)

(β̂U − β)T
)
= −2J0AB−1.

By summing the three terms, the ADR of β̂R can be written as

ADR(β̂R;M) = ADR(β̂U ;M)− trace
(
MB−1ATJT

0

)
+ δTJT

0MJ0δ.

The asymptotic MSE of β̂P is

MSE(β̂P ) = lim
N→∞

E
(
N(β̂P − β)(β̂P − β)T

)

= lim
N→∞

E
(
N(β̂U − β)(β̂U − β)T +NI(DN ≤ χ2

r,α)(β̂U − β̂R)

×(β̂U − β̂R)
T − 2NI(DN ≤ χ2

r,α)(β̂U − β̂R)(β̂U − β)T
)
.
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Consider the second term

lim
N→∞

E
(
NI(DN ≤ χ2

r,α)(β̂U − β̂R)(β̂U − β̂R)
T
)

= J0 lim
N→∞

E
(
I(DN ≤ χ2

r,α)DDT
)
JT

0

= B−1ATJT
0Hr+2(χ

2
r,α,Δ) + J0δδ

TJT
0Hr+4(χ

2
r,α,Δ), by Lemma 1

and the third term

−2 lim
N→∞

E
(
NI(DN ≤ χ2

r,α)(β̂U − β̂R)(β̂U − β)T
)

= −2J0 lim
N→∞

E
(
D
√
N{(β̂U − β̂R)−B−1AT(AB−1AT)−1

× (Aβ − c)}TI(DN ≤ χ2
r,α)

)

= −2J0 lim
N→∞

E
(
D{J0D − J0

√
N(Aβ − c)}TI(DN ≤ χ2

r,α)
)

= −2B−1ATJT
0Hr+2(χ

2
r,α,Δ)− 2J0δδ

TJT
0

×
(
Hr+4(χ

2
r,α,Δ)−Hr+2(χ

2
r,α,Δ)

)
.

Hence, The ADR of β̂P is

ADR(β̂P ;M) = trace
(
MMSE(β̂P )

)

= ADR(β̂U ;M)− trace
(
MB−1ATJT

0

)
Hr+2(χ

2
r,α,Δ)

− δTJT
0MJ0δ

(
Hr+4(χ

2
r,α,Δ)− 2Hr+2(χ

2
r,α,Δ)

)
.

The asymptotic MSE of β̂S is

MSE(β̂S) = lim
N→∞

E
(
N(β̂S − β)(β̂S − β)T

)

= lim
N→∞

E
(
N(β̂U − β)(β̂U − β)T +N(r − 2)2D−2

N (β̂U − β̂R)

×(β̂U − β̂R)
T − 2N(r − 2)D−1

N (β̂U − β̂R)(β̂U − β)T
)
.

Consider the second term

lim
N→∞

E
(
N(r − 2)2D−2

N (β̂U − β̂R)(β̂U − β̂R)
T
)

= (r − 2)2 lim
N→∞

J0E
(
D−2

N DDT
)
JT

0

= (r − 2)2B−1ATJT
0E(Z−2

1 ) + (r − 2)2J0δδ
TJT

0E(Z−2
2 ),

where Z2 = χ2
r+4,α(Δ)).
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The third term can be expressed as

−2(r − 2) lim
N→∞

E
(
ND−1

N (β̂U − β̂R)(β̂U − β)T
)

= −2(r − 2)J0 lim
N→∞

E
(
D−1

N D
√
N(β̂U − β)T

)

= −2(r − 2)J0 lim
N→∞

E
(
DDTD−1

N

)
JT

0 + 2(r − 2)J0 lim
N→∞

E
(
DD−1

N

)
×
√
N(Aβ − c)TJT

0

= −2(r − 2)B−1ATJT
0E(Z−1

1 )− 2(r − 2)J0δδ
TJT

0

(
E(Z−1

2 − Z−1
1 )

)
,

by Lemma 1.

Hence, the ADR of β̂S is

ADR(β̂S ;M) = trace
(
MMSE(β̂S)

)

= ADR(β̂U ;M) + (r − 2)trace
(
MB−1ATJT

0

)

×
(
(r − 2)E(Z−2

1 )− 2E(Z−1
1 )

)
+ (r − 2)

×
(
(r − 2)E(Z−2

2 )− 2E(Z−1
2 − Z−1

1 )
)
δTJT

0MJ0δ.

The asymptotic MSE of β̂+ is

MSE(β̂+) = lim
N→∞

E
(
N(β̂+ − β)(β̂+ − β)T

)

= MSE(β̂S) + lim
N→∞

E
(
N(1− (r − 2)D−1

N )2(β̂U − β̂R)

×(β̂U − β̂R)
TI(DN < r − 2)

)

−2 lim
N→∞

E
(
N(1− (r − 2)D−1

N )(β̂U − β̂R){(β̂R − β)

+(1− (r − 2)D−1
N )(β̂U − β̂R)}TI(DN < r − 2)

)

= MSE(β̂S)− lim
N→∞

E
(
N(1− (r − 2)D−1

N )2(β̂U − β̂R)

× (β̂U − β̂R)
TI(DN < r − 2)

)

−2 lim
N→∞

E
(
N(1− (r − 2)D−1

N )I(DN < r − 2)

× (β̂U − β̂R)(β̂R − β)T
)
.



410 T. Thomson and S. Hossain

Consider the second term

− lim
N→∞

E
(
N(1− (r − 2)D−1

N )2(β̂U − β̂R)(β̂U − β̂R)
TI(DN < r − 2)

)

= −B−1ATJT
0E

(
(1− (r − 2)Z−1

1 )2I(Z1 < r − 2)
)

−J0δδ
TJT

0E
(
(1− (r − 2)Z−1

2 )2I(Z2 < r − 2)
)
.

Now consider the third term

−2 lim
N→∞

E
(
N(1− (r − 2)D−1

N )I(DN < r − 2)(β̂U − β̂R)(β̂R − β)T
)

= −2J0 lim
N→∞

E
(
(1− (r − 2)D−1

N )I(DN < r − 2)D
√
N(β̂R − β)T

)

= 2J0δδ
TJT

0E
(
(1− (r − 2)Z−1

1 )I(Z1 < r − 2)
)
, by Lemma 1.

By collecting all of the terms, it then follows that

ADR(β̂+;M) = trace
(
MMSE(β̂+)

)

= ADR(β̂S ;M)− trace
(
MB−1ATJT

0

)

×E{(1− (r − 2)Z−1
1 )2I(Z1 < r − 2)}

−E
(
(1− (r − 2)Z−1

2 )2I(Z2 < r − 2)
)
δTJT

0MJ0δ

+2E
(
(1− (r − 2)Z−1

1 )I(Z1 < r − 2)
)
δTJT

0MJ0δ.
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