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Abstract

Portmanteau tests are some of the most commonly used statistical meth-
ods for model diagnostics. They can be applied in model checking either in
the time series or in the regression context. The present paper proposes a
portmanteau-type test, based on a sort of likelihood ratio statistic, useful to
test general parametric hypotheses inherent to statistical models, which in-
cludes the classical portmanteau tests as special cases. Sufficient conditions
for the statistic to be asymptotically chi-square distributed are elucidated
in terms of the Fisher information matrix, and the results have very clear
implications for the relationships between the parameter of interest and nui-
sance parameter. In addition, the power of the test is investigated when local
alternative hypotheses are considered. Some interesting applications of the
proposed test to various problems are illustrated, such as serial correlation
tests where the proposed test is shown to be asymptotically equivalent to
classical tests. Since portmanteau tests are widely used in many fields, it
appears essential to elucidate the fundamental mechanism in a unified view.

AMS (2000) subject classification. 62F03, 62F05.
Keywords and phrases. Portmanteau test, Asymptotic local power, Serial
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1 Introduction

Diagnostics is a central issue in statistical modeling, and one of the impor-
tant tasks of diagnostics concerns verifying the absence of serial correlation
of the error term. To check the adequacy of a fitted autoregressive moving
average (ARMA) model, Box and Pierce (1970) proposed the test statistic

TBP = n
M∑

k=1

r̂2k, (1.1)
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where r̂k is the residual empirical autocorrelation at lag k, n is the sample
size and M is a fixed integer. TBP is approximately χ2 distributed with
M−p−q degrees of freedom, where p and q are the order of the autoregressive
and moving average polynomials, if n and M are moderately large (see Box
and Pierce 1970). Ljung and Box (1978) improved TBP to enhance the χ2

approximation to its asymptotic distribution. The modified statistic, called
the Ljung-Box test statistic, is defined as

TLB = n(n+ 2)
M∑

k=1

r̂2k/n− k. (1.2)

Subsequently, many other modified statistics have been suggested and their
powers have been evaluated (e.g. McLeod and Li 1983; Monti 1994; Pẽna
and Rodŕıguez 2002). A nonparametric approach to testing for serial cor-
relation was also suggested by Chan and Tran (1992). Li (2003) illustrates
diagnostic methods and their developments in the last few decades compre-
hensively. Taniguchi and Amano (2009) elucidated the mechanism of port-
manteau tests on the basis of a likelihood ratio statistic derived from the
Whittle Likelihood. These authors showed that their statistic is asymptoti-
cally equivalent to the classical portmanteau test statistic, and that it is not
asymptotically χ2 distributed in specific models if M is fixed. Also in the
context of linear regression models, various methods useful to detect serial
correlation have been investigated, since when the errors are serially corre-
lated, the ordinary least square estimators fail to be the best linear unbiased
estimators. Durbin (1970) constructed naive tests of goodness of fit against
AR(1) error correlation, which proved to be robust under various alterna-
tive hypotheses. Godfrey (1976) applied Durbin’s procedure in testing for
serial correlation in dynamic simultaneous equation models. Breusch (1978)
compared Durbin’s procedure with the Lagrange multiplier (LM) test in the
context of dynamic linear models and illustrated the relationship between a
portmanteau test and the LM test.

There are several advantages in using a portmanteau test. For exam-
ple, the statistic is computationally much simpler to obtain than other test
statistics, such as the LM and the Wald statistic. Consequentely several sit-
uations arise where a portmanteau statistic turns out to be more useful than
alternative statistics. This evidence makes worth elucidating the properties
of the portmanteau test, its theoretical background and its fundamental
mechanism in a unified view.

The present paper proposes a portmanteau test which is widely applica-
ble for the diagnostics of general statistical models. The statistic is obtained
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as a sort of likelihood ratio statistic, and its asymptotic properties are inves-
tigated. In particular, sufficient conditions are derived such that the statistic
is asymptotically χ2 distributed. The conditions are given in terms of the
Fisher information matrix, and have very clear implications for the relation-
ships between the parameter of interest and the nuisance parameter.

The paper is organized as follows. Section 2 introduces the portmanteau
test statistic and gives the sufficient conditions which ensure an asymptotic
χ2 distribution. The same section investigates the limit distribution of the
statistic under local contiguous alternatives, and evaluates the local power of
the test. Section 3 shows some applications of the portmanteau test, which
highlight that the framework developed for the test is widely applicable to
various models. Finally, rigorous proofs of the theorems are relegated to
Section 4.

As concerns notations and symbols used in this paper, the set of all in-
tegers is denoted as Z. For any sequence of random vectors {A(t) : t ∈ Z},
A(t)

p−→ A and A(t)
d−→ A, respectively, denote the convergence to a random

(or constant) vector A in probability and law. The transpose and complex
transpose of a matrix M is denoted by M�. Moreover, the square root of a
nonnegative definite matrix M is denoted by M1/2. 0i, Oj×k and Il denote
the i-dimensional zero vector, the j×k zero matrix and the l× l identity ma-
trix, respectively. Finally χ2

k(μ) denotes the noncentral χ2 random variable
(r.v.) with k degrees of freedom and noncentrality parameter μ.

2 Portmanteau Test for General Statistical Models

Let x(n) = (X�
1 , . . . , X�

n )� be a collection of d-dimensional random vec-
tors and let pn(x

(n); θ) be the probability density function of x(n) with
θ = (θ�1 , θ

�
2 )

� ∈ Θ ⊂ R
q+p, where θ1 = (θ1,1, . . . , θ1,q)

� ∈ R
q (q ≥ 0)

and θ2 = (θ2,1, . . . , θ2,p)
� ∈ R

p (p ≥ 1). We also assume that Θ is a compact
subset of IRq+p. The paper focuses on the following testing problem

H : θ2 = θ02 against A : θ2 �= θ02. (2.1)

This setting is very general and encompasses various classical testing prob-
lems in time series analysis, multivariate analysis, and so on. In particular
this setting can address the following three important applications:

(i) testing serial correlation in stationary time series models,

(ii) testing serial correlation in linear regression models,

(iii) variable selection problems in linear regression models.
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Hence widely recurrent diagnostic analyses are embedded in our unifying
setting. We will illustrate the details of some of the applications in Section 3.

In what follows, the portmanteau type test statistic is introduced. Here-
after, we adopt the notation l(θ) = l(θ1, θ2) = n−1 log pn{x(n); θ} for the
log-likelihood function, where θ0 = (θ�1 , θ

0�
2 )�.

The Fisher information matrix is given by

F =

(
F11 F12

F21 F22

)
,

where

Fij = lim
n→∞

nEθ0

[
∂l(θ)/∂θi∂l(θ)/∂θ

�
j

∣∣∣
θ=θ0

]
(i, j ∈ {1, 2})

and Eθ denotes the expectation with respect to p{x(n); θ}.
We also define the constrained maximum likelihood estimator of θ1 un-

der H, θ̂1 = argmaxθ1∈Θ1 l(θ1, θ
0
2), and the constrained estimator of θ2 when

θ1 = θ̂1, θ̂2(θ̂1) = argmaxθ2∈Θ2 l(θ̂1, θ2). The general portmanteau test,
which is a sort of likelihood ratio test between H and A, is based on the
following statistic

TP = 2n
[
l
{
θ̂1, θ̂2(θ̂1)

}
− l(θ̂1, θ

0
2)
]
,

which compares the values of the log-likelihood function when θ2 varies be-
tween θ02 and θ̂2(θ̂1).

Remark 1. Unlike the classical likelihood ratio theory, we initially compute
the constrained estimator θ̂1 under H, then we maximize the likelihood func-
tion with respect to θ2 under the constraint θ1 = θ̂1 and obtain l{θ̂1, θ̂2(θ̂1)}.
Hence in both stages, the value of one or the other parameter is fixed, and
we never consider the global maximum “max(θ1,θ2)∈Θ l(θ1, θ2)”. This pro-
cedure has undeniable benefits from the computational viewpoint, since the
optimization is always carried out over a space of smaller dimension than Θ,
and it is crucial for the asymptotic expansion of the test statistic TP given
in Theorems 1 and 2. Moreover, due to this approach, the proposed test
statistic asymptotically coincides with TBP . Further analyses on the effects
of this procedure are developed in Section 3.2.

To derive the asymptotic distribution of TP , the conditions summarized
in the next assumption are required.

Assumption 1.

(i) F11 and F22 are nonsingular.
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(ii) l(θ) is continuously three times differentiable with respect to θ, and the
partial derivative ∂/∂θ and the expectation Eθ are interchangeable.

(iii) The cumulants of U = (U(1), . . . , U(p + q))� = n1/2∂l(θ)/∂θ|θ=θ0 of
any order exist, and satisfy

cum {U(i1), . . . , U(iJ)} = O
(
n−J/2+1

)

for each J = 2, 3, . . . and any i1, . . . , iJ ∈ {1, . . . , p}. Here the cumu-
lant cum{Y (1), . . . , Y (J)} of (Y (1), . . . , Y (J))� is defined as

cum{Y (1), . . . , Y (J)} =
r∑

p=1

(−1)p−1(p− 1)!E

⎡

⎣
∏

j∈ν1

Y (j)

⎤

⎦ · · ·E

⎡

⎣
∏

j∈νp

Y (j)

⎤

⎦ ,

where the summation extends over all partitions {ν1, . . . , νp}, p =
1, . . . , J , of {1, . . . , J}.

Remark 2. These conditions are pretty mild and hold for most of the mod-
els of interest in statistical applications. The second and third conditions,
in particular, are needed to guarantee the asymptotic normality of the score
∂l(θ)/∂θ. From Brillinger (1981, Section 2), ∂l(θ)/∂θ is asymptotically nor-
mally distributed if and only if the joint cumulants of ∂l(θ)/∂θ of order J ≥ 3
vanish, since the third and higher-order cumulants of the normal distribution
are zero (see also Theorem 2.3.1 of Brillinger (1981)).

Since condition (iii) of Assumption 1 is fairly technical, we illustrate an
example of a model where (iii) holds.

Example 1. Consider the regression model

y = Zβ + ε, (2.2)

where Z is an n × m matrix of observations on the regressors such that
rank(Z) = m, y is an n×1 vector of observations on the regressand, β is an
m × 1 vector-valued unknown coefficient, and ε is an n × 1 random vector
distributed as N(0n,Σn), where Σn is an n × n positive definite matrix.
We assume that Σn depends on an unknown scale parameter ξ > 0 and an
unknown correlation coefficient b ∈ (−1, 1) as follows

Σn(ξ, b) =

{ (
ξ(−b)|i−j| : i, j = 1, . . . , n

)
(b �= 0)

ξIn (b = 0)
.
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In other words, we suppose that ε = (ε1, . . . , εn)
� is generated by an AR(1)

process εt = −bεt−1 + ut with ε0 = 0 and {ut} is a sequence of independent
and identically distributed (i.i.d.) N(0, ξ) random variables.

Now, suppose that we are interested in whether the noise ε is uncorrelated.
In this case, the nuisance parameter is θ1 = (β�, ξ)� and the parameter of
interest is θ2 = b. That is, the testing problem (2.1) becomes

H : b = 0 against A : b �= 0. (2.3)

Simple algebra shows that the quantities U(j) in Assumption 1 are given by

U(j) =

⎧
⎨

⎩

−n−1/2ξ−1
∑n

i=1 z
ijui(β) (j = 1, . . . ,m)

−n1/2(2ξ)−1 + n−1/2(2ξ2)−1
∑n

i=1 ui(β)
2 (j = m+ 1)

−n−1/2ξ−1
∑n−1

i=1 ui(β)ui+1(β) (j = m+ 2)

, (2.4)

where zij is the (i, j)th component of Z and ui(β) is the ith component of
y−Zβ. Based on (2.4), it is easily seen that for U = (U(1), . . . , U(m+2))�,
E[U ] = 0m+2 and Var[U ] = O(1). Further, from Brillinger (1981), the
cumulants have the following three useful properties:

(i) for any set of random variables Y (1), . . ., Y (J) and given constants a1, . . . ,
aJ ,

cum{a1Y (1), . . . , aJY (J)} = a1 · · · aJcum{Y (1), . . . , Y (J)};

(ii) if two groups of random variables {Y (1), . . . , Y (r)} and {Y (r+1), . . . , Y
(J)} are independent, then

cum{Y (1), . . . , Y (J)} = 0;

(iii) if (Y (1), . . . , Y (J)) is a normal vector for J ≥ 3, then

cum{Y (1), . . . , Y (J)} = 0.

Therefore, the joint cumulant is

cum{U(j1), . . . , U(jJ)}
= 1/nJ/2

∑n
i1=1 · · ·

∑n
iJ=1A(i1, j1) · · ·A(iJ , jJ)cum{V (i1), . . . , V (iJ)},

for J ≥ 3 and any j1, . . . , jJ ∈ {1, . . . ,m + 2}, where V (i) is one of ui(β),
ui(β)

2 and ui(β)ui+1(β) for i = 1, . . . , n and un+1(β) = 0. The coefficient
A(i, j) is given by

A(i, j) =

⎧
⎨

⎩

−ξ−1zij (j = 1, . . . ,m)
(2ξ2)−1 (j = m+ 1)
−ξ−1 (j = m+ 2)
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and is obviously O(1) uniformly in i = i1, . . . , iJ ∈ {1, . . . , n} and j =
j1, . . . , jJ ∈ {1, . . . ,m + 2}. Moreover, by recalling the fact that u1(β), . . . ,
un(β) are i.i.d. normal r.v.s under H and using Theorem 2.3.2 by Brillinger
(1981), it can be shown that

n∑

i1=1

· · ·
n∑

iJ=1

A(i1, j1) · · ·A(iJ , jJ)cum{V (i1), . . . , V (iJ)} = O(n).

Hence, Assumption 1 is satisfied. We will revisit this model later on.

The asymptotic expansion of TP is given by the following theorem.

Theorem 1. Suppose Assumption 1 holds. Then, under H,

TP = N�F 1/2
22·1F

−1
22 F

1/2
22·1N + op(1), (2.5)

where N is a p-dimensional standard normal random vector and F22·1 =
F22 − F21F

−1
11 F12.

Since the necessary and sufficient conditions for the quadratic form Eq. 2.5
to have an asymptotic χ2 distribution are discussed in Tziritas (1987) in de-
tail, we confine ourselves to state the following Corollary, which is a straight-
forward consequence of Theorem 1.

Corollary 1. Suppose Assumption 1 holds.

(i). If q < p, F22 = Ip and F21F
−1
11 F12 is idempotent with rank r, then,

under H, TP
d−→ χ2

p−r as n → ∞.

(ii). If F22 �= Ip and F12 = Oq×p, then, under H, TP
d−→ χ2

p as n → ∞.

Theorem 1 and Corollary 1 make clear that the asymptotic distribution
of TP depends on the structure of the information matrix and provide two
alternative conditions which ensure an asymptotic χ2 distribution. In this
regard Theorem 1 elucidates the mechanism of portmanteau tests in a general
framework, and grasps the stream of portmanteau-works as special cases. In
the case of time series, in particular, Taniguchi and Amano (2009) introduced
the Whittle likelihood-based test statistic, and showed that the test based
on this statistic is asymptotically equivalent to the Box-Pierce test based on
TBP and to the Ljung-Box test based on TLB. Our approach is applicable not
only to Taniguchi and Amano (2009)’s situation (when a Whittle likelihood
is available) but also to more general contexts. In what follows we shall refer
to the test based on TP as the TP -test.
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Next, the goodness of the TP -test is investigated in terms of local power.
Consider the sequence of local alternatives

An : θ2 = θ
(n)
2 = θ02 + n−1/2h,

where h = (h1, . . . , hp)
� ∈ R

p, and denote the log-likelihood ratio between
H and An by Λn(θ

0, θ(n)); that is,

Λn

{
θ0, θ(n)

}
= log pn

{
x(n), θ(n)

}
/pn

{
x(n), θ0

}
,

where θ(n) = (θ�1 , θ
(n)�
2 )�. It is known that Λn(θ

0, θ(n)) is asymptotically
normal for a sufficiently rich class of regular statistical models (e.g. Taniguchi
and Kakizawa 2000). Hence, the following assumption is considered to hold.

Assumption 2. Under H, the log-likelihood ratio Λn{θ0, θ(n)} admits the
stochastic expansion

Λn

{
θ0, θ(n)

}
= h�Δn − 1/2h�F22h+ op(1)

as n → ∞, where {Δn} is a sequence of random vectors such that Δn
d−→ Δ,

and Δ is a p-dimensional normal random vector with zero mean vector and
covariance matrix F22.

A family {pn(x(n), θ)} satisfying Assumption 2 is said to be locally asymp-
totically normal. By using LeCam’s so-called third lemma, we have the fol-
lowing theorems on the asymptotic distribution of the test statistics under
An.

Theorem 2. Suppose Assumptions 1 and 2 hold. Then, under An,

TP =
(
N + F

1/2
22·1h

)�
F

1/2
22·1F

−1
22 F

1/2
22·1

(
N + F

1/2
22·1h

)
+ op(1),

where N is a p-dimensional standard normal random vector and F22·1 =
F22 − F21F

−1
11 F12.

Corollary 2. Suppose Assumptions 1 and 2 hold.

1. If q < p, F22 = Ip and F21F
−1
11 F12 is idempotent with rank r, then,

under An, TP
d−→ χ2

p−r(μ) as n → ∞, where μ = h�F22·1h.

2. If F22 �= Ip and F12 = Oq×p, then, under An, TP
d−→ χ2

p(μ) as n → ∞,

where μ = h�F22h.

Theorem 2 and Corollary 2 allow assessing the power of the TP -test under
local alternatives.
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3 Applications and Numerical Examples

The current section shows some interesting applications of the general re-
sults of Section 2, which refer to cases (i) and (ii), respectively, of Corollaries 1
and 2.

3.1. Stationary time series models. The first example applies the port-
manteau test in the context of general linear processes. We consider an
interesting structure for the innovation process as in Taniguchi and Amano
(2009), and illustrate a case when condition (i) of Corollaries 1 and 2 holds.
Suppose that {Xt : t ∈ Z} is a stationary linear process with a spectral
density function fθ(ω) of the form

fθ(ω) = gθ1(ω)σ
2
u/2π

⎧
⎨

⎩

p∑

j=−p

ψj exp(−ijω)

⎫
⎬

⎭ , (3.1)

where i denotes the imaginary unit, σu > 0, ψ0 = 1 and ψ−j = ψj for
j = 1, . . . , p. Moreover, suppose gθ1(ω) is given by

gθ1(ω) = 1/2π exp

⎧
⎨

⎩

q∑

j=1

θ1,j cos(jω)

⎫
⎬

⎭ ,

that is gθ1(ω) is an exponential spectral density (Bloomfield 1973). We
assume that the parameter ψ = (ψ1, . . . , ψp)

� is constrained to belong to

Θ2=

⎧
⎨

⎩ψ ∈ IRp : min
ω∈[−π,π)

⎛

⎝1+2

p∑

j=1

ψj cos(jω)

⎞

⎠≥e

⎫
⎬

⎭ (e>0 is a constant)

such that fθ(ω) does not take zero or negative value. Now, let us consider
the following hypotheses

H : ψ = 0p against A : ψ �= 0p. (3.2)

The purpose is to test whether the innovation process has null serial corre-
lations, since under H the spectral density function coincides with that of
a linear process generated from uncorrelated innovations. Under the alter-
native A, instead, fθ(ω) is the spectral density function of a process gener-
ated by a p-dependent innovation sequence with autocovariance ψj at lag j,
−p ≤ j ≤ p. The focus here is on the correlation of the innovation sequence
(and not on the correlation of the whole process).

There is an additional reason of interest on the test for the hypotheses
(3.2) related to model (3.1), since as shown in Remark 3, the proposed
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test statistic TP is asymptotically equivalent to the classical Box-Pierce test
statistic (1.1). This result is consistent with the nature of the test which
deals with the serial correlation of the innovation process.

Notice that, by putting θ2 = ψ, the hypotheses in Eq. 3.2 coincide with
those in Eq. 2.1 of Section 2. The Fisher information matrix can be expressed
in terms of the spectral density function of the process; namely,

F = 1/4π

∫ π

−π
∂ log fθ(ω)/∂θ∂ log fθ(ω)/∂θ

�
∣∣∣
θ=(θ�1 ,0�p )�

dω.

By simple algebra, we obtain F11 = 1/4Iq, F22 = Ip and

F12 =
(
2−1Iq Oq×(p−q)

)
.

Therefore, F21F
−1
11 F12 is given by

F21F
−1
11 F12 =

(
Iq Oq×(p−q)

O(p−q)×q O(p−q)×(p−q)

)
.

This implies that F21F
−1
11 F12 is idempotent with rank(F21F

−1
11 F12) = q.

Thus, the conditions for (i) of Corollary 1 are satisfied in this case, and
hence TP converges to a χ2

p−q r.v. without need of any modification. Fur-
thermore, under the local alternatives

An : ψ = n−1/2h,

TP converges to a χ2
p−q(μ) r.v. with μ = h2q+1 + · · ·h2p (see (i) of Corollary

2).

Remark 3. In the context of model (3.1), an interesting point to be explored
is the relationship between the TP statistic and the Box-Pierce statistic (1.1)
when the hypotheses in Eq. 3.2 are tested. To avoid unnecessarily complicated
notations and discussion, in what follows, we restrict ourselves to the case
when the process is Gaussian. Under the Gaussian assumption, it is shown
that the log-likelihood is approximated by

D(θ) := −1/4π

∫ π

−π
{log fθ(ω) + In(ω)/fθ(ω)} dω

(e.g., Taniguchi and Kakizawa 2000, Section 7.2). The proposed test statistic
Tp admits, under H, the stochastic expansion

TP = nVn(θ
0
2)

�F−1
22 Vn(θ

0
2) + op(1), (3.3)
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where
Vn(θ2) = ∂D(θ̂1, θ2)/∂θ2,

fθ(ω) is defined in Eq. 3.1 and In(ω) is the periodogram defined as

In(ω) = 1/2πn

∣∣∣∣∣

n∑

t=1

Xt exp(itω)

∣∣∣∣∣

2

(For details of the expansion (3.3), see Proof of Theorem 1). Then, as
illustrated by Taniguchi and Amano (2009, pp. 186-188), we have

TP = n

p∑

k=1

r̂2k + op(1),

where r̂k is the residual empirical autocorrelation at lag k based on θ̂1. That
is TP = TBP + op(1) and hence TP = TLB + op(1).

3.2. Serial correlation in linear regression models. The second example
deals with the linear regression model (2.2) of Example 1. The focus is
testing whether the noise ε is uncorrelated through the hypotheses (2.3)
which, as mentioned before, coincide with Eq. 2.1 of Section 2.

It is easily shown that det[Σn(ξ, b)] = ξn(1 − b2)n−1. Hence the log-
likelihood function l(θ1, θ2) is given by

l(θ1, θ2) = −1/2 log(2π)− n− 1/2n log(1− b2)− 1/2 log ξ −Qn(β, ξ, b),

where

Qn(β, ξ, b) = 1/n(1− b2)ξ

{
1/2

n∑

i=1

ui(β)
2 + b

n−1∑

i=1

ui(β)ui+1(β) + b2/2
n−1∑

i=2

ui(β)
2

}

and ui(β) is the ith component of y−Zβ. The maximum likelihood estimator
of θ1 = (β�, ξ)� under H is

θ̂1 =

(
(Z�Z)−1Z�y

n−1{y − Z(Z�Z)−1Zy}�{y − Z(Z�Z)−1Zy}

)
.

GivenZ and y, the quantity l{θ̂1, θ̂2(θ̂1)} can be computed as supθ2∈Θ2
l(θ̂1, θ2).

Since the exact form of l{θ̂1, θ̂2(θ̂1)} is complicated, the details are omitted
here. However, we have

nEθ0

{
∂l(θ1, θ2)/∂θ∂l(θ1, θ2)/∂θ

�} =

⎛

⎝
(nξ)−1Z�Z Om×1 Om×1

O1×m (2ξ2)−1 0
O1×m 0 (1− n−1)

⎞

⎠ .
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Then, F12 = Oq×p, where q = dim(θ1) = m + 1 and p = dim(θ2) = 1.
Therefore, from (ii) of Corollary 1, it follows that TP converges to a χ2

1 r.v.
Remarkably the condition q < p is not required in this case.

Next we focus on the local power of the TP -test. Consider the sequence
of local alternatives

An : b = n−1/2h, (3.4)

so that TP
d−→ χ2

1(h
2) as n → ∞ by (ii) of Corollary 2. In this case, F22·1 = F22

does not depend on F11, and the theoretical local power of the TP -test, when
the significance level is 5%, is given by

LP 95
h =

∫ ∞

p95

fNC(x; 1, h
2)dx,

where p95 is the 95th-percentile of the χ2
1(0) distribution and fNC(x; 1, μ) is

the probability density function of a χ2
1(μ) r.v. This result is quite natural

since the parameters θ1 and θ2 are orthogonal to each other (off-diagonal
blocks of the Fisher information matrix are zero). Table 1 shows the theo-
retical power of the TP -test when the local alternatives (3.4) are considered
for various h. It can be appreciated that the power increases remarkably
when the value of h under the alternative hypothesis moves away from 0.

The rest of this Section compares the finite sample performance of the
test statistics TP , TBP and TLB by computing the empirical type-I error
rates under H : b = 0 and the powers under the alternatives A : b = 0.1, 0.3,
0.5.

We consider model (2.2) with the design matrix Z = (ij : 1 ≤ i ≤
n and j = 0, 1) (i.e. a linear trend). The nominal significance level of the
test is 0.05 and the true values of the nuisance parameters are β = (0, 1)�

and ξ = 1. The maximum number of lags for TBP and TLB is M = 30. All
the simulation results (reported in Table 2) are based on 100.000 samples of
various sizes (n = 50, 200, 400, 600).

From Table 2, we observe that the empirical type-I error rate of the
TP -test is fairly close to the nominal level even for small sample sizes. By
comparison, the TBP -test is definitely less accurate, while the simulated
type-I error rate of the TLB-test is remarkably larger than the nominal level.

Table 1: Theoretical power of the TP -test with local alternatives (3.4)
h = 1 h = 2 h = 3

0.1701 0.5160 0.8508
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Table 2: Empirical type-I error rates and powers of TP , TBP and TLB-tests
H : b = 0.0
n TP TBP TLB

50 0.05544 0.01343 0.12666
200 0.05088 0.04914 0.09146
400 0.05171 0.05726 0.08012
600 0.05073 0.06037 0.07608
A : b = 0.1

50 0.18667 0.01702 0.14419
200 0.76158 0.08800 0.14576
400 0.97372 0.14727 0.18432
600 0.99775 0.20951 0.23816
A : b = 0.3

50 0.97270 0.08250 0.32064
200 1.00000 0.63464 0.71004
400 1.00000 0.95705 0.96491
600 1.00000 0.99788 0.99830
A : b = 0.5

50 1.00000 0.34752 0.66214
200 1.00000 0.99545 0.99714
400 1.00000 1.00000 1.00000
600 1.00000 1.00000 1.00000

Furthermore, the power of the TP -test rapidly increases, and it systemati-
cally outperforms – by a large amount – the alternative tests.

4 Proof of Theorems

4.1. Proof of Theorem 1. Throughout this section, we adopt the notation

∂il(θ1, θ2) = ∂l(η1, η2)/∂ηi|(η1,η2)=(θ1,θ2)

and

∂ijl(θ1, θ2) = ∂2l(η1, η2)/∂ηi∂η
�
j

∣∣∣
(η1,η2)=(θ1,θ2)

for i, j = 1, 2. Note that θ̂2(θ̂1) is the maximizer of l(θ̂1, θ2), hence we have

∂2l{θ̂1, θ̂2(θ̂1)} = ∂l(θ̂1, θ2)/∂θ2

∣∣∣
θ2=θ̂2(θ̂1)

= 0p. (4.1)
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By Eq. 4.1 and expanding l(θ1, θ
0
2) around θ̂2(θ̂1), it yields

TP = 2n
[
l
{
θ̂1, θ̂2(θ̂1)

}
− l
(
θ̂1, θ

0
2

)]

= 2n

[
∂2l
{
θ̂1, θ̂2(θ̂1)

}� {
θ̂2(θ̂1)− θ02

}

−1/2
{
θ̂2(θ̂1)− θ02

}�
∂22l(θ̂1, θ̃

∗
2)
{
θ̂2(θ̂1)− θ02

}]

= n
{
θ̂2(θ̂1)− θ02

}� {
−∂22l(θ̂1, θ̃

∗
2)
}{

θ̂2(θ̂1)− θ02

}
, (4.2)

where θ̃∗2 is an intermediate point between θ̂2(θ̂1) and θ02. To derive the
asymptotic distribution ofn1/2{θ̂2(θ̂1)−θ02}, we expand ∂2l{θ̂1, θ̂2(θ̂1)} around
θ02 and obtain

∂2l
{
θ̂1, θ̂2(θ̂1)

}
= ∂2l(θ̂1, θ

0
2) + ∂22l(θ̂1, θ

0
2)
{
θ̂2(θ̂1)− θ02

}

+Op(‖θ̂2(θ̂1)− θ02‖2). (4.3)

Eqs. 4.3 and 4.1 lead to

θ̂2(θ̂1)− θ02 = −∂22l(θ̂1, θ
0
2)

−1∂2l(θ̂1, θ
0
2) +Op(‖θ̂2(θ̂1)− θ02‖2)

= F−1
22 ∂2l(θ̂1, θ

0
2) +Op(‖θ̂2(θ̂1)− θ02‖2) (4.4)

and similarly,

θ̂1 − θ1 = F−1
11 ∂1l(θ1, θ

0
2) +Op(‖θ̂1 − θ1‖2). (4.5)

On the other hand, an expansion of ∂2l(θ̂1, θ
0
2) around θ1 yields

∂2l(θ̂1, θ
0
2) = ∂2l(θ1, θ

0
2) + ∂21l(θ1, θ

0
2)(θ̂1 − θ1) +Op(‖θ̂1 − θ1‖2)

= ∂2l(θ1, θ
0
2)− F21(θ̂1 − θ1) +Op(‖θ̂1 − θ1‖2). (4.6)

Substituting Eq. 4.5 into Eq. 4.6 gives

∂2l(θ̂1, θ
0
2) = ∂2l(θ1, θ

0
2)− F21F

−1
11 ∂1l(θ1, θ

0
2) +Op(‖θ̂1 − θ1‖2),

and then Eq. 4.4 becomes

θ̂2(θ̂1)− θ02 = F−1
22

{
∂2l(θ1, θ

0
2)− F21F

−1
11 ∂1l(θ1, θ

0
2)
}
+ (lower order terms). (4.7)
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Furthermore, from (iii) of Assumption 1, the third and higher order cumu-
lants of the score n1/2∂l(θ1, θ

0
2)/∂θ vanish as n → ∞. Then, the following

asymptotic normality holds:

n1/2

(
∂1l(θ1, θ

0
2)

∂2l(θ1, θ
0
2)

)
d−→ N(0, F ).

Hence, by Eq. 4.2, Eq. 4.7 and the asymptotic normality of the score under
H, the following asymptotic expansion is obtained for TP :

TP = N�F 1/2
22·1F

−1
22 F

1/2
22·1N + op(1), (4.8)

where N is a p-dimensional standard normal random vector and F22·1 = F22−
F21F

−1
11 F12.

4.2. Proof of Corollary 1. First, suppose that F22 = Ip. Then, a necessary

and sufficient condition which ensures thatN�F 1/2
22·1F

−1
22 F

1/2
22·1N has an asymp-

totic χ2 distribution is that F
1/2
22·1F

−1
22 F

1/2
22·1 is idempotent (see Rao 1973,

p.186). This condition is equivalent to the idempotence of F21F
−1
11 F12 when

F22 = Ip, and the degrees of freedom of the limit distribution are given by

rank(F22·1) = rank(Ip − F21F
−1
11 F12)

= tr(Ip − F21F
−1
11 F12)

= p− tr(F21F
−1
11 F12)

= p− rank(F21F
−1
11 F12).

Notice that the condition q < p is needed to avoid degeneracy of the limit
distribution.

Second, we prove assertion (ii) of Theorem 1. By the definition, F22·1 =
F22 when F12 = Oq×p, and Eq. 4.8 becomes TP = N�N + op(1), which has
an asymptotic χ2

p distribution.

4.3. Proof of Theorem 2 and Corollary 2. Under Assumption 2, ex-
panding l{θ(n)} around θ0 and solving gives

Λn

{
θ0, θ(n)

}
= n1/2∂2l(θ1, θ

0
2)

�h− 1/2h�F22h+ op(1).

By recalling (4.7), we can see that

(
n1/2

{
θ̂2(θ̂1)− θ02

}

Λn(θ
0, θ(n))

)
d−→ N

[(
0p

−1/2h�F22h

)
,

(
F−1
22 F22·1F

−1
22 σA

σ�
A h�F22h

)]
,
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where σA = F−1
22 F22·1h. From LeCam’s third lemma, we have

n1/2
{
θ̂2(θ̂1)− θ02

}
d−→ N

(
σA, F

−1
22 F22·1F

−1
22

)
(4.9)

under the contiguous alternatives An. Therefore, under An, TP can be writ-
ten as

TP =
(
N + F

1/2
22·1h

)�
F

1/2
22·1F

−1
22 F

1/2
22·1

(
N + F

1/2
22·1h

)
+ op(1).

From the same argumentin the proof of Theorem 1 and Corollary 1, we have
the desired results.
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