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Abstract

In this paper, we study the problem of Bayesian estimation of derivatives of
a density function on the unit interval. We use a finite random series prior
based on B-splines and study the asymptotic properties of the posterior dis-
tribution under the setting of fixed smoothness of the true function. We
obtain the posterior contraction rate under both the L2- and L∞-distances.
The rate under L2-distance agrees with the minimax optimal rate. This
result is then extended to the estimation of a multivariate density func-
tion on the unit cube and its mixed partial derivatives using tensor product
B-splines.

AMS (2000) subject classification. Primary: 62G20, Secondary: 62G05.
Keywords and phrases. B-spline, Density derivative estimation,
Nonparametric Bayes, Posterior contraction rate, Tensor product

1 Introduction

Estimating density or regression curves by nonparametric smoothing
have a rich literature in both frequentist and Bayesian setting. Some key
features of these curves are described by their derivatives. For example,
the first-order derivative is directly related with the mode of the function.
Under an appropriate setting, the accuracy of estimating the mode of a
function can be shown to be of the same order of estimating the first deriva-
tive. The number of modes in a density is an important surrogate for the
number of mixture components in mixture models with nonparametric com-
ponents (Donoho, 1988). The mode is also used by mean shift algorithm
for clustering and image processing (Fukunaga and Hostetler, 1975; Chacón
and Duong, 2013). The second-order derivative can be used for testing
the density mode (Genovese et al., 2016) and deciding the optimal band-
width for kernel density estimation (Silverman, 1986). Density derivatives
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are also closely connected with other fundamental problems in statistics such

as regression, Fisher information estimation, and hypothesis testing (Singh,

1977a). In higher dimensions, a filament curve or a ridge-line describes use-

ful geometrical structure on the surface of the function. Estimation of the

filament curve has been especially important in recent astronomical appli-

cations such as identifying the cosmic web and its relation with dark matter

(Qiao and Polonik, 2016).
The kernel method is arguably the most popular approach for density

derivative estimation in the literature. Some early work includes Rosenblatt

(1956) for univariate density estimation, and Parzen (1962) and Bartlett

(1963) for studying the asymptotic properties of these estimators. Results on

convergence rates were first obtained by Bhattacharya (1967) and Schuster

(1969), and then improved by Farrell (1972) and Singh (1977b). Recently,

several authors considered data-driven kernel methods and bandwidth se-

lection for density derivative estimation, and related to the applications

in engineering, economy, and machine learning (Hall and Yatchew, 2007;

Chacón and Duong, 2013; Sasaki et al., 2016). Besides kernels, wavelet is

another popular tool for estimating derivatives (see Prakasa Rao (1996) and

Hosseinioun et al. (2011, 2012) for examples). A spline-based method was

used by Zhou and Wolfe (2000).

Although convergence theory for Bayesian density estimation has been

well developed, e.g., by Ghosal et al. (1999), Ghosal and van der Vaart

(2001), Ghosal and van der Vaart (2007b), & Shen et al. (2013) for Dirichlet

mixture of normal prior, by Tokdar and Ghosh (2007) and van der Vaart

(2008, 2009) for Gaussian process based priors and by Rivoirard and Rousseau

(2012), de Jonge and van Zanten (2012), & Shen and Ghosal (2015) for finite

random series prior, convergence theory for Bayesian density derivative esti-

mation has not been addressed despite its importance. A possible reason for
this is that posterior contraction rates are typically obtained either by ana-
lyzing explicit expression of the posterior characteristics or by applying the
general theory of posterior contraction (Ghosal et al., 2000; Ghosal and van
der Vaart, 2007a). For density derivatives, explicit expressions of posterior
characteristics are not available, while the general theory is hard to apply
for posterior contraction problem with respect to metrics stronger than the
Hellinger distance such as those on the derivatives. The main difficulty lies
in constructing uniformly powerful tests against complements of shrinking
neighborhoods of the true distribution. Such tests are generally not possible
with respect to stronger metrics without excluding parts of the parameter
space, and hence, the prior plays an even more significant role in the analysis.
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Some tests with respect to Lp- and supremum metrics obtained recently by
Giné and Nickl (2011) using empirical process bounds will turn out to be
useful for studying posterior contraction rates for density derivatives.

Derivative estimation can be regarded as an inverse problem where the
object of interest is obtained by applying an unbounded operator on the
parameter regulating the distribution of the observations. Inference in this
setting involves regularization which, in the Bayesian context, is induced
from the prior. Posterior contraction and coverage properties of credible
regions in the inverse problem setting were studied for the white noise model
exploiting conjugacy (Knapik et al., 2011; Szabo et al., 2015). Posterior
contraction results in the same problem using non-conjugate priors were
obtained by Ray (2013) using the Hilbert space structure of the underlying
parameter space. Posterior contraction and coverage of credible regions for
nonparametric regression functions and its derivatives were treated by Yoo
and Ghosal (2016) using conjugacy. Beyond these two models, posterior
contraction rate for derivative estimation has not been studied, ostensibly
due to the lack of explicit expressions.

In this paper, we study the problem of contraction rate of posterior distri-
butions of density function and its derivatives under both L2- and supremum
norm. We consider a prior obtained by putting a prior on the coefficients
of a B-spline basis expansion. The same prior has been used for density
estimation in de Jonge and van Zanten (2012) & Shen and Ghosal (2015),
and an analogous prior in Yoo and Ghosal (2016) for the nonparametric re-
gression problem. Such finite random series priors have been identified as
very versatile by Shen and Ghosal (2015), as a variety of bases with suitable
approximation properties and many different choices of prior distributions
on the coefficients can be used. The prior can maintain additional struc-
tural properties such as positivity, monotonicity, or normalizing to unity
very easily if the B-spline basis is used and the coefficients are restricted
appropriately. In our context, the primary reason for adopting the finite
random B-spline series prior is the availability of explicit expressions for
derivatives in terms of lower-order B-spline basis, allowing us to bound dis-
tances on derivatives in terms of distances on the density function. Then,
posterior contraction rates with respect to the later can be handled by the
general theory of Ghosal et al. (2000) with the tests constructed by Giné and
Nickl (2011). The rate under the L2-metric agrees with the minimax optimal
rate up to logarithmic factors. We consider both univariate and multivariate
density functions. For the later case, we also consider anisotropic case in the
sense that the smoothness levels of the density function may vary at different
directions.

W. Shen and S. Ghosal
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In this paper we consider only the non-adaptive setting where the smooth-
ness of the underlying function is known to us. This allows us to use a
deterministic number of terms in the finite random series depending on the
sample size and the smoothness level. As a result, alternative densities in
the test construction of Giné and Nickl (2011) are representable as linear
combinations of the same basis functions. Unfortunately, the technique of
relating distance on derivatives with that on the function does not apply
across splines with different bases. In particular, a technical difficulty is
that for a series with few basis functions, the error of approximation is too
large for the argument to apply. Such a problem does not arise in the di-
rect problem (i.e., estimation of the density function itself) with respect to
the Hellinger distance where the test construction does not depend on the
approximation and hence adaptation is relatively easily established. It may
be noted that even for the direct problem with respect to stronger metrics
Lp, 2 < p ≤ ∞, adaptive posterior construction rates have not been obtained
in the literature so far.

The paper is organized as follows. We introduce the notation in Section 2.
In Sections 3 and 4, we present the main results on derivative estimation
for univariate and multivariate density functions. We conduct a simulation
study in Section 5 and conclude with a discussion in Section 6. The proof
of the theorems are given in Section 7.

2 Notation

We introduce some commonly used notation in this section. Let N =
{0, 1, . . .} be the collection of natural numbers. For a real number x, we
use �x� and �x� to denote its floor and ceiling numbers, i.e., the largest
(smallest) integer less than (greater than) x. For two d-dimensional vectors
a and b, we say a ≤ b if ak ≤ bk for every k = 1, . . . , d. In general, we define
φ(a) = (φ(a1), . . . , φ(ad))

T for any univariate function φ.
For any matrix A = ((aij)) ∈ R

p×q, we define several matrix norms,
including ‖A‖1 = max1≤j≤q

∑p
i=1 |aij |, ‖A‖∞ = max1≤i≤p

∑q
j=1 |aij |, and

‖A‖2 = σmax(A), which is the largest eigenvalue of ATA. We use � to
denote an inequality up to a universal constant multiple, and write a 
 b if
a � b � a.

For a real-valued univariate function f , we use f (r) and Drf to denote
its r-th derivative. In particular, we define f (0) = f . For multivariate
function f : Rd → R, define its mixed partial derivative by f (r) = D(r)f =

∂
∑d

k=1 rk/∂xr11 · · · ∂xrdd for some r ∈ N
d. Similarly, we write f (0) = f . We
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define an anisotropic Hölder class of functions on A with smoothness levels
α = (α1, . . . , αd) as

{

f : A → R, ‖f (r)‖∞ < ∞, and

d∑

k=1

‖D(αk−rk)ekf (r)‖∞ < ∞,

∀r ∈ N
d,

d∑

k=1

rk/αk < α

}

,

where ek ∈ N
d with k-th element of 1 and the rest of 0. We denote the

anisotropic α-Hölder class on [0, 1]d by Hα([0, 1]d). As a special case, if
α1 = · · · = αd = α, then we call it the isotropic class and denote it by
Cα([0, 1]d). For univariate functions, d = 1 and the smoothness class is
denoted by Cα([0, 1]).

3 Univariate Density Function

We first focus on the estimation of a univariate density function and its
derivatives using the spline method. We assume that the density is supported
on a compact interval, which can be taken as the unit interval [0, 1] without
loss of generality. For any x ∈ [0, 1], we denote the collection of B-spline
functions with knots 0 = t0 < t1 < · · · < tN < tN+1 = 1 of order q by
bJ,q(x) = (B1,q(x), . . . , BJ,q(x))

T , where J = q + N is the total number of
basis functions that we will be using in the model. For convenience, we use
equal-spaced knots, i.e., ti = i/(N + 1) for i = 1, . . . , N . It is possible to
extend the results for quasi-uniform spaced knots (Schumaker, 2007) using
the approaches in Yoo and Ghosal (2016) or consider random knots (Belitser
and Serra, 2014).

In the nonparametric estimation literature, it is common to approximate
a target function of interest p by a linear combination of splines, say bTJ,qθ,
where θ is a J-dimensional coefficient vector. A commonly used density
estimation method is called log-spline model (Stone, 1990). The idea is to
introduce an exponential link function that ensures the resulting estimator
being a valid probability density function. In other words, one writes

p = C−1
θ exp(θTbJ,q)

for a normalizing constant Cθ > 0. In some situations, it is also of interest
to use other link functions. For example, Shen and Ghosal (2016) also con-
sidered the identity link function where the B-splines are replaced by their

W. Shen and S. Ghosal
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normalizations and the vector of coefficients θ lies in the unit simplex. This
prior has the advantage that the pointwise posterior mean and variance can
be computed without adopting Markov chain Monte Carlo sampling. In this
paper, we consider a general link function Ψ and model the density function
p by

p(x;θ, J) =
Ψ
(
θTbJ,q

)

∫ 1
0 Ψ

{
θTbJ,q(u)

}
du

, (1)

where θ is a J-dimensional coefficient vector. The link function Ψ is pre-
chosen and should be non-negative and continuously differentiable. Given p,
we can take its r-th derivative as

Drp(x;θ, J) =
DrΨ

(
θTbJ,q

)

∫ 1
0 Ψ

{
θTbJ,q(u)

}
du

.

We assume that the smoothness level of p is given to be α, and the number
of spline basis functions J is chosen deterministically (depending on n).
Bayesian inference then can be conducted by putting prior distributions on
θ and studying the posterior behavior. A nice property of B-spline basis
is that the r-th-order derivative of θTbJ,q can be expressed in terms of its
lower-order basis functions as follows:

Dr
(
bTJ,qθ

)
= bTJ,q−rW rθ, (2)

where W r is a (J − r) × J matrix and we call it a derivative matrix. Its
mathematical expression is given by Lemma A.2 in Yoo and Ghosal (2016).
Most of the entries in W r are zero, and the values for non-zero entries are of
order O(Jr). This result is crucial for us to establish posterior contraction
rate for derivative estimation. More properties of W r are summarized in
Lemma 3.

One key ingredient in the study of posterior convergence property is the
approximation ability of the B-spline basis as summarized in the following
lemma. Interestingly, the approximation holds simultaneously for the func-
tion and its derivatives.

Lemma 1. For any function p ∈ Cα[0, 1] with α ∈ (0, q], there exist
positive constants L and C such that for any positive integer J , we can find
a θ0 ∈ [−L,L]J satisfying

‖bTJ,qθ0 − p‖∞ ≤ CJ−α, (3)

‖bTJ,q−rW rθ0 − p(r)‖∞ ≤ CJ−α+r, (4)

for every integer r ∈ (0, α).
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Lemma 1 asserts that an α-smooth function can be uniformly approx-
imated by a B-spline series at the rate J−α with coefficients chosen to lie
within a bounded set. The result also assures that we can use the deriva-
tives of the approximating B-spline series to approximate the corresponding
derivatives. The proof is omitted since it essentially follows from the results
in Chapter 12 of Schumaker (2007).

Remark 1. In Lemma 1, if p is a strictly positive probability density
function and each B-spline Bj,q, j = 1, . . . , J , is replaced by the correspond-
ing normalized B-spline B∗

j,q = Bj,q/
∫
Bj,q, then θ0 can be restricted to a

compact subset of the open unit J-simplex of the form {(θ1, . . . , θJ) : θj =

xj/
∑J

k=1 xk, L
−1 ≤ xj ≤ L} for some L > 0 without compromising the

approximation rate O(J−α). This follows from Lemma 1(d) of Shen and
Ghosal (2015). This allows us to choose the link function Ψ in (1) to be
identity if the coefficients are restricted to the unit simplex and an appro-
priate prior such as a Dirichlet distribution is put on it. Then, Theorem 1
below will hold with minor modifications in its proof.

We assume the following conditions on the true density function p0, the
link function Ψ, and the prior distribution on the coefficient vector θ.

(A1) Ψ is non-negative, strictly monotonic, and �α�-times continuous differ-
entiable. Also, Ψ−1 is �α�-times continuous differentiable on [M, M̄ ]
for sufficiently small M > 0 and large M̄ .

(A2) The true density function p0 satisfies Ψ−1(p0) ∈ Cα([0, 1]), where α is
assumed known and satisfies 0 < α ≤ q.

(A3) p0 ≥ 2M on [0, 1], where M is defined in (A1).

(A4) J is chosen to be of the order (n/ logn)1/(2α+1).

(A5) The prior distribution for θ on R
J satisfies the following conditions:

(a) Uniform prior concentration: given any L > 0, there exits pos-
itive constants c1 depending only on L such that for any J ,
θ0 ∈ [−L,L]J and ε > 0, we have that

Πθ(‖θ − θ0‖2 ≤ ε) ≥ exp{−c1J log(1/ε)}, (5)

(b) Tail decay: there exist positive constants c′1, κ1 such that for any
J and all sufficiently large M > 0

Πθ(θ /∈ [−M,M ]J) ≤ J exp{−c′1M
κ1}. (6)

W. Shen and S. Ghosal
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Conditions (A2)–(A5) are commonly used in the literature (see Shen and
Ghosal (2015) for example). In (A1), we need the link function Ψ to be dif-
ferentiable in order to define its derivatives. In addition, we need Ψ−1 to be
continuously differentiable in the large compact set [M, M̄ ]. This is because
our approximation result builds on

{
Ψ(bTθ)− p

}
(and its derivatives), and

we would like to bound
{
bTθ −Ψ−1(p)

}
as well in the proof. This condi-

tion is easily satisfied, for example, for the exponential link function. The
condition (A5) holds for priors obtained by putting independent positive
and continuous densities on each component, such as normal densities with
means and variances lying in a fixed compact set. In the case where the
normalized B-spline basis is used, θ is restricted to unit simplexes of appro-
priate dimensions, and the identity link is used, Condition (A5) should be
modified to make the constants uniform over compact subsets of the open
unit simplexes in the sense described in Remark 1. The analogous condi-
tion is then satisfied by Dirichlet priors with all parameters lying in a fixed
compact subset of the positive half-line.

Let Πn(·) be a generic notation for the posterior distribution given n
i.i.d observations sampling from p0. Then, we have the following posterior
contraction rate result. The proof is given in Section 7.

Theorem 1. Suppose that Conditions (A1)–(A5) hold. Then, for every
integer r ∈ [0, α) and any Mn → ∞,

lim
n→∞

Πn

[
{p : ‖p(r)−p

(r)
0 ‖2 ≤Mnεn,r, ‖p(r)− p

(r)
0 ‖∞≤ Mnζn,r}

]
=1 a.s., (7)

where εn,r = (n/ log n)(r−α)/(2α+1) and ζn,r = εn,r(nε
2
n,0)

1/2 are the contrac-
tion rate under L2- and L∞-metrics, respectively.

Theorem 1 states that the posterior distribution of p and its derivatives

p(r) contracts around the underlying true functions p0 and p
(r)
0 simultane-

ously by using the same prior distribution. We derive these results using pos-
terior convergence results of Giné and Nickl (2011) under stronger norms.
The posterior contraction rate for derivatives under the L2-metric clearly
implies the same rate under the L1-metric. This rate agrees (up to a log-
arithmic factor) with the one obtained in Corollary 3.3.4 of Singh (1977b),
in which the kernel method was used, and with the posterior contraction
rate obtained in Yoo and Ghosal (2016) for regression derivative estimation.
For the convergence rate ζn,r under L∞-metric, there is an additional factor
of (nε2n,0)

1/2 compared with the optimal rate obtained by Yoo and Ghosal
(2016) for nonparametric regression with Gaussian residuals and conjugate
Gaussian prior on the coefficients of the spline basis. However, it must be
remembered that the model of Yoo and Ghosal (2016) is conjugate for which
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explicit expressions are available while in our density estimation model, these
are not available. The same problem also appeared in Giné and Nickl (2011),
where they obtained optimal L∞-rate for conjugate white noise model while
possibly suboptimal rate for the non-conjugate density estimation problem.
It is not known whether the suboptimality is due to an artifact of the proof
or an artifact of the prior itself. Using an wavelet-based prior and Bernstein–
von Mises theorems in increasing dimension, Castillo (2014) obtained opti-
mal L∞-posterior convergence rates also for a density estimation problem.
It is possible that this technique can improve the posterior L∞-convergence
rate but we do not pursue the approach here.

4 Multivariate Density Functions

Next, we consider estimating a multi-dimensional density function p de-
fined on [0, 1]d using the tensor product of univariate B-splines, which can be
viewed as a generalization of univariate B-splines. More specifically, we de-
fine a tensor product B-spline basis function by BJ ,q(x) =

∏d
k=1Bjk,qk(xk),

where the indexes jk take values between 1 and Jk for k = 1, . . . , d, and
x = (x1, . . . , xd) ∈ [0, 1]d. Let J = (J1, . . . , Jd)

T be the number of basis
functions from directions 1 through d, and similarly, q = (q1, . . . , qd)

T be
the corresponding order of B-spline basis. Here, we allow qi taking different
values in different directions to accommodate possibly different smoothness
levels in the true density function.

Similarly with the univariate densities, we define a vector of coefficients

θ ∈ R

∏d
i=1 Ji , and consider

pθ(x) =
Ψ
(
θTbJ ,q

)

∫
[0,1]d Ψ

{
θTbJ ,q(u)

}
du

, (8)

and its mixed partial derivative function

Dr {pθ(x)} =
Dr

{
Ψ
(
θTbJ ,q

)}

∫
[0,1]d Ψ

{
θTbJ ,q(u)

}
du

,

where bJ ,q is the collection of tensor product B-splines, r = (r1, . . . , rd)
T

and each ri is an integer between 0 and �αi� for i = 1, . . . , d such that∑d
i=1 ri/αi < 1.
The main reason for using tensor product B-spline basis is that we can

still obtain a closed-form expression for its mixed partial derivatives as fol-
lows:

Dr
(
θTbJ ,q

)
= bTJ ,q−rW rθ, (9)

W. Shen and S. Ghosal
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where W r is a
∏d

i=1(Ji − ri) ×
∏d

i=1 Ji matrix with each entry of order

O(
∏d

i=1 J
ri
i ). Similarly with the univariate B-spline basis, tensor product

B-splines also enjoy nice approximation properties to smooth functions and
their derivatives. In the following lemma, we restate the approximation
results in Lemma 7.1 of Yoo and Ghosal (2016) for anisotropic functions and
also include isotropic function as a special case.

Lemma 2. Let p belong to an isotropic smoothness class Cα([0, 1]d) with
α ≤ min(q1, . . . , qd). Then, there exist positive constants L and C such that

for any J , we can find a θ0 ∈ [−L,L]
∏d

k=1 Jk satisfying

‖bTJ ,qθ0 − p‖∞≤C
d∑

k=1

J−α
k and ‖bTJ ,q−rW rθ0 − p(r)‖∞ ≤ C

d∑

k=1

Jrk−α
k ,(10)

for every integer vector r = (r1, . . . , rd)
T ∈ N

d satisfying
∑d

k=1 rk < α.
Moreover, if p belongs to an anisotropic class Hα([0, 1]d) with αk being an
integer in (0, qk] for k = 1, . . . , d, then the above result still holds while (10)
shall be replaced by

‖bTJ ,qθ0 − p‖∞≤C
d∑

k=1

J−αk
k and ‖bTJ ,q−rW rθ0 − p(r)‖∞≤C

d∑

k=1

Jrk−αk
k (11)

for any r ∈ N
d satisfying

∑d
k=1 rk/αk < 1.

We make the following assumptions. These assumptions are essentially
extensions of (A1)–(A5) under the multivariate setting.

(B1) Ψ is non-negative, strictly monotonic. and �α�-times continuous dif-
ferentiable. Also, D�α� (Ψ−1

)
is continuous on [M, M̄ ] for sufficiently

small M > 0 and large M̄ .

(B2) The true density function p0 satisfies Ψ−1(p0) ∈ Cα
(
[0, 1]d

)
, where α

is assumed known and satisfies 0 < α ≤ min(q1, . . . , qd).

(B3) p0 ≥ 2M on [0, 1]d.

(B4) J1 = · · · = Jd are of the order (n/ logn)1/(2α+d).

(B5) The J-dimensional prior distribution for θ satisfies (5) and (6) for
J =

∏d
k=1 Jk.

Then, we have the following theorem on the posterior contraction rate.
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Theorem 2. Suppose that Conditions (B1)–(B5) hold. Then, for every
r ∈ N

d satisfying 0 ≤
∑d

k=1 rk < α, and any Mn → ∞,

lim
n→∞

Πn

[
{p : ‖p(r) − p

(r)
0 ‖2 ≤ Mnεn,r, ‖p(r) − p

(r)
0 ‖∞ ≤ Mnζn,r}

]
= 1 a.s.,

where εn,r = (n/ log n)(−α+
∑d

k=1 rk)/(2α+d) and ζn,r = εn,r(nε
2
n,0)

1/2 are the
contraction rate under L2- and L∞-metrics, respectively.

As in Remark 1, if tensor products of normalized B-splines are used,
the coefficient vector may be restricted to the unit J-simplex and the link
function Ψ may be taken to be identity. For a given strictly positive smooth
multivariate probability density function, θ0 appearing in Lemma 2 will then
lie in compact subsets of the respective open unit J-simplexes in the sense
described in Remark 1. Then, the constants in Condition (B5) should be
uniform over compact subsets of the open unit simplexes, which for instance,
will hold for Dirichlet priors with all parameters from a fixed compact subset
of the positive half-line.

Theorem 2 extends the previous result for univariate density derivative
estimation to the multivariate setting. By taking d = 1, we obtain the rate
in Theorem 1. Here, we choose J1, . . . , Jd to have the same order since the
true density is assumed to be isotropic. However, in practice, the smoothness
levels across different directions may actually differ. This motivates us to
consider extensions for anisotropic density functions. The following set of
conditions are based on slight modifications of (B1), (B2), and (B4).

(C1) Ψ is non-negative, strictly monotonic, �α�-times continuous differen-
tiable and D�α� (Ψ−1

)
is continuous on [M, M̄ ] for sufficiently small

M > 0 and large M̄ .

(C2) Ψ−1(p0) ∈ Hα
(
[0, 1]d

)
, where α ∈ N

d is assumed known and satisfies
0 < α ≤ q.

(C3) Jk is of the order
(
(n/ log n)α

∗/{αk(2α
∗+d)}) for k = 1, . . . , d, where α∗ is

the harmonic mean of (α1, . . . , αd) defined by 1/α∗ =
{∑d

i=1 α
−1
i

}
/d.

Then, we obtain the posterior contraction rate for anisotropic density deriva-
tive estimation.

Theorem 3. Suppose that Conditions (B3), (B5), and (C1)–(C3) hold.
Then, for every r ∈ N

d satisfying 0 ≤
∑d

k=1 rk/αk < 1, and any Mn → ∞,

lim
n→∞

Πn

[
{p : ‖p(r) − p

(r)
0 ‖2 ≤ Mnεn,r, ‖p(r) − p

(r)
0 ‖∞ ≤ Mnζn,r}

]
= 1 a.s.,

W. Shen and S. Ghosal
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where εn,r = (n/ logn)−α∗(1−
∑d

k=1 rk/αk)/(2α
∗+d) and ζn,r = εn,r(nε

2
n,0)

1/2 are
the contraction rates under L2- and L∞-metrics, respectively.

In Theorem 3, if α1 = · · · = αd, then we obtain Theorem 2 as a special
case. The rate under L2-metric agrees with the one obtained by Yoo and
Ghosal (2016) for regression derivatives. Note that for anisotropic case, we
will need the smoothness levels α to be integers. This is due to the limitation
of the approximation result in Lemma 2.

5 Simulation Studies

We conduct a simulation study to compare the numerical performance
of the proposed method with kernel method implemented using R function
“locpoly.” We consider the random series prior for J = 8 and J = 14 with
q = 4. To simplify the posterior computation, we use the identity link func-
tion and re-scale the B-spline basis such that the normalizing constant in
(1) can be removed. Similar method has been used in Shen and Ghosal
(2015). We generate data from a normal distribution N(0, 1/16) (truncated
between −2 and 2) and a beta distribution Beta(2, 3). We vary the sample
size n = 100, 400, 800 and repeat the procedure for 200 Monte Carlo replica-
tions. We summarize the mean L1-distance of both methods for the density
functions and their first two order derivatives in Table 1. It can be seen
that increasing the number of terms from J = 8 to 14 leads to a significant
improvement in estimation accuracy. In general, kernel method and ran-
dom series spline method have a comparable performance. The estimation
error becomes larger as the smoothness of the target function (derivative)
decreases.

6 Discussion

In this paper, we studied posterior contraction rates of derivatives of a
probability density function under different distance metrics. A fundamental

Table 1: Mean L1-distance for density derivative estimation using random
series prior (RS) and kernel smoothing method (Kernel) for sample sizes
n = 100, 200, 800

Density 1st derivative 2nd derivative

Density Method 100 400 800 100 400 800 100 400 800

N (0,16−1) RS(J = 8) .073 .067 .052 .150 .151 .135 2.01 1.69 1.46
RS(J = 14) .030 .023 .022 .129 .125 .101 1.65 1.64 1.13
Kernel .017 .016 .014 .138 .127 .091 1.72 1.32 .99

Beta(2, 3) RS(J = 8) .091 .076 .069 1.41 1.00 .93 12.0 7.31 4.23
RS(J = 14) .075 .063 .048 1.07 .81 .76 7.12 4.85 2.28
Kernel .086 .051 .037 2.13 .94 .64 21.6 11.4 3.19
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difficulty in treating derivatives is that neither explicit posterior expressions
are available nor it is easy to construct tests as required by the general theory
of posterior contraction. We construct priors using a random series based on
B-splines. In the prior distribution, we fix the number of basis terms J to
be at the oracle order n1/(2α+d). A key feature of B-splines allow us to relate
distance on derivatives with those on the functions, and tests can be con-
structed using some sharp empirical process bounds. While a spline-based
finite random series prior possesses very helpful structural properties use-
ful for a theoretical study of posterior concentration of derivatives, it seems
reasonable to believe that other popular choices such a Dirichlet process mix-
ture prior will also lead to good concentration properties of the derivatives.
Also, the L∞-contraction rate established in the paper is possibly subopti-
mal. A recent technique for establishing optimal supremum-norm posterior
concentration rate based on high-dimensional Bernstein–von Mises theorem
may also be applicable in studying posterior contraction of derivatives.

A very important issue in studying posterior contraction rate is Bayesian
adaptation. The smoothness level α which guides the contraction rates for
the number of terms in the finite random series is typically not known in
practice. A fairly rich theory of Bayesian adaptation lets us derive (nearly)
the oracle rate of contraction with respect to the Hellinger distance on the
density function without knowing the smoothness by simply putting a prior
on the number of terms in the B-spline random series. It will be of interest
to develop adaptive procedures that enjoy nice convergence properties for
a continuous range of α. In particular, it seems reasonable to expect that
the posterior contraction rate for derivatives based on the B-spline random
series prior will automatically adapt to the unknown smoothness especially
if the L2-distance is used. We shall return to these topics elsewhere.

7 Proofs

We first restate some useful results in Yoo and Ghosal (2016) about the
derivative matrix.

Lemma 3. For the univariate density derivate estimation, the derivative
matrix W r satisfies

(a) Each row and column of W r only has (r + 1) non-zero entries, whose
values are of the order Jr.

(b) ‖W T
r W r‖2 ≤ J2r.

For multivariate density derivative estimation, the derivative matrix W r

satisfies
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(c) Each row and column of W r only has
∏d

k=1(rk + 1) non-zero entries,

whose values are of order O(
∏d

k=1 J
rk
k ).

(d) ‖W T
rW r‖2 ≤

∏d
k=1 J

2rk
k .

Proof of Theorem 1. Throughout the proof, we add a subscript n
to J to indicate its dependence on n. We first show that the result holds
for r = 0, and then extend the results for positive values of r. When r = 0,
the L1-convergence is immediate by using Theorem 2.1 of Ghosal and van
der Vaart (2001) with the choice of sieve as Fn =

{
θ ∈ (−n1/κ1 , n1/κ1)Jn

}
.

The rest of the arguments proceed similarly with Corollary 1 in Shen and
Ghosal (2015). The only difference is that we consider a known smoothness
α and choose Jn at the oracle order already, while Shen and Ghosal (2015)
considered an unknown smoothness level α and a prior on Jn. The rates
under L2- and L∞-metrics are obtained by Theorem 3 of Giné and Nickl
(2011). Note that we have assumed boundedness of p0, so condition (3) in
that theorem will hold trivially.

Next, we consider r > 0. For simplicity, we drop the subscripts in bJ,q
and denote it by b for the rest of the proof. By Lemma 1, we can find a
Jn-dimensional vector θ0 and a constant C > 0 such that

‖bTθ0 −Ψ−1(p0)‖∞ ≤ CJ−α
n ,

‖bTW iθ0 −Di{Ψ−1(p0)}‖∞ ≤ CJ i−α
n , i = 1, . . . , r. (12)

By Faà di Bruno’s formula, we have

DrΨ(g(x)) =
∑ r!

m1!m2! · · ·mr!
Ψm1+···+mr(g(x)) ·

r∏

i=1

(
g(i)(x)

i!

)mi

,

where the sum is over all r-tuples of non-negative integers (m1, . . . ,mr) with∑r
i=1mi = r. Therefore, we can expandDr

{
Ψ(bTθ0)

}
andDr

{
Ψ(Ψ−1(p0))

}

accordingly, and bound their difference by a constant multiple of Jr−α
n , i.e.,

‖Dr
{
Ψ(bTθ0)

}
− p

(r)
0 ‖∞ = ‖Dr

{
Ψ(bTθ0)

}
−Dr

{
Ψ(Ψ−1(p0))

}
‖∞ � Jr−α

n , (13)

since the derivatives are all bounded from above, and the worst approxi-
mation comes from ‖bTW iθ0 −Di{Ψ−1(p0)}‖∞, which can be bounded by
using (12).
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Now, we define the following sets for arbitrary large constant M :

An(M) =
{
θ :‖p0 − c(θ)−1Ψ(bTθ)‖2 ≤ MJ−α

n ,

‖p0 − c(θ)−1Ψ(bTθ)‖∞ ≤ MJ−α
n (nJ−2α

n )1/2
}

Bn(M) =
{
θ :‖p0 −Ψ(bTθ)‖2 ≤ MJ−α

n ,

‖p0 −Ψ(bTθ)‖∞ ≤ MJ−α
n (nJ−2α

n )1/2
}

Cn(M) =
{
θ :‖Ψ(bTθ)−Ψ(bTθ0)‖2 ≤ MJ−α

n ,

‖Ψ(bTθ)−Ψ(bTθ0)‖∞ ≤ MJ−α
n (nJ−2α

n )1/2
}

Dn(M) =
{
θ :‖Dr

{
Ψ(bTθ)

}
−Dr

{
Ψ(bTθ0)

}
‖2 ≤ MJr−α

n ,

‖Dr
{
Ψ(bTθ)

}
−Dr

{
Ψ(bTθ0)

}
‖∞ ≤ MJr−α

n (nJ−2α
n )1/2

}
,

En(M) =
{
θ :‖p(r)0 − c(θ)−1Dr

{
Ψ(bTθ)

}
‖2 ≤ MJr−α

n ,

‖p0 −Dr
{
Ψ(bTθ)

}
‖∞ ≤ MJr−α

n (nJ−2α
n )1/2

}
.

Given a large constant M1, the posterior probability of An(M1) goes to one.
By integration, c(θ) = 1 + Op(J

−α
n ). Hence, we can find M2 > M1 such

that An(M1) ⊂ Bn(M2). By the L∞-approximation ability of B-splines
to p0, we can replace p0 in Bn by bTθ and obtain Cn. In other words,
Bn(M2) ⊂ Cn(M3) for some large M3. From Cn to Dn, note that Ψ(bTθ) is
finite and sufficiently close to p, so it is lower bounded by M ; hence, Ψ−1 is
continuously differentiable by Condition (A1). Let

C ′
n(M)=

{
θ :‖bTθ−bTθ0‖2≤MJ−α

n , ‖bTθ − bTθ0‖∞≤MJ−α
n (nJ−2α

n )1/2
}
.

Then, we have Cn(M3) ⊂ C ′
n(M

′
3) for some constant M ′

3. By Lemma (A.8)

of Yoo and Ghosal (2016), ‖bTθ‖2 
 J
−1/2
n ‖θ‖2 for Jn-dimensional vector θ.

Therefore for any θ ∈ C ′
n, we have ‖θ−θ0‖2 ≤ MJ

1/2−α
n . By using part (b)

of Lemma 3, we have ‖W i(θ − θ0)‖2 � J
i+1/2−α
n and ‖bTW i(θ − θ0)‖2 �

J i−α
n for i = 1, . . . , r. Similarly, we also have

‖bTW i(θ − θ0)‖∞ ≤ ‖bT (θ − θ0)‖∞‖W i‖1 � J i−α
n (nJ−2α

n )1/2

by part (a) of Lemma 3. Using Faà di Bruno’s formula and the assumption
that Ψ is continuously differentiable, we have C ′

n(M
′
3) ⊂ Dn(M4). From

Dn to En, we use the triangle inequality combining (13) and the fact that
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c(θ)−1 = 1+Op(J
−α
n ). We have Dn(M4) ⊂ En(M5) for any sufficiently large

M5, hence Πn(En(Mn)) → 1 for any Mn → ∞. This concludes the proof.

Proof of Theorems 2 and 3.We only prove Theorem 3 since it includes
Theorem 2 as a special case. The posterior contraction rate for densities, i.e.,
r = 0, can be obtained similarly with Section 3.2 in Shen and Ghosal (2015)
by fixing Jn at the oracle order. Hence, it is good enough to show the results
for non-zero r. By Lemma 2, we can find a

∏d
k=1 Jk-dimensional vector θ0

and a constant C > 0 such that

‖bTθ0 −Ψ−1(p0)‖∞ ≤ Cεn,0, ‖bTW iθ0 −Di{Ψ−1(p0)}‖∞

≤ C
d∑

k=1

J ik−αk
k , i ≤ r. (14)

Then, by Faà di Bruno’s formula, we have

‖Dr
{
Ψ(bTθ0)

}
− p

(r)
0 ‖∞ = ‖Dr

{
Ψ(bTθ0)

}
−Dr

{
Ψ(Ψ−1(p0))

}
‖∞

�
d∑

k=1

Jrk−αk
k . (15)

Similarly with the proof of Theorem 1, we can define the following sets for
any large constant M :

An(M) =
{
θ :‖p0 − c(θ)−1Ψ(bTθ)‖2 ≤ Mεn,0,

‖p0 − c(θ)−1Ψ(bTθ)‖∞ ≤ Mεn,0(nε
2
n,0)

1/2
}

Bn(M) =
{
θ :‖p0 −Ψ(bTθ)‖2 ≤ Mεn,0,

‖p0 −Ψ(bTθ)‖∞ ≤ Mεn,0(nε
2
n,0)

1/2
}

Cn(M) =
{
θ :‖Ψ(bTθ)−Ψ(bTθ0)‖2 ≤ Mεn,0,

‖Ψ(bTθ)−Ψ(bTθ0)‖∞ ≤ Mεn,0(nε
2
n,0)

1/2
}

Dn(M) =
{
θ :‖Dr

{
Ψ(bTθ)

}
−Dr

{
Ψ(bTθ0)

}
‖2 ≤ M

(
d∏

k=1

Jrk
k

)

εn,0,

‖Dr
{
Ψ(bTθ)

}
−Dr

{
Ψ(bTθ0)

}
‖∞≤M

(
d∏

k=1

Jrk
k

)

εn,0(nε
2
n,0)

1/2
}
,
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En(M) =
{
θ :‖p(r)0 − c(θ)−1Dr

{
Ψ(bTθ)

}
‖2 ≤ M(

d∏

k=1

Jrk
k )εn,0,

‖p0 −Dr
{
Ψ(bTθ)

}
‖∞ ≤ M(

d∏

k=1

Jrk
k )εn,0(nε

2
n,0)

1/2
}
.

Now, for some positive constants M1, . . . ,M5, we have An(M1) ⊂ Bn(M2) ⊂
Cn(M3) since c(θ) = 1 +Op(εn,0) and the approximation result in (14). To
get Cn(M3) ⊂ Dn(M4), note that Ψ(bTθ) is finite and sufficiently close to
p, so it is lower bounded by M ; hence, Ψ−1 is continuously differentiable by
Condition (A1). Let

C ′
n(M)=

{
θ : ‖bTθ − bTθ0‖2 ≤Mεn,0, ‖bTθ − bTθ0‖∞ ≤ Mεn,0(nε

2
n,0)

1/2
}
.

Then, we have Cn(M3) ⊂ C ′
n(M

′
3) for some constant M ′

3. By Lemma

(A.8) of Yoo and Ghosal (2016), ‖bTθ‖2 

(∏d

k=1 J
−1/2
k

)
‖θ‖2 for Jn-

dimensional vector θ. Therefore, for any θ ∈ C ′
n, we have ‖θ − θ0‖2 ≤

M
(∏d

k=1 J
1/2
k

)
εn,0. By using part (d) of Lemma 3, we have ‖W i(θ −

θ0)‖2 � εn,0
∏d

k=1 J
ik+1/2
k and ‖bTW i(θ − θ0)‖2 � εn,0

∏d
k=1 J

ik
k for any

i ≤ r. Similarly, we also have ‖bTW i(θ−θ0)‖∞ ≤ ‖bT (θ−θ0)‖∞‖W i‖1 �
εn,0(nε

2
n,0)

1/2
∏d

k=1 J
ik
k by part (c) of Lemma 3 for any i ≤ r. Using Faà di

Bruno’s formula and the assumption that Ψ is continuously differentiable,
we have C ′

n(M
′
3) ⊂ Dn(M4).

To get Dn(M4) ⊂ En(M5), we use (15), c(θ) = 1 + Op(εn,0), and
the fact that the rate for approximating p(r) by spline derivative series∑d

k=1 J
rk−αk
k =

∑d
k=1 J

rk
k εn,0 is bounded above by a multiple of (

∏d
k=1 J

rk
k )

εn,0 = εn,r. Therefore, Πn{En(M5)} → 1.
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