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Abstract

Asymptotic normality of intermediate order statistics taken from univariate
iid random variables is well-known. We generalize this result to random
vectors in arbitrary dimension, where the order statistics are taken compo-
nentwise.

AMS (2000) subject classification. Primary 62G30, Secondary 62H10.
Keywords and phrases. Multivariate order statistics, Intermediate order
statistics, Copula, Domain of attraction, D-norm, von Mises type conditions,
Asymptotic normality

1 Introduction

Let X(1) =
(
X

(1)
1 , . . . , X

(1)
d

)
, . . . ,X(n) =

(
X

(n)
1 , . . . , X

(n)
d

)
be indepen-

dent copies of a random vector (rv) X = (X1, . . . , Xd) that realizes in IRd.
By

X1:n,i ≤ X2:n,i ≤ · · · ≤ Xn:n,i,

we denote the ordered values of the i-th components of X(1), . . . ,X(n), 1 ≤
i ≤ d. Then, (Xj1:n,1, . . . , Xjd:n,d) with 1 ≤ j1, . . . , jd ≤ n, is a rv of order
statistics (os) in each component. We call it a multivariate os.

The univariate case d = 1 is, clearly, well investigated; standard refer-
ences are the books by David (1981), Reiss (1989), Galambos (1987), David
and Nagaraja (2004), Arnold et al. (2008), among others. In the multivariate
case d ≥ 2, the focus has been on the investigation of the rv of componen-
twise maxima (Xn:n,1, . . . , Xn:n,d) (Balkema and Resnick (1977), de Haan
and Resnick (1977), Resnick (1987), Vatan (1985), Beirlant et al. (2004),
de Haan and Ferreira (2006), Falk et al. (2011), among others).

Much less is known in the extremal case (Xn−k1:n,1, . . . , Xn−kd:n) with
k1, . . . , kd ∈ N fixed; one reference is Galambos (1975). More recent investi-
gations of this case are Barakat and Nigm (2012) and Barakat et al. (2015).
Asymptotic normality of the random vector (Xj1:n,1, . . . , Xjd:n,d) in the case
of central os is established in Reiss (1989, Theorem 7.1.2). In this case, the
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indices ji = ji(n) depend on n and have to satisfy ji(n)/n →n→∞ qi ∈ (0, 1),
1 ≤ i ≤ d.

In the case of intermediate os, we require ji = ji(n) = n − ki, where
ki = ki(n) →n→∞ ∞ with ki/n →n→∞ 0. Asymptotic normality of interme-
diate os in the univariate case under fairly general von Mises conditions was
established in Falk (1989). Balkema and de Haan (1978a) and Balkema and
de Haan (1978b, Theorem 7.1) proved that for particular underlying distri-
bution function (df) F , Xn−k+1:n may have any limiting distribution if it is
suitably standardized and if the sequence k is chosen appropriately.

As pointed out by Smirnov (1967), a (nondegenerate) limiting distri-
bution of Xn−k+1:n different from the normal one can only occur if k has
an exact preassigned asymptotic behavior. Assuming only k →n→∞ ∞,
k/n →n→∞ 0, Smirnov (1967) gave necessary and sufficient conditions for
F such that Xn−k+1:n is asymptotically normal, and he specified the appro-
priate norming constants (see condition (3.2) below).

Smirnov’s result was extended to multivariate intermediate os by Cheng
et al. (1997). They identified the class of limiting distributions of (Xn−k1:n,1,
. . . , Xn−kd:n,d) after suitable normalizing and centering, and gave necessary
and sufficient conditions of weak convergence.

Cooil (1985) established multivariate extensions of the univariate case
by considering vectors of intermediate os (Xn−k1+1:n, . . . , Xn−kd+1:n) taken
from the same sample of univariate os X1:n ≤ · · · ≤ Xn:n but with pairwise dif-
ferent k1, . . . , kd. Barakat (2001) investigates the limit distribution of bivariate
os in all nine possible combinations of central, intermediate and extreme os.

According to Sklar (1959, 1996), the df of X = (X1, . . . , Xd) can be
decomposed into a copula and the df Fi of each component Xi, 1 ≤ i ≤
d. We will establish in this paper asymptotic normality of the vector of
multivariate os (Xn−k1:n,1, . . . , Xn−kd:n,d) in the intermediate case. This
is achieved under the condition that the copula corresponding to X is
in the max-domain of attraction of a multivariate extreme value df together with
the assumption that each univariate marginal df Fi satisfies a von Mises condi-
tion and that the norming constants satisfy Smirnov’s condition (3.2) below.

2 Main Results: Copula Case

We consider first the case that the df of the rv X is a copula, C say, on
IRd. We require that C is in the max-domain of attraction of a nondegenerate
multivariate extreme-value df (evd) G, i.e.,

Cn
(
1+

x

n

)
→n→∞ G(x), x ∈ IRd, (2.1)
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where 1 = (1, . . . , 1) ∈ IRd and all operations on vectors are meant compo-
nentwise. In this case, there exists a D-norm ‖·‖D on IRd such that

G(x) = exp (−‖x‖D) , x ≤ 0 ∈ IRd. (2.2)

A common norm ‖·‖ on IRd is a D-norm ‖·‖D, if there exists a rv Z =
(Z1, . . . , Zd) on IRd with the two properties Zi ≥ 0, E(Zi) = 1 for i =
1, . . . , d, such that

‖x‖D = E

(
max
1≤i≤d

|xi|Zi

)
, x ∈ IRd.

The rv Z is called a generator of the D-norm, and we add the index D to
the norm symbol, meaning dependence.

Representation (2.2) is just a reformulation of the Pickands-de Haan-
Resnick-Vatan characterization of a multivariate evd, using D-norms (see,
e.g., Falk et al. (2011, Chapter 4)). Examples of D-norms are the sup-norm

‖x‖∞ = max1≤i≤d |xi| and the complete logistic family ‖x‖p =
(∑d

i=1

|xi|p
)1/p

, p ≥ 1. For a systematic treatment of D-norms, we refer to the

booklet by Falk (2016).
A straightforward analysis shows that (2.1) and (2.2) are equivalent to

the condition that there exists a D-norm on IRd such that

C(u) = 1− ‖1− u‖D + o (‖1− u‖) (2.3)

as u → 1, uniformly for u ∈ [0, 1]d.
Take, for example, an arbitrary Archimedean copula on IRd

Cϕ(u) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud)),

where ϕ is a continuous and strictly decreasing function from [0, 1] to [0,∞]
such that ϕ(1) = 0 (see, e.g., McNeil and Nešlehová (2009, Theorem 2.2)).
Suppose that

p := lim
s→0

sϕ′(1− s)

ϕ(1− s)
exists in [1,∞].

Then, Cϕ satisfies condition (3) with pertaining D-norm ‖·‖D = ‖·‖p, p ∈
[1,∞]. This follows from Charpentier and Segers (2009, Theorem 4.1) and el-
ementary computations. If p = 1, then the margins of Cϕ are tail-independent.
This concerns the Clayton and Frank copula with generators ϕλ(t) = (t−λ−
1)/λ, λ ≥ 0, and ϕλ(t) = − log((exp(−λt)− 1)/(exp(−λ)− 1)), λ ∈ IR \ {0},
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respectively, but not the Gumbel copula with generator ϕλ(t) = (− log(t))λ,
λ > 1, in which case p = λ. For an exhaustive account on copulas, we refer
to Nelsen (2006).

We are now ready to state asymptotic normality of the vector of multi-
variate os in the intermediate case with underlying copula. By ej := (0, . . . ,
0, 1, 0, . . . , 0) ∈ IRd with denote the j-th unit vector, j = 1, . . . , d.

Theorem 2.1 (The Copula Case). Suppose that the rv X = (X1, . . . , Xd)
follows a copula C, which satisfies expansion (2.3) with some D-norm ‖·‖D
on IRd. Let k = k(n) = (k1, . . . , kd) ∈ {1, . . . , n− 1}d, n ∈ N, satisfy
ki/kj → k2ij ∈ (0,∞) for all pairs of components 1 ≤ i, j ≤ d, ‖k‖ → ∞ and
‖k‖ /n → 0 as n → ∞. Then, the rv of componentwise intermediate os is
asymptotically normal:

(
n√
ki

(
Xn−ki:n,i −

n− ki
n

))d

i=1

→D N (0,Σ) ,

where the d× d-covariance matrix is given by

Σ = (σij) =

{
1, if i = j
kij + kji − ‖kijei + kjiej‖D , if i 	= j.

If, for example, ‖x‖D = ‖x‖p = (
∑p

i=1 |xi|
p)

1/p
, p ≥ 1, then σij =

kij + kji −
(
kpij + kpji

)1/p
, i 	= j.

Remark 2.2. Note that σij = 0, i 	= j, if ‖·‖D = ‖·‖1, which is the

case if the margins of G(x) = exp(−‖x‖D) =
∏d

i=1 exp(xi), x ≤ 0 ∈ IRd,
are independent. Then, the components of X = (X1, . . . , Xd) are called tail-
independent. The reverse implication is true as well, i.e., the preceding result
entails that the componentwise intermediate os Xn−k1:n,1, . . . , Xn−kd:n,d are
asymptotically independent if, and only if, they are pairwise asymptotically
independent. But this is equivalent to the condition that the ‖·‖D = ‖·‖1
(see Section 1.3 in Falk (2016)).

Note that σij ≥ 0 for each pair i, j, i.e., the componentwise os are asymp-
totically positively correlated. This follows from the usual triangular in-
equality, satisfied by each norm, and the fact that a D-norm is in general
standardized, i.e., ‖ej‖D = 1, 1 ≤ j ≤ d.

Corollary 2.3. If we choose identical ki in the preceding result, i.e., k1 =
· · · = kd = k, then we obtain under the conditions of Theorem 2.1

n√
k

(
Xn−k:n,i −

n− k

n

)d

i=1

→D N(0,Σ)
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with

Σ = (σij) =

{
1, if i = j
2− ‖ei + ej‖D , if i 	= j.

Let U1:n ≤ U2:n ≤ · · · ≤ Un:n denote the os of n independent and uni-
formly on (0, 1) distributed rv U1, . . . , Un. It is well-known that

(Ui:n)
n
i=1 =D

(∑i
j=1 ηj∑n+1
j=1 ηj

)n

i=1

,

where η1, . . . , ηn+1 are iid standard exponential rv (see, e.g., Reiss 1989,
Corollary 1.6.9).

Let ξ1, ξ2, . . . , ξ2(n+1) be iid standard normal distributed rv. From the
fact that

(
ξ21 + ξ22

)
/2 follows the standard exponential distribution on (0,∞),

we thus obtain (Reiss (1989, Problem 1.17)) the representation

(Ui:n)
n
i=1 =D

( ∑2i
j=1 ξ

2
j∑2(n+1)

j=1 ξ2j

)n

i=1

. (2.4)

Corollary 2.3 now opens a way to tackle at least partially and asymptotically
a multivariate extension of the above representation (2.4).

Corollary 2.4. Suppose that the d× d-matrix Λ with entries

λij = σ
1/2
ij =

{
1, if i = j(
2− ‖ei + ej‖D

)1/2
, if i 	= j

is positive semidefinite and let ξ(1), ξ(2), . . . be independent copies of the ran-
dom vector ξ = (ξ1, . . . , ξd), which follows the normal distribution N(0,Λ)
on IRd. Then, we obtain under the conditions of Corollary 2.3

sup
x∈IRd

∣∣∣∣∣∣∣
P
(
(Xn−k:n,i)

d
i=1 ≤ x

)
− P

⎛
⎜⎝
⎛
⎝
∑2(n−k)

j=1 ξ
(j)2

i∑2(n+1)
j=1 ξ

(j)2

i

⎞
⎠

d

i=1

≤ x

⎞
⎟⎠

∣∣∣∣∣∣∣
→n→∞ 0.

Note that the univariate marginal distributions in the above result co-
incide due to Eq. 2.4. If a matrix is positive semidefinite with nonnegative
entries, the matrix of the square roots of its entries is not necessarily semidef-
inite again. Take, for example, the 3×3-matrix with rows 1, 0, a|0, 1, a|a, a, 1.
This matrix is positive definite for a = 3−1/2, but not for a = 3−1/4. The
matrix Λ is positive semidefinite, if the value of ‖ei + ej‖D does not depend
on the pair i 	= j, in which case Λ satisfies the compound symmetry condition.
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Proof. From Corollary 2.3, we obtain that

n√
k

(
Xn−k:n,i −

n− k

n

)d

i=1

→D N(0,Σ).

The assertion follows, if we establish

n√
k

⎛
⎝
∑2(n−k)

j=1 ξ
(j)2

i∑2(n+1)
j=1 ξ

(j)2

i

− n− k

n

⎞
⎠

d

i=1

→D N(0,Σ)

as well. But this follows from the central limit theorem and elementary
arguments, using the fact that Cov(X2, Y 2) = 2c2, if (X,Y ) is bivariate
normal with Cov(X,Y ) = c.

The proof of Theorem 2.1 requires a suitable multivariate central limit
theorem for arrays. To ease its reference, we state it explicitly here. It
follows from the univariate version based on Lindeberg’s condition (see, e.g.,
Billingsley (2012), together with the Cramér-Wold device). Recall that all
operations on vectors are meant componentwise.

Lemma 2.5 (Multivariate Central Limit Theorem for Arrays). Let X
(1)
n , . . . ,

X
(n)
n be iid rv for each n ∈ N, bounded by some constant c = (c1, . . . , cd) >

0 ∈ IRd and with mean zero. Suppose there is a sequence c(n) ∈ IRd with

nc
(n)
i →n→∞ ∞ for i = 1, . . . , d, such that Cov

(
X

(1)
n

)
= C(n)Σ(n)C(n),

n ∈ N, where C(n) = diag
(√

c(n)
)
and Σ(n) →n→∞ Σ. Then,

1√
nc(n)

n∑
i=1

X(i)
n →D N(0,Σ).

Proof of Theorem 2.1. Choose x = (x1, . . . , xd) ∈ IRd. Elementary
arguments yield

P

((
n√
ki

(
Xn−ki:n,i −

n− ki
n

))d

i=1

≤ x

)

= P

(
Xn−ki:n,i ≤

√
ki
n

xi +
n− ki

n
, 1 ≤ i ≤ d

)

= P

(
n∑

j=1

1[
0,

√
ki
n

xi+
n−ki

n

] (X(j)
i

)
≥ n− ki, 1 ≤ i ≤ d

)

=P

⎛
⎝
(

1√
ki

n∑
j=1

(√
ki
n

xi+
n−ki
n

−1[
0,

√
ki
n

xi+
n−ki

n

] (X(j)
i

)))d

i=1

≤ x

⎞
⎠ . (2.5)
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Put now

Y (n) :=
(
Y

(n)
1 , . . . , Y

(n)
d

)
:=

(
1[

0,

√
ki
n

xi+
n−ki

n

] (Xi)

)d

i=1

with values in {0, 1}d. The entries of its covariance matrix Σ(n) =
(
σ
(n)
ij

)

are for i 	= j given by

σ
(n)
ij = E

(
Y

(n)
i Y

(n)
j

)
− E

(
Y

(n)
i

)
E
(
Y

(n)
j

)

= P
(
Y

(n)
i = Y

(n)
j = 1

)
− P

(
Y

(n)
i = 1

)
P
(
Y

(n)
j = 1

)

= P

(
Xi ≤

√
ki
n

xi +
n− ki

n
, Xj ≤

√
kj

n
xj +

n− kj
n

)

−P

(
Xi ≤

√
ki
n

xi+
n−ki
n

)
P

(
Xj≤

√
kj

n
xj+

n− kj
n

)

= Cij

(√
ki
n

xi +
n− ki

n
,

√
kj

n
xj +

n− kj
n

)

−
(√

ki
n

xi +
n− ki

n

)(√
kj

n
xj +

n− kj
n

)

if n is large, where

Cij(u, v) := C

⎛
⎝uei + vej +

∑
1≤m≤d,m �=i,j

em

⎞
⎠ , u, v ∈ [0, 1].

Expansion (2.3) now implies in case i 	= j

σ
(n)
ij = 1−

∥∥∥∥∥
(
ki
n

−
√
ki
n

xi

)
ei +

(
kj
n

−
√
kj

n
xj

)
ej

∥∥∥∥∥
D

+ o

(√
kikj

n

)

−
(√

ki
n

xi −
ki
n

+ 1

)(√
kj

n
xj −

kj
n

+ 1

)

= −
∥∥∥∥∥
(
ki
n
−
√
ki
n

xi

)
ei+

(
kj
n
−
√

kj

n
xj

)
ej

∥∥∥∥∥
D

+
ki + kj

n
+o

(√
kikj

n

)

=

√
kikj

n

(
kij + kji − ‖kijei + kjiej‖D + o(1)

)
.
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For i = j, one deduces

σ
(n)
ii =

ki
n
(1 + o(1)).

The asymptotic normality N(0,Σ)(−∞,x] of the final term in Eq. 2.5
now follows from Lemma 2.5.

3 Main Results: General Case

Let F be a df on IRd with univariate margins F1, . . . , Fd. From Sklar’s
theorem (Sklar 1959, 1996), we know that there exists a copula C on IRd

such that F (x) = C(F1(x1), . . . , Fd(xd)) for each x = (x1, . . . , xd) ∈ IRd.
Let X(1),X(2), . . . be independent copies of the random vector X, which

follows this df F . We can assume the representation

X =
(
F−1
1 (U1), . . . , F

−1
d (Ud)

)
,

where U = (U1, . . . , Ud) follows the copula C and F−1
i (u) := inf {t ∈ IR :

Fi(t) ≥ u}, u ∈ (0, 1), is the generalized inverse of Fi, 1 ≤ i ≤ d. Equally,
we can assume the representation

X(j) =
(
F−1
1

(
U

(j)
1

)
, . . . , F

(−1)
d

(
U

(j)
d

))
, j = 1, 2, . . .

where U (1),U (2), . . . are independent copies of U .
Put ω(Fi) := sup {x ∈ IR : Fi(x) < 1} ∈ (−∞,∞], the upper endpoint

of the support of Fi, and suppose that the derivative F ′
i = fi exists and

is positive throughout some left neighborhood of ω(Fi). Let ki = ki(n) ∈
{1, . . . , n} satisfy ki →n→∞ ∞, ki/n →n→∞ 0. It follows from Falk (1989,
Theorem 2.1) that under appropriate von Mises type conditions on Fi stated
below

Xn−ki+1:n,i − dni
cni

→D N(0, 1)

for any sequences cni > 0, dni ∈ IR, which satisfy

lim
n→∞

cni
ani

= 1 and lim
n→∞

dni − bni
ani

= 0, (3.1)

where

bni := F−1
i

(
1− ki

n

)
, ani :=

k
1/2
i

nfi(bni)
, 1 ≤ i ≤ d.
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Theorem 1 of Smirnov (1967) shows that the distribution of c−1
n (Xn−ki+1:n−

dn) converges weakly to N(0, 1) for some choice of constants cn > 0, dn ∈ IR,
if and only if for any x ∈ IR

lim
n→∞

ki + n(Fi(cnx+ dn)− 1)

k
1/2
i

= x. (3.2)

Next, we state the three von Mises type conditions, under which we have
asymptotic normality for intermediate multivariate os in the general case:

ω(Fi) ∈ (−∞,∞] and

lim
x↑ω(Fi)

fi(x)
∫ ω(Fi)
x 1− Fi(t) dt

(1− Fi(x))2
= 1, (von Mises (1))

ω(Fi) = ∞, and there exists αi > 0 such that

lim
x→∞

xfi(x)

1− Fi(x)
= αi, (von Mises (2))

ω < ∞, and there exists α > 0 such that

lim
x↑ω(Fi)

(ω(Fi)− x)fi(x)

1− Fi(x)
= αi. (von Mises (3))

The standard normal df as well as the df of the standard exponential df
satisfy condition (1); the standard Pareto df Fα(x), x ≥ 1, α > 0, satisfies
condition (2) and the triangular df on (−1, 1) with density f(x) = 1 − |x|,
x ∈ (−1, 1), satisfies condition (3) with α = 2, for example. For a discussion
of these well-studied and general conditions, each of which ensures that Fi

is in the domain of attraction of a univariate EVD (see, e.g. Falk (1989)).
The following generalization of Theorem 2.1 can now easily be estab-

lished.

Proposition 3.1. Suppose that the copula C of F satisfies condition (2.3),
i.e., C is in the max-domain of attraction of a nondegenerate multivariate
EVD, and suppose that each univariate margin Fi of F satisfies one of the
von Mises type conditions (1), (2), or (3).

Let k = k(n) ∈ {1, . . . , n}d, n ∈ N satisfy ki/kj →n→∞ k2ij for all pairs
of components i, j = 1, . . . , d, ‖k‖ →n→∞ ∞ and ‖k‖ /n →n→∞ 0. Then,
the vector of intermediate multivariate os satisfies

(
Xn−ki+1:n,i − dni

cni

)d

i=1

→D N (0,Σ)

with Σ as in Theorem 2.1 for any sequences cni > 0, dni ∈ IR which satisfy
(3.1).
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Proof. We have for x = (x1, . . . , xd) ∈ IRd

P

(
Xn−ki+1:n,i − dni

cni
≤ xi, 1 ≤ i ≤ d

)

= P
(
F−1
i (Un−ki+1:n,i) ≤ cnixi + dni, 1 ≤ i ≤ d

)

= P

(
n

k
1/2
i

(
Un−ki+1:n,i −

n− ki
n

)
≤ ki + n (Fi (cnixi + dni)− 1)

k
1/2
i

)
.

The assertion is now immediate fromTheorem 2.1 and Smirnov’s condition (3.2).
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