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Abstract

In this paper, we propose a new bootstrap algorithm to obtain prediction intervals
for generalized autoregressive conditionally heteroscedastic (GARCH(1,1)) process
which can be applied to construct prediction intervals for future returns and volatil-
ities. The advantages of the proposed method are twofold: it (a) often exhibits
improved performance and (b) is computationally more efficient compared to other
available resampling methods. The superiority of this method over the other re-
sampling method-based prediction intervals is explained with Spearman’s rank cor-
relation coefficient. The finite sample properties of the proposed method are also
illustrated by an extensive simulation study and a real-world example.
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1 Introduction

Measuring volatility and construction of valid predictions for future returns and
volatilities have an important role in assessing risk and uncertainty in the financial
market. To this end, the generalized autoregressive conditionally heteroscedastic
(GARCH) model proposed by Bollerslev (1986) is one of the most commonly used
techniques for modeling volatility and obtaining dynamic prediction intervals for
returns as well as volatilities. Andersen and Bollerslev (1998), Andersen et al.
(2001), Baillie and Bollerslev (1992), & Engle and Patton (2001) provide an excellent
overview of research on prediction intervals for future returns in financial time
series analysis. However, those works only consider point forecasts of volatility even
though prediction intervals provide better inferences taking into account uncertainty
of unobservable sequence of volatilities. Technically, construction of such prediction
intervals requires some distributional assumptions which are generally unknown in
practice. Moreover, the constructed prediction intervals along with the estimated
parameter values can be affected due to any departure from the assumptions and
may lead us to unreliable results. One of the remedy to construct prediction intervals
without considering distributional assumptions is to use the well-known resampling
methods, e.g., the bootstrap.
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It is well-known that the original nonparametric bootstrap proposed by Efron
(1979) fails to provide satisfactory answers to general statistical inference prob-
lems for dependent data, since the assumption of independently and identically
distributed (i.i.d.) data is violated (see Lahiri 2003 and Hall 1992 for more details).
As a way to deal with dependent data, several types of resampling techniques were
proposed. Among those, one of the most general tools to approximate the properties
of estimators for serially correlated data is the method of block bootstrap. The main
idea behind this method is to construct a resample of the data of size n by dividing
the data into several blocks and choosing among them till the bootstrap sample

is obtained. The commonly used procedures to implement block bootstrap called
“non-overlapping” and “overlapping” blocking are proposed by Hall (1985) in the
context of spatial data. In the univariate time series context, the non-overlapping
block bootstrap (NBB) approach is proposed by Carlstein (1986), and overlapping
blocks known as moving block bootstrap (MBB) is proposed by Kunsch (1989). In
addition to these methods, a circular block bootstrap (CBB) method is suggested
by Politis and Romano (1992), where the data is wrapped around a circle so that
each observation in the original data set has an equal probability to appear in a
bootstrap sample. Also, the stationary bootstrap (SB) method which deals with
random block lengths which have a geometric distribution is proposed by Politis
and Romano (1994).

In all of the above blocking techniques, the idea is to specify a sufficiently large
block length � so that the data points which are � units apart are practically inde-

pendent. Then, the dependence structure of the original data is attempted to be
captured by these � consecutive observations in each block drawn independently.
However while doing so, the correlation structure is broken while moving from one
block to another block. Conceptually, obtaining better estimates could be achieved
by creating resamples “similar” to the original data, as these could help us in pre-
serving a dependency structure close to the original leading us in obtaining more
precise estimates of the actual parameters. Ordered non-overlapping block boot-

strap (ONBB), proposed by Beyaztas et al. (2016), improved the performance of
the block bootstrap technique by taking into account the correlations between the
blocks. The authors empirically proved that the ONBB method often exhibits
improved performance over the conventional block bootstrap methods in terms of
parameter and coverage probability estimations for univariate linear time series

models. They performed a simulation study based on autoregressive (AR) of or-
der 2 and moving average (MA) of order 2 models with different sample sizes and
block lengths. Their results show that the ONBB method produces close estima-
tions to the true values of the statistics especially to the second parameter with
the increasing �, and this result yields a confidence interval having better coverage
probabilities. On the other hand, they failed to provide any information about
the correlation structure between the blocks. In this paper, (i) we show that the
Spearman’s rank correlation between the ONBB resample and original data is al-
ways positive (and ≥ 0.5) and stronger than those for conventional block bootstrap
methods, which gives a justification for the superiority of the ONBB method. The
similarities of the resamples obtained by the block bootstrap to the original data is
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shown using the dynamic time warping measure. (ii) Also, we extend the ONBB
method to GARCH(1,1) process to obtain prediction intervals for future returns and
volatilities. In summary, our extension works as follows: first, we use the squares of
the GARCH process, which have the autoregressive- moving average (ARMA) rep-
resentation, to make the the parameter estimation process linear. The ordinary least
squares estimators of the ARMA model are calculated by a high-order autoregres-
sive model of order m, and the residuals are computed. Then, the ONBB method is
applied to the data to obtain the bootstrap sample of the returns which are used to
calculate the ONBB estimators of the ARMA coefficients and the bootstrap sample
of the volatilities. Finally, the future values of the returns and volatilities of the
GARCH process are obtained by means of bootstrap replicates and quantiles of the
Monte Carlo estimates of the ONBB distribution.

The rest of the paper is organized as follows. We describe the data in Section 2.
In Section 3, we provide a detailed information on the ONBB method and the
correlation structures between the resampled and original blocks. In Section 4,
we propose a new, computationally efficient bootstrap algorithm based on the
ONBB method to obtain prediction intervals for future returns and volatilities of
GARCH(1,1) process. An extensive Monte Carlo simulation is conducted to ex-
amine the finite sample performance of the proposed method, and the results are
presented in Section 5. Finally, the Australian dollar/U.S. dollar (AUD/USD) daily
exchange rate data is analyzed using the new method, and the results are presented
in Section 6, followed by some concluding remarks in Section 7.

2 Data

The exchange rate is regarded as the value of a specific country’s currency in
terms of another currency and obtaining valid prediction intervals of exchange rates
is often essential to evaluate foreign denominated cash flows related to international
transactions. For instance, exchange brokers, central banks, international traders,
and investors require prediction intervals of future returns and volatilities for many
reasons, e.g., option pricing, to determine the next target zone of the exchange rate
of interest, and for international portfolio diversification. In recent years, Australian
dollar (AUD) has become one of the most traded currencies in the world, and it has
an important position in Asian import market. Also, AUD is an attractive currency
for the investors, and it is often used in carrying out trades with other currencies due
to the strength of Australian economy. On the other hand, from global perspective,
the bilateral exchange rate with U.S. dollar (USD) has a great effect on the trading
volume of the AUD in the foreign exchange market because USD is the dominant
currency against almost all currencies in the world. Therefore, multi-step ahead
prediction intervals of levels and volatilities of the bilateral AUD/USD exchange
rate are crucial for the international firms and investors who import and export
with Australia and use AUD as an investment.

The AUD/USD daily exchange rate data were obtained starting from 29th July,
2011 and ending on 3rd November, 2015 (available at https://www.stlouisfed.org/).
After excluding observations on weekends and inactive days, our final data consisted
a total of 1070 observations. From the original data, the daily logarithmic returns

https://www.stlouisfed.org/
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Figure 1: Time series plots of AUD/USD daily exchange rates and returns from
29th July, 2011 to 3rd November, 2015

were obtained as yt = 100∗ log(Pt/Pt−1), where Pt was the closing price on t-th day.
The time series plots of the exchange rates and returns are presented in Fig. 1. We
checked the stationary status of the return series by applying the Ljung-Box (LB)
and augmented Dickey-Fuller (ADF) t-statistic tests, and small p values (p value =
0.017 for the LB test and 0.010 for the ADF test) suggest that the return series is
a mean-zero stationary process. Table 1 reports the sample statistics of yt series,
and it shows that the estimated kurtosis is higher than 3 which indicates that the
distribution of the returns was leptokurtic. Next, we checked for the Gaussianity of
the return series, and the p value < 0.001 of Jarque-Bera test indicated that yt was
not Gaussian. Further, we performed the LB test to test for auto-correlations in
the absolute and squared returns, and smaller p values indicated that the absolute
and squared returns are highly auto-correlated. The auto-correlations of returns,
absolute and squared returns are presented in Table 2. All of our preliminary
exploratory analyses suggested the presence of conditional heteroscedasticity in the
series. To find the optimal lag for the GARCH model to model the return series,
we defined many possible subsets of the GARCH(p, q) models with different p and q
values. To choose the best model, we used Akaike information criterion (AIC) (since
it is proposed to determine the best model for forecasting), and the results show that

Table 1: Sample statistics for yt
T Mean Median SD Skewness Kurtosis Min. Max.
1069 −0.04 −0.04 0.7 −0.27 6.15 −4.46 3.21
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Table 2: Autocorrelations of yt at lag k
Autocorrelations r(1) r(2) r(3) r(8) r(9) r(10) r(19) r(20)
yt −0.021 0.015 −0.027 0.042 0.030 −0.097 0.072 −0.019
|yt| 0.058 0.101 0.114 0.120 0.167 0.064 0.134 0.089
y2t 0.016 0.040 0.166 0.102 0.146 0.046 0.096 0.061

GARCH(1,1) model is optimal according to AIC. Also, Hansen and Lunde (2005)
compares a large number of volatility models to describe the conditional variance in
an extensive empirical study based on exchange rate data. Their results show that
the GARCH(1,1) model provides significantly better forecasts for exchange rates
than the other models. In light of these results, we consider a GARCH(1,1) model
as a suitable choice to model the return series.

3 Methodology

Let χn = {X1, . . . , Xn} be a sequence of stationary dependent random variables
of size n having an unknown common distribution function F , whose parameter θ0
is of our interest. We further assume that the distribution has a finite mean μ and
a finite variance σ2, both unknown. Let θ̂n be the estimator of θ0 based on χn.
Suppose B1, . . . , Bb be the non-overlapping blocks where Bi = (X(i−1)�+1, . . . , Xi�)
for i = 1, . . . , b. In conventional NBB, b blocks are drawn independently from
B1, . . . , Bb and pasted end-to-end to form a bootstrap sample. ONBB is proposed as
ordering the bootstrapped blocks according to given labels to each original block for
capturing more dependence structure compared to the conventional NBB method.
In more detail, suppose the data is divided into the four independent blocks which
are non-overlapping. In this case, the labels are determined as B1 = 1, B2 = 2, B3 =
3, and B4 = 4, and let the bootstrapped blocks are B∗

1 = B4, B
∗
2 = B2, B

∗
3 = B3,

and B∗
4 = B3. As a consequence, the new data is obtained using the NBB method

as χ∗
NBB = {B4

...B2

...B3

...B3} whereas it is obtained as χ∗
ONBB = {B2

...B3

...B3

...B4}
when ONBB is used. From this example, it can be seen immediately that more
“representative” data sets can be formed by the ONBB method.

To provide a statistical explanation on the superiority of ONBB, we use Spear-
man’s rank correlation between the given labels of the original and bootstrapped
blocks. Let j and k(j) be the given labels of the original and NBB blocks in the j-th
order, respectively, where j, k(j) = 1, . . . , b. Also, let Rk(j)

andmk denote the rank of

k(j) and frequency of the block k respectively, where Rk =
∑k−1

i=1 mk−i+(mk+1)/2,

0 ≤ Rk ≤ b,
∑b

k=1 mk = b, and mk = 0, 1, . . . , b. Then, the Spearman’s rank
correlation coefficient between the original and NBB block labels is obtained as
ρOriginal,NBB = 1 − (6

∑b
j=1 d

2
j )/(b

3 − b), where
∑b

j=1 d
2
j =

∑b
j=1(j − Rk(j)

)2 =

(1−Rk(1)
)2 + . . .+ (b−Rk(b)

)2.
Based on the above notations, the following theorem provides an explanation

for why ONBB-based sample should be better representative of the original sample
than that obtained using the NBB method. The proof of the theorem has been
relegated to Appendix.
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Theorem 1. It can be shown that,

ρOriginal,NBB ≤ ρOriginal,ONBB.

Corollary 1. It can further be shown that the individual Spearman’s correlation
coefficients have the following ranges:

−1 ≤ ρOriginal,NBB ≤ 1, and, 0.5 ≤ ρOriginal,ONBB ≤ 1.

Theorem 1 shows that the bootstrap data obtained by ONBB is more represen-
tative of the original data than the one obtained by the NBB method. Thus, ONBB
allows us to obtain better estimates and more reliable bootstrap quantities such as
confidence interval of θ̂n.

Remark 1. For the process {Xt}t∈Z which has a strong α(·) mixing condition
(see Bilingsley 1994), Athreya and Lahiri (1994) show that under mild moment
conditions, the NBB variance estimator of the statistic Tn =

√
n(X̄n − μ), T ∗

n =√
n(X̄∗

n − E∗(X̄n)), is V ar(T ∗
n) → σ2

∞ as n → ∞ where Zi = Xi − μ and σ2
∞ =∑∞

i=−∞ EZ1Zi+1. Also, Theorem 17.4.3 in Athreya and Lahiri (1994) show that
supx∈R |P ∗(T ∗

n ≤ x) − P (Tn ≤ x)| → 0 as n → ∞. This means the sampling dis-

tribution Gn and its NBB estimator Ĝn are consistent when � goes to infinity at
a slower rate compared to sample size n (�−1n = o(1) as n → ∞). It is clear to
say that the ONBB method provides consistent estimators since sorting the boot-
strapped blocks does not change the estimated values such as μ, σ2, and median.
As mentioned in Section 1, the ONBB method improves the performance of the
block bootstrap technique by taking into account the correlations between the blocks,
which leads us to have closer results to the true values of the statistics of inter-
est. Also, the better estimates obtained by changing the correlation structure of the
resampled time series affects the size of the prediction interval and provides more
reliable results (please see the numerical results given in Section 5). It should be
noted that the superiority of the ONBB is not a consequence of either Edgeworth or
Cornish-Fisher expansion. The main reason is based on having more representative
bootstrap data sets by this method as shown in Theorem 1.

Remark 2. The construction of the ONBB bears the question of whether the new
bootstrap method produces bootstrap samples that generate enough “new” informa-
tion on the time series or if the suggested ordering might limit bootstrap samples
look too “similar”. As it is known, each block has an equal probability 1/b to appear
in a resample so that there are bb number of distinct NBB samples. On the other
hand, for the ONBB method, there are

(
2b−1

b

)
number of distinct bootstrap samples

since the order of the bootstrapped blocks is not important (it automatically puts in
order the bootstrapped blocks). Let #NBB and #ONBB denote the number of dis-
tinct resamples generated by the NBB and ONBB methods, respectively. To answer
this question, we carry out a simulation with B = 10000 bootstrap resamples, and

calculate the proportion of (#NBB
/

#ONBB) along with the number of blocks b.

The results are shown in Fig. 2. Note that by Fig. 2 we can say that the ONBB
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Figure 2: Proportion of the number of distinct resamples generated by the NBB
and ONBB methods

produces bootstrap samples that generate enough new information on the time series
as n → ∞ and �−1 + n−1� = o(1).

To show the superiority of the ONBB, we use the dynamic time warping (DTW)
dissimilarity measure. DTW considers time axis offsets of two time series, say
X = {x1, . . . , xn} and Y = {y1, . . . , ym}. The computed value is based on a distance
matrix Dn×m whose elements di,j represents the distance d(xi, yj) = (xi − yj)

2,
that is the (i, j) element measures the strength of alignment of points xi and yj .
This measure is used to find the best synchronization of these two time series by

minimizing warping cost DTW(X,Y ) = min

{√∑K
k=1 wk

}

, max(m,n) ≤ K ≤ m+

n−1, where wk is the element of warping path W , a function of the distance matrix
D. That is, this measure can be used to find out which block bootstrap method has
the best matched resample with the original time series. A detailed discussion on the
DTW measure can be found in Giorgino (2009) and Ratanamahatana and Keogh
(2004). DTW measure has also been implemented in TSclust and dtw packages in
the R software.

Generally, DTW is an algorithm for comparing and aligning two sequences of
data. The aim of the algorithm is to find an optimal match between two sequences
by warping the time axis. To compare the block bootstrap methods in terms of
their representativeness to the original dataset, we performed thorough simulation
studies for AR(1) and ARMA(1,1) models with various parameters and sample
sizes with block length � = n1/3. Since the results and our conclusions do not vary
significantly with different choices of parameter values, therefore to save space, we
present only the results obtained for the choices of autoregressive parameter α = 0.2
and moving average parameter β = 0.4. The number of bootstrap replications B and
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Monte Carlo simulations MC are set at B = MC = 1000. For each simulation, we
record DTW distances for all block bootstrap methods. The results are presented
in Fig. 3. Since the calculated values are distances, the method which has the
smallest DTW values can be considered as the best method compared to others.
As it is shown in Fig. 3, the DTW distance values obtained by the NBB, MBB,
CBB, and SB are very close to each other and their lines are overlapping. On
the other hand, it is clear that the ONBB has considerable small values compared
to other block bootstrap methods. Also, in Fig. 4, we plot the DTW densities
of the block bootstrap methods for a simulated AR(1) sequence with the sample
size n = 64. In this figure, Reference index and Query index stand for the
time index of original time series and resampled series, respectively, obtained by
the block bootstrap method. The blue trace represents the warping path of the
corresponding block bootstrap method. In this figure, the best alignment between
two sequences is equivalent as finding the shortest path to go from the bottom-left
to the top-right of the plot. Thus, the block bootstrap method which has a working
path close to the diagonal produces more representative resamples of the original
time series data. Clearly, considering the DTW analysis results in Figs. 3 and 4,
the most representative resamples are produced by the ONBB method compared
to other block bootstrap methods, and these results further support Theorem 1.

4 ONBB Prediction Intervals for GARCH(1,1) Model

As noted earlier, construction of prediction intervals for future returns and
volatilities is an important problem in financial markets. However, the estima-
tion of parameters and the construction of prediction intervals may be affected by
a great amount due to any departure from these assumptions and may lead us to
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Figure 3: DTW distance values of block bootstrap methods
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Figure 4: DTW density plots of block bootstrap methods

unreliable results. Resampling-based prediction interval is one of the possible so-
lutions to overcome this vexing issue since it does not require the full knowledge
of the underlying data and distributional assumptions. In this context, bootstrap-
based prediction intervals of autoregressive conditionally heteroscedastic (ARCH)
model for future returns and volatilities by resampling residuals are proposed by
Miguel and Olave (1999) and Reeves (2005). Pascual et al. (2006) further extend
the previous works to construct bootstrap-based prediction intervals for returns and
volatilities for GARCH(1,1) models. Later, Chen et al. (2011) suggest a computa-
tionally efficient bootstrap prediction intervals for ARCH and GARCH processes
in the context for financial time series. Also, Hwang and Shin (2013) develop a
stationary bootstrap prediction interval for GARCH models and provide a math-
ematical justification for this method. Generally, block bootstrap is not suitable
for construction of prediction intervals in conditionally heteroscedastic time series
models because of its poor finite sample performance. However, our ONBB method
overcomes this shortcoming and can be used to obtain reliable prediction intervals
for future returns and volatilities.

To start with, we use ARMA representation of a GARCH(1,1) model and its
least squares (LS) estimators in order to employ ONBB method for constructing
prediction intervals. The GARCH(1,1) process has the following representation:

yt = σtεt,

σ2
t = ω + αy2t−1 + βσ2

t−1, t = 1, . . . , T,
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where {εt} is a sequence of i.i.d. random variables with zero mean, unit variance,
and E(ε4) < ∞, and ω, α, and β are unknown parameters satisfying ω ≥ 0, α ≥
0, and β ≥ 0. The stochastic process σt is assumed to be independent of εt.
Throughout this paper, we assume that the process {yt} is strictly stationary, i.e.,
E[log(β + αε2t )] < 1 and the strict stationary conditions of yt as in Nelson (1990)
hold. A GARCH(1,1) process {yt} is represented in the form of ARMA(1,1) as
follows:

y2t = ω + (α+ β)y2t−1 + νt − βνt−1,

where the innovation νt = y2t − σ2
t is a white noise (not i.i.d. in general) and

identically distributed under the strict stationary assumption of yt. According
to Hannan and Rissanen (1982), the LS estimators for an ARMA(1,1) model are
obtained as follows: (a) fit a high-order autoregressive model of order m, AR(m),
with m > 1, to the data by Yule-Walker method to obtain ν̂t. (b) A linear regression
of y2t onto y2t−1 is fitted to estimate the parameter vector φ = (ω, (α+ β),−β)′. In
more detail, let y2t − αy2t−1 = νt + βνt−1 be the ARMA(1,1) representation of the
underlying GARCH(1,1) process, where {νt} ∼ wn(0, σ2). Then, in step (a), an
AR(m) model is fitted to the data to obtain ν̂t such that ν̂t = y2t − α̂m1y

2
t−1 −

. . .− α̂mmy2t−m for t = m+ 1, . . . , n. In step (b), a linear regression y2t = ω + (α+
β)y2t−1 − βν̂t−1 + (νt − β(νt−1 − ν̂t−1)) is fitted to obtain the LS estimator of φ,
where the term given in bracket, ξ = (νt − β(νt−1 − ν̂t−1)), is the error term. In
matrix notations, let Zn and X are as follows:

Zn =

⎡

⎢
⎣

y2m+1
...
y2n

⎤

⎥
⎦

and

X =

⎡

⎢
⎣

1 y2m ν̂m
...

...
...

1 y2n−1 ν̂n−1

⎤

⎥
⎦ .

Then, the LS estimator φ̂ = (ω̂, ̂(α+ β),−β̂)′ is obtained as

φ̂ = (X′X)−1X′Zn, (4.1)

given X′X is non-singular. The corresponding α̂ is calculated as α̂ = ̂(α+ β)− β̂.
Based on the above, the complete algorithm of the ONBB prediction intervals

for future returns and volatilities is as follows.

Step 1 For a realization of GARCH(1,1) process, {y0, y1, . . . , yT }, calculate the LS
estimates of ARMA coefficients as in Eq. 4.1.

Step 2 For t = 1, . . . , T , calculate the residuals ε̂t = yt/σ̂t where σ̂2
t = ω̂ + α̂y2t−1 +

β̂σ̂2
t−1 and σ̂2

0 = ω̂/(1 − (α̂ + β̂)). Let F̂ε be the empirical distribution
function of the centered and rescaled residuals.

Step 3 Obtain ONBB observations from the ARMA representation of GARCH
process.
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Step 4 Compute ONBB estimators of ARMA coefficients as

φ̂∗ = (X∗′X∗)−1X∗′Z∗
n = (ω̂∗, ̂(α+ β)∗,−β̂∗)′

and calculate the corresponding α̂∗ as α̂∗ = (̂α+ β)∗ − β̂∗.

Step 5 Obtain ONBB volatilities as σ̂2∗
t = ω̂∗+ α̂∗y2∗t−1+ β̂∗σ̂2∗

t−1 with σ̂2∗
0 = ω̂/(1−

(α̂+ β̂)).

Step 6 Calculate h = 1, 2, . . . steps ahead ONBB future returns and volatilities with
the following recursion:

σ̂2∗
T+h = ω̂∗ + α̂∗y2∗T+h−1 + β̂∗σ̂2∗

T+h−1

y∗T+h = σ̂2∗
T+hε̂

∗
T+h,

where y∗T+h = yT+h for h ≤ 0 and ε̂∗T+h is randomly drawn from F̂ε.

Step 7 Repeat Steps 3–6 B times to obtain bootstrap replicates of returns and
volatilities {y∗,1T+h, . . . , y

∗,B
T+h} and {σ̂2∗,1

T+h, . . . , σ̂
2∗,B
T+h} for each h.

As noted in Pascual et al. (2006), the one-step conditional variance is perfectly
predictable if the model parameters are known, and the only uncertainty, which
is caused by the parameter estimation, is associated with the prediction of σ2

T+1.
On the other hand, there are further uncertainties about future errors when pre-
dicting two or more step ahead variances. Thus, it is more interesting issue to
have prediction intervals for future volatilities. Now, let G∗

y(h) = P (y∗T+h ≤ h)
and G∗

σ2(h) = P (σ̂2∗
T+h ≤ h) be the ONBB distribution functions of unknown dis-

tribution functions of yT+h and σ2
T+h, respectively, for h = 1, 2, . . .. Also, let

G∗
y,B(h) = #(y∗,bT+h ≤ h)/B and G∗

σ2,B(h) = #(σ̂2∗,b
T+h ≤ h)/B, for b = 1, . . . , B, be

the corresponding Monte Carlo estimates. Then, a 100(1−γ)% bootstrap prediction
intervals for yT+h and σ2

T+h, respectively, are given by
[
L∗
y,B(y), U

∗
y,B(y)

]
=

[
Q∗

y,B(γ/2), Q
∗
y,B(1− γ/2)

]
,

[
L∗
σ2,B(y), U

∗
σ2,B(y)

]
=

[
Q∗

σ2,B(γ/2), Q
∗
σ2,B(1− γ/2)

]
,

where Q∗
y,B = G∗−1

y (h) and Q∗
σ2,B = G∗−1

σ2 (h).
We have the following proposition which shows the large sample validity of the

ONBB prediction intervals.

Proposition 1.

(i) sup
x

|P ∗(
√
n[φ̂∗ − φ̂] ≤ x)− P (

√
n[φ̂− φ] ≤ x)| p−→ 0.

Hence, φ̂∗ p∗

−→ φ.

(ii) y∗T+h
d∗
−→ yT+h and σ̂2∗

T+h
d∗
−→ σ2

T+h as n → ∞.

(ii) lim
n→∞

lim
B→∞

P
[
L∗
y,B ≤ YT+h ≤ U∗

y,B

]
= 1− γ

lim
n→∞

lim
B→∞

P
[
L∗
σ2,B ≤ σ2

T+h ≤ U∗
σ2,B

]
= 1− γ,
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where, for the random variables Xn and X, Xn
p−→ X, Xn

p∗

−→ X, and Xn
d∗
−→ X

represent the convergence in probability, (conditional) convergence in probability,
and (conditional) convergence in distribution conditional on a given sample y =
{y0, . . . , yT }, respectively.

5 Numerical Results

To investigate the performance of our proposed ONBB prediction intervals, we
conduct a simulation study under GARCH(1,1) model given in Eq. 5.1 below, and we
compare our results with the method proposed by Pascual et al. (2006) (abbreviated
as “PRR”) by means of coverage probabilities and length of prediction intervals.
It is worth to mention that we also compared the performance of our proposed
method with other existing block bootstrap methods mentioned in Section 1, e.g.,
NBB, MBB, CBB, and SB. Our method performed considerably better compared
to them, and therefore to save space, we only report the comparative study with
ONBB and PRR. Roughly, we observed the coverage probabilities of other block
bootstrap methods range in between 90 and 94% for future returns while those
range only in between 25 and 60% for future volatilities.

To discuss the numerical study we present here, let us start with the following
GARCH(1,1) model.

yt = σtεt

σ2
t = 0.05 + 0.1y2t−1 + 0.85σ2

t−1, (5.1)

where εt follows a N(0, 1) distribution. The significance level γ is set to 0.05 to
obtain 95% prediction intervals for future returns and volatilities. Since the block
bootstrap methods are sensitive to the choice of the block length �, we choose three
different block lengths in our simulation study: n1/3, n1/4, and n1/5 as proposed by
Hall et al. (1995). Let h = 1, 2, . . . , s, s ≥ 1, be defined as the lead time. We obtain
the prediction intervals for next s = 20 observations. The experimental design is
similar to those of Pascual et al. (2006) which is as follows:

Step 1 Simulate a GARCH(1,1) series with the parameters given in Eq. 5.1 and
generate R = 1000 future values yT+h and σ2

T+h for h = 1, . . . , s.

Step 2 Calculate bootstrap future values y∗,bT+h and σ2∗,b
T+h for h = 1, . . . , s and

b = 1, . . . , B. Then, estimate the coverage probabilities (C∗) of bootstrap
prediction intervals for y∗T+h and σ2∗

T+h as

C∗,i
yT+h

=
1

R

R∑

r=1

1{Q∗,i
yT+h

(γ/2) ≤ y∗,rT+h ≤ Q∗,i
yT+h

(1− γ/2)}.

C∗,i
σ2
T+h

=
1

R

R∑

r=1

1{Q∗,i
σ2
T+h

(γ/2) ≤ σ2∗,r
T+h ≤ Q∗,i

σ2
T+h

(1− γ/2)},
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Table 3: Prediction intervals for returns and volatilities of GARCH(1,1) model
Lead
time

Sample
size

Method Coverage
for return
(SE)

Average
length for
return (SE)

Coverage
for volatility
(SE)

Average
length for
volatility
(SE)

1 T Empirical 0.95 3.814 0.95 –
300 PRR 0.945(0.021) 3.748(0.874) 0.904(0.295) 0.649(0.520)

� = n1/3 0.947(0.022) 3.804(0.819) 0.922(0.268) 0.743(0.565)
ONBB � = n1/4 0.946(0.020) 3.853(0.954) 0.958(0.200) 0.779(0.752)

� = n1/5 0.945(0.022) 3.821(0.961) 0.948(0.222) 0.781(0.755)
1500 PRR 0.946(0.013) 3.695(0.748) 0.928(0.259) 0.236(0.181)

� = n1/3 0.949(0.018) 3.838(0.804) 0.928(0.258) 0.724(0.842)
ONBB � = n1/4 0.948(0.016) 3.853(0.838) 0.962(0.191) 0.703(0.590)

� = n1/5 0.946(0.016) 3.893(0.886) 0.950(0.218) 0.738(0.641)
3000 PRR 0.946(0.011) 3.800(0.863) 0.952(0.214) 0.181(0.194)

� = n1/3 0.950(0.018) 3.838(0.718) 0.888(0.315) 0.718(0.698)
ONBB � = n1/4 0.947(0.016) 3.865(0.845) 0.958(0.200) 0.719(0.590)

� = n1/5 0.948(0.015) 3.819(0.879) 0.974(0.159) 0.713(0.633)

10 T Empirical 0.95 3.946 0.95 1.389
300 PRR 0.943(0.026) 3.846(0.712) 0.902(0.117) 1.564(1.387)

� = n1/3 0.945(0.021) 3.881(0.659) 0.905(0.094) 1.410(0.851)
ONBB � = n1/4 0.945(0.020) 3.941(0.789) 0.927(0.078) 1.638(1.281)

� = n1/5 0.946(0.020) 3.926(0.697) 0.941(0.077) 1.753(1.381)
1500 PRR 0.946(0.014) 3.806(0.527) 0.930(0.056) 1.302(0.689)

� = n1/3 0.946(0.016) 3.870(0.617) 0.906(0.061) 1.271(0.871)
ONBB � = n1/4 0.947(0.015) 3.908(0.627) 0.941(0.043) 1.434(0.782)

� = n1/5 0.945(0.014) 3.926(0.647) 0.948(0.041) 1.526(0.943)
3000 PRR 0.946(0.012) 3.875(0.604) 0.941(0.036) 1.354(0.653)

� = n1/3 0.946(0.015) 3.866(0.563) 0.911(0.056) 1.287(0.833)
ONBB � = n1/4 0.946(0.014) 3.909(0.645) 0.940(0.040) 1.411(0.786)

� = n1/5 0.947(0.012) 3.882(0.644) 0.959(0.027) 1.495(0.864)

20 T Empirical 0.95 3.948 0.95 1.661
300 PRR 0.940(0.026) 3.876(0.647) 0.881(0.122) 1.771(1.515)

� = n1/3 0.942(0.023) 3.896(0.593) 0.882(0.097) 1.582(0.925)
ONBB � = n1/4 0.944(0.022) 3.964(0.706) 0.901(0.090) 1.847(1.438)

� = n1/5 0.944(0.021) 3.947(0.603) 0.920(0.086) 1.928(1.278)
1500 PRR 0.946(0.015) 3.859(0.399) 0.925(0.059) 1.569(0.705)

� = n1/3 0.944(0.015) 3.898(0.519) 0.900(0.060) 1.464(0.879)
ONBB � = n1/4 0.946(0.014) 3.929(0.465) 0.933(0.043) 1.666(0.798)

� = n1/5 0.945(0.015) 3.937(0.503) 0.940(0.040) 1.757(0.981)
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Table 3: (continued)
Lead
time

Sample
size

Method Coverage
for return
(SE)

Average
length for
return (SE)

Coverage
for volatility
(SE)

Average
length for
volatility
(SE)

3000 PRR 0.946(0.012) 3.907(0.444) 0.940(0.033) 1.634(0.627)
� = n1/3 0.946(0.015) 3.903(0.470) 0.911(0.049) 1.471(0.796)

ONBB � = n1/4 0.946(0.014) 3.934(0.505) 0.935(0.036) 1.645(0.747)
� = n1/5 0.946(0.013) 3.914(0.504) 0.951(0.029) 1.736(0.855)

where 1 represents the indicator function. The corresponding interval lengths
(L∗) are calculated by

L∗,i
yT+h

= Q∗,i
yT+h

(1− γ/2)−Q∗,i
yT+h

(γ/2)

L∗,i
σ2
T+h

= Q∗,i
σ2
T+h

(1− γ/2)−Q∗,i
σ2
T+h

(γ/2).
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Figure 5: Estimated coverage probabilities of returns using PRR and ONBB
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Step 3 Repeat Steps 1–2, MC = 1000 times to calculate the average values of C∗
yT+h

,
C∗

σ2
T+h

, L∗
yT+h

, and L∗
σ2
T+h

as

ave(C∗
yT+h

) =

MC∑

i=1

C∗,i
yT+h

MC
, ave(C∗

σ2
T+h

) =

MC∑

i=1

C∗,i
σ2
T+h

MC

ave(L∗
yT+h

) =

MC∑

i=1

L∗,i
yT+h

MC
, ave(L∗

σ2
T+h

) =

MC∑

i=1

L∗,i
σ2
T+h

MC
.

Also, calculate the standard errors of the estimated coverage probabilities
and interval lengths by

s.e(C∗
yT+h

) =

{
MC∑

i=1

[
C∗,i

yT+h
− ave(C∗

yT+h
)
]2

/MC

}1/2

s.e(C∗
σ2
T+h

) =

{
MC∑

i=1

[
C∗,i

σ2
T+h

− ave(C∗
σ2
T+h

)
]2

/MC

}1/2
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Figure 6: Estimated coverage probabilities of volatilities using PRR and ONBB
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s.e(L∗
yT+h

) =

{
MC∑

i=1

[
L∗,i
yT+h

− ave(L∗
yT+h

)
]2

/MC

}1/2

s.e(L∗
σ2
T+h

) =

{
MC∑

i=1

[
L∗,i
σ2
T+h

− ave(L∗
σ2
T+h

)
]2

/MC

}1/2

.

A short summary of the simulation results is given in Table 3. More detailed
results are presented in Figs. 5, 6, 7, and 8. Our findings show that ONBB outper-
forms PRR in general. For the prediction intervals of future returns (see Fig. 5), the
performances of both methods are almost same. Also, ONBB provides competitive
interval lengths for returns (see Fig. 7). The accuracy of the prediction intervals for
volatilities obtained by ONBB is sensitive to the choice of block length parameter
�, and the higher coverage probabilities are obtained when � = n1/4 and n1/5 are
used. The performance of our proposed method is always better than PRR in small
sample sizes, and it outperforms PRR also in large samples especially for long-term
forecasts as it is shown in Table 3 and Fig. 6. Furthermore, in general, ONBB
has less standard errors for coverage probabilities compared to PRR. Based on our
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Figure 7: Estimated lengths of prediction intervals of returns using PRR and ONBB
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Figure 8: Estimated lengths of prediction intervals of volatilities using PRR and
ONBB

findings, the proposed method achieves superior performance with � = n1/5 for the
prediction intervals of future returns. For the prediction intervals of volatilities, by
taking into account the coverage probabilities and length of intervals, � = n1/5 and
n1/4 seem to be the optimal choices for short-term and long-term forecasts, respec-
tively. We also compare the ONBB and PRR in terms of their computing times,
and Fig. 9 represents the approximate computing times for various sample sizes
based on B = 1000 bootstrap replications and only one Monte Carlo simulation.
As presented in Fig. 9, ONBB has considerably less computational time as PRR
requires about 4–6 times more computing time than ONBB.

Moreover, we also compared our method with the one proposed by Chen et al.
(2011) (hereafter referred to as the CGBAmethod) through a simulation study. Like
PRR, the CGBA method is also based on residuals. The main difference is that
PRR uses quasi-maximum likelihood method to estimate the parameters and then,
uses residual-based resampling to construct intervals, whereas the CGBA method
utilizes the ARMA representation of a GARCH process to first estimate the param-
eters of the original data and then, uses the sieve bootstrap to obtain prediction
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Figure 9: Estimated computing times for PRR and ONBB

intervals. The CGBAmethod requires approximately 2.5 more computing time than
ours, and the coverage performance of our proposed method is significantly better
than that of CGBA method. To save space, we omit the numerical details in this
paper.

Finally, to compare PRR and ONBB methods in terms of having more repre-
sentative resamples, we present the plot of fitted unstandardized residuals obtained
by both methods (see Fig. 10) when the sample size n = 300. It is clear that
the residuals obtained by ONBB have more similar fluctuations with the original
residuals compared to PRR’s residuals. We also conduct a simulation study when
B = 1000 and MC = 1000, and for each simulation, we recorded the sum of squared
difference between original and bootstrap-standardized residuals for both methods.
The result is 1.822 for the PRR while it is 0.886, 0.895, and 0.888 for the ONBB
when the block size is � = n1/3, n1/4, and n1/5, respectively. The results show that
the ONBB has more similar resamples than PRR. Moreover, we performed a small
simulation study to compare the robustness of the PRR and ONBB. To this end, we
generated time series data as (1−α) GARCH(1, 1)+α AR(1) with AR parameter
−0.9 and sample size n = 1000, where 0 < α < 1/2. This generated observations
are “nearly GARCH,” and we computed sum of squared difference between true
residuals (unstandardized) and the residuals obtained by the bootstrap methods.
The method having smaller difference values can be considered more robust than
the other method. The results are presented in Table 4 for different α values.
Consequently, we can say that the ONBB is more robust than the PRR.
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Figure 10: Unstandardized residual plots of PRR and ONBB

6 Case Study

To obtain out-of-sample prediction intervals for the real data described in
Section 2, we divide the full data into the following two parts: the model is
constructed based on the observations from 29th July, 2011 to 21st September,
2015 (1040 observations in total) to calculate 30 steps ahead predictions from 22nd
September to 3rd November, 2015, and compare with the actual values. The fitted
models for PRR and ONBB are obtained as in Eqs. 6.1 and 6.2, respectively.

σ̂2
t = 0.0028 + 0.0549y2t−1 + 0.9412σ̂2

t−1, (6.1)

Table 4: Sum of squared residuals of PRR and ONBB for different α values
Method α

0.1 0.2 0.3 0.4 0.49
PRR 65086.006 1919.690 2321.617 11947.420 13409.390
ONBB 1432.617 1398.811 1555.436 1922.087 2522.636
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Figure 11: 95% prediction intervals of returns from 22nd September, 2015 to 3rd
November, 2015, where (a), (b), and (c) denote results obtained by choosing block
lengths � = n1/3, n1/4, and n1/5, respectively
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y2t = 0.0078 + 0.9845y2t−1 + νt − 0.9408νt−1, (6.2)

where ω̂ = 0.0078, α̂1 = 0.0436, and β̂1 = 0.9408 for the model estimated by
Eq. 4.1. The 30 step ahead prediction intervals of the PRR and ONBB for returns
yT+h based on the models given in Eqs. 6.1 and 6.2, together with the true returns,
are presented in Fig. 11. The intervals obtained using both methods are similar
and they include all of the true values of returns. Note that the ONBB prediction
interval for � = n1/5 is slightly narrower than the others.

Figure 12 shows the predicted intervals for 30 step ahead volatilities σ2
T+h. The

true values of the volatilities can not be observed directly. We calculate the realized
volatility by summing squared returns at day t, σ2

t = y2t,1 + . . . + y2t,n, where n is
the number of observations recorded during day t as proposed by Andersen and
Bollerslev (1998). Since our data is from 24-h-open trading market, the realized
volatilities are computed by using 1-min returns based on tick-by-tick prices such
that n = 1440 approximately. Figure 12 indicates that the ONBB prediction inter-
vals are significantly narrower than the PRR’s for all block lengths. Moreover, by
looking at this figure carefully, it can be seen that the point forecasts of the volatil-
ities obtained by ONBB are closer to the realized values than the results based on
the PRR method. This result clearly explains the supremacy of the ONBB-based
prediction intervals over the existing ones. Additionally, we perform an extra sim-
ulation study from a GARCH(1,1) model with the parameters as in Eq. 6.1 and
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Figure 13: Simulation results from the GARCH(1,1) model fitted to the exchange
rate data
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sample size n = 1040 to compare the performances of the PRR and ONBB, and
the results are presented in Fig. 13. The results for the coverage probabilities of the
returns are consistent with the simulation results given in Section 5. For coverage
probabilities of the volatilities, the ONBB outperforms PRR when � = n1/3 while
the other block lengths ONBB overestimates the coverage probability for all lead
times. PRR provides narrower intervals than the ONBB but the difference is not
too significant especially when � = n1/3.

7 Conclusion

In this study, we examine recently proposed ONBB method in detail, and we
show its superiority over the traditional block bootstrap methods by Spearman’s
rank correlation coefficient. Our DTW simulation results show that the ONBB
resamples are more similar to the original time series on time axis compared to
other block bootstrap methods. Therefore, the ONBB method comprises of more
dependency structure of the original series and produces more reliable results among
the others.

We also propose a novel, computationally efficient resampling algorithm to ob-
tain better prediction intervals for returns and volatilities under GARCH models
by using ONBB method, and we compare the performance of our method with
the existing PRR method by both simulations and a case study. The important
result produced by our proposed algorithm is that the short-term and long-term
forecasting can be done with considerably narrower intervals especially for future
volatilities. In financial contexts, the proposed method in this paper can be a good
guide to the international investors and traders for their decisions to manage risks
accurately.
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Appendix

Proof of Theorem 1. We examine Theorem 1 under three cases given below,
but it can be generalized to all other cases using a similar logic.
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Case 1: Suppose that all the bootstrapped blocks are untied and in a dual order of
j. In this case, for j = 2, . . . b − 1, k(j) < k(j−1), and Rk(j)

< Rk(j−1)
for

the NBB while it is k(j) > k(j−1) and Rk(j)
> Rk(j−1)

for the ONBB. Note
that mk = 1 for k = 1, . . . , b. Thus,

ρOriginal,NBB = −1

since
∑b

j=1 d
2
j = (b3 − b)/3, and

ρOriginal,ONBB = 1

holds since
∑b

j=1 d
2
j = 0 and j = Rk(j)

for all j = 1, . . . , b and k(j) =
1, . . . , b.

Case 2: Suppose that all the bootstrapped blocks are untied but in the same order
of j. In this case, k(j) > k(j−1), Rk(j)

> Rk(j−1)
, and

∑b
j=1 d

2
j = 0 for both

methods. So,

ρOriginal,NBB = ρOriginal,ONBB = 1.

On the other hand, suppose we change the positions of two blocks, and let
t and z represent the blocks whose positions are changed. Let st,z = |z− t|
denotes the distance between two positions where t, z = 1, . . . , b. It is clear
that

∑b
j=1 d

2
j = 2

∑
t�=z s

2
t,z. So,

ρOriginal,ONBB − ρOriginal,NBB = (12
∑

t�=z

s2t,z)/(b
3 − b) > 0.

Case 3: Suppose that all the bootstrapped blocks are tied so that k(j) = k(j−1) and

Rk(j)
= (b + 1)/2. Note that mk = b. In this case,

∑b
j=1 d

2
j = (1 − (b +

1)/2)2 + . . . ,+(b− (b+ 1)/2)2 = (b3 − b)/12. So

ρOriginal,NBB = ρOriginal,ONBB = 0.5.

Let us consider a more general case given below where only the positions
of label groups 1 and 2 are different for NBB and ONBB, while the other
block labels have the same positions and frequencies.

NBB block labels = 2, . . . , 2, 1, . . . , 1, . . . , 3, . . . , b

ONBB block labels = 1, . . . , 1, 2, . . . , 2, . . . , 3, . . . , b .
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In this case, ρOriginal,ONBB − ρOriginal,NBB depends on
∑b

j=1 d
2
j . Let

∑b
j=1 d

2
jNBB

and
∑b

j=1 d
2
jONBB

be the
∑b

j=1 d
2
j values obtained by NBB and

ONBB, respectively. Then we have

b∑

j=1

d2jNBB
−

b∑

j=1

d2jONBB
= ((1−R2(1))

2 − (1−R1(1))
2) + . . .

+ ((m2 −R2(m2)
)2 − (m1 −R1(m1)

)2) + . . .

+ (((m1 +m2)−R1(m1+m2)
)2

− ((m1 +m2)−R2(m1+m2)
)2) = 2m3.

Thus, ρOriginal,ONBB − ρOriginal,NBB = (12m3)/(b3 − b) > 0 when m1 =
m2 = m. For the case where m1 	= m2, we have

b∑

j=1

d2jNBB
−

b∑

j=1

d2jONBB
= (m1m2)(m1 +m2).

Therefore, ρOriginal,ONBB− ρOriginal,NBB = (6(m1m2)(m1 +m2))/(b
3 − b) >

0.

Theorem 1 follows directly combining the above three cases.

Proof of Corollary 1. The proof follows as a direct consequence of the
above derivation.

Proof of Proposition 1. The LS estimator of an ARMA model φ̂ satisfies

√
n[φ̂− φ] =

(
X′X

n

)−1
1√
n
X′ξ

d−→ N(0,Vφ),

where the covariance matrix Vφ is given by Vφ = D−1ΓD−1 such that

(
X′X

n

)−1
p−→ D−1

1√
n
X′ξ

d−→ N(0,Γ),

where the non-diagonal matrix Γ is related to the covariance matrix of the moving
average model. The bootstrap estimate φ̂∗ can be written as

√
n[φ̂∗ − φ̂] =

(
X∗′X∗

n

)−1
1√
n
X∗′ξ̂∗.

To prove part (i), it is suffice to show that X∗′X∗/n converges in probability to

X′X/n, and X∗′ξ̂∗/
√
n convergence in distribution to X′ξ/√n. We write X′X =
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∑n
i=1 X

′
iXi and X∗′X∗ =

∑n
i=1 X

∗′
i X

∗
i . For simplicity, we assume that n = b�. Let

Uk,� be the mean of X′
njXnj in block Bk such that Bk = {Xnj : (k− 1)�+1 ≤ j ≤

k�}, for k = 1, · · · , b. That is

Uk,� =
k�∑

j=(k−1)�+1

X′
njXnj/�, k = 1, · · · , b.

Let

U∗
k,� =

k�∑

j=(k−1)�+1

X∗′
njX

∗
nj/�, k = 1, · · · , b

be the NBB version of Uk,�. Then, we have

∣
∣
∣
∣
∣

1

n

n∑

i=1

X∗′
i X

∗
i −

1

n

n∑

i=1

X′
iXi

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

1

n

n∑

i=1

X∗′
i X

∗
i − E∗(U∗

k,�)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
E∗(U∗

k,�)−
1

n

n∑

i=1

X′
iXi

∣
∣
∣
∣
∣
, (7.1)

where E∗ denotes the conditional expectation under the bootstrap distribution.
The first term of the right hand side of Eq. 7.1 tends to 0 by the weak law of large
numbers. Since P ∗((X∗

1 , · · · , X∗
� = X(j−1)�+1, · · · , Xb�)) = 1/b, for j = 1, · · · , b, for

the second term, we have

E∗(U∗
k,�) =

1

b

b∑

k=1

(
1

�

�∑

i=1

X′
(k−1)�+iX(k−1)�+i

)

=
1

b�

n∑

i=1

X′
iXi.

Hence, the second term tends to 0 as n → ∞, which proves that X∗′X∗/n
p∗

−→
X′X/n.

To show 1√
n
X∗′ξ̂∗

d∗
−→ N(0,Γ), writeX′ξ =

∑n
i=1 X

′
iξi andX∗′ξ̂∗ =

∑n
i=1 X

∗′
i ξ̂

∗
i .

Let Vk,� =
∑k�

j=(k−1)�+1 X
′
nj ξ̂nj/� and let V∗

k,� be the bootstrap version of Vk,�.
Then, we have

1√
n

n∑

i=1

X∗′ξ̂∗

=

(
1√
n

n∑

i=1

X∗′
i ξ̂

∗
i −

√
nE∗(V ∗

k,l)

)

+
√
nE∗(V ∗

k,l)

=
√
n

(
1

n

n∑

i=1

X∗′
i ξ̂

∗
i − E∗(V ∗

k,l)

)

+
√
nE∗(V ∗

k,l). (7.2)
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For the first term of Eq. 7.2, we have

√
n

(
1

n

n∑

i=1

X∗′
i ξ̂

∗
i − E∗(V ∗

k,l)

)

≤
√
n

∣
∣
∣
∣
∣

1

n

n∑

i=1

X∗′
i ξ̂

∗
i − 1

n

n∑

i=1

X′
iξ̂i

∣
∣
∣
∣
∣

≤
√
n

[∣
∣
∣
∣
∣

1

n

n∑

i=1

X∗′
i ξ̂

∗
i − E∗(V ∗

k,�)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
E∗(V ∗

k,�)−
1

n

n∑

i=1

X′
iξ̂i

∣
∣
∣
∣
∣

]
p∗

−→ 0 (7.3)

by weak law of large numbers and since E∗(V ∗
k,�) − 1

n

∑n
i=1 X

′
iξ̂i = op(1). For the

second term,

√
nE∗(V ∗

k,l) =
√
n

(
1

n

n∑

i=1

X′
iξ̂i

)

=
1√
n

n∑

i=1

X′
iξ̂i

d∗
−→ N(0,Γ)

holds by the Slutsky’s theorem. Hence, φ̂∗ p∗

−→ φ. By using the proof of part (i),
the proofs of (ii) and (iii) directly follow from the proof of Theorem 3.1 of Thombs
and Schucany (1990).
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