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Abstract

We describe the integrand in the martingale (or stochastic integral )repre-
sentation of a square integrable functional F of a Lévy process in terms of

(a derivative or difference operator acting on) a map βF introduced in Ra-
jeev and Fitzsimmons (Stochastics 81, 5, 467–476, 2009). The kernels in the
chaos expansion of F are also described in terms of the iterated derivative
and difference operators.
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1 Introduction

The martingale representation theorem for Brownian motion originates
with the (equivalent) chaos expansion proved by Itô in Itô (1951) & Wiener
(1938); Itô also proved a chaos expansion for (time homogenous) Lévy pro-
cesses in Itô (1956) using Poisson random measures. Applications of this
result, and in particular its role in the theory of forward-backward stochas-
tic differential equations, originating in control theory and finance are by
now,well known. The chaos expansions have been well studied for Lévy
processes (see, for example, Nualart and Schoutens, 2000; Solé et al., 2007;
Di Nunno et al., 2009; Privault, 2009) and also for other processes like the
Azema martingales (see Émery, 2006).

For a given square integrable functional F of Brownian motion, the Clark-
Ocone formula provides a method for calculating the integrand in terms of
the stochastic derivative of F . Since then a number of papers have been
devoted to extending this result for Lévy processes using the techniques
of stochastic analysis (and in particular chaos expansions)(see Nualart and
Schoutens, 2000; Solé et al., 2007; Di Nunno et al., 2009; Privault, 2009) or
by using white noise analysis (Di Nunno et al., 2004).

http://crossmark.crossref.org/dialog/?doi=10.1007/s13171-015-0073-8-x&domain=pdf


278 B. Rajeev

The central issue, as far as the martingale representation results - like
the predictable representation property (PRP)or the weak predictable rep-
resentation property (weak PRP, see He et al., 1992, chapter 13) - are con-
cerned maybe formulated as follows : Given a functional F which has such
a representation how does one calculate the integrands in the representa-
tion for F? There are two issues here : Firstly, one needs to obtain a
representation. Secondly, there is the question of uniqueness. For the sec-
ond question, see Remark 4.5, below. For existence of a representation, it
is known that for time homogenous Lévy processes, the weak PRP holds
(He et al., 1992, Theorem 13.49, Theorem 13.18). In this paper,we ex-
tend the explicit formula for the integrands proved in Rajeev and Fitzsim-
mons (2009) & Rajeev (2009) to general d - dimensional time homogenous
Lévy processes. Given a square integrable functional F of a Lévy process
(Yt) with induced filtration (FY

t ), we show the existence of a ‘factorisa-
tion’ of the conditional expectation (E[F |FY

t ]) in the form βF (t, ω, Yt(ω))
for an appropriately measurable functional βF (t, ω, y). In other words,for
each t,almost surely, E[F |FY

t ] = βF (t, ω, Yt(ω)). The martingale representa-
tion theorem then becomes a statement of the smoothness of the functional
βF (t, ω, y) in the variable y = (y1, · · · , yi, · · · , yd) : it allows us to define
the derivative ∂iβ

F with respect to the variable yi as a closed linear opera-
tor, initially on the dense subspace of smooth finite dimensional functionals
(Lemma 3.3) and then on the whole of L2 (Lemma 4.2, Proposition 4.3,
Theorem 4.4). The difference operator δβF (= βF

2 in Lemma 3.3) that ap-
pears in the discontinuous part of the martingale representation,also arises
from the factorisation of the conditional expectation mentioned above. In
particular, δβF (t, ω, y, z) := βF (t, ω, y + z) − βF (t, ω, y). A number of au-
thors have introduced the notion of a ‘stochastic derivative’for Levy pro-
cesses via the chaos expansions (see Nualart and Schoutens, 2000; Solé
et al., 2007; Di Nunno et al., 2009; Privault, 2009). Our definition,on
the other hand, involving as it does the conditional expectations with re-
spect to the underlying filtration (Ft) and the martingale representation
theorem (rather than the chaos expansion), maybe considered to be that
of an ‘adapted derivative’ (However, see Di Nunno, 2007, for a notion of
adapted derivative in a somewhat different context ). Once the martin-
gale representation is obtained, it allows us, by repeated application, to
obtain the chaos expansion in terms of iterated integrals,as in the case of
Brownian motion.

The paper is organised as follows : In Section 2, we recall a few well
known results on Lévy processes. Propositions 2.1 and 2.2, we believe are
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well known - we present proofs only for completeness. In Section 3, we intro-
duce the map β and prove the main representation result for finite dimen-
sional smooth functionals (Lemma 3.3). In Section 4, we present the main
representational result as an isomorphism induced by the map β between L2

and a Hilbert space of martingales H1 obtained by conditioning with respect
to the natural filtration of the Lévy process. The derivative map D = (∇, δ)
associated with β and mentioned above, is realised as a linear isomorphism
between H1 and a Hilbert space H0 of processes, which are the integrands in
the martingale representation of an element F ∈ L2 (Proposition 4.3, The-
orem 4.4). In Section 5, we define the iterated multiple stochastic integrals
with respect to Brownian motion and Poisson random measures(see also Itô,
1956; Privault, 2009, p.234), derive the chaos expansion (Theorem 5.2), show
equivalence of the chaos and martingale representations (Remark 5.3) and
describe the kernels in the chaos expansion of a functional F in terms of the
iterated derivatives of βF (Remark 5.4), a result that extends the formula
in Stroock (1987) to Lévy processes.

2 Preliminaries

Let (Ω,F , P )be a probability space. For a measure space (X,A, μ), L2(μ)
will denote (unless otherwise specified) the real Hilbert space of equivalence
classes of real valued, A measurable functions, square integrable with respect
to the measure μ. When X is [0,∞)×Ω or [0,∞)×Ω×R

d, the sigma field
A unless otherwise specified, will be the appropriate product sigma field viz.
B[0,∞) × F or B[0,∞) × F × B(Rd), where B stands for the Borel sigma
field. We use the notation R

d
0 := R

d − {0}.
Let (Yt) be an R

d valued Lévy process i.e a process with stationary inde-
pendent increments and whose trajectories t → Yt(ω) are right continuous
and have left limits for all ω ∈ Ω with Y0 = 0. Let FY

t := σ{Ys, s ≤ t} and
FY
∞ := σ{Ys, s ≥ 0}. Abusing notation, we will again denote by (FY

t ) the
corresponding right continuous and P -complete filtration.

We then have the Lévy-Itô decomposition (see Kallenberg, 2002, Thm
15.4, Cor 15.7) given as follows : For A ⊂ {y : 0 < ε1 < |y| < ε2} and t > 0
the random measure associated with the jumps of (Yt) is defined in the usual
way:

N((0, t]×A) := #{s ≤ t : 	Ys ∈ A}.

Further the compensated measure N̂ is defined as

N̂((0, t]×A) := N((0, t]×A)− tν(A)
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where ν(.)is the sigma finite measure on R
d
0 := R

d − {0} -a Lévy measure
- for (Yt) satisfying EN((0, t] × A) = tν(A). We then have the Lévy-Itô
decomposition,

Y (t) = b̄t+ σ.Bt +

∫ t

0

∫

{y:0<|y|≤1}

yN̂(ds dy)

+

∫ t

0

∫

{y:|y|>1}

yN(ds dy) (2.1)

where b̄ = (b̄1, · · · , b̄d) ∈ R
d ; σ = (σij)1≤i,j≤d is a matrix which we shall

assume is non singular ; (Bt) is a d dimensional standard Brownian motion
and the Lévy measure ν satisfies∫

R
d
0

|y|2 ∧ 1 ν(dy) < ∞.

Proposition 2.1. If E|Yt|2 < ∞ for all t ≥ 0 then
∫
R
d
0

|y|2 ν(dy) < ∞

and we have

Yt = bt+ σ.Bt +

t∫

0

∫

R
d
0

y N̂(ds dy) (2.2)

for some b = (b1, · · · , bd) and σ, with (Bt) and N̂(·, ·) as above.

Proof. Equation (2.2) follows from the Lévy-Itô decomposition (2.1) as
soon as we can show

∫
{|y|>1}

|y|2 ν(dy) < ∞ which also suffices to prove the

first statement. We will do the case d = 1, the general case being similar.
Let, for n ≥ 1,

Y n
t :=

t∫

0

∫

{1<|y|<n}

y N(ds dy).

Then (Y n
t ) is a square integrable Lévy process satisfying

sup
n

E(Y n
t )2 < ∞.

This follows from the fact that the means and variances of the sequence
{Y n

t } are bounded. Let

ϕn
t (u) := E eiuY

n
t
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= et{
∫
(eiuy−1)I{1<|y|<n}ν(dy)}.

Then ϕn
t (·) is twice differentiable (at the origin), with (ϕn

t )
′(0) = E(iY n

t )
and (ϕn

t )
′′(0) = −E(Y n

t )2. In particular, we have

E(Y n
t )2 = −(ϕn

t )
′′(0) = t2

∫
y2I{1<|y|<n}ν(dy).

Since the sequence {Y n
t } is L2-bounded and converges almost surely to

t∫
0

∫
{1<|y|<∞}

y N(ds dy) =: Y ∞
t as n tends to infinity, we have

E(Y n
t )2 → E(Y ∞

t )2.

Hence ∫

(1,∞)

y2 ν(dy) = lim
n→∞

∫
y2I{1<|y|<n}ν(dy)

=
1

t2
lim
n→∞

E(Y n
t )2

=
1

t2
E(Y ∞

t )2 < ∞.

Returning to the case of a general Lévy process, we have for every ε > 0,
the decomposition Yt = Y ε

t + Yε,t where, almost surely,

Y ε
t = bεt+ σ.Bt +

t∫

0

∫

{0<|y|≤ε}

y N̂(ds dy) (2.3)

and

Yε,t =

t∫

0

∫

{|y|>ε}

y N(ds dy)

for all t ≥ 0. Let F ε
t = FY ε

t = σ{Y ε
s , 0 ≤ s ≤ t} ⊂ FY

t for 0 ≤ t ≤ ∞ and
ε > 0. Note that (Y ε

t ) is a square integrable Lévy process with characteristics
(bε, σ, γε) where γε(dy) := 1{0<|y|≤ε}(y) γ(dy).

Let C0(R
d) := {f : R

d → R, f continuous , lim
|x|→∞

f(x) = 0}. Let

Tt : C0(R
d) → C0(R

d) be the semi group corresponding to (Yt) i.e for
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f ∈ C0(R
d), Ttf(y) := Ef(Yt + y) . Let C∞

0 (Rd) denote the class of all in-
finitely differentiable functions f on R

d such that f and all its derivatives
belong to C0(R

d). Then the infinitesimal generator A of (Tt) maybe de-
scribed as follows (see Kallenberg, 2002, Theorem 19.10): For f ∈ C∞

0 (Rd),
we have

Af(y) =
1

2

d∑
ij=1

(σσt)ij ∂2
ijf(y) +

d∑
i=1

b̄i ∂ig(y)

+

∫

R
d
0

{f(y + x)− f(y)−
d∑

i=1

∂if(y)xiI{x:|x|≤1}}ν(dx)

Using the representation given by (2.2) when (Yt) is square integrable, the
corresponding description of A is obtained from above as follows: For f ∈
C∞
0 (Rd), we have

Af(y) =
1

2

d∑
ij=1

(σσt)ij∂
2
ijf(y) +

d∑
i=1

bi∂ig(y)

+

∫

R
d
0

{f(y + x)− f(y)−
d∑

i=1

∂if(y)xi}ν(dx) (2.4)

C1,∞ ([0,∞)×R
d) := {f : [0,∞)×R

d → R, f(t, .) ∈ C∞
0 (Rd) ∀t ≥ 0, f(., y) ∈

C1[0,∞) ∀y ∈ R
d} . Let f ∈ C∞

0 (Rd) and define g(t, y) := Ttf(y) ≡
Eyf(Yt) ≡ E f(Yt + y).

Proposition 2.2. Let g(t, y) be as defined above . Then g ∈ C1,∞ ([0,∞)
×R

d).

Proof. Clearly for t ≥ 0, g(t, ·) ∈ C∞
0 (Rd) follows from the dominated

convergence theorem. Moreover since C∞
0 ⊂ D(A) =: Domain of the in-

finitesimal generator A of (Tt) (see Kallenberg, 2002, Theorem 19.10) we
have

g(t, y) = Ttf(y) = f(y) +

t∫

0

ATsf(y) ds. (2.5)

In particular,
∂tg(t, y) = ATtf(y) = TtAf(y)

which shows that g(·, y) ∈ C1[0,∞). The result follows.
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3 Representations on a Dense Subspace

We will first obtain the integral representation of square integrable func-
tionals coming from a dense subspace of L2, which we now define.

C := {F ∈ L2 : F = f1(Yt1) . . . fn(Ytn), fi ∈ C∞
0 (Rd),

0 ≤ t1 < · · · < tn < ∞, n ≥ 1}.

The linear span of C will be denoted by V.
Proposition 3.1. V is dense in L2(FY

∞).

Proof. This can be shown as in the case when (Yt) is continuous (see
for example Rajeev and Fitzsimmons, 2009, lemma 1.2), using the fact that
the field of finite dimensional events generates FY

∞.

Proposition 3.2. Let h ∈ C∞
0 (Rd) and define gt(s, y) := E[h(Yt−s +

y)], 0 ≤ s ≤ t, y ∈ R. Let (Yt) be a square integrable Lévy process with
representation given by (2.2) and the corresponding infinitesimal generator
given by eqn.(2.4). Then for every t > 0, almost surely,

h(Y (t)) = E[h(Y (t))] +

t∫

0

(∇gt(s, Ys−).σ).dB(s)

+

t∫

0

∫

R0

{gt(s, Ys− + z)− gt(s, Ys−)} N̂(ds, dz). (3.1)

Proof. Put Zs = gt(s, Y (s)), 0 ≤ s ≤ t. By Proposition 2.2, gt ∈
C1,∞ ([0,∞)× R

d). Then from Itô’s formula we have,

Z(t)− Z(0) =

∫ t

0
{∂sgt(s, Ys) + b.∇gt(s, Ys)} ds+

∫ t

0
(∇gt(s, Ys).σ).dB(s)

+
1

2

d∑
i,j=1

∫ t

0
(σσt)ij ∂2

ijgt(s, Ys) ds

+

∫ t

0

∫

R
d
0

{gt(s, Ys− + z)− gt(s, Ys−)}N̂(ds, dz)

+

∫ t

0

∫

R
d
0

{gt(s, Ys− + z)− gt(s, Ys−)− z.∇gt(s, Ys−)}ν(dz)ds

=

∫ t

0
{∂sgt(s, Ys) +Agt(s, Ys)} ds+

∫ t

0
(∇gt(s, Ys).σ).dB(s)
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+

∫ t

0

∫

R
d
0

{gt(s, Ys− + z)− gt(s, Ys−)}N̂(ds, dz)

=

∫ t

0
(∇gt(s, Ys).σ).dB(s)

+

∫ t

0

∫

R
d
0

{gt(s, Ys− + z)− gt(s, Ys−)}N̂(ds, dz)

where we have used (2.4) to obtain the middle equality; the equation gt(s, y)=
Tt−sh(y) and the analogue of the semi-group relation given by eqn.(2.5) (with
f replaced by h and t by t − s respectively in the RHS of (2.5) and g(t, y)
in the LHS replaced by gt(s, y)) to obtain the last equality . Now, using the
fact that

Z(0) = gt(0, Y0) = g(0, y) = E[h(Yt + y)]

and

Z(t) = gt(t, Yt) = E[h(Y (0) + y)]y=Yt = h(Yt).

the proof of the proposition is complete.

We revert back to a general Lévy process (Yt). Let F =f1(Yt1). . . fn(Ytn) ∈
C, where 0 < t1 < . . . < tn < ∞ . We define βF (t, ω, y) as follows:

βF (t, ω, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tt1−t(f1Tt2−t1(f2(· · ·Ttn−tn−1fn) · · · )(y), 0 ≤ t ≤ t1,

[
f1(Yt1(ω)) . . . fi−1(Yti−1(ω))×

Tti−t(fiTti+1−ti(fi+1(· · ·Ttn−tn−1fn) · · · )(y)
]
,
ti−1 < t ≤ ti,
2 ≤ i ≤ n

F (ω), t > tn

We define functionals βF
1 , β

F
2 as follows :

βF
1 (t, ω, y) = ∇βF (t, ω, y) · σ

βF
2 (t, ω, y, z) = βF (t, ω, y + z)− βF (t, ω, y)

where ∇ in the right hand side of the first equality represents the gradient
with respect to the y variable. Consequently βF

1 (t, ω, y) ≡ 0 for t > tn
which implies that the process (βF

1i(t, Yt−)) ∈ L2(dt × dP ), i = 1, · · · , d.
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Similarly, by an application of the mean value theorem and Proposition 2.1
, we can conclude that for a square integrable Lévy process (Yt), the process
(βF

2 (t, Yt−, z)) ∈ L2(dt× dP × dν).We extend the definition of βF , βF
1 , β

F
2 to

F ∈ V by linearity : If F ∈ V , F =
n∑

i=1
αiFi define

βF (t, ω, y) :=
n∑

i=1

αiβ
Fi(t, ω, y)

βF
1 (t, ω, y) := ∇βF (t, ω, y).σ

βF
2 (t, ω, y, z) := βF (t, ω, y + z)− βF (t, ω, y)

=: δβF (t, ω, y, z).

We sometimes (particularly in Section 5) use the notation βF
1 (t) for the vari-

able βF
1 (t, Yt−) and similarly βF

2 (t, z) or δβ
F (t, z) for the variable βF

2 (t, Yt−, z).
The following Lemma provides the basic representation result for F ∈ V .

Lemma 3.3. Let (Yt) be a Lévy process, with representation given by
(2.1). Let F ∈ V , βF , βF

1 and βF
2 be as above. Then

F = E[F ] +

∞∫

0

βF
1 (s, w, Ys−).dBs

+

∞∫

0

∫

R
d
0

βF
2 (s, w, Ys−, z)N̂(ds, dz). (3.2)

In particular, (βF
1i(t, Yt)) ∈ L2(dt × dP ) i = 1, · · · , d and (βF

2 (t,Yt, z)) ∈
L2(dt× dP× dν).

Proof. It suffices, by linearity, to prove (3.2) when F ∈ C and is of the
form F = f1(Yt1) . . . fm(Ytm) ∈ C, where 0 < t1 < · · · < tm < ∞. We further
note that (3.2) follows for a general Lévy process, if we can show that it is true
for a square integrable Lévy process. Indeed, let F = f1(Yt1) . . . fm(Ytm) ∈ C
and let Fn := f1(Y

n
t1 ) . . . fm(Y n

tm), where (Y n
t ), n ≥ 1 are square integrable

Lévy processes with representation given by (2.3),with ε = n. Since Yt =
lim
n→∞

Y n
t almost surely, it is easy to see , using the dominated convergence

theorem, that almost surely,

βF (t, Yt) = lim
n→∞

βFn
n (t, Y n

t )

where βn is the functional β defined on finite dimensional functionals of
the Lévy process (Y n

t ). In fact the convergence also holds in L2 since
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βFn
n (t, Y n

t ) = E[Fn | Fn
t ] → E[F | FY

t ] in L2. It is also straight forward
that

∂iβ
F (t, Yt) = lim

n→∞
∂iβ

Fn
n (t, Y n

t )

almost surely, for all t ≥ 0 and 1 ≤ i ≤ d, and that

δβF (t, Yt−, z) = lim
n→∞

δβFn
n (t, Y n

t−, z)

almost surely, for all t ≥ 0 and z ∈ R. Using the above observations the
statement of the theorem for βF (t, Yt) can be derived by letting n → ∞ in
the corresponding statement for βFn

n (t, Y n
t ).

Let now (Yt) be a square integrable Lévy process.We prove the result by
induction on m. Note that by Proposition 3.2 the result is true for m = 1.

Assume that (3.2) is true for all F ∈ V with no more than m− 1 factors.
Let G :=

∏m−1
k=1 fk(Ytk) , Fm := fm(Ytm) and define

Z1(t) :=

∫ tm−1∧t

0
βG
1 (s, ω, Ys−).dBs +

∫ tm−1∧t

0

∫
R
d
0

βG
2 (s, ω, Ys−, z)N̂(ds, dz)

and

Z2(t) :=

∫ tm∧t

tm−1∧t
βFm
1 (s, ω, Ys−).dBs+

∫ tm∧t

tm−1∧t

∫
R
d
0

βFm
2 (s, ω, Ys−, z)N̂(ds, dz).

By the induction hypothesis, if s ≥ tm−1 then

Z1(s) = Z1(tm−1) = G−E[G|F0].

Now we apply the case m = 1 to the process Y
tm−1
t := Yt+tm−1 , t ≥ 0. It

follows that for s ≥ tm

Z2(s) = Z2(tm) = fm(Ytm)− Ttm−tm−1fm(Ytm−1).

Clearly Z2(s) = 0 for s ≤ tm−1. We use the integration by parts formula

Z1(t)Z2(t) = Z1(0)Z2(0) +

t∫

0

Z1(s−)dZ2(s) +

t∫

0

Z2(s−)dZ1(s)

+〈Z1, Z2〉c(t) +
∑
s≤t

ΔZ1(s)ΔZ2(s).

We then get

Z1(tm)Z2(tm) =

∫ tm

tm−1

Z1(s)β
Fm
1 (s, ω, Ys−).dBs
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+

∫ tm

tm−1

∫
R
d
0

Z1(s−)βFm
2 (s, ω, Ys−, z)N̂(ds, dz)

=

∫ ∞

0
{G−E[G|F0]}βFm

1 (s, ω, Ys−).dBs

+

∫ ∞

0

∫
R
d
0

{G−E[G|F0]}βFm
2 (s, ω, Ys−, z)N̂(ds, dz)

On the other hand, by the remarks above ,

Z1(tm)Z2(tm) = {G−E[G|F0]} .
{
fm(Ytm)− Ttm−tm−1fm(Ytm−1)

}
= F +E[G|F0].Ttm−tm−1fm(Ytm−1)

−E[G|F0].fm(Ytm)−G.Ttm−tm−1fm(Ytm−1).

We shall examine the last three terms in the right hand side of the second
equality separately. Applying the representation obtained for m = 1 to
F̂ := f̂(Ytm−1) where f̂(y) ≡ Ttm−tm−1fm(y) we find that

Ttm−tm−1fm(Ytm−1)

= Ttm−1

(
Ttm−tm−1fm

)
(Y0) +

∫ tm−1

0
βF̂
1 (s, ω, Ys−).dBs

+

tm−1∫

0

∫

R
d
0

βF̂
2 (s, ω, Ys−, z)N̂(ds, dz).

Similarly,

E[G|F0]fm(Ytm) = E[G|F0].

{
Ttmfm(Y0) +

∫ tm

0
βFm
1 (s, ω, Ys−).dBs

+

tm∫

0

∫

R
d
0

βFm
2 (s, ω, Ys−, z)N̂(ds, dz)

⎫⎪⎬
⎪⎭ .

Define f∗
m−1(x) := fm−1(x).Ttm−tm−1fm(x) and G∗ :=

[∏m−2
k=1 fk(Ytk)

]
.

f∗
m−1(Ytm−1). By the induction hypothesis,

G.Ttm−tm−1fm(Ytm−1) = G∗

= E [G∗|F0]

+

∫ ∞

0
βG∗
1 (s, ω, Ys−).dBs
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+

∞∫

0

∫

R
d
0

βG∗
2 (s, ω, Ys−, z)N̂(ds, dz)

= E [f1(Yt1) · · · fm(Ytm)|F0]

+

∫ ∞

0
βG∗
1 (s, ω, Ys−).dBs

+

∞∫

0

∫

R
d
0

βG∗
2 (s, ω, Ys−, z)N̂(ds, dz),

where we have used the Markov property of (Yt) in the last equality. Equat-
ing the (last) two expressions for Z1(tm)Z2(tm), the statement of the theorem
is established for any square integrable Lévy process and the proof of the
lemma is complete.

4 Representations on L2

In this section we extend the representation obtained on V to the whole
of L2(FY

∞).
Let P denote the previsible σ-field on [0,∞)×Ω generated by (FY

t ) i.e.
P = σ{(gt) : gt(ω) is left continuous on (0,∞) and (FY

t ) adapted}. Let
f : [0,∞) × Ω × R

d
0 → R. We will say that f is previsible if f is P ⊗ B0

measurable where B0 is the Borel σ-field on R
d
0. Note that if f(t, ω, z) is

previsible then f(t, ω, Yt−) is previsible in (t, ω). For F ∈ V , recall the map
βF defined in Section 3, following the proof of Proposition 3.2. We list some
of the properties of βF in the following proposition.

Proposition 4.1. Let F ∈ V. Then βF (t, ω, y) has the following prop-
erties:

1. y → βF (t, ω, y) is a C∞-map.

2. a.s., t → βF (t, ω, Yt) is right continuous.

3. for all t ≥ 0, βF (t, Yt) = E[F |FY
t ] a.s.

4. The map (t, ω, y) → ∂iβ
F (t, ω, y) is P ⊗ B0 measurable. In particular,

(∂iβ
F (t, ω, Yt−)) is a previsible process.

5. If δβF (t, ω, y, z) := βF (t, ω, y+z)−βF (t, ω, y), then (δβF (t, ω, Yt−, z))
is previsible.
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Proof. 1) and 2) follow from the definition of βF and the regularity of
Ttf(x) in t and x. 3) follows from the Markov property. As for 4), note
that the first statement follows by inspection and the second follows from a
monotone class argument. Lastly 5) follows from 4).

The following lemma proves a version of the integral representation prop-
erty for (FY

t )-martingales of a special form.

Lemma 4.2. Let f : [0,∞) × Ω × R
d → R be such that (f(t, Yt)) is a

right continuous, L2-bounded (FY
t )- martingale.Then there exists previsible

processes (f i(s)) ∈ L2(dt × dP ), 1 ≤ i ≤ d and a P ⊗ B0 previsible process
(fd+1(s, z)) ∈ L2(dt× dP × dν) such that for 0 ≤ t ≤ ∞

f(t, Yt) = E f(t, Yt) +
d∑

i=1

t∫

0

f i(s) dY c,i
s

+

t∫

0

∫

R
d
0

fd+1(s, z)N̂(ds dz) (4.1)

almost surely, where we use the notation Y c,i := (σ.B)i for the continuous
martingale part of (Yt).

Proof. Let f(∞) := lim
t→∞

f(t, Yt). Since f(∞) ∈ L2 and V is dense in

L2, ∃ Fn ∈ V such that Fn → f(∞) in L2. We then have from Lemma 3.3 ,

E[Fn|Ft] = βFn
(t, Yt)

= EFn +
d∑

i=1

t∫

0

∂iβ
Fn(t, Yt−) dY

c,i
s

+

t∫

0

∫

R
d
0

δβFn(s, Ys−, z) N̂(ds dz).

Since Fn → f(∞) in L2, it follows from the properties of the stochastic
integral that ∃ previsible processes (f i(s)), 1 ≤ i ≤ d and (fd+1(s, z)) in
L2(dt× dP ) and L2(dt× dP × dν) such that (σ · ∂iβFn

(s, Ys−)) → (σ · f i(s))
in L2(dt×dP ) and (δβFn(s, Ys−, z)) → (fd+1(s, z)) in L2(dt×dP×dν). From
the Itô isometry and the orthogonality of the martingales in the right hand
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side , it follows that the right hand side of the above equality converges in L2

to the right hand side in the statement of the Lemma for each t, 0 ≤ t ≤ ∞.

We now define real Hilbert spaces H1 and H0 as follows:

H1 := {f : [0,∞)× Ω× R
d → R, jointly measurable such that f(t, Yt)

is a right continuous, L2 bounded, (FY
t ) martingale}.

ThenH1 is a real Hilbert space with the inner product 〈f, g〉H1:=E(f(∞)g(∞)),
where f(∞), g(∞) are the L2-limits of the martingale f(t, Yt), g(t, Yt) respec-
tively. Note that we identify f(t, ω, y) and g(t, ω, y) in H1 if for all t ≥ 0,
f(t, Yt) = g(t, Yt) a.s. Under this identification an L2-bounded, right contin-
uous (FY

t ) martingale (Mt) may be identified with the element f of H1 given
by f(t, ω, y) := Mt(ω) ⊗ 1(y), where 1(y) = 1 ∀ y. For previsible processes
(f i(s)), 1 ≤ i ≤ d and (fd+1(s, z)) and f := (f1, · · · , fd, fd+1) we define

‖f‖2H0
:=

d∑
i,j=1

E

∞∫

0

f i(s) f j(s) d〈Y c,i, Y c,j〉s

+ E

∞∫

0

∫

R
d
0

(fd+1(s, z))2 ds ν(dz),

where Y c,i := (σ ·B)i . Note that since 〈Y c,i, Y c,j〉t = (σσt)ijt and σσt > 0, it
follows that ‖f‖H0 = 0 implies f i(s, ω) = 0 for a.e. (s, ω) ds×dP , 1 ≤ i ≤ d
and fd+1(s, ω, z) = 0 for a.e. (s, ω, z) ds × dP × dν. Clearly with this
identification, ‖ · ‖H0 is a Hilbertian norm and we define the Hilbert space
H0 as

H0 := {f = (f1, · · · , fd+1) : f i is previsible 1 ≤ i ≤ d+ 1

and ‖f‖H0 < ∞}.

Note that the spaces H0 and H1 � R are isomorphic via the representa-
tion given by Lemma 4.2. Note also that H1 is isomorphic to M2, the
space of right continuous, L2-bounded, (FY

t ) martingales. We also have
M2 = Mc

2 ⊕Md
2 , a direct sum of the continuous and purely discontinuous

spaces of martingales (see Dellacherie and Meyer, 1982,Chap.VIII, Sec.2).
Accordingly we have H1 = R⊕H1,c ⊕H1,d where

H1,c := {f ∈ H1 : t → f(t, Yt) is continuous a.s., f(0, 0) = 0 a.s.}

and

H1,d := {f ∈ H1 : (f(t, Yt)) is a purely discontinous martingale with
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f(0, 0) = 0 a.s.}.

The isomorphism between H1 � R and H0 implies a similar decomposition
for H0 : H0 = H0,c ⊕H0,d where

H0,c := {f ∈ H0 : f = (f1, · · · , fd+1), fd+1 ≡ 0}

and

H0,d := {f ∈ H0 : f = (f1, · · · , fd+1), f i ≡ 0, 1 ≤ i ≤ d}.

Note that the stochastic integral defines a linear map I : H0 → L2 � R as
follows : For f = (f1, · · · , fd+1)

I(f) :=

d∑
i=1

∞∫

0

f i(s) dY c,i
s +

∞∫

0

∫

R
d
0

fd+1(s, z) N̂(ds dz)

and is in fact an imbedding of H0 into L2 � R. On the other hand we have
the map β : V ⊂ L2 → H1 given by the representation in Lemma 3.3 and we
will denote by H0

1 the image β(V) i.e.

H0
1 := {f ∈ H1 : f = βF for some F ∈ V ⊂ L2}.

Since for F ∈ V , βF (t, ω, y) is a smooth function in the variable y, we have
the map D : H0

1 → H0 defined as follows : For f = βF , F ∈ V , we define the
d+ 1 dimensional vector DF as follows :

Df ≡ DβF := (∇βF , δβF ).

Proposition 4.3. The linear operator D : H0
1 → H0 is closable and ex-

tends as a closed linear operator to D : H1 → H0.

Proof. Suppose Fn ∈ V , βFn → 0 in H1 and DβFn → g = (g1, · · · , gd+1)
in H0. We have from Lemma 3.3, with Y c = (Y c,1, · · · , Y c,d),

Fn = EFn +

∞∫

0

∇βFn(s, Ys−).dY
c
s +

∞∫

0

∫

R
d
0

δβFn(s, Ys−, z) N̂(ds dz).

Since Fn → 0 in L2 it follows that

‖DβFn‖H0 = ‖I(DβFn)‖L2

= ‖Fn − EFn‖L2
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→ 0

as n → ∞ since ‖Fn‖L2 = ‖βFn‖H1 . It follows that g = 0.
From the denseness of V in L2 and the definition of the norm in H0

1 it
readily follows that H0

1 is dense in H1. For f ∈ H1, let F
n ∈ L2, Fn → f(∞)

in L2. Then Df := lim
n→∞

DβFn = lim
n→∞

(∇βFn , δβFn) = (f1, · · · , fd+1) where

the last equality follows from the representation for f given by Lemma 4.2.
This gives the required closed extension of D to H1.

Let P0 : H1 → R denote the orthogonal projection into the subspace R

of H1 and P⊥
0 the projection to its ‘orthogonal complement’ viz. H1 � R.

The preceding formulations now yield the following result.

Theorem 4.4. The map β : V → H1 extends as an isometric isomor-
phism to the whole of L2 with inverse given by

β−1 = P0 + I ◦D ◦ P⊥
0

where D = (∇, δ) : H1 � R → H0 and I : H0 → L2 � R are isometric
isomorphisms.

Proof. For F ∈ V , Lemma 3.3 and the properties of the map βF (t, ω, y)
show that (βF (t, Yt)) is a right continuous, L2 bounded martingale. Hence
βF ∈ H1 and from the definition of the inner product in H1 it follows that
if F,G ∈ L2 ∩ V

〈βF , βG〉H1 = E(FG) = 〈F,G〉L2 .

For general F ∈ L2 we define βF = f ∈ H1 where f(t, ω, y) := Mt(ω)⊗ 1(y)
where (Mt) is a right continuous version of the martingale (E[F | FY

t ]).
This gives the desired extension of β : L2 → H1 with β(c) = c, c ∈ R. It is
clear that I : H0 → L2 � R is an isometric imbedding of H0 into L2 � R.
For F ∈ L2 � R, the element f ∈ H0 such that I(f) = F is given as
f = DβF = D ◦ P⊥

0 (βF ). It is also clear that for F,G ∈ L2 � R,

〈βF , βG〉H1 = 〈DβF , DβG〉H0

first for F,G ∈ V and then for F,G ∈ L2. The theorem follows.

Remark 4.5. Note that we have used the fact that σ is non-singular to
ensure that the Hilbert space H0 as well as the stochastic gradient ∇ with
respect to the martingale Y c is well defined. However, we note that these
and the results below work also when σ = 0.
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5 The Chaos Expansion

In the decomposition Yt = Y ε
t + Yε,t, ε > 0 we can write the square

integrable Lévy process (Y ε
t ) as Y ε

t = Y c,ε
t + Y d,ε

t where (Y c,ε
t ) is the con-

tinuous semi-martingale part and (Y d,ε
t ) the purely discontinuous martin-

gale part of (Y ε
t ) , easily identified from eqn.(2.3). Let u1i(s), u2i(s), i =

1, · · · , d, be deterministic simple functions of s ≥ 0, u1 = (u11, · · · , u1d), u2 =
(u21, · · · , u2d) and u = (u1, u2). Define for 0 ≤ t ≤ ∞,

Y ε,u
t :=

t∫

0

u1(s).dY c,ε
s +

t∫

0

u2(s).dY d,ε
s . (5.1)

The exponential martingales (M ε,u
t ) are then defined as follows: for 0 ≤ t ≤

∞,

M ε,u
t := exp

⎧⎨
⎩Y ε,u

t − 1

2

d∑
i,j=1

t∫

0

u1i(s) u1j(s) d〈Y c,ε,i, Y c,ε,j〉s

−
t∫

0

∫

{0<|y|≤ε}

{eu2(s)·y − 1− u2(s).y} γ(dy) ds

⎫⎪⎬
⎪⎭ . (5.2)

Lemma 5.1. The set {M ε,u
∞ : ε > 0, u = (u11, · · · , u2d)} is total in L2.

Proof. Since F ε
∞ := σ{Y ε

t : t ≥ 0} ↑ FY
∞ as ε ↑ ∞, it suffices to show

for ε > 0 fixed and ϕ ∈ L2(F ε
∞), E(M ε,u

∞ ϕ) = 0 for all u = (u1, u2), uij

simple functions, i = 1, 2, j = 1, · · · , d, implies ϕ = 0 a.e. Since ϕ is F ε
∞

measurable, ∃ S ⊂ [0,∞), S = {ti, i = 1, 2, · · · } such that ϕ is measurable

with respect to the σ-field σ{Y c,ε
t , Y d,ε

t , t ∈ S}. Since moment generating
functions uniquely determine the distributions of random variables it follows
that E[ϕ | Gs0,··· ,sk ] = 0 almost surely where Gs0,··· ,sk is the σ-field generated

by the random variables {Y c,ε
si , Y d,ε

si , 0 ≤ s0 < · · · < sk, si ∈ S}. Since the
above is true for all k ≥ 1, this implies ϕ = 0 almost surely.

For n ≥ 1, let α = (α1, · · · , αn), αi ∈ D := {1, · · · , d+ 1}.

Zα
n := {z : z = (z1, · · · , zn), zi = (si, yi), si ≥ 0, yi = 0

if αi ∈ {1, · · · , d}, yi ∈ R
d
0 if αi = d+ 1 and si ≤ sj if i < j}.

B(Zα
n ) will denote the Borel σ-field on Zα

n and μα
n will denote the restriction

of the product measure
n⊗

i=1
μαi
1 on ([0,∞) × R

d)n, to Zα
n where μαi

1 (dzi) =
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dsi γ
αi(dyi), γ

αi(dyi) = δ0(dyi) if αi ∈ {1, · · · , d} and γαi(dyi) = ν(dyi) |Rd
0

if αi = d+1. For n ≥ 1, Lα
n will denote the Hilbert space L2(Zα

n , B(Zα
n ), μ

α
n)

and Ln =
⊕
α
Lα
n, the direct sum of L2(Zα

n , B(Zα
n ), μα

n). For n = 0, we set

L0 = R.
We now define an inner product 〈·, ·〉n on Ln as follows: For α = (α1, · · · ,

αn) and β = (β1, · · · , βn) define aαβ :=
n∏

i=1
(σσt)αiβi . For f = (fα), g = (gβ)

in Ln we shall think of each fα as being defined on all of Zn := ([0,∞) ×
R
d) × · · · × ([0,∞) × R

d) - the n-fold cartesian product of [0,∞) × R
d - by

taking fα to be zero outside Zα
n ⊂ Zn. We define the σ-finite measure μn on

the Borel subsets of Zn as follows:

μn(A) :=
∑
α

μα
n(A ∩ Zα

n ).

We define the inner product 〈·, ·〉n on Ln as follows:

〈f, g〉n :=
∑
α,β

∫

Zn

fα gβ aαβ dμn.

For α = (α1, · · · , αn), k = 1, · · · , d + 1, let σ̃αk :=
n∏

i=1
σαik. Then it is easy

to see that

‖f‖2n =

∫

Zn

d+1∑
k=1

|
∑
α

fασ̃αk|2 dμn

Using the non singularity of σ, we can verify that ‖f‖2n = 0 implies
fα = 0 a.e.(μn) for every α, and similarly that Cauchy sequences converge.
Thus (Ln, 〈·, ·〉n) is a (real) Hilbert space.

Recall the notation Y c,i := (σ.B)i, 1 ≤ i ≤ d. We will drop the super-
script ’c’ for convenience and write Y i for Y c,i; Y d+1 will denote the random
measure N̂(ds dy) on [0,∞)×R

d
0. Integration with respect to N̂(ds dy) will

be denoted by dY d+1
z .

Fix n ≥ 1, α = (α1, · · · , αn) . Let g ∈ Lα
n. We shall define the iter-

ated multiple stochastic integral In,α(g) by induction.For zn ∈ Zαn
1 , define

g̃( ; zn) : Zα̃
n−1 → R, where α̃ = (α1, · · · , αn−1), by g̃(z1, · · · , zn−1; zn) =

g(z1, · · · , zn)IZα
n
(z1, · · · , zn), where IG denotes indicator function of the set

G. Then, for a.e. zn(μ
αn
1 ), g̃(.; zn) ∈ Lα̃

n−1. By modifying g̃(.; zn) on a set
of μαn

1 measure zero, we will assume g̃(., zn) ∈ Lα̃
n−1 for every zn ∈ Zαn

1 .
For s > 0 define φ(s1, · · · , sn−1; s) := I{0≤t1≤···≤tn−1≤s}(s1, · · · , sn−1). Then
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φ(.; s)g̃(.; zn) ∈ Lα̃
n−1 for every s > 0, zn ∈ Zαn

1 . By the induction hypothe-
sis, the n− 1 fold iterated stochastic integrals In−1(φ(.; s)g̃(., zn)) is defined
and defines an adapted process in (s, ω) which is right continuous and has
left limits for s ∈ (0,∞). For zn = (sn, yn), let In−1,α̃(g̃(.; zn−)) denote
the left limit of In−1,α̃(φ(.; s)g̃(.; zn)) as s increases to sn. Then for each
α = (α1, · · · , αn) the n-fold iterated stochastic integral of g with respect to
Y α1 · · ·Y αn is defined inductively as

In,α(g) =

∫

Zαn
1

In−1,α̃(g̃(.; zn−)) dY αn
zn

where I1,α(g), 1 ≤ α ≤ d+ 1 is the stochastic integral of g : Zα
1 → R with

respect to Y α. For g = (gα) ∈ Ln we define

In(g) :=
∑
α

In,α(gα).

We note that if f ∈ Ln, g ∈ Lm then

E(In(f) Im(g)) = δnm〈f, g〉n.

The following theorem gives the chaos decomposition for L2(FY
∞).

Theorem 5.2. Let F ∈ L2(FY
∞). Then ∃ fn ∈ Ln, n ≥ 1 such that

F = EF +

∞∑
n=1

In(fn).

In particular if Cn = {In(fn) : fn ∈ Ln} then Cn are closed subspaces,

isomorphic as a Hilbert space to Ln , Cn ⊥ Cm,m �= n and L2 =
∞⊕
n=0

Cn
where C0 := R.

Proof. The first part of the theorem follows from the continuity prop-
erties of In(·) as soon as we establish the expansion for a dense subspace of
L2. We do this in Lemma 5.5 below. The second statement follows from the
first and the properties of In.

Remark 5.3. The chaos expansion given in the theorem implies the mar-
tingale representation for F in terms of the Y i’s : Clearly, from the definition
of the iterated integrals In,α(fn) we can write, using the notation introduced
before the statement of Theorem 5.2 for f̃n,α̃(., zn−),

In(fn) :=
∑

α=(α̃,αn)

In,α(fn,α) =
d+1∑
αn=1

∑
α̃

I1,αn(In−1,α̃(f̃n,α̃(., zn−)))
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=
d+1∑
αn=1

I1,αn(fn,αn) ,

where the process (fn,αn) for αn = 1, · · · , d+ 1 is given as

fn,αn(z) :=
∑
α̃

In−1,α̃(f̃n,α̃(., z−)).

Introducing the L2(Ω → L2(Zαn
1 , B(Zαn

1 ), μαn
1 )) convergent sum fα(z) :=

∞∑
n=1

fn,α(z), α = 1, · · · , d+ 1 we get

F = EF +

∞∑
n=1

In(fn) = EF +

∞∑
n=1

d+1∑
αn=1

I1,αn(fn,αn)

= EF +
d+1∑
α=1

I1,α(fα)

Remark 5.4. For F ∈ L2(FY
∞) we can introduce iterated derivatives

∂αβF (z1, · · · , zn, ω) with α = (α1, · · · , αn), αi ∈ {1, · · · , d+1}, (z1, · · · , zn) ∈
Zn and ∂α = ∂α1 · · · ∂αn . Here for αi ∈ {1, · · · , d}, ∂αi denotes the partial
derivative with respect to the αith coordinate of yi where zi = (si, yi) and for
αi = d+ 1, ∂αi will denote δ the difference operator. Let α̃ = (α2, · · · , αn).
Then we can define inductively,

∂αβF (z1, · · · , zn, ω) := ∂α1βG(z2,··· ,zn)(z1, ω).

where for fixed (z2, · · · , zn), G(z2, · · · , zn, ω) := ∂α̃βF (z2, · · · , zn, ω) ∈ L2

(FY
∞). Then the kernels fn,α in the chaos expansion of F can be expressed

as
fn,α(z1, · · · , zn) = E ∂αβF (z1, · · · , zn)

To state the next result ,let ε > 0, u = (u1, u2), ui = (ui1, · · · , uid), i =
1, 2 where uij(s) =

m∑
k=1

uijk I(tk−1,tk](s). Recall the processes (Y c,ε
t ), (Y d,ε

t ),

(Y ε,u
t ) defined at the beginning of Section 5 via (2.3) and (5.1); we now set

bε = 0 in the definition of Y c,ε. Consequently Y c,ε
t is a continuous vector mar-

tingale, independent of ε and we denote it by Y c
t = (σ.B)t = (Y 1

t , · · · , Y d
t ).

Let F ε,u := M ε,u
∞ be defined as in (5.2). Note that Lemma 5.1 remains true in

this case also. Let f ε,u
n = (f ε,u

n,α) be given by f ε,u
n,α(z1, · · · , zn) :=

n∏
i=1

f ε,u
αi (zi)

where f ε,u
αi (zi) = u1j(si) if αi = j, 1 ≤ j ≤ d and zi = (si, 0) and f ε,u

αi (zi) =
(eu

2(si)·yi − 1)I{0<|yi|≤ε}, αi = d+ 1, zi = (si, yi).
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Lemma 5.5. Let ε > 0, u, F ε,u and f ε,u
n be as above. Then

F ε,u = EF ε,u +

∞∑
n=1

In(f
ε,u
n )

.

Proof. Let 0 < ε′ < ε. Let

Xε′,ε,u
t :=

t∫

0

u1(s).dY c
s − 1

2

d∑
i,j=1

t∫

0

u1i(s)u1j(s) d〈Y i, Y j〉s

+

t∫

0

∫

{0<ε′<|y|≤ε}

u2(s).y N̂(ds dy)

−
t∫

0

∫

{ε′<|y|≤ε}

(
eu

2(s).y − 1− u2(s).y
)

γ(dy) ds.

Itô’s formula applied to f(Xε′,ε,u
t ), f(x) := ex and letting ε′ ↓ 0 in the result-

ing equation yields the martingale representation,

F ε,u = 1 +

∞∫

0

M ε,u
s−u1(s).dY c

s +

∞∫

0

∫

{0<|y|≤ε}

M ε,u
s− (eu

2(s)·y − 1) N̂(ds dy).

Repeated application of the above representation now yields for every n ≥ 1,

F ε,u = 1 +
n∑

k=1

Ik(fk) +
∑

α∈Dn+1

In+1(gα)

where Dn is the n-fold Cartesian product of D; the fk ≡ (fk,α) := (f ε,u
k,α) are

as in the statement of the lemma; and

gα(z1, · · · , zn+1) =
n+1∏
i=1

gαi(zi)

where gαi(zi) = f ε,u
αi (zi) M ε,u

si− where zi = (si, 0) or (si, yi). Note that
In+1(gα) are orthogonal for different α and hence

E

(∑
α

In+1(gα)

)2

=
∑
α

E (In+1(gα))
2 ≤ Cn+1(d+ 1)n+1tn+1

m

n!
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where C = max{1,
∫

{0<|y|≤ε}
|y|2 γ(dy)}. The result follows on letting n → ∞.
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with Applications to Finance. Springer.
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Lévy processes, benth, f.e. et al. (eds.),. Proc. 2nd Abel Symposium, Springer 1987.

stroock, d.w. (1987). Homogenous chaos revisited. Séminaire de Probabilités 21, 1–7.
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