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Abstract

Robust inference based on the minimization of statistical divergences has
proved to be a useful alternative to the classical techniques based on max-
imum likelihood and related methods. Recently Ghosh et al. (2013b) pro-
posed a general class of divergence measures, namely the S-Divergence Fam-
ily and discussed its usefulness in robust parametric estimation through some
numerical illustrations. In this present paper, we develop the asymptotic
properties of the proposed minimum S-Divergence estimators under discrete
models.
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1 Introduction

Density-based minimum distance methods provide attractive alternatives
to likelihood based methods in parametric inference. Often these estimators
combine strong robustness properties with full asymptotic efficiency. The
estimators based on the family of power divergences (Cressie and Read,
1984) is one such example. Consider the class G of all probability density
functions on the σ-field (Ω,A). Usually, in practice Ω = R

p and A is the
corresponding Borel σ-field. The power divergence measure between two
densities g and f in G, indexed by a parameter λ ∈ R, is defined as

PDλ(g, f) =
1

λ(λ+ 1)

∫
g[(g/f)λ − 1].
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Here, the integral is taken over the whole sample space Ω and the same is
to be understood in the rest of the paper also, unless mentioned otherwise.
For values of λ = 1, 0,−1/2,−1 and −2 the family generates the Pearson’s
chi-square (PCS), the likelihood disparity (LD), the twice squared Hellinger
distance (HD), the Kullback-Leibler divergence (KLD) and the Neyman’s
chi-square (NCS) respectively. The family is a subclass of the larger family
of φ-divergences (Csiszár, 1963) or disparities. The minimum disparity es-
timator of θ under the model F = {Fθ : θ ∈ Θ ⊆ R

p} is the minimizer of
the divergence between ĝ (a nonparametric estimate of the true density g)
and the model density fθ. All minimum distance estimators based on dis-
parities have the same influence function as that of the maximum likelihood
estimator (MLE) at the model and hence have the same asymptotic model
efficiency.

The evaluation of a minimum distance estimator based on disparities
requires kernel density estimation, and hence inherits all the complications
of the latter method. Basu et al. (1998) developed a class of density-based
divergence measures called the density power divergence (DPD) that pro-
duces robust parameter estimates but needs no nonparametric smoothing.
The DPD measure between two densities g and f in G is defined, depending
on a nonnegative parameter α, as

dα(g, f) =

∫
f1+α − 1 + α

α

∫
fαg +

1

α

∫
g1+α, for α > 0,

and

d0(g, f) = lim
α→0

dα(g, f) =

∫
g log(g/f ). (1)

The parameter α provides a smooth bridge between the likelihood disparity
(α = 0) and the L2-divergence (α = 1); it also controls the trade-off between
the robustness and efficiency with larger α being associated with greater
robustness but reduced efficiency. Both the PD and DPD families provide
outlier down weighting using powers of model densities.

Combining the concepts of the power divergence and the density power
divergence, Ghosh et al. (2013b) developed a two parameter family of density-
based divergences, named as “S-Divergence”, that connects the whole of the
Cressie-Read family of power divergence smoothly to the L2-divergence at
the other end. This family contains both the PD and DPD families as spe-
cial cases. Through various numerical examples, they illustrate that the
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minimum divergence estimators based on the S-Divergence are also ex-
tremely robust and are also competitive in terms of efficiency for most of
the members of this family.

In this present article, we will develop the theoretical properties of the
minimum S-Divergence estimators. For simplicity, here we consider only
the set up for the discrete model so that the true data generating proba-
bility mass functions can be estimated non-parametrically by just the rela-
tive frequencies of the observed sample — we do not need to consider any
nonparametric smoothing. We will prove the consistency and asymptotic
normality of the minimum S-Divergence estimators. We will introduce the
S-divergence and the minimum S-divergence estimator in Sections 2 and 3
respectively. Then Section 4 will contain the asymptotic properties of the
minimum S-Divergence estimators. We will present the application of the
minimum S-divergence estimator in some interesting real data examples in
Section 5 and relate the findings with the theoretical results in Section 6,
that leads to some indication on the choice of the tuning parameters. Finally
we conclude the paper by an overall conclusion in Section 7. Throughout
the rest of the paper, we will use the term “density” for the probability mass
functions also.

2 The S-Divergence Family

It is well-known that the estimating equation for the minimum density
power divergence estimator represents an interesting density power down-
weighting, and hence robustification of the usual likelihood score equation
(Basu et al., 1998). The usual estimating equations for the MLE can be
recovered from that estimating equation by the choice α = 0. Within the
given range of 0 ≤ α ≤ 1, α = 1 will lead to the maximum down-weighting
for the score functions of the surprising observations corresponding to the
L2 divergence; on the other extreme, the score functions will be subjected
to no down-weighting at all for α = 0 corresponding to the Kullback-Leibler
divergence (Kullback and Leibler, 1951). Intermediate values of α provide
a smooth bridge between these two estimating equations, and the degree of
down weighting increases with increasing α.

Noting that the Kullback-Leibler divergence is a particular case of Cressie-
Read family of power divergence corresponding to λ = 0, we see that the
density power divergence gives us a smooth bridge between one particular
member of the Cressie-Read family and the L2 divergence with increasing
robustness. Ghosh et al. (2013b) constructed a family of divergences which
connect, in a similar fashion, other members of the PD family with the
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L2-divergence. That larger super-family, named as the S-Divergence Fam-
ily, is defined as

S(α,λ)(g, f) =
1

1 + λ(1− α)

∫ [(
f1+α − g1+α

)

− (1 + α)

(α− λ(1− α))
g1+λ(1−α)

(
fα−λ(1−α) − gα−λ(1−α)

)]

=
1

A

∫
f1+α − 1 + α

AB

∫
fBgA +

1

B

∫
g1+α, (2)

where A = 1 + λ(1− α) and B = α− λ(1− α).
Note that, A + B = 1 + α. Also the above form of divergence family is

defined for those α and λ for which A �= 0 and B �= 0. If A = 0 then the
corresponding divergence measure is defined as the continuous limit of (2)
as A → 0 and is given by

S(α,λ:A=0)(g, f) = lim
A→0

S(α,λ)(g, f)

=

∫
f1+α log(

f

g
)−

∫
(f1+α − g1+α)

1 + α
. (3)

Similarly, if B = 0 then the divergence measure is defined to be

S(α,λ:B=0)(g, f) = lim
B→0

S(α,λ)(g, f)

=

∫
g1+α log(

g

f
)−

∫
(g1+α − f1+α)

1 + α
. (4)

Note that for α = 0, the class of S-divergences reduces to the PD family
with parameter λ; for α = 1, S1,λ equals the L2 divergence irrespective
of the value of λ. On the other hand, λ = 0 generates the DPD family
as a function of α. In Ghosh et al. (2013b), it was shown that the above
S-divergence family defined in (2), (3) and (4) indeed represent a family of
genuine statistical divergence measures in the sense that S(α,λ)(g, f) ≥ 0 for
densities g, f and all α ≥ 0, λ ∈ R, and S(α,λ)(g, f) is equal to zero if and
only if g = f identically.

3 The Minimum S-Divergence Estimators

Let us now consider the discrete set-up for parametric estimation. Let
X1, · · · , Xn denotes n independent and identically distributed observations
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from the true distribution G having a probability density function g with
respect to some counting measure. Without loss of generality, we will assume
that the support of g is χ = {0, 1, 2, · · · }. Let us denote the relative frequency
at x obtained from data by rn(x) =

1
n

∑n
i=1 I(Xi = x), where I(A) denotes

the indicator function of the event A. We model the true data generating
distribution G by the parametric model family F = {Fθ : θ ∈ Θ ⊆ R

p}.
We will assume that both G and F belong to G, the (convex) class of all
distributions having densities with respect to the counting measure (or the
appropriate dominating measure in other cases). We are interested in the
estimation of the parameter θ.

Note that, the minimum S-divergence estimator has to be obtained by
minimizing the S-divergence measure between the data and the model dis-
tribution. However, in the discrete set-up, both the data-generating true
distribution and the model distribution are characterized by the probability
vectors rn = (rn(0), rn(1), · · · )T and fθ = (fθ(0), fθ(1), · · · )T respectively.
Thus in this case, the minimum S-divergence estimator of θ can be obtained
by just minimizing S(α,λ)(rn, fθ), the S-divergence measure between rn and
fθ, with respect to θ. The estimating equation is then given by

∇S(α,λ)(rn, fθ) = 0,

or, ∇
[
1

A

∞∑
x=0

f1+α
θ (x)− 1 + α

AB

∞∑
x=0

fB
θ (x)rAn (x) +

1

B

∞∑
x=0

r1+α
n (x)

]
= 0,

or,
1 + α

A

∞∑
x=0

f1+α
θ (x)uθ(x)− 1 + α

A

∞∑
x=0

fB
θ (x)rAn (x)uθ(x) = 0, (5)

or,
∞∑
x=0

K(δ(x))f1+α
θ (x)uθ(x) = 0, (6)

where δ(x) = δn(x) =
rn(x)
fθ(x)

− 1, K(δ) = (δ+1)A−1
A and uθ(x) = ∇ ln fθ(x) is

the likelihood score function. Note that, ∇ represents the derivative with
respect to θ and we will denote its ith component by ∇i.

4 Asymptotic Properties of the Minimum S-Divergence
Estimators

Now we will derive the asymptotic properties of the minimum
S-divergence estimator under the discrete set-up as mentioned above. Note
that, in order to obtain the minimum S-divergence estimator under discrete
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set-up, we need to minimize S(α,λ)(rn, fθ) over θ which is equivalent to min-
imizing Hn(θ) with respect to θ where

Hn(θ) =
1

1 + α

[
1

A

∑
x

f1+α
θ (x)− 1 + α

AB

∑
x

fB
θ (x)rAn (x)

]
. (7)

Now,

∇Hn(θ) =
1

A

[∑
x

f1+α
θ (x)uθ(x)−

∑
x

fB
θ (x)uθ(x)r

A
n (x)

]

= −
∑
x

K(δn(x))f
1+α
θ (x)uθ(x), (8)

where δn(x) =
rn(x)
fθ(x)

− 1. Thus the estimating equation is exactly the same

as given in (6). Let θg denotes the “best fitting parameter” under the true
density g, obtained by minimizing S(α,λ)(g, fθ) over the parameter space
θ ∈ Θ. Define

Jg = Jα(g) = Eg

[
uθg (X)uTθg (X)K ′(δgg (X))fα

θg (X)
]

−
∑
x

K(δgg(X))∇2fθg(x), (9)

Vg = Vα(g) = Vg

[
K ′(δgg(X))fα

θg (X)uθg (X)
]
, (10)

where X denotes a random variable having density g, δg(x) = g(x)
fθ(x)

− 1,

δgg(x) =
g(x)

fθg (x)
−1, K ′(·) is the derivative of K(·) with respect to its argument

and∇2 represent the second order derivative with respect to θ. We will prove
the asymptotic properties of the minimum S-divergence estimator under the
following assumptions:

(SA1) The model family F is identifiable, i.e., for any two Fθ1 and Fθ2 in
the model family F ,

Fθ1 = Fθ2 ⇒ θ1 = θ2.

(SA2) The probability density function fθ of the model distribution have
common support so that the set χ = {x : fθ(x) > 0} is independent
of θ. Also the true distribution g is compatible with the model family.

(SA3) There exists an open subset ω ⊂ Θ for which the best fitting param-
eter θg is an interior point and for almost all x, the density fθ(x)
admits all the third derivatives of the type ∇jklfθ(x) ∀θ ∈ ω. Here,
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∇jkl denotes the (j, k, l)th element of ∇3, the third order derivative
with respect to θ

(SA4) The matrix Jg is positive definite.

(SA5) The quantities
∑

x g
1/2(x)fα

θ (x)|ujθ(x)|,
∑

x g
1/2(x)fα

θ (x)|ujθ(x)|
|ukθ(x)| and

∑
x g

1/2(x)fα
θ (x)|ujkθ(x)| are bounded ∀j, k and ∀θ ∈ ω.

Here, ujθ(x) denotes the j
th element of uθ(x) and ujkθ(x) denotes the

(j, k)th element of ∇2 ln fθ(x).

(SA6) For almost all x, there exists functions Mjkl(x), Mjk,l(x), Mj,k,l(x)
that dominate, in absolute value, fα

θ (x)ujklθ(x), f
α
θ (x)ujkθ(x)ulθ(x)

and fα
θ (x)ujθ(x)ukθ(x)ulθ(x) respectively ∀j, k, l and that are uni-

formly bounded in expectation with respect to g and fθ ∀θ ∈ ω.

Here, ujklθ(x) denotes the (j, k, l)th element of ∇3 ln fθ(x).

(SA7) The function
(

g(x)
fθ(x)

)A−1
is uniformly bounded (by, say, C) ∀θ ∈ ω.

To prove the consistency and asymptotic normality of the minimum S-
divergence estimator, we will, now on, assume that the above 7 conditions
hold. We will first consider some Lemmas.

Lemma 1. Define ηn(x) =
√
n
(√

δn(x)−
√
δg(x)

)2
. For any k ∈ [0, 2]

and any x ∈ χ, we have

1. Eg[ηn(x)
k] ≤ n

k
2Eg[|δn(x)− δg(x)|]k ≤

[
g(x)(1−g(x))

f2
θ (x)

] k
2
.

2. Eg[|δn(x)− δg(x)|] ≤ 2g(x)(1−g(x))
fθ(x)

.

Proof. The proof uses the same argument as in Lemma 2.13 of Basu
et al. (2011, page 56). For a, b ≥ 0, we have the inequality (

√
a − √

b)2 ≤
|a− b|. So we get

Eg[ηn(x)
k] = n

k
2Eg

[(√
δn(x)−

√
δg(x)

)2k
]

= n
k
2Eg

[(√
δn(x)−

√
δg(x)

)2
]k

≤ n
k
2Eg[|δn(x)− δg(x)|]k.
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For the next part see that, under g, nrn(x) ∼ Binomial(n, g(x)) ∀x.
Now, for any k ∈ [0, 2], we get by the Lyapounov’s inequality that

Eg[|δn(x)− δg(x)|]k ≤ [
Eg(δn(x)− δg(x))

2
] k

2

=
1

fk
θ (x)

[
Eg(rn(x)− g(x))2

] k
2

=
1

fk
θ (x)

[
g(x)(1 − g(x))

n

] k
2

.

For the second part, note that

Eg[|δn(x)− δg(x)|] =
1

fk
θ (x)

[Eg|rn(x)− g(x)|] k2

≤ 2g(x)(1 − g(x))

fθ(x)
,

where the last inequality follows from the result about the mean-deviation
of a Binomial random variable.

Lemma 2. Eg[ηn(x)
k] → 0, as n → ∞, for k ∈ [0, 2) and x ∈ χ.

Proof. This follows from Theorem 4.5.2 of Chung (1974) by noting that

n1/2(r
1/2
n (x)− g1/2(x)) → 0 with probability one for each x ∈ χ and by the

Lemma 1(1), sup
n

Eg[η
k
n(x)] is bounded.

Let us now define,

an(x) = K(δn(x))−K(δg(x)),

bn(x) = (δn(x)− δg(x))K
′(δg(x)),

and τn(x) =
√
n|an(x)− bn(x)|.

We will need the limiting distributions of

S1n =
√
n
∑
x

an(x)f
1+α
θ (x)uθ(x) and S2n =

√
n
∑
x

bn(x)f
1+α
θ (x)uθ(x).

Next two Lemmas will help us to derive those distributions.

Lemma 3. Assume condition (SA5). Then,

Eg|S1n − S2n| → 0, as n → ∞,

and hence
S1n − S2n

P→ 0, as n → ∞.
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Proof. By Lemma 2.15 of Basu et al. (2011) [or, Lindsay 1994, Lemma
25], there exists some positive constant β such that

τn(x) ≤ β
√
n

(√
δn(x)−

√
δg(x)

)2

= βηn(x).

Also, by Lemma 1, Eg[τn(x)] ≤ β g1/2(x)
fθ(x)

.

And by Lemma 2, Eg[τn(x)] = βEg[ηn(x)] → 0 as n → ∞. Thus we get,

Eg|S1n − S2n| ≤
∑
x

Eg[τn(x)]f
1+α
θ (x)|uθ(x)|

≤ β
∑
x

g1/2(x)fα
θ (x)|uθ(x)|

< ∞ (by assumption SA5).

So, by Dominated Convergence Theorem (DCT), Eg|S1n − S2n| → 0 as

n → ∞. Hence, by Markov inequality, S1n − S2n
P→ 0 as n → ∞.

Lemma 4. Suppose Vg is finite. Then under g,

S1n
D→N(0, Vg).

Proof. Note that, by the previous Lemma 3, the asymptotic distribution
of S1n and S2n are the same. Now, we have

S2n =
√
n
∑
x

(δn(x)− δg(x))K
′(δg(x))f1+α

θ (x)uθ(x)

=
√
n
∑
x

(rn(x)− g(x))K ′(δg(x))fα
θ (x)uθ(x)

=
√
n

(
1

n

n∑
i=1

[
K ′(δg(Xi))f

α
θ (Xi)uθ(Xi)

− Eg{K ′(δg(X))fα
θ (X)uθ(X)}]

)

D→ Z ∼ N(0, Vg) [by Central Limit Theorem (CLT)].

This completes the proof.
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We will now consider the main theorem of this section about the
consistency and asymptotic normality of the minimum S-divergence
estimator.

Theorem 1. Under Assumptions (SA1)-(SA7), there exists a consistent
sequence θ̂n of roots to the minimum S-divergence estimating equation (6).

Also, the asymptotic distribution of
√
n(θ̂n−θg) is p−dimensional normal

with mean 0 and variance J−1
g VgJ

−1
g .

Proof of consistency. Consider the behavior of S(α,λ)(rn, fθ) on a
sphere Qa which has radius a and center at θg. We will show, for sufficiently
small a, the probability tends to one that

S(α,λ)(rn, fθ) > S(α,λ)(rn, fθg) ∀θ on the surface of Qa,

so that the S-divergence has a local minimum with respect to θ in the inte-
rior of Qa. At a local minimum, the estimating equations must be satisfied.
Therefore, for any a > 0 sufficiently small, the minimum S-divergence esti-
mating equation have a solution θn within Qa with probability tending to
one as n → ∞.

Now taking Taylor series expansion of S(α,λ)(rn, fθ) about θ = θg, we get

S(α,λ)(rn, fθg)− S(α,λ)(rn, fθ)

= −
∑
j

(θj − θgj )∇jS(α,λ)(rn, fθ)|θ=θg

− 1

2

∑
j,k

(θj − θgj )(θk − θgk)∇jkS(α,λ)(rn, fθ)|θ=θg

− 1

6

∑
j,k,l

(θj − θgj )(θk − θgk)(θl − θgl )∇jklS(α,λ)(rn, fθ)|θ=θ∗

= S1 + S2 + S3, (say)

where θ∗ lies between θg and θ. We will now consider each terms one-by-one.
For the Linear term S1, we consider

∇jS(α,λ)(rn, fθ)|θ=θg = −(1 + α)
∑
x

K(δgn(x))f
1+α
θg (x)ujθg(x), (11)
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where δgn(x) is the δn(x) evaluated at θ = θg. We will now show that

∑
x

K(δgn(x))f
1+α
θg (x)ujθg (x)

P→
∑
x

K(δgg(x))f
1+α
θg (x)ujθg(x), (12)

as n → ∞ and note that the right hand side of above is zero by definition
of the Minimum S-divergence estimator. Note that by assumption (SA7)
and the fact that rn(x) → g(x), almost surely (a.s.) by Strong Law of Large
Number (SLLN), it follows that

|K ′(δ)| = |δ|A−1 < 2C = C1, ( say ) (13)

for any δ in between δgn(x) and δgg(x), uniformly in x. So, by using the
one-term Taylor series expansion,

|
∑
x

K(δgn(x))f
1+α
θg (x)ujθg(x)−

∑
x

K(δgg(x))f
1+α
θg (x)ujθg(x)|

≤ C1

∑
x

|δgn(x)− δgg(x)|f1+α
θg (x)|ujθg(x)|.

However, by Lemma 1(1),

E[|δgn(x)− δgg(x)|] ≤
[g(x)(1 − g(x))]1/2

fθg(x)
√
n

→ 0, as n → ∞. (14)

and, by Lemma 1(2), we have

E[C1

∑
x

|δgn(x)− δgg(x)|f1+α
θg (x)|ujθg(x)|]

≤ 2C1

∑
x

g1/2(x)fα
θg(x)|ujθg (x)| < ∞. (15)

[by assumption (A5)]

Hence, by dominated convergence theorem (DCT), we get,

E[|
∑
x

K(δgn(x))f
1+α
θg (x)ujθg (x)−

∑
x

K(δgg(x))f
1+α
θg (x)ujθg(x)|] → 0, (16)
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as n → ∞, so that by Markov inequality we have the desired claim. There-
fore, we have

∇jS(α,λ)(rn, fθ)|θ=θg
P→ 0. (17)

Thus, with probability tending to one, |S1| < pa3, where p is the dimension
of θ and a is the radius of Qa.

Next we consider the quadratic term S2. We have,

∇jkS(α,λ)(rn, fθ)|θ=θg

= ∇k

(
−(1 + α)

∑
x

K(δn(x))f
1+α
θ (x)ujθ(x)|θ=θg

)

= −(1 + α)

[
−
∑
x

K ′(δgn(x))δ
g
n(x)f

1+α
θg (x)ujθg(x)ukθg(x)

+
∑
x

K(δgn(x))f
1+α
θg (x)ujkθg(x)

−
∑
x

K(δgn(x))f
1+α
θg (x)ujθg (x)ukθg(x)

]
. (18)

We will now show that

−
∑
x

K ′(δgn(x))δ
g
n(x)f

1+α
θg (x)ujθg(x)ukθg(x)

P→−
∑
x

K ′(δgg(x))δ
g
g (x)f

1+α
θg (x)ujθg (x)ukθg(x). (19)

For note that as in (13), we have

|K ′′(δ)δ| = |(A− 1)||δ|(A−1) < C2, (say) (20)

for every δ lying in between δgn(x) and δgg(x), uniformly in x. So, by using
the one-term Taylor series expansion,

|K ′(δgn)δ
g
n −K ′(δgg )δ

g
g | ≤ |δgn − δgg ||K ′′(δ∗n)δ

∗
n +K ′(δ∗n)|

≤ |δgn − δgg |(C2 + C1).
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Thus, we get

∣∣∣∣∣
∑
x

K ′(δgn(x))δ
g
n(x)f

1+α
θg (x)ujθg(x)ukθg(x)

−
∑
x

K ′(δgg(x))δ
g
g (x)f

1+α
θg (x)ujθg(x)ukθg (x)

∣∣∣∣∣
≤ (C1 + C2)

∑
x

|δgn − δgg |f1+α
θg (x)|ujθg (x)ukθg(x)|.

Since by assumption (SA5), we have
∑

x g
1/2(x)f1+α

θg (x)|ujθg (x)ukθg(x)| <
∞, the desired result (19) follows by the similar proof for proving (12) above.
Similarly we also get that

∑
x

K(δgn(x))f
1+α
θg (x)ujkθg(x)

P→
∑
x

K(δgg(x))f
1+α
θg (x)ujkθg(x), (21)

∑
x

K(δgn(x))f
1+α
θg (x)ujθg (x)ukθg(x)

P→
∑
x

K(δgg(x))f
1+α
θg (x)ujθg (x)ukθg(x).

(22)

Thus, combining (19), (21) and (22), we get that,

∇k

(∑
x

K(δn(x))f
1+α
θ (x)ujθ(x)|θ=θg

)
P→−J j,k

g . (23)

But we have,

2S2 = (1 + α)
∑
j,k

{
∇k

(∑
x

K(δn(x))f
1+α
θ (x)ujθ(x)|θ=θg

)
− (−J j,k

g )

}

× (θj − θgj )(θk − θgk)

+
∑
j,k

{
−
(
(1 + α)J j,k

g

)
(θj − θgj )(θk − θgk)

}
. (24)

Now the absolute value of the first term in above (24) is < p2a3 with prob-
ability tending to one. And, the second term in (24) is a negative definite
quadratic form in the variables (θj−θgj ). Letting λ1 be the largest eigenvalue
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of (1+α)Jg , the quadratic form is < λ1a
2. Combining the two terms, we see

that there exists c > 0 and a0 > 0 such that for a < a0, we have S2 < −ca2

with probability tending to one.
Finally, considering the cubic term S3, we have

∇jklS(α,λ)(rn, fθ)|θ=θ∗ = ∇kl

(
−(1 + α)

∑
x

K(δn(x))f
1+α
θ (x)ujθ(x)|θ=θ∗

)

= −(1 + α)∇l

(
−
∑
x

K ′(δn(x))δn(x)f1+α
θ (x)ujθ(x)ukθ(x)

+
∑
x

K(δn(x))f
α
θ (x)∇jkfθ(x)

)
|θ=θ∗ , (25)

or,

− 1

1 + α
∇jklS(α,λ)(rn, fθ)|θ=θ∗

=
∑
x

K ′′(δ∗n(x))δ
∗
n(x)

2f1+α
θ∗ (x)ujθ∗(x)ukθ∗(x)ulθ∗(x)

−
∑
x

K ′(δ∗n(x))δ
∗
n(x)f

1+α
θ∗ (x)ujθ∗(x)ukθ∗(x)ulθ∗(x)

−
∑
x

K ′(δ∗n(x))δ
∗
n(x)f

1+α
θ∗ (x)ujθ∗(x)uklθ∗(x)

−
∑
x

K ′(δ∗n(x))δ
∗
n(x)f

1+α
θ∗ (x)ukθ∗(x)ujlθ∗(x)

−
∑
x

K ′(δ∗n(x))δ
∗
n(x)f

1+α
θ∗ (x)

∇jkfθ∗(x)

fθ∗(x)
ulθ∗(x)

+
∑
x

K(δ∗n(x))f
1+α
θ∗ (x)

∇jklfθ∗(x)

fθ∗(x)

+
∑
x

K(δ∗n(x))f
1+α
θ∗ (x)

∇jkfθ∗(x)

fθ∗(x)
ulθ∗(x), (26)
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where δ∗n(x) = rn(x)
fθ∗ (x)

. We will now show that all the terms in the RHS of

above (26) are bounded. Let us name the terms by (i) to (vii) respectively.
For the first term (i), we use (20) to get

|
∑
x

K ′′(δ∗n(x))δ
∗
n(x)

2f1+α
θ∗ (x)ujθ∗(x)ukθ∗(x)ulθ∗(x)|

≤ C2

∑
x

|δ∗n(x)|Mj,k,l(x)fθ∗(x)

= C2

∑
x

r∗n(x)Mj,k,l(x) (by CLT)

→ C2 Eg[Mj,k,l(X)] < ∞. [by assumption (A6)] (27)

Thus term (i) is bounded. Now for the second term (ii), we again use (13)
to get

|
∑
x

K ′(δ∗n(x))δ
∗
n(x)f

1+α
θ∗ (x)ujθ∗(x)ukθ∗(x)ulθ∗(x)|

≤ C1

∑
x

|δ∗n(x)|Mj,k,l(x)fθ∗(x)

= C1

∑
x

r∗n(x)Mj,k,l(x) (by CLT)

→ C1 Eg[Mj,k,l(X)] < ∞, [by assumption (A6)] (28)

so that term (ii) is also bounded. Similarly the terms (iii), (iv) and (v) are
bounded as in case of term (ii) and using (13) and assumption (SA6). Next
for the term (vi), we will consider the following:

|K(δ)| = |
∫ δ

0
K ′(δ)dδ| ≤ C1|δ|, (29)

so that

|K(δ∗n(x))| ≤ C1
rn(x)

fθ∗(x)
. (30)
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Also,

∇jklfθ∗(x)

fθ∗(x)
= ujklθ∗(x) + ujkθ∗(x)ulθ∗(x) + ujlθ∗(x)ukθ∗(x)

+ujθ∗(x)uklθ∗(x) + ujθ∗(x)ukθ∗(x)ulθ∗(x). (31)

So,

∣∣∣∣∣
∑
x

K(δ∗n(x))f
1+α
θ∗ (x)

∇jklfθ∗(x)

fθ∗(x)

∣∣∣∣∣ ≤ C1

∑
x

rn(x)f
α
θ∗(x)

∣∣∣∣∇jklfθ∗(x)

fθ∗(x)

∣∣∣∣
= C1

∑
x

r∗n(x)M(x) (by CLT)

→ C1 Eg[M(X)] < ∞
[by assumption (SA6)], (32)

where M(x) = Mjkl(x)+Mjk,l(x)+Mjl,k(x)+Mj,kl(x)+Mj,k,l(x). Thus the
term (vi) is bounded and also similarly the term (vii) is bounded. Hence, we
have |S3| < ba3 on the sphereQa with probability tending to one. Combining
the three inequalities we get that

max(S1 + S2 + S3) < −ca2 + (b+ p)a3,

which is strictly negative for a < c
b+p . Thus, for any sufficiently small a,

there exists a sequence of roots θn = θn(a) to the minimum S-divergence
estimating equation such that P (||θn − θg||2 < a) converges to one, where
||.||2 denotes the L2−norm.

It remains to show that we can determine such a sequence independent of
a. For let θ∗n be the root which is closes to θg. This exists because the limit
of a sequence of roots is again a root by the continuity of the S-divergence.
This completes the proof of the consistency part.

Proof of the asymptotic Normality. For the Asymptotic nor-
mality, we expand

∑
x

K(δn(x))f
1+α
θ (x)uθ(x)
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in Taylor series about θ = θg to get

∑
x

K(δn(x))f
1+α
θ (x)uθ(x)

=
∑
x

K(δgn(x))f
1+α
θg (x)uθg (x)

+
∑
k

(θk − θgk)∇k

(∑
x

K(δn(x))f
1+α
θ (x)uθ(x)

)
|θ=θg

+
1

2

∑
k,l

(θk − θgk)(θl − θgl )∇kl

(∑
x

K(δn(x))f
1+α
θ (x)uθ(x)

)
|θ=θ′ ,

(33)

where, θ′ lies in between θ and θg.
Now, let θn be the solution of the minimum S-divergence estimating

equation, which can be assumed to be consistent by the previous part. Re-
place θ by θn in above (33) so that the LHS of the equation becomes zero
and hence we get

−√
n
∑
x

K(δgn(x))f
1+α
θg (x)uθg (x)

=
√
n
∑
k

(θnk − θgk)×
{
∇k

(∑
x

K(δn(x))f
1+α
θ (x)uθ(x)

)
|θ=θg

+
1

2

∑
l

(θnl − θgl )∇kl

(∑
x

K(δn(x))f
1+α
θ (x)uθ(x)

)
|θ=θ′

}
. (34)

Note that, the first term within the bracketed quantity in the RHS of above
(34) converges to Jg with probability tending to one, while the second brack-
eted term is an op(1) term (as proved in the proof of consistency part). Also,
by using the Lemma 4, we get that

√
n
∑
x

K(δgn(x))f
1+α
θg (x)uθg (x)

=
√
n
∑
x

[K(δgn(x))−K(δgg(x))]f
1+α
θg (x)uθg (x)

= S1n|θ=θg
D→Np(0, Vg). (35)
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Therefore, by Lehmann (1983, Lemma 4.1), it follows that
√
n(θn − θg)

has asymptotic distribution as Np(0, J
−1
g VgJ

−1
g ).

Corollary 1. When the true distribution G belongs to the model family,
i.e., G = Fθ for some θ ∈ Θ, then

√
n(θn − θ) has asymptotic distribution

as Np(0, J
−1
α VαJ

−1
α ), where

Jα = Jα(fθ)=Efθ [uθ(X)uθ(X)T fα
θ (X)]=

∫
uθ(x)u

T
θ (x)f

1+α
θ (x)dx, (36)

Vα = Vα(fθ)=Vfθ [uθ(X)fα
θ (X)]=

∫
uθ(x)u

T
θ (x)f

1+2α
θ (x)dx− ξξT , (37)

ξ = ξα(fθ)=Efθ [uθ(X)fα
θ (X)]=

∫
uθ(x)f

1+α
θ (x)dx. (38)

Note that, this asymptotic distribution is independent of the parameter λ in
the S-divergence Family.

Proof. Note that, under G = Fθ for some θ ∈ Θ, we get δgg(x) = 1 ∀x
so that K(δgg(x)) = 0 and K ′(δgg (x)) = 1. Thus the result follows from the
above theorem by noting that Jg = Jα and Vg = Vα.

Note that, the asymptotic variance of the proposed minimum S-divergence
estimator depends only on the parameter α at the model family and hence co-
incides with that of the minimum density power divergence estimator (which
corresponds to the case λ = 0) of Basu et al. (1998). Further, interestingly,
at the case α = 0, this asymptotic variance of the MSDE coincides with
the inverse of the Fisher information matrix I(θ) = E[uTθ uθ] (J0 = I(θ)
and V0 = I(θ)) irrespectively of λ as expected; note that the MSDE with
α = λ = 0 is in fact the MLE having the minimum asymptotic variance at
the model. Thus, the asymptotic relative efficiency (ARE) of the minimum
S-divergence estimators θ̂(α,λ) can be calculated by comparing its asymptotic
variance with that under the case α = λ = 0. For example, when θ ∈ R, we
can define

ARE
(
θ̂(α,λ)

)
=

J−1
0 V0J

−1
0

J−1
α VαJ

−1
α

=
I−1

J−1
α VαJ

−1
α

.

This measure is easy to calculate for the common parametric models. How-
ever, it is to be noted that the all the above asymptotic results hold under
the assumptions (SA1)–(SA7) and one should check these conditions before
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applying the proposed MSDE to any parametric model. We have verified
this conditions to hold for most common parametric models. In the following
we will present the examples of two particular models to illustrate the va-
lidity of the assumptions (SA1)–(SA7) and the usefulness of the asymptotic
results derived above.

Example 1 (Poisson Model). First let us consider the popular parametric
model of Poisson distribution with mean θ. We will verify that conditions
(SA1)–(SA7) hold for this model assuming that the true density g is also a
Poisson distribution with mean θg = θ0. Clearly, the Poisson model family
is identifiable with the open parameter space Θ = (0,∞) and it has support
χ = {0, 1, 2, 3, . . .}, the set of all non-negative integers, which is independent
of the mean parameter θ. Further, the density of the Poisson distribution is
continuous in θ and is given by

fθ(x) =
θx

x!
e−θ, x ∈ χ.

Thus, clearly (SA1)–(SA3) holds for this model family. Next, note that, in
this case, we have

∇ log fθ(x) =
x

θ
− 1, ∇2 log fθ(x) = − x

θ2
, ∇3 log fθ(x) =

2x

θ3
, x ∈ χ.

So, using the boundedness of the functions 1
zp e

−z, where p is a positive in-
teger, on the domain z ∈ (0,∞), one can easily show that the conditions
(SA5) and (SA6) hold true. Further, using the above forms, we have, for
the Poisson model,

Jα =
∞∑
x=0

(x
θ
− 1

)2 θ(1+α)x

(x!)(1+α)
e−(1+α)θ ,

which is clearly a positive real number implying (SA4) holds. Finally, to
show (SA7), note that

(
g(x)

fθ(x)

)A−1

=

(
fθ0(x)

fθ(x)

)A−1

=

(
θ0
θ

)x(A−1)

e−(A−1)(θ0−θ),

which is clearly uniformly bounded in θ ∈ (0,∞). Hence all the assumptions
(SA1)–(SA7) hold under the Poisson model.
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Now, applying the above Theorem 1, the MSDE of the Poisson parameter
θ is consistent and asymptotically normal with variance given by J−1

α VαJ
−1
α ,

where Jα is as defined above and

Vα =
∞∑
x=0

(x
θ
−1

)2 θ(1+2α)x

(x!)(1+2α)
e−(1+2α)θ−

( ∞∑
x=0

(x
θ
−1

) θ(1+α)x

(x!)(1+α)
e−(1+α)θ

)2

.

This asymptotic variance can be calculated by a simple numerical summation
and can be compared with the corresponding Fisher information matrix I(θ)
to examine the asymptotic relative efficiencies of the MSDEs. Note that, for
the Poisson model, the Fisher information matrix is given by

I(θ) =

∞∑
x=0

(x
θ
− 1

)2 θx

x!
e−θ =

1

θ
.

Table 1 presents the value of ARE for several MSDEs; note that as seen
in Corollary 1 the asymptotic variance and hence the ARE of the MSDE
is independent of the parameter λ. It can be seen from the table that the
ARE of MSDE is maximum (100 %) if α = 0; as α increases the efficiency
decreases.

Example 2 (Geometric Model). Now consider another popular paramet-
ric model family of Geometric distribution with success probability θ. Again

Table 1: The asymptotic relative efficiency of the MSDE under Poisson(θ)
and Geometric(θ) Model for different values of α and θ.
Model θ α

0 0.05 0.1 0.3 0.5 0.7 1

2 100 99.62 98.77 93.06 86.15 79.55 71.17
3 100 99.66 98.82 92.86 85.18 77.42 68.22

Poisson 5 100 99.61 98.80 92.38 84.19 76.96 66.47
10 100 99.66 98.75 92.07 83.86 76.07 65.69
15 100 99.66 98.83 92.09 83.76 75.71 65.59

0.1 100 99.10 96.78 81.93 68.42 59.24 51.06
0.2 100 99.10 96.79 82.01 68.59 59.49 51.45

Geometric 0.5 100 99.14 96.92 82.90 70.37 62.19 55.64
0.7 100 99.21 97.19 84.71 73.98 67.54 63.61
0.9 100 99.43 98.03 90.04 84.07 81.56 82.15
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we will verify conditions (SA1)–(SA7) assuming that the true density g be-
longs to the model family with parameter value θg = θ0. Clearly, the Geo-
metric family is identifiable with the open parameter space Θ = (0, 1) and
support χ = {1, 2, 3, . . .}, the set of all positive integers, which is independent
of the parameter θ. The Geometric model also has a continuous density (in
θ) given by

fθ(x) = θ(1− θ)x−1, x ∈ χ.

So, assumptions (SA1)–(SA3) holds for the Geometric model family. Also,
in this case, we have

∇ log fθ(x) =
1

θ
− x− 1

1− θ
, ∇2 log fθ(x) = − 1

θ2
− x− 1

(1− θ)2
,

∇3 log fθ(x) =
2

θ3
− 2(x− 1)

(1− θ)3
, x ∈ χ.

Thus, one can easily prove the conditions (SA5) and (SA6) hold true for this
Geometric model. Further, we get

Jα =
θ(α−1)[tα(θ)

2 − θ(θ + 2)tα(θ) + 2θ2]

(1− θ)2tα(θ)
,

where tα(θ) =
(
1− (1− θ)(1+α)

)
. Clearly, Jα is a positive real number for

all θ ∈ (0, 1) and so (SA4) holds. Finally, we have

(
g(x)

fθ(x)

)A−1

=

(
fθ0(x)

fθ(x)

)A−1

=

(
θ0
θ

)x(A−1)

,

which is clearly uniformly bounded in θ ∈ (0, 1) by C = 1. Hence all the
assumptions (SA1)–(SA7) holds under the Geometric model also.

Now, applying Theorem 1, we have that the MSDE of parameter θ is
consistent and asymptotically normal with variance J−1

α VαJ
−1
α , where

Vα =
θ(2α−1)[t2α(θ)

2 − θ(θ + 2)t2α(θ) + 2θ2]

(1− θ)2t2α(θ)
−

(
θ2α(1− (1− θ)α)2

tα(θ)4

)
.

Under the Geometric model, the Fisher information matrix I(θ) has the
simple form

I(θ) =
1

θ2(1− θ)
.

We can again compute the ARE of the MSDEs of the Geometric parame-
ter using the above expressions, which is reported in Table 1. Clearly, the
table shows that the asymptotic relative efficiency decreases as α increases.
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However, there is no significant loss in efficiency at the smaller positive val-
ues of α.

5 Real Data Examples

5.1. Drosophila Data: Poisson Model. Here we consider a chemical mu-
tagenicity experiment. These data were analyzed previously by Simpson
(1987). The details of the experimental protocol are available in Woodruff
et al. (1984). In a sex linked recessive lethal test in Drosophila (fruit flies),
the experimenter exposed groups of male flies to different doses of a chemical
to be screened. Each male was then mated with unexposed females. Sam-
pling 100 daughter flies from each male (roughly), the number of daughters
carrying a recessive lethal mutation on the X chromosome was noted. The
data set consisted of the observed frequencies of males having 0, 1, 2, · · ·
recessive lethal daughters. For our purpose, we consider two specific experi-
mental runs— one on the day 28 and second on day 177. The data of the first
run consist of two small outliers with observed frequencies d = (23, 3, 1, 1)
at x = (0, 1, 3, 4) and that of second run consists of observed frequencies
d = (23, 7, 3, 1) at x = (0, 1, 2, 91) with a large outlier at 91.

Poisson models are fitted to the data for this experimental runs by esti-
mating the Poisson parameter using minimum S-divergence estimation for
several values of α and λ. A quick look at the observed frequencies for the ex-
perimental run reveals that there is an exceptionally large count – where one
male is reported to have produced 91 daughters with the recessive lethal mu-
tation. We estimate the Poisson parameter from this data with the outlying
observation and without that outlying observation. The difference in these
two estimates gives an indication of the robust behavior (or lack thereof)
of different Minimum S-divergence estimators. Our findings are reported in
Tables 2, 3, 4 and 5.

The values of the minimum S-divergence estimators given in these tables
clearly demonstrate their robustness with respect to the outlying value for
all α ∈ [0, 1] if λ < 0. For λ = 0 the minimum S-divergence estimators
are also robust for large values of α, but smaller values of α are highly
non-robust (note that α = 0 and λ = 0 gives the MLE). For λ > 0 the
MSDEs corresponding to small values of α close to zero are highly sensitive
to the outlier; this sensitivity decreases with α, and eventually the outlier has
negligible effect on the estimator when α is very close to 1. The robustness
of the estimators decrease sharply with increasing λ except when α = 1; note
that this particular case with α = 1 gives the L2 divergence irrespective of
the value of λ which is highly robust but inefficient.
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Table 2: The estimate of the poisson parameter for different values of α and
λ for drosophila data without outlier: first experimental run.
λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 – 0.08 0.11 0.12 0.12 0.12 0.13 0.13
−0.7 0.09 0.10 0.12 0.12 0.12 0.13 0.13 0.13
−0.5 0.10 0.11 0.12 0.12 0.12 0.13 0.13 0.13
−0.3 0.11 0.12 0.12 0.12 0.12 0.13 0.13 0.13
−0.1 0.11 0.12 0.12 0.12 0.13 0.13 0.13 0.13
0 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13
0.5 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13
1 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13
1.3 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13
1.5 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13
2 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13

5.2. Peritonitis Incidence Data: Geometric Model. Now we will con-
sider another interesting real data example on the incidence of peritonitis for
390 kidney patients (Basu et al., 2011, Table 2.4). Basu et al. (2011) exam-
ined this data by fitting a geometric distribution with parameter θ (success
probability) around 0.5 and observed that there are two mild to moderate
outliers at the points 10 and 12 that moderately affect the non-robust es-
timators. The effect of outliers is not so dramatic here as in the previous

Table 3: The estimate of the poisson parameter for different values of α and
λ for drosophila data with outlier: first experimental run.
λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 – 0.08 0.11 0.13 0.14 0.14 0.15 0.16
−0.7 0.10 0.11 0.13 0.14 0.14 0.15 0.16 0.16
−0.5 0.13 0.13 0.13 0.14 0.14 0.15 0.16 0.16
−0.3 0.18 0.15 0.14 0.14 0.14 0.15 0.16 0.16
−0.1 0.29 0.22 0.16 0.15 0.15 0.15 0.16 0.16
0 0.36 0.26 0.18 0.15 0.15 0.15 0.16 0.16
0.5 0.59 0.49 0.34 0.21 0.17 0.16 0.16 0.16
1 0.70 0.63 0.49 0.32 0.18 0.17 0.16 0.16
1.3 0.75 0.68 0.55 0.39 0.28 0.19 0.16 0.16
1.5 0.77 0.71 0.59 0.44 0.32 0.25 0.16 0.16
2 0.81 0.76 0.66 0.52 0.40 0.27 0.16 0.16
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Table 4: The estimate of the poisson parameter for different values of α and
λ for drosophila data without outlier: second experimental run.
λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 – 0.29 0.35 0.36 0.36 0.35 0.35 0.35
−0.7 0.34 0.35 0.36 0.36 0.36 0.36 0.35 0.35
−0.5 0.36 0.37 0.37 0.36 0.36 0.36 0.35 0.35
−0.3 0.38 0.38 0.37 0.37 0.36 0.36 0.35 0.35
−0.1 0.39 0.39 0.38 0.37 0.37 0.36 0.35 0.35
0 0.39 0.39 0.38 0.37 0.37 0.36 0.35 0.35
0.5 0.41 0.40 0.39 0.38 0.37 0.36 0.35 0.35
1 0.42 0.42 0.40 0.39 0.32 0.37 0.36 0.35
1.3 0.43 0.42 0.41 0.39 0.38 0.37 0.36 0.35
1.5 0.43 0.42 0.41 0.39 0.38 0.37 0.36 0.35
2 0.44 0.43 0.42 0.40 0.39 0.37 0.36 0.35

example due to its large sample size. Thus, this data set provides another
interesting situation to examine the performance of any robust estimator.

We will apply the proposed minimum S-divergence estimators to esti-
mate the geometric parameter for this data set — once ignoring the two
outlying observations and once considering the full data. The estimated val-
ues ae reported in Tables 6 and 7 respectively. Again, we can see from the
tables that the minimum S-divergence estimators differ significantly even in
the presence of mild outliers for all smaller values of α with λ > 0; but the

Table 5: The estimate of the poisson parameter for different values of α and
λ for drosophila data with outlier: second experimental run.
λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 – 0.30 0.35 0.36 0.36 0.36 0.36 0.36
−0.7 0.34 0.36 0.37 0.37 0.37 0.37 0.36 0.36
−0.5 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.36
−0.3 0.38 0.38 0.38 0.37 0.37 0.37 0.37 0.36
−0.1 0.39 0.39 0.38 0.38 0.37 0.37 0.37 0.36
0 3.03 0.39 0.39 0.38 0.37 0.37 0.37 0.36
0.5 31.31 30.28 25.12 0.39 0.38 0.37 0.37 0.36
1 32.20 31.84 30.79 27.08 0.99 0.38 0.37 0.36
1.3 32.40 32.15 31.48 29.71 24.93 0.38 0.37 0.36
1.5 32.50 32.29 31.76 30.48 27.78 22.54 0.37 0.36
2 33.22 32.50 32.15 31.43 30.28 26.24 0.37 0.36
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Table 6: The estimate of the geometric parameter for different values of α
and λ for peritonitis incidence data without two outliers.
λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 – 0.5392 0.5155 0.5099 0.5089 0.5088 0.5091 0.5097
−0.7 0.5257 0.5170 0.5107 0.5085 0.5082 0.5087 0.5090 0.5097
−0.5 0.5176 0.5128 0.5090 0.5079 0.5079 0.5086 0.5090 0.5097
−0.3 0.5133 0.5101 0.5078 0.5074 0.5076 0.5085 0.5089 0.5097
−0.1 0.5104 0.5082 0.5069 0.5069 0.5073 0.5084 0.5089 0.5097
0 0.5092 0.5074 0.5064 0.5067 0.5072 0.5083 0.5089 0.5097
0.5 0.5047 0.5042 0.5046 0.5057 0.5065 0.5081 0.5088 0.5097
1 0.5014 0.5018 0.5030 0.5047 0.5059 0.5079 0.5087 0.5097
1.3 0.4998 0.5005 0.5022 0.5042 0.5056 0.5078 0.5086 0.5097
1.5 0.4987 0.4996 0.5016 0.5039 0.5053 0.5077 0.5085 0.5097
2 0.4964 0.4977 0.5003 0.5031 0.5048 0.5075 0.5084 0.5097

MSDEs with λ < 0 or larger values of α with λ ≥ 0 remain more stable with
respect to the outlying observations as seen in the previous example.

6 Integration of Empirical and Asymptotic Results: Choice
of Tuning Parameters

In the last two sections we have observed the following: (a) The asymp-
totic distributions of the proposed minimum S-divergence estimators (and

Table 7: The estimate of the geometric parameter for different values of α
and λ for peritonitis incidence data with outlier.
λ α = 0 α = 0.1 α = 0.25 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

−1 – 0.5346 0.5134 0.5090 0.5084 0.5087 0.5090 0.5097
−0.7 0.5193 0.5129 0.5087 0.5077 0.5078 0.5085 0.5090 0.5097
−0.5 0.5104 0.5082 0.5068 0.5069 0.5074 0.5084 0.5089 0.5097
−0.3 0.5044 0.5046 0.5053 0.5063 0.5070 0.5083 0.5088 0.5097
−0.1 0.4990 0.5013 0.5038 0.5057 0.5066 0.5082 0.5088 0.5097
0 0.4962 0.4996 0.5031 0.5053 0.5065 0.5082 0.5088 0.5097
0.5 0.4798 0.4893 0.4986 0.5036 0.5055 0.5079 0.5087 0.5097
1 0.4609 0.4751 0.4920 0.5012 0.5044 0.5076 0.5085 0.5097
1.3 0.4503 0.4657 0.4866 0.4993 0.5035 0.5074 0.5085 0.5097
1.5 0.4439 0.4595 0.4824 0.4978 0.5029 0.5073 0.5084 0.5097
2 0.4304 0.4455 0.4708 0.4926 0.5007 0.5070 0.5083 0.5097
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hence their asymptotic relative efficiencies) are independent of the param-
eter λ; and (b) the behavior of the estimators with respect to robustness
against outliers are widely different for different combinations of α and λ,
and sometimes even vary greatly over different values of λ for fixed α. These
observations indicate that a proper discussion of the role of the two tuning
parameters are important in this context, and in this connection we record
the following points. For part of this discussion we borrow from the Ghosh
et al. (2013b) paper, which describes the robustness issues related to the
S-divergence, unlike the present paper which primarily concentrates on the
asymptotic efficiency results of the corresponding estimators.

1. The influence function of the minimum S-divergence estimators are
independent of λ. This has, in fact, been directly observed by Ghosh
et al. (2013b) who evaluated the influence function of the minimum
S-divergence estimators; see Ghosh et al. (2013b), Section 4.2.

2. Our examples clearly show, however, that the true stability of our
proposed estimators against outliers are not identical over λ for fixed
values of α. The estimators at α = 0 (or low values close to zero) are
highly influenced by the choice of the value of λ under the presence of
outliers.

3. This indicates, further, that the influence function of the S-divergence
estimators are not able to fully predict the robustness behavior of the
minimum S-divergence estimators. Ghosh et al. (2013b), have, in fact,
demonstrated that for different choices of the tuning parameters, the
second order influence function prediction can be widely different from
the first, and the discrepancy may be in either direction. We refer the
reader to Ghosh et al. for an extensive discussion of this phenomenon,
including theoretical calculations of the first and second order influence
functions, extensive simulations and detailed graphical studies.

Another issue of importance that immediately presents itself on the basis
of the above discussion is the choice of the tuning parameters which could
be the most appropriate in a particular situation, where the experimenter is
unaware of the purity of the data or about the nature of possible contami-
nations. This is clearly an issue which will require more research. However,
on the basis of our empirical findings of Section 5 and theoretical efficiencies
of Section 4 (Table 1), it would appear that low values of α (say between 0.1
and 0.25) with moderately large negative values of λ (say beteen −0.3 and
−0.5) should be the more appropriate choices.
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A further obvious application of the divergences considered in this paper
would be in the case of testing of parametric hypothesis. Some indications
of the potential of the proposed divergence in this connection has been pre-
sented in Ghosh et al. (2014), where one uses the form of the S-divergence to
quantify the discrepancy between the null distribution and the empirical dis-
tribution. A simplifying application is to use the minimum DPD estimator
in this connection in place of the actual minimum S-divergence estimator.
As the distribution of our proposed estimators in Section 4 do not depend on
λ, the test statistics proposed by Ghosh et al. (2014) have the same asymp-
totic distributions as one would get if the original minimum S-divergence
estimators were used.

The proposed S-divergence based inference has enough potential for ap-
plication in several applied field where the observed data is supposed to
contains outlying observations. One possible application of the minimum
S-divergence estimator in the context of reliability is described in Ghosh et
al. (2013a). Further works are to be done in future to examine its properties
in other applications.

7 Conclusion

The S-divergence family generates a large class of divergence measures
having several important properties. Thus, the minimum divergence estima-
tors obtained by minimizing these different members of the S-divergences
family also have several interesting properties in terms of their efficiency
and robustness. In this present paper, we have proved the asymptotic prop-
erties of the minimum S-divergence estimators under the discrete set-up.
Interestingly, we have seen that the asymptotic distributions of the mini-
mum S-divergence estimators at the model is independent of one defining
parameter λ, although their robustness depends on this parameter value.
Indeed, considering the minimum S-divergence estimators as members of a
grid constructed based on its defining parameters λ and α, we can clearly ob-
serve a triangular region of non-robust estimators corresponding to the large
λ and small α values and a region of highly robust estimators corresponding
to moderate α and large negative λ values. As a future work, we need to
prove all the properties of the minimum S-divergence estimators under the
continuous models. However, under the continuous model, we need to use
the kernel smoothing to estimate the true density g and hence proving the
asymptotic properties will inherit all the complications of the kernel estima-
tion like bandwidth selection etc. We will try to solve these issues in our
subsequent papers.
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