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Abstract

We consider the problem of estimating the sum of squared means when the
data (x1, . . . , xn) are independent values with xi ∼ N(θi, 1) and θ1, θ2 . . . are
a priori i.i.d. N(0, σ2) with σ2 known. This example has posed difficulties
for many approaches to inference. We examine the consistency properties
of several estimators derived from Bayesian considerations. We prove that a
particular Bayesian estimate (LRSE) is consistent in a wider set of circum-
stances than other Bayesian estimates like the posterior mean and mode. We
show that the LRSE is either equal to the positive part of the UMVUE or
differs from it with a relative error no greater than 2/n. We also prove a
consistency result for interval estimation and discuss checking for prior-data
conflict. While it can be argued that the choice of the N(0, σ2) prior is inap-
propriate when σ2 is chosen large to reflect noninformativity, this argument
is not applicable when σ2 is chosen to reflect knowledge about the unknowns.
As such it is important to show that there are consistent Bayesian estimation
procedures using this prior.
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1 Introduction

Let xn = (x1, . . . , xn) be n independent random variables where xi ∼
N(θi, 1). Suppose that our interest is in making inferences about τ2

n =∑n
i=1 θ2

i . This problem is well-known to lead to difficulties for various ap-
proaches to deriving inferences. The behavior of inference rules in contexts
like this provide insights into their relative strengths and weaknesses, e.g.,
see Stein (1959) for perhaps the first such use of this example.

For example, in frequentist contexts the plug-in MLE is given by ||xn||2 =∑n
i=1 x2

i and this has expectation equal to τ2
n+n and so is seriously biased for
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large n. By contrast, the UMVUE is ||xn||2 − n, but this may take negative
values and so it seems more appropriate to use the biased estimator (||xn||2−
n)+. An easy argument shows that (||xn||2 − n)+ has smaller MSE than
the UMVUE. Chow (1987) has proven that this estimator is not admissible
with respect to mean squared error. Perlman and Rasmussen (1975), Neff
and Strawderman (1976), Gelfand (1983), and Kubokawa, Robert and Saleh
(1993) have considered various classes of estimators that have smaller MSE
than the UMVUE.

If we just consider the observed data to be ||xn||2, i.e., ignore the fact
that we observe the individual components of xn, then we can derive an
MLE of τ2 based on the fact that ||xn||2 ∼ Chi-squared(n, τ2

n), where Chi-
squared(n, δ) denotes the Chi-squared distribution with n degrees of freedom
and noncentrality δ. Strictly speaking, however, this estimator is not an
MLE for the problem we are considering. Some further principle beyond
likelihood is then required to justify this estimator. Saxena and Alam (1982),
have shown that (||xn||2 −n)+ has smaller MSE than this “MLE” estimator
when using squared error loss.

In this paper we examine inferences for τ2
n in Bayesian contexts. For the

prior, we suppose that θ1, θ2 . . . are i.i.d. with a N(0, σ2) distribution. The
hyperparameter σ2 is chosen to reflect prior beliefs about the θi. We then
consider the consistency behavior of various Bayesian estimators, derived
according to some principle applied to the specified sampling model and
prior.

The prior distribution of τ2
n/σ2 is then Chi-squared(n, 0). From this we

can deduce that the posterior distribution of (1 + 1/σ2)τ2
n is Chi-squared

(n, (1 + 1/σ2)−1||xn||2). Using squared error loss, the Bayes estimate of τ2
n

is given by the mean of the posterior distribution of τ2
n and this is mn =

(1 + 1/σ2)−2||xn||2 + (1 + 1/σ2)−1n. As shown in Section 3 this estimator is
inconsistent (see Section 3 for the precise definition of consistency used here)
except in very limited circumstances. Another commonly used Bayesian
estimator is the mode of the posterior density of τ2

n which cannot be obtained
in closed form. We discuss the consistency of this estimator in Section 5 and
show that it is essentially equivalent to the posterior mean. Note that the
inconsistency of these estimators holds for every value of σ2, i.e. it does not
depend on choosing σ2 to be large to reflect diffuse beliefs about the θi. The
relatively poor performance of these Bayesian inferences has been pointed
out by others such as Efron (1973).

In Section 2 we discuss a general approach to deriving Bayesian inferences
that we refer to as relative surprise or relative belief inferences. Suppose we
have a statistical model where θ is the parameter indexing the distributions
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and we are interested in making inferences about a marginal parameter ψ =
Ψ(θ). Relative surprise inferences are based on using the relative belief ratio
RB(ψ) as a characterization of the statistical evidence that the true value of
Ψ(θ) is given by ψ. The quantity RB(ψ) measures how beliefs have changed
from a priori to a posteriori that Ψ(θ) = ψ. This leads immediately to
estimating the true value of Ψ(θ) by the value of ψ which maximizes RB(ψ)
and to a measure of the accuracy of this estimate through credible regions
of a necessary form. Furthermore, RB(ψ0) is a direct assessment of the
evidence for the hypothesis H0 : Ψ(θ) = ψ0. We have that RB(ψ0) > 1
is evidence in favor of H0 and RB(ψ0) < 1 is evidence against H0 and the
strength of this evidence is assessed via the posterior probability that the
true value of Ψ(θ) has a relative belief ratio no greater than RB(ψ0). So,
for relative surprise inferences, both estimation and hypothesis assessment
proceed from a common characterization of statistical evidence. In Section 2
we discuss various general results that have been established concerning the
properties of this approach to inference and that demonstrate its virtues
when compared to more commonly used Bayesian inferences.

The consistency properties of the posterior mean of τ2
n, the relative sur-

prise estimator of τ2
n, and the posterior mode of τ2

n are discussed in Sections 3,
4 and 5, respectively. It is shown that the relative surprise estimator of τ2

n

has superior consistency properties when compared to the other Bayesian
estimators. In Section 6 we consider the much harder problem of credible
intervals for τ2

n, and establish the consistency of relative surprise credible
intervals under some conditions.

It has been argued that the N(0, σ2) prior is a poor choice from various
points of view. For example, as just discussed, some common Bayesian esti-
mators are inconsistent except in very isolated circumstances. It is contrary
to the essential coherency of Bayesian inference, however, to rule out a proper
prior because one does not like the inferences it produces. For example, sup-
pose σ2 is chosen to represent knowledge concerning effects θ1, θ2 . . . , i.e., σ2

is not just chosen large to reflect diffuse knowledge about these quantities.
Given that we know the scale on which the xi values are being measured,
it is certainly reasonable to suppose that we have such information. In this
situation, we do not believe that it is logical to require the prior be changed,
although we acknowledge that others may have a different view on this. As
opposed to changing the prior, we can look for Bayesian inferences that pos-
sess appropriate properties. Actually, it is not our purpose to defend this
prior, but to show that it is possible with this choice to obtain a Bayesian
estimator that avoids the difficulties encountered by more standard choices.
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Perhaps the greatest objection to the use of this prior arises when we
think of choosing σ2 to be large to reflect diffuse beliefs about the means.
Intuitively it might seem that choosing σ2 very large is a sensible approach
in such a context. When σ2 → ∞, however, the posterior mean converges
to ||xn||2 + n and this estimator is also inconsistent. This is also the formal
Bayes estimate when we use an improper flat prior on each θi, see de Waal
(1974). Accordingly, different noninformative priors have been considered
for this problem. In particular, Berger, Philippe and Robert (1998) use the
reference prior approach of Berger and Bernardo (1992) and derive the Bayes
estimate under squared error loss in terms of the confluent hypergeometric
function. Although no proof is provided, it seems likely that this estimator
is consistent. Also, one could place the noninformative improper prior (1 +
σ2)−1 on σ2 which leads to the Bayes estimator, under squared error loss,
given by ||xn||2 −2n+2n/||xn|| and this is consistent under weak conditions.
These solutions are definitely appealing, but require noninformative priors
and do not resolve the issue of obtaining an appropriate Bayesian estimator
when σ2 is chosen to reflect knowledge about the θi values so that we have
an informative, proper prior.

It is also possible to compare the frequency properties of inferences ob-
tained by different priors. The inferences obtained by using various improper
priors can be shown to have superior frequency properties when compared
with those inferences obtained via the N(0, σ2) prior with σ2 large. So the
N(0, σ2) prior is a poor choice when our goal is good frequentist properties.
We emphasize that we are not advocating the N(0, σ2) prior with σ2 large as
a representative of noninformativity, but we believe it is a perfectly sensible
choice when σ2 is chosen informatively as then uniform frequency properties
are not relevant.

From a practical viewpoint, the problem discussed here is somewhat ar-
tificial. In spite of this, it has been considered by many authors as a kind of
test case for various approaches to inference. Our results for this problem
based on relative beliefs, together with the general results for relative be-
liefs discussed in Section 2, demonstrate that these inferences have distinct
advantages for proper Bayesian inference.

2 Relative Surprise Inferences

In Evans (1997) the relative surprise approach to deriving inferences
was introduced. Suppose the full model has parameter space Θ and we
are interested in making inferences about a marginal parameter ψ = Ψ(θ)
where Ψ : Θ → Υ. Denote the prior measure on Θ by Π and the posterior
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measure after observing data x, by Π (· | x). Further, let πΨ and πΨ (· | x)
denote the prior and posterior densities of ψ with respect to some support
measure. Then the relative belief ratio of a value ψ is given by RB(ψ) =
πΨ (ψ | x) /πΨ(ψ). This ratio measures the change in belief in the value
ψ being the true value of Ψ(θ) from a priori to a posteriori and so we
take RB(ψ) as the evidence that ψ is the true value of Ψ(θ). As discussed
in Evans, Guttman and Swartz (2006), this ratio can be seen to be the
limiting value of the relative belief ratio ΠΨ (B | x) /ΠΨ(B) for an appropriate
sequence of sets B ↓ {ψ} as ΠΨ (· | x) is absolutely continuous with respect
to the prior ΠΨ. Also, whenever ΠΨ({ψ}) = 0, as in the problem considered
in this paper, then RB(ψ) is the limiting value of the sequence of Bayes
factors in favor of B as B ↓ {ψ}.

Notice that the interpretation of RB(ψ) as the evidence that ψ is the
true value, imposes a necessary total ordering on the possible values for ψ.
For ψ1 is preferred to ψ2 whenever RB(ψ1) ≥ RB(ψ2) as the observed data
have lead to an increase in belief for ψ1 at least as large as that for ψ2. As
we now discuss, this total ordering determines the inferences.

The best estimate of Ψ(θ) is the value of ψ for which the evidence is great-
est, called the least relative surprise estimator (LRSE), namely, ψLRSE(x) =
arg sup RB(ψ). A γ-credible region for Ψ(θ) must take the form Cγ(x) =
{ψ : RB(ψ) ≥ cγ(x)} where cγ(x) = inf{k : ΠΨ (RB(ψ) > k | T (x)) ≤ γ} as,
if RB(ψ1) ≥ RB(ψ2) and ψ2 ∈ Cγ(x), then we must have ψ1 ∈ Cγ(x). Note
that Cγ1(x) ⊂ Cγ2(x) when γ1 ≤ γ2 and ψLRSE(x) ∈ Cγ(x) for each γ that
leads to a nonempty set. The size of Cγ(x), for suitably chosen γ, is then
a measure of the accuracy of ψLRSE(x) where the interpretation of size is
application dependent.

To assess a hypothesis H0 : Ψ(θ) = ψ0, the value RB(ψ0) gives the
evidence as to whether H0 is true or false. For RB(ψ0) > 1 means that
the probability of ψ0 has increased by the factor RB(ψ0) from a priori to a
posteriori so we have evidence in favor of H0 and the larger RB(ψ0) is, the
more evidence we have in favor of H0. If RB(ψ0) < 1, then the probability of
ψ0 has decreased by the factor RB(ψ0) from a priori to a posteriori, we have
evidence against H0 and the smaller RB(ψ0) is, the more evidence we have
against H0. Just stating RB(ψ0) as evidence, however, is only part of the
story as it is not immediately clear, for example, exactly how much evidence
in favor of H0 a value such as RB(ψ0) = 20 is. To assess the strength of the
evidence we compute the observed relative surprise (ORS ) at ψ0, namely,
ΠΨ (RB(ψ) ≤ RB(ψ0) | x) which is the posterior probability that the true
value of Ψ(θ) has a relative belief ratio no larger than the hypothesized
value. If RB(ψ0) < 1, so we have evidence against H0, and the ORS is
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small, then we have strong evidence against H0 because there is a large
posterior probability that the true value has a larger relative belief ratio,
while a large value of the ORS would indicate only weak evidence against
H0. If RB(ψ0) > 1, so we have evidence in favor of H0, and the ORS is
small, then we have only weak evidence in favor H0 because there is a large
posterior probability that the true value has a larger relative belief ratio,
while a large value of the ORS would indicate strong evidence in favor of H0.
Notice that the interpretation of the ORS is dependent on whether RB(ψ0)
is smaller or greater than 1 and it is not to be interpreted like a p-value. If
we consider the ORS as a measure of the accuracy of the evidence, then it is
interesting to note that Cγ(x) = {ψ0 : ΠΨ (RB(ψ) ≤ RB(ψ0) | x) ≥ 1 − γ}
and ΠΨ (RB(ψ) ≤ RB(ψ0) | x) = 1 − inf{γ : ψ0 ∈ Cγ(x)} so the measures
of accuracy in estimation and hypothesis assessment are intimately related.
Note also that ψLRSE(x) minimizes the ORS which leads to the name of this
estimator.

It is the properties of RB(ψ0) that determine whether or not it is suitable
as a measure of statistical evidence. For example, in contrast to Bayesian
inferences like the mean, mode or hpd regions, relative surprise inferences
are invariant under smooth transformations. This follows from the fact
that, if λ = Λ(ψ) for some 1–1, smooth function Λ, then RB(λ) = RB(ψ)
as Jacobians cancel in the numerator and denominator. So in particular,
λLRSE(x) = Λ(ψLRSE(x)). It is proven in Evans et al. (2006) that Cγ(x)
has an optimality property among all γ-credible regions, namely, ΠΨ(C) is
minimized among all sets having ΠΨ (C | x) ≥ γ by taking C = Cγ(x). In
Evans and Shakhatreh (2008) Cγ(x) is shown to minimize the prior proba-
bility of covering a false value and is unbiased in the sense that this prob-
ability is bounded above by the prior probability of containing the true
value. Furthermore, among all sets B satisfying ΠΨ (B | x) = ΠΨ (Cγ(x) | x),
the set Cγ(x) maximizes both the relative belief ratio and the Bayes fac-
tor and this maximized value is greater than 1. In Baskurt and Evans
(2013) a full discussion of the relationship of relative belief ratios to Bayes
factors is provided, and various a priori and a posteriori inequalities in-
volving RB(ψ0) are established. For example, it is always the case that
Π (RB(Ψ(θ)) ≤ RB(ψ0) | x) ≤ RB(ψ0) so that a small value of RB(ψ0) is
always strong evidence against H0.

In Evans and Jang (2011c) it is proved that the LRSE has optimal
decision-theoretic properties. When the number of possible values for ψ
is finite and the loss function is given by L(θ, ψ) = I(Ψ(θ) 
= ψ)/πΨ (Ψ(θ)),
where I(Ψ(θ) 
= ψ) is the indicator function for the event Ψ(θ) 
= ψ, then
ψLRSE(x) is a Bayes rule. This loss function penalizes incorrect values of
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ψ more severely when the true value of Ψ(θ) is in the tails of the prior.
When the number of possible values for ψ is infinite, the loss function needs
to be truncated to ensure a bounded loss and then ψLRSE(x) is a limit of
Bayes rules as the truncation parameter goes to infinity; see Evans and Jang
(2011c) for details. So the LRSE also has a decision-theoretic justification
and thus is well-supported as an estimator both intuitively and theoretically.
Given this, it is perhaps not surprising that the LRSE performs well in the
problem under discussion in this paper.

The function πΨ (ψ | x) /πΨ(ψ) is sometimes referred to in the literature
as an integrated likelihood as it arises as the expectation of the likelihood
under the conditional prior of θ given Ψ(θ) = ψ. It is worth noting, however,
that, in contrast to an integrated likelihood, RB(ψ) cannot be multiplied by
a positive constant and retain its interpretation as a relative belief ratio.
Berger, Liseo and Wolpert (1999) describe various advantages of using inte-
grated likelihoods as opposed to other kinds of likelihoods in the context of
improper priors. That the integrated likelihood also arises via the relative
surprise principle provides further support for this form of the likelihood.

It is also worth noting that the estimator ψLRSE(x) is completely robust
to the choice of the marginal prior πΨ. This robustness can be viewed as
an additional strength of this estimator. The measure of accuracy of this
estimate, as expressed by the size of the region Cγ(x) for some γ, however, is
dependent on πΨ. It is possible that there is a conflict between πΨ and the
likelihood. This is referred to as prior-data conflict and determining whether
or not this exists can be assessed using the methods discussed in Evans
and Moshonov (2006), see Section 7. In situations where prior-data conflict
exists, we do not advocate the use of inferences based on the prior. Methods
for modifying a prior to avoid prior-data conflict, when it has been detected,
are presented in Evans and Jang (2011b). When no prior-data conflict exists
then, although the likelihood and prior may be saying somewhat different
things about the true value of ψ, these assertions are at least not in conflict.

3 The Posterior Mean

The parameter τ2
n is changing with n so we use the following definition

of consistency here.

Definition 3.1. A sequence of estimators tn(xn) is consistent for τ2
n if

t(xn)/n − τ2
n/n

P→ 0 as n → ∞.

Note that E(x2
i ) = 1 + θ2

i and V ar(x2
i ) = 2 + 4θ2

i . Now let P =
∏∞

i=1 Pθi for
some sequence θ1, θ2, . . . . Then P

(∣
∣||xn||2/n−1−τ2

n/n
∣
∣ > ε

)
≤ε−2E(||xn||2/

n − 1 − τ2
n/n)2 = 2/nε2 +

(
4/nε2

) (
τ2
n/n

)
by Markov’s inequality and so
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convergence of ||xn||2/n is guaranteed when τ2
n = o(n2). This is a fairly

weak restriction on the sequence θ1, θ2, . . . , e.g., it is satisfied whenever
the sequence is bounded, and seems necessary to talk meaningfully about
consistency.

The following proposition summarizes the behavior of several estimators
and is proved in the Appendix.

Proposition 3.1. When τ2
n = o(n2) we have that

(i) the plug-in MLE ||xn||2 is inconsistent,

(ii) the UMVUE ||xn||2 − n and (||xn||2 − n)+ are consistent,

(iii) the posterior mean mn of τ2
n is consistent if and only if τ2

n/n → σ2 and

(iv) the limiting posterior mean as σ2 → ∞ is inconsistent.

The consistency of the posterior mean when limn→∞ τ2
n/n = σ2 is in some

ways very natural. For the prior we are using forces this convergence on the
sequence θ1, θ2, . . . by the SLLN. Still it seems like a very special situation.

4 The LRSE

To obtain the LRSE we need to find τ2 maximizing the ratio π(τ2| x)/
π(τ2). Note that it is immediate that the LRSE is always nonnegative. The
prior density of τ2

n is π(τ2) ∝ (τ2)(n/2)−1 exp{−τ2/2σ2}, and the posterior
density is

π(τ2 | xn) ∝ (τ2)(n/2)−1e{−(1+1/σ2)τ2/2}
∞∑

k=0

(
||xn||2τ2/4

)k
/(k!Γ ((n/2) + k)) .

The ratio of the posterior to prior density is then

π(τ2 | xn)/π(τ2) ∝ e−τ2/2
∞∑

k=0

(
||xn||2τ2/4

)k
/ (k!Γ ((n/2) + k))

and, since this is a smooth function of τ2 ≥ 0, the maximum must be either
at 0 or is a critical point of g(τ2) = ln π(τ2| xn)/π(τ2) where

dg(τ2)

dτ2
= −1/2 +

( ∞∑

k=0

k

(
||xn||2/4

)k
(τ2)k−1

k!Γ ((n/2) + k)

)

/
∞∑

k=0

(
||xn||2τ2/4

)k

k!Γ ((n/2) + k)

= −(1/2) + (1/2)(||xn||/τ)In/2 (||xn||τ) I−1
(n/2)−1 (||xn||τ)

= −(1/2) + (1/2)Hn(τ2) (4.1)
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and Ip(x) = (x/2)p ∑∞
k=0

(
x2/4

)k
/ (k!Γ (p + k + 1)) is the modified Bessel

function of order p. Setting (4.1) equal to 0, we have that, when the LRSE
is not 0, then it is a solution of Hn(τ2) = 1. The following result establishes
the existence and uniqueness of the LRSE and is proved in the Appendix.

Proposition 4.1. If ||xn||2/n ≥ 1, the LRSE is the unique solution of
Hn(τ2) = 1 and, if ||xn||2/n < 1, the LRSE equals 0.

Now suppose that τ2
n/n is bounded away from 0 in the sense that, for

given ε > 0 there exists nε such that for all n ≥ nε we have that τ2
n/n ≥

ε. Then, for all n ≥ nε, we have that P (||xn||2/n ≥ 1) ≥ P (||xn||2/n ≥
1 + τ2

n/n − ε) ≥ P (
∣
∣||xn||2/n − 1 − τ2

n/n
∣
∣ ≤ ε) and, when τ2

n = o(n2), the
probability on the right goes to 1 by Proposition 3.1. So in this case we
have that with high probability the LRSE is given by the unique solution to
Hn(τ2) = 1.

The following results are proved in the Appendix.

Proposition 4.2. When τ2
n = o(n2) and τ2

n/n is bounded away from 0,
the LRSE is consistent.

So the LRSE is consistent under very general circumstances.

Corollary 4.1. We have that, whenever ||xn||2 − n < 0, then τ̂2
n =

(||xn||2−n)+ = 0 and, whenever τ̂2
n > 0, then 1 ≤ τ̂2

n/(||xn||2−n)+ ≤ 1+2/n.

Therefore, when τ̂2
n = 0 the absolute difference between the LRSE and

(||xn||2 − n)+ is 0, and when τ̂2
n 
= 0 the absolute relative difference be-

tween the LRSE and (||xn||2 − n)+ is bounded above by 2/n and so these
estimators are similar.

We note that when τ2
n/n converges to any nonzero value, then τ2

n = o(n2)
and τ2

n/n is bounded away from 0, so τ̂2
n is consistent by Proposition 4.2.

Therefore the LRSE is consistent in much greater generality than the pos-
terior mean which is only consistent when τ2

n/n → σ2. It is also of interest
to see what happens when τ2

n/n → 0. The following result, proved in the
Appendix, drops the “bounded away from 0” requirement in Proposition 4.2.

Proposition 4.3. When τ2
n/n → 0, the LRSE is consistent.

The condition τ2
n/n → 0 means that the effects θi become vanishingly small

as i grows, e.g., whenever τ2
n converges. This situation is relevant when we

can conceive of only a finite number of effects being material, although we
do not know which these are.

In this example the LRSE does not depend on the hyperparameter σ2.
This is not a general characteristic of relative surprise inferences for marginal
parameters, namely, there is generally a dependence on hyperparameters. In
fact, there really is a dependence here, because we would naturally quote
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Cγ(xn) together with γ, perhaps for several γ, as our quantification of the
accuracy of the LRSE and, for a prescribed γ, the interval Cγ(xn) does
depend on σ2 as we show in Section 6.

5 The Posterior Mode

Letting f(τ2) = ln π(τ2 | xn) we have that

f(τ2) = C + (n/2 − 1) ln τ2 −
(
1 + 1/σ2

)
(τ2/2) + ln

∞∑

k=0

(
||xn||2τ2/4

)k

k!Γ (n/2 + k)
.

If n > 2, then π(0 | xn) = 0 and so the mode is a critical point of f . Using
the definition of Hn(τ2) from (4.1), we have 2df(τ2)/dτ2 = (n − 2) /τ2 −(
1 + 1/σ2

)
+ Hn(τ2). Putting Gn(τ2) = (n − 2) /τ2 + Hn(τ2) we have that

the mode is a solution to Gn(τ2) =
(
1 + 1/σ2

)
. In the Appendix we show

that there is always a unique solution to Gn(τ2) =
(
1 + 1/σ2

)
for τ2 ∈ [0, ∞).

This solution is the posterior mode τ̃2
n.

In the Appendix we prove the following concerning the consistency of τ̃2
n.

Proposition 5.1. When τ2
n = o(n2) we have that τ̃2

n is consistent if and
only if the posterior mean is consistent. Further m(n)/n − τ̃2

n/n → 0 in
probability.

Proposition 3.1 establishes the inconsistency of the posterior mean except in
very limited circumstances and so, by Proposition 5.1, this comment applies
to the posterior mode as well. As the posterior is a right-skewed distribution
it seems likely that the posterior median lies between the mode and mean
and, if this is the case, then Proposition 5.1 applies to this estimator as well.

6 Credible Intervals

For the consistency of interval estimates we use the following definition.

Definition 6.1. Intervals (an, bn) and (cn, dn) are asymptotically equiva-
lent if limn→∞(an−cn) = 0, limn→∞(bn−dn) = 0 and limn→∞(bn−an)/(dn−
cn) = 1. A credible interval for a parameter is said to be a consistent interval
for the parameter if it is asymptotically equivalent to an interval that always
contains the true value of the parameter.

For example, in a sample of n from a N(μ, 1) distribution with μ unknown,
an interval of the form x̄ ± z∗/

√
n with z∗ a constant, is asymptotically

equivalent to μ ± z∗/
√

n, and so x̄ ± z∗/
√

n is consistent. Such consistency
seems like a natural requirement of any interval estimator. Note that consis-
tency results for interval estimates don’t say anything about their long-run



Consistency of Bayesian estimates 35

relative frequency of containing the true value of the parameter, although
we would expect inconsistent intervals to do rather poorly in this regard.

If Xn | δ2
n ∼ Chi-squared(n, δ2

n) and δ2
n/n

P→ δ2
∗ , then it is easy to show

that (Xn − E(Xn))/(V ar(Xn))1/2 D→ N(0, 1). So if τ2
n/n → τ2

∗ then ||xn||2/
n

P→ 1 + τ2
∗ and so (τ2 − E(τ2 | xn))/(V ar(τ2 | xn))1/2 | xn D→ N (0, 1) where

E(τ2 | xn) = (1 + 1/σ2)−1
{
n + (1 + 1/σ2)−1||xn||2

}
, and V ar(τ2 | xn) =

2(1 + 1/σ2)−2{n + 2(1 + 1/σ2)−1||xn||2}. From this we get an approxi-
mate γ-credible interval for τ2

n/n, obtained by discarding (1 − γ)/2 of the
probability in each tail of the posterior, given by

{
(1 + 1/σ2)−1 + (1 + 1/σ2)−2(||xn||2/n)

}

±
√

2(1 + 1/σ2)−2 + 4(1 + 1/σ2)−3(||xn||2/n)(z(1+γ)/2/
√

n) (6.1)

where z(1+γ)/2 is the (1 + γ)/2-quantile of the N(0, 1) distribution.
Now consider the interval given by

{
(1 + 1/σ2)−1 + (1 + 1/σ2)−2(1 + τ2

∗ )
}

±
√

2(1 + 1/σ2)−2 + 4(1 + 1/σ2)−3(1 + τ2
∗ )(z(1+γ)/2/

√
n). (6.2)

Comparing (6.1) and (6.2) we see that the differences in the respective end-
points converge to 0, and the ratio of their lengths goes to 1, in probability
as n → ∞. So (6.1) and (6.2) are asymptotically equivalent. Now con-
sider whether or not (6.2) contains τ2

n/n ≈ τ2
∗ . The asymptotic error in the

posterior mean is given by

τ2
∗ −

{
(1 + 1/σ2)−1 + (1 + 1/σ2)−2(1 + τ2

∗ )
}

=
(
1 + 1/σ2

)−2 (
2 + 1/σ2

) (
τ2
∗ /σ2 − 1

)
. (6.3)

Note that τ2
∗ is in (6.2) if and only if 0 is in the interval obtained by adding

(6.3) to each point in (6.2). From this we see that the true value τ2
∗ is always

in (6.2) when τ2
∗ = σ2. Now suppose that τ2

∗ 
= σ2. If τ2
∗ /σ2 > 1 then the sum

of (6.3) and the left-hand endpoint of (6.2) is greater than 0 for all n large
enough. If τ2

∗ /σ2 < 1 then the sum of (6.3) and the right-hand endpoint of
(6.2) is less than 0 for all n large enough. Therefore, when τ2

∗ 
= σ2, (6.2) will
never contain τ2

∗ for all n large enough. These conclusions are independent
of σ2. Also τ2

∗ is never in the interval for all n when σ2 → ∞ and so (6.1) is
inconsistent.

Due to difficulties in approximating the noncentral Chi-squared density
function, we have not been able to obtain useful approximate forms for hpd
and relative surprise intervals in general. We note, however, that the results
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of Section 5 suggest that hpd intervals will have the very poor coverage prop-
erties of the credible intervals constructed above. Further, the consistency
of the LRSE, and the fact that the LRSE is always in any relative surprise
interval, suggest the coverage properties of relative surprise intervals will be
much improved. This is confirmed by Proposition 6.1 and the simulation
results reported in Evans (1997).

The following result establishes the consistency of relative surprise inter-
vals under the condition that τ2

n/n → 0 and is proved in the Appendix.

Proposition 6.1. When τ2
n = o(n) the γ-relative surprise interval for

τ2
n/n is asymptotically equivalent to the interval with left-hand endpoint equal

to 0 and right-hand endpoint equal to r∗
n =

{
(1 + 1/σ2)−1 + (1 + 1/σ2)−2)

}
+

(2(1 + 1/σ2)−2 + 4(1 + 1/σ2)−3)1/2(zγ/
√

n) and so is consistent.

Notice that the interval [0, r∗
n] → [0, (1 + 1/σ2)−1 + (1 + 1/σ2)−2] as n → ∞

and so the γ-relative surprise interval for τ2
n/n does not shrink to {0} as we

increase n. When σ2 → ∞ this interval is [0, 2]. So under a diffuse prior
there is a level of uncertainty about the true value of τ2

n/n that cannot be
avoided no matter how large n is. To see that this makes sense, suppose that
τ2
n converges. Then, even if we were to exactly observe n values θi, we would

still have no idea as to whether or not τ2
n is close to

∑∞
i=1 θ2

i . So even with
no error in the observations, there is a fundamental uncertainty that cannot
be decreased by increasing n. When σ2 → 0, then [0, r∗

n] → {0} for all n.
So if we have very precise information that the θi are close to 0, then this
uncertainty is largely avoided. Effectively the prior controls the precision of
inferences more than n.

7 Checking for Prior-Data Conflict

We have shown that a reasonable Bayesian estimator of τ2
n can be ob-

tained when using a N(0, σ2) prior. Still we might ask if this prior, with a
specific value chosen for σ2, makes sense in a particular problem. It is argued
in Evans and Moshonov (2006) that an important aspect of a Bayesian anal-
ysis is to check for prior-data conflict and that this is something we do after
checking that the sampling model is consistent with the data. The sampling
model is consistent with the data provided there is at least one distribution
in the sampling model for which the observed data is not surprising. Given
that the θi are arbitrary, it is clear that, in this case, the sampling model is
always consistent with the data and so we only check for prior-data conflict.

A prior-data conflict exists when the prior places its mass primarily on
parameter values for which the observed data is surprising. As discussed
in Evans and Moshonov (2006), checking for prior-data conflict then entails
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comparing the observed value of a minimal sufficient statistic T (xn) with its
prior predictive distribution MT to see if it is a reasonable value. This com-
parison leads to computing the tail probability MT (mT (t) ≤ mT (T (xn)))
where mT is the prior predictive density and t ∼ MT . It is proved in
Evans and Jang (2011a) that this tail probability is assessing whether or
not the true value of the parameter is in the tails of the prior. In this case,
T (xn) = xn and MT is the Nn(0, (1 + σ2)I) distribution. So MT (mT (t) ≤
mT (T (xn))) = P (X2 > (1 + σ2)−1||xn||2) where X2 ∼ Chi-squared(n, 0) as
the prior predictive distribution of (1 + σ2)−1||xn||2 is Chi-squared(n, 0).

Now suppose that we have evidence of a prior-data conflict. Clearly
this is caused by the selected value of σ2 being too small. As σ2 → ∞
then P (X2 > (1 + σ2)−1||xn||2) → 1. As discussed in Evans and Moshonov
(2006), such a sequence of priors satisfies at least a necessary requirement
for a sequence of priors to be noninformative, namely, that we never find any
evidence of prior-data conflict no matter what data is obtained. A reasonable
approach then, when we have evidence of a prior-data conflict existing, is to
choose σ2 larger so that the conflict is avoided. This process of modifying
the prior when a conflict is encountered is discussed further in Evans and
Jang (2011b). In general, there is no reason to rule out using a N(0, σ2)
prior in informative settings.

8 Conclusions

Discussion of the estimation problem considered in this paper has focused
on the informative case. Various arguments can be advanced for noninfor-
mative priors that avoid the poor behavior, whether frequentist or Bayesian,
of the standard Bayesian estimators when using a diffuse N(0, σ2) prior. The
problem of inconsistency still remains, however, when σ2 is chosen informa-
tively. So we need an approach that leads to Bayesian inference procedures
that have appropriate properties without requiring the incoherent behavior
of modifying a proper prior. This paper has shown that the LRSE has bet-
ter consistency properties than other Bayesian estimators in this challenging
problem. Of course, one could choose to ignore this and require instead
that the estimator have optimal properties with respect to some specific loss
function such as quadratic loss. As described in Evans and Jang (2011c),
however, the LRSE also has optimal decision-theoretic properties.
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Appendix

Proof of Proposition 3.1. By the argument preceding the statement
of Proposition 3.1 we have that

||xn||2/n − τ2
n/n = 1/n

n∑

i=1

(
x2

i − θ2
i

) P→ 1 (A.1)

and so the plug-in MLE is inconsistent. It is then immediate that ||x||2 − n
is consistent and since

∣
∣(||xn||2 − n)+/n − τ2

n/n
∣
∣ ≤

∣
∣(||xn||2 − n)/n − τ2

n/n
∣
∣

this implies that (||xn||2 − n)+ is consistent. Further,

mn/n − τ2
n/n = (1 + 1/σ2)−2(||xn||2/n) + (1 + 1/σ2)−1 − τ2

n/n

= (1 + 1/σ2)−2(||xn||2/n − 1 − τ2
n/n)

+ (1 + 1/σ2)−1+(1 + 1/σ2)−2−(1 − (1 + 1/σ2)−2)(τ2
n/n)

and so, from (A.1), mn is consistent if and only if

lim
n→∞

τ2
n/n =

(1 + 1/σ2)−2 + (1 + 1/σ2)−1

{1 − (1 + 1/σ2)−2} = σ2.

As σ2 → ∞ the limiting posterior mean is ||x||2/n + 1 and this is inconsistent.

Proof of Proposition 4.1. We need the following properties of the
modified Bessel function Ip.

Lemma A.1. We have that for x ≥ 0

(i) xIp(x)/Ip−1(x) is strictly increasing in x,

(ii) Ip(x)/xIp−1(x) is strictly decreasing in x,

(iii) Ip(x)/Ip−1(x) ≥ Ip+1(x)/Ip(x),

(iv) Ip+1(x)/Ip−1(x) ≤ I2
p (x)/I2

p−1(x),

(v) Ip(x) ∼ ex/
√

2π x as x → ∞,

(vi) Ip−1(x) = (2p/x)Ip(x) + Ip+1(x).

Proof. Parts (i), (ii) and (iii) are stated in Saxena and Alam (1982)
without proof. Part (i) follows as we have that Ip−1(x) = (x/2)p−1

∑∞
k=0 ak(x

2/4)k so (xIp(x)/Ip−1(x))′ =2(
∑∞

k=0 kak(x
2/4)k/

∑∞
k=0 ak(x

2/4)k)′ =
(4/x)n(x)/d(x) with n(x) = {

∑∞
k=0 k2ak(x

2/4)k
∑∞

k=0 ak(x
2/4)k − (

∑∞
k=0

kak(x
2/4)k)2} and d(x) = (

∑∞
k=0 ak(x

2/4)k)2. Then, cm =
∑m

k=0 k(2k −
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m)akam−k is the coefficient of
(
x2/4

)m
in n(x). Using results in Kemp and

Kemp (1956) we see that the coefficients akam−k define a Type I A(i) gen-
eralized hypergeometric distribution(a, b, n) where a = m, b = 2(p − 1) + m
and n = p − 1 + m. If we denote such a random variable by Xm we see that
c0 = 0 and, for m ≥ 1, cm is a positive constant times 2E(X2

m)−mE(Xm) =
2V ar(Xm) + E(Xm)(2E(Xm) − m) = 2V ar(Xm) > 0 since, by Kemp and
Kemp (1956), E(Xm) = na/(a + b) = (p − 1 + m)m/2(p − 1 + m) = m/2.
This implies the result.

Note that Ip(x)/xIp−1(x) = (1/2)
∑∞

k=0(p + k)−1ak(x
2/4)k/

∑∞
k=0

ak(x
2/4)k). The derivative of this is (2/x)n∗(x)/d(x) where, after collecting

terms in n∗(x), the coefficient of
(
x2/4

)m
is −m

∑m
k=0(p+k)−1akam−k which

implies part (ii).
We have that Ip(x)/Ip−1(x) = (2/x)

∑∞
k=0 kak(x

2/4)k/
∑∞

k=0 ak(x
2/4)k

so
Ip+1(x)/Ip(x)

Ip(x)/Ip−1(x)
=

∑∞
m=0(

∑m
k=0 k(k − 1)akam−k)(x

2/4)m

∑∞
m=0(

∑m
k=0 k(m − k)akam−k)(x2/4)m

.

Now compare the coefficients of (x2/4)m in the numerator and denominator.
When m = 0 they are the same. When m ≥ 1 then the results in Kemp and
Kemp (1956) indicate that the numerator coefficient is a positive constant
c times V ar(Xm) + E(Xm)(E(Xm) − 1) and the denominator coefficient
is E(Xm)(m − E(Xm)) − V ar(Xm) where E(Xm) = m/2 and V ar(Xm) =
(m/4)(2(p−1)+m)/(2(p−1+m)−1). Then comparing these coefficients we
see that they are equal when m = 1 and otherwise the numerator coefficient
is strictly smaller than the denominator coefficient. This implies the result.

Part (iv) follows from part (iii) since Ip+1/Ip−1 = (Ip+1/Ip) / (Ip−1/Ip) ≤
(Ip/Ip−1) / (Ip−1/Ip). Parts (v) and (vi) are standard results that are found
in many references on Bessel functions, e.g., Abramowitz and Stegun (1972).

We also need the following result.

Lemma A.2. For Hn(τ2) = (||xn||/τ)In/2 (||xn||τ) /I(n/2)−1 (||xn||τ) we
have that

(i) Hn(τ2) is a strictly decreasing function for τ2 ≥ 0,

(ii) limτ2→0+ Hn(τ2) = ||xn||2/n, and

(iii) limτ2→∞ Hn(τ2) = 0.

Proof. Part (i) follows from Lemma A.1(ii). Also we have that limτ2→0+

Hn(τ2) = (1/2) ||xn||2 (Γ (n/2) /Γ (n/2 + 1)) = ||xn||2/n and (ii) is



Consistency of Bayesian estimates 41

established. From Lemma A.1(v), we have that In/2 (||xn||τ) ∼ e||x|| τ/

(2π||xn||τ)1/2 as τ2 → ∞ and so limτ2→∞ Hn(τ2) = limτ2→∞ (||xn||/τ) = 0.

The proof of Proposition 4.1 then proceeds as follows. If ||xn||2/n < 1
then, by Lemma A.2, Hn(τ2) < 1. Therefore by (4.1), dg(τ2)/dτ2 < 0 for
all τ2 ≥ 0 and this implies that g is decreasing on [0, ∞) and so the LRSE is
0. If ||xn||2/n = 1 then, dg(0)/dτ2 = 0 and dg(τ2)/dτ2 < 0 on (0, ∞) and so
the LRSE equals 0 and is the unique solution to Hn(τ2) = 1. If ||xn||2/n > 1
then from Lemma A.2 there is a unique solution to Hn(τ2) = 1 and (4.1)
establishes that dg(τ2)/dτ2 > 0 to the left of this value and dg(τ2)/dτ2 < 0
to the right of this value which proves that it is the LRSE.

Proof of Proposition 4.2, Corollary 4.1 and Proposition 4.3.

Let Cn =
{
||xn||2/n ≥ 1

}
and suppose xn ∈ Cn for each n. Let τ̂2

n denote
the unique solution to Hn(τ2) = 1 for each such xn. We prove that, for
ε > 0, then limn→∞ P

(∣
∣τ̂2

n/n − τ2
n/n

∣
∣ > ε | Cn

)
= 0. Then since P (Cn) →

1, we have that P
(∣
∣τ̂2

n/n − τ2
n/n

∣
∣ ≤ ε

)
≥ P

({∣
∣τ̂2

n/n − τ2
n/n

∣
∣ ≤ ε

}
∩ Cn

)
=

P (
∣
∣τ̂2

n/n − τ2
n/n

∣
∣ ≤ ε | Cn)P (Cn) → 1 and so the consistency of the LRSE

will be established.

Assuming that xn ∈ Cn then the LRSE satisfies Hn(τ2) = 1. Multiplying
both sides of this equation by τ2 gives the equivalent equation

τ2 = ||xn||τIn/2 (||xn||τ) /I(n/2)−1 (||xn||τ) . (A.2)

Now In/2 (||xn||τ) = (||xn||τ/n){I(n/2)−1 (||xn||τ) − I(n/2)+1 (||xn||τ)} by
Lemma A.1(vi) and therefore, τ2 = (||xn||2τ2/n)

{
1 − I(n/2)+1 (||xn||τ) /

I(n/2)−1 (||xn||τ)
}
. Thus from Lemma A.1(iv), and using (A.2), we have

τ2 ≥ ||xn||2τ2

n

{

1 −
I2
n/2 (||xn||τ)

I2
(n/2)−1 (||xn||2τ2)

}

=
||xn||2τ2

n

{

1 − τ2

||xn||2
}

and so

τ̂2
n ≥ ||xn||2 − n. (A.3)

Applying Lemma A.1(vi) to the denominator in (A.2) we have

τ2 = ||xn||τ In/2 (||xn||τ) /
{
(n/||xn||τ) In/2 (||xn||τ) + I(n/2)+1 (||xn||τ)

}

= ||xn||2τ2/
{
n + ||xn||τI(n/2)+1 (||xn||τ) /In/2 (||xn||τ)

}

and rearranging this gives

||xn||τI(n/2)+1 (||xn||τ) /In/2 (||xn||τ) = ||xn||2 − n. (A.4)



42 M. Evans and M. Shakhatreh

Now applying Lemma A.1(vi) to the numerator in (A.2), apply Lemma
A.1(iii) and Lemma A.1(iv) again to obtain

τ2 = ||xn||τ
{

n + 2

||xn||τ
I(n/2)+1

I(n/2)−1
+

I(n/2)+2

I(n/2)−1

}

= ||xn||τ
{

n + 2

||xn||τ
I(n/2)+1/In/2

I(n/2)−1/In/2
+

I(n/2)+2/I(n/2)+1

I(n/2)−1/I(n/2)+1

}

≤ ||xn||τ
{

n + 2

||xn||τ
I(n/2)+1/In/2

I(n/2)−1/In/2
+

I(n/2)+1/In/2

I(n/2)−1/I(n/2)+1

}

= ||xn||τ
I(n/2)+1

In/2

{
n + 2

||xn||τ
In/2

I(n/2)−1
+

I(n/2)+1

I(n/2)−1

}

≤ ||xn||τ
I(n/2)+1

In/2

{
n + 2

||xn||τ
In/2

I(n/2)−1
+

I2
n/2

I2
(n/2)−1

}

.

On the right side of this apply (A.4) to ||xn||τI(n/2)+1/In/2 and finally (A.2)
to In/2/I(n/2)−1 to obtain τ2 ≤

(
||xn||2 − n

) {
(n + 2)/||xn||2 + τ2/||xn||2

}
.

Rearranging this inequality we conclude that τ̂2
n ≤ {||xn||2 − n} (n + 2) /n.

Combining this with (A.3) we have that, whenever Cn is true, then

(
||xn||2 − n

)
≤ τ̂2

n ≤
(
||xn||2 − n

)
(n + 2) /n. (A.5)

As P
(∣
∣||xn||2/n − 1 − τ2

n/n
∣
∣ ≤ ε

)
= P

(∣
∣||xn||2/n − 1 − τ2

n/n
∣
∣ ≤ ε | Cn

)

P (Cn), and P (Cn) → 1, then (A.1) implies that P
(∣
∣||xn||2/n − 1 − τ2

n/
n| ≤ ε | Cn) → 1. Similarly, P

(∣
∣
(
||xn||2/n

)
(n + 2) /n − (n + 2) /n − τ2

n/
n| ≤ ε | Cn) → 1 and from (A.5) we conclude that P

(∣
∣τ̂2

n/n − τ2
n/n

∣
∣ ≤ ε |

Cn) → 1. This proves Proposition 4.2.
The proof of Corollary 1 then proceeds as follows. When τ̂2

n = 0 then
either xn /∈ Cn or ||xn||2 − n = 0. In either case (||xn||2 − n)+ = 0. When
xn ∈ Cn, and τ̂2

n > 0, then (A.5) implies ||xn||2 − n > 0, and so (||xn||2 −
n)+ = ||xn||2 − n. Then (A.5) implies that 1 ≤ τ̂2

n/(||xn||2 − n)+ ≤ 1 + 2/n.

Theproof ofProposition4.3proceeds as follows. We have that ||xn||2/n
P→

1 by (A.1). If ||xn||2/n ≤ 1, then τ̂2
n = 0. Therefore, if ε > 0 and

τ̂2
n/n > ε this entails that ||xn||2/n > 1 and arguing, just as in the proof

of Proposition 4.3, we must have that (A.5) holds. Then, P
(
τ̂2
n/n > ε

)
≤

P (
(
||xn||2 − n

)
(n + 2) /n2 > ε)=P (||xn||2/n > 1+ε/(1+2/n)) ≤ P (

(
||xn||2/

n > 1 + ε/3)) → 0 as n → ∞ establishing the result.
Proof of Proposition 5.1. The following properties of Gn(τ2) =

(n − 2) /τ2 + Hn(τ2) follow immediately from Lemma A.2.
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Lemma A.3. The function Gn satisfies

(i) Gn(τ2) is a strictly decreasing function,

(ii) limτ2→0+ Gn(τ2) = ∞, and

(iii) limτ2→∞ Gn(τ2) = 0.

Note that Lemma A.3 establishes that there is always a solution to(
1 + 1/σ2

)
= Gn(τ2) for τ2 ∈ [0, ∞) and it is unique. This solution is

the posterior mode τ̃2
n.

We now proceed to the proof of Proposition 5.1. We assume n > 2
hereafter. Putting l(τ2) =

(
1 + 1/σ2

)
τ2 − (n − 2), we have that the mode

satisfies
l(τ2) = ||xn||τIn/2 (||xn||τ) /I(n/2)−1 (||xn||τ) . (A.6)

Applying Lemma A.1(vi) to the numerator in (A.6), we obtain l(τ2) =
(||xn||2τ2/n) ×

{
1 − I(n/2)+1 (||xn||τ) /I(n/2)−1 (||xn||τ)

}
. Then using

Lemma A.1(iv) and (A.6) we have that

l(τ2) ≥ ||xn||2τ2

n

{

1 −
I2
n/2 (||xn||τ)

I2
(n/2)−1 (||xn||2τ2)

}

=
||xn||2τ2

n

{

1 − l(τ2)2

||xn||2τ2

}

,

and rearranging this conclude that the mode satisfies

(
1 + 1/σ2

)2
τ4 − {||xn||2 +

(
1 + 1/σ2

)
(n − 4)}τ2 − 2(n − 2) ≥ 0. (A.7)

The roots of the quadratic in τ2 in (A.7) are given by r1(n) ± r2(n) where

r1(n) =
(
||xn||2 +

(
1 + 1/σ2

)
(n − 4)

)
/2

(
1 + 1/σ2

)2
,

r2(n) = (r2
1(n) + 2(n − 2)/

(
1 + 1/σ2

)2
)1/2.

Since it is clear that r1(n)−r2(n) < 0 we have shown that the mode satisfies

r1(n) + r2(n) ≤ τ̃2
n. (A.8)

Now observe that

|r1(n)/n − r2(n)/n| =

∣
∣
∣
∣

√
r2
1(n)/n2 −

√

r2
1(n)/n2 + 2(n − 2)/n2 (1 + 1/σ2)2

∣
∣
∣
∣

=
2(n − 2)/n2

(
1 + 1/σ2

)2

√
r2
1(n)/n2 +

√
r2
1(n)/n2 + 2(n − 2)/n2 (1 + 1/σ2)2
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≤
√

2(n − 2)/n2 (1 + 1/σ2)2 → 0

and so r2(n)/n
P→ r1(n)/n, which gives that r1(n) + r2(n)

P→ 2r1(n)/n.
Now the posterior mean is given by m(n) = (1 + 1/σ2)−2||xn||2 + n(1 +

1/σ2)−1 and m(n)/n − 2r1(n)/n = (4/n) (1 + 1/σ2)−1 → 0 which implies

that m(n)/n − (r1(n) + r2(n))
P→ 0.

Now apply Lemma A.1(vi) to the denominator on the right-hand side of
(A.6) to get l(τ2) = ||xn||2τ2/

{
n + ||xn||τI(n/2)+1 (||xn||τ) /In/2 (||xn||τ)

}
.

Rearranging this gives

(||xn||τ)I(n/2)+1 (||xn||τ) /In/2 (||xn||τ) = (||xn||2τ2/l(τ2)) − n. (A.9)

Just as in the proof of Proposition 4.2 we have that

l(τ2) ≤ ||xn||τ
I(n/2)+1

In/2

{
n + 2

||xn||τ
In/2

I(n/2)−1
+

I2
n/2

I2
(n/2)−1

}

and then using (A.6)

l(τ2) ≤ ||xn||τ
I(n/2)+1

In/2

{
(n + 2)l(τ2)

||xn||2τ2
+

l2(τ2)

||xn||2τ2

}

.

Now use (A.9) to obtain l(τ2) ≤ {||x||2τ2−nl(τ2)}{(n+2)+l(τ2)}/(||xn||2τ2)
or

(||xn||2τ2)l(τ2) − {||x||2τ2 − nl(τ2)}{(n + 2) + l(τ2)} ≤ 0 (A.10)

and note that the expression of the left is a quadratic in τ2. Collecting
coefficients this quadratic is given by n

(
1 + 1/σ2

)2
τ4 − {(n + 2)||x||2 −

n(n−6)
(
1 + 1/σ2

)
)}τ2 −4n(n−2). As the coefficient of τ4 is positive, then

(A.10) implies that

τ̃2
n ≤ s1(n) + s2(n) (A.11)

where s1(n) + s2(n) is the largest root of the quadratic and so

s1(n) =
(
1 + 1/σ2

)−2 {(n + 2)||xn||2 − n(n − 6)
(
1 + 1/σ2

)
}/2n

s2(n) =

√

s2
1(n) + 4(1 − 2/n) (1 + 1/σ2)−4.
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Observe that |s1(n)/n − s2(n)/n| → 0, so s1(n) + s2(n)
P→ 2s1(n). Now

m(n)/n − 2s1(n)/n = (1 + 1/σ2)−2||xn||2/n + (1 + 1/σ2)−1 − 2s1(n)

= (1 + 1/σ2)−2(−2||xn||2/n2) + (1 + 1/σ2)−1 − (1 − 6/n)
(
1 + 1/σ2

)

and so m(n)/n − 2s1(n)/n
P→ 0, since τ2

n = o(n2) and (A.1) imply ||xn||2/
n2 P→ 0.

By (A.8) and (A.11)

(r1(n)/n + r2(n)/n − m(n)/n) +
(
m(n)/n − τ2

n/n
)

= r1(n)/n + r2(n)/n − τ2
n/n ≤ τ̃2

n/n − τ2
n/n ≤ s1(n)/n + s2(n)/n − τ2

n/n

= (s1(n)/n + s2(n)/n − m(n)/n) +
(
m(n)/n − τ2

n/n
)

and this establishes the result.
Proof of Proposition 6.1. Note that the developments in Section 2

imply that the γ-relative surprise interval (ln(xn), rn(xn)) ⊂ [0, ∞) for τ2
n

contains the LRSE τ̂2
n. By Proposition 4.3, τ̂2

n/n converges in probability to
0 and so ln(xn)/n must also converge in probability to 0.

The proof that rn(xn)/n
P→ r∗

n is more difficult. First observe that (nr∗
n−

E(τ2 | xn))/(V ar(τ2 | xn))1/2 P→ zγ and so it suffices to prove that (rn(xn) −
E(τ2 | xn))/(V ar(τ2 | xn))1/2 P→ zγ . These results also imply that (rn(xn) −
ln(xn))/nr∗

n
P→ 1.

If An(z) = {xn : (ln(xn) − E(τ2 | xn))/(V ar(τ2 | xn))1/2 ≤ z}, then
P (An(z)) → 1 for all z. Denote the posterior of τ2

n by Π(· | xn). Let ε > 0
and write

P (Π([0, ln(xn)] | xn) > ε) = P (An(z) ∩ {Π([0, ln(xn)] | xn) > ε})

+ P (Ac
n(z) ∩ {Π([0, ln(xn)] | xn) > ε}).

(A.12)

Note that xn ∈ An(z) implies

Π

(
τ2 − E(τ2 | xn)

(V ar(τ2 | xn))1/2
≤ ln(xn) − E(τ2 | xn)

(V ar(τ2 | xn))1/2

∣
∣
∣
∣ xn

)

≤ Π

(
τ2 − E(τ2 | xn)

(V ar(τ2 | xn))1/2
≤ z

∣
∣
∣
∣ xn

)
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and so the first term in (A.12) satisfies

P (An(z) ∩ {Π([0, ln(xn)] | xn) > ε})

≤ P

(

An(z) ∩
{

Π

(
τ2 − E(τ2 | xn)

(V ar(τ2 | xn))1/2
≤ z

∣
∣
∣
∣ xn

)

> ε

})

≤ P

({

Π

(
τ2 − E(τ2 | xn)

(V ar(τ2 | xn))1/2
≤ z

∣
∣
∣
∣ xn

)

> ε

})

. (A.13)

Let Φ denote the N(0, 1) cdf and choose z so that Φ(z) < ε/2. Since (τ2 −
E(τ2 | xn))/(V ar(τ2 | xn))1/2 D→ N (0, 1), we have that

Π

(
τ2 − E(τ2 | xn)

(V ar(τ2 | xn))1/2
≤ z

∣
∣
∣
∣ xn

)

→ Φ(z)

for every data sequence xn and so this convergence is also in probability
with respect to P . This implies that (A.13) converges to 0. Further, the
second term in (A.12) is bounded above by P (Ac

n(z)) which converges to 0.

Accordingly, we have proved that Π([0, ln(xn)] | xn)
P→ 0. Also, we always

have that γ = Π([ln(xn), rn(xn)] | xn) = Π([0, rn(xn)] | xn)−Π([0, ln(xn)] | xn)

and so Π([0, rn(xn)] | xn)
P→ γ.

Now let ε > 0 and Bn = {xn : (rn(xn) − E(τ2 | xn))/(V ar(τ2 | xn))1/2 >
zγ + ε}. Put ε′ = Φ(zγ + ε) − γ and write

P (Bn) = P (Bn ∩ {Π([0, rn(xn)] | xn) > γ + ε′/2})

+ P (Bn ∩ {Π([0, rn(xn)] | xn) ≤ γ + ε′/2}). (A.14)

The first term in (A.14) is bounded above by P (Π([0, rn(xn)] | xn) > γ+ε′/2)
and this converges to 0. For the second term in (A.14) we have that

P (Bn ∩ {Π([0, rn(xn)] | xn) ≤ γ + ε′/2})

= P

(

Bn ∩
{

Π
(

τ2−E(τ2 | xn)

(V ar(τ2 | xn))1/2 ≤ rn(xn)−E(τ2 | xn)

(V ar(τ2 | xn))1/2

∣
∣
∣ xn

)

≤ γ + ε′/2

})

≤ P

(

Bn ∩
{

Π

(
τ2 − E(τ2 | xn)

(V ar(τ2 | xn))1/2
≤ zγ + ε | xn

)

≤ γ + ε′/2

})

(A.15)

and

Π

(
τ2 − E(τ2 | xn)

(V ar(τ2 | xn))1/2
) ≤ zγ + ε | xn

)
P→ Φ(zγ + ε) = γ + ε′

implies that (A.15) converges to 0. Similarly, if we set Cn = {xn : (rn(xn) −
E(τ2 | xn))/(V ar(τ2 | xn))1/2 < zγ − ε} we get that P (Cn) → 0 and so

(rn(xn) − E(τ2 | xn))/(V ar(τ2 | xn))1/2 P→ zγ . This completes the proof.
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