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Abstract
Biobanking is entering the new era—era of big data. New technologies, techniques, and knowledge opened the potential of the
whole domain of biobanking. Biobanks collect, analyse, store, and share the samples and associated data. Both samples and
especially associated data are growing enormously, and new innovative approaches are required to handle samples and to utilize
the potential of biobanking data. The data reached the quantity and quality of big data, and the scientists are facing the questions
how to use them more efficiently, both retrospectively and prospectively with the aim to discover new preventive methods,
optimize treatment, and follow up and to optimize healthcare processes. Biobanking in the era of big data contribute to the
development of predictive, preventive, and personalisedmedicine, for every patient providing the right treatment at the right time.
Biobanking in the era of big data contributes to the paradigm shift towards personalising of healthcare.
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Abbreviations
IT Information technology/ies
AI Artificial intelligence
FFPE Formalin-fixed paraffin-embedded tissues
PET Positron emission tomography
HER Electronic health record
HIE Health information exchanges

Introduction

The development of biobanking all over the world during the
last two to three decades has done a great step towards the
higher level, the new quality. Until now a critical mass of

knowledge has been achieved, and the future progresses and
growth must effectively capitalize the knowledge, expertise,
research achievements, and experience accumulated.

Number of publications, number of new biobanks, new
projects, and new national and international initiatives
(Rony, Rooney et al, 2018) and activities reflect the global
movement. As biobanking is multi-branched and multidisci-
plinary, it affects many research areas like medicine, biology,
systems biology, information technologies (IT), artificial in-
telligence (AI), machine learning, modelling, mathematics,
statistics, big data, and others.

Biobanks have a primary role in the era of personalised
medicine (some authors use terms precision medicine, person
centred, patient centred, individualized medicine) [1–4], and
the ability of a large collection of patient samples is a critical
requirement for personalised medicine to advance patient
treatment [5, 6]. Biobanks are one of the pillars in personalised
medicine tackling all its aspects such as prevention, diagnosis,
treatment, and monitoring of an individual patient [7].

Originally the biobanks collect, store, and share biological
samples and data [8, 9]. Both samples and data are of different
origin and structure and require different methods to handle
with. Samples stored in human biobanks are of great variety of
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human body: human fluids (blood, serum, plasma, urine, sa-
liva, tears, spinal fluid, and so on), tissues that are frozen,
FFPE (formalin-fixed paraffin-embedded tissues), cells,
DNA, and RNA, for instance hairs and nails; almost any part
of human body can act as human biological sample, if we
know how to use them. For every type of samples, the special
methods for every step of the sample life cycle (acquisition,
handling/process, cleaning, storage, distribution, scientific
analysis, and restocking used sample) [10, 11] are defined.
Relatively new sources of samples represent imaging tech-
niques as structural and functional magnetic resonance imag-
ing, positron emission tomography (PET), electroencephalog-
raphy, and magnetoencephalography [12], which also brings a
new quality of data.

Every sample is associated with related data that are of
different types: clinical (demographics, death/survival data,
questionnaires), imaging (ultrasound, magnetic resonance,
positron emission tomography), biosample data (values from
blood, urine, saliva), molecular data (genomics, proteomics),
digital pathology data, data from wearable devices (blood
pressure, heart rate), implantable biosensors, miniaturized sen-
sor embodiments, and much more [13–15]. The qualitative
and quantitative aspects of biobanking data is growing fast,
the data structure is more and more complicated, and the man-
agement of data during their entire life cycle require specific
innovative approaches. Amount of data that is generated every
day is astonishing [16]. This exponential growth of data is
further fueled by the digitisation of patient-level data: stored
in electronic health records (EHRs) and health information
exchanges (HIEs) and enhanced with data from imaging and
test results, medical and prescription claims, and personal
health devices [17]. Importanat current sources of big data
are human microbiome biobanks and collections of microbi-
ota of the human body [18]. Microbiome as the entire collec-
tion of microorganisms, their genomes and their metabolic
interactions in a specifically defined environment, influences
many human metabolic and other functions such as energy
production, body temperature, reproduction, and tissue
growth [19] and as a resource of big data has irreplaceable
role in current and future biomedical research.

Big data in health is too big, too fast, and too complex to
process and interpret with existing tools [20]; similarly the
biobank data as becoming bigger and bigger extending be-
yond the basic computer facility and throughput and due to
the biobank data is converted to the category of “big data”.
Currently big data has become one of the most important
frontiers for innovation, research, and development in com-
puter sciences [21, 22] and is becoming an innovation driver
for biobanking modern development. Big data is a huge new
phenomenon that brings together cutting-edge theory and
practice from academia and industry; it is a broad landscape
focused around data [23]. Big data is radically changing bio-
medical research [24]. There are some examples how big data

are used in healthcare: preventing medical errors, identifying
high risk patients, reducing hospital costs and wait times, and
enhancing patient engagement and outcomes and widespread
use of electronic health records (EHRs) [14, 25].

As biobanking is the foundation of personalised medicine
[26, 27], all aspects concerning big data in biobanks contribute
to all aspects of personalised medicine from prevention, diag-
nosis, prediction, to treatment. These processes continuously
change biobanking research to data-driven research. During
the last few decades, biomedical research has undergone trans-
formation, conducting to a novel paradigm of data-driven bio-
medical science [28, 29] using innovative strategies [30]. Big
data not only in biobanks promises an enormous revolution in
healthcare, with important advancements in everything from
the management of chronic disease to delivery of personalised
medicine [17]. We are currently in the era of “big data” that
completely changed people’s view of healthcare activity [29].

Big data

Definitions

“Big data” is high-volume, -velocity and -variety information
assets that demand cost-effective, innovative forms of infor-
mation processing for enhanced insight and decision making
(Gartner’s definition [31]).

McKinsey’s definition 10 years later describes big data as
“the datasets whose size is beyond the ability of typical data-
base software tools to capture, store, manage, and analyze”
[32].

Big data creates radical shift in how we think about re-
search [33].

The big data paradigm shift is significantly transforming
healthcare and biomedical research [34].

All biobanking data not only from an individual but from a
cohort or a population and data from clinical trials and longi-
tudinal studies show the characteristics of big data. The data of
human subjects stored in biobank are diverse and miscella-
neous. Electronic health records, sensory data gathered
through wearable mobile and other types of devices [35], are
also additional data used in biobanks. Imaging data are as
regards their volume considered as big data. The important
feature of biobanking data is that they are generated, flowing,
and growing continuously in time. From every patient with
wearable mobile application, the fluent supply of data is com-
ing continuously. From a cohort of patients, the volume of
fluent data is much bigger and more diverse than from a de-
fined group of patients. From a society, the data are even
bigger and more diverse. Going higher in the hierarchy, the
data are bigger, more diverse, and more miscellaneous. To
identify the hierarchy and find efficient tools to handle and
to evaluate biobanking data according to research purposes is
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extremely difficult, because biobanking data exceeded the
characteristics of “normal” data and as presented reached the
quantity and quality of big data.

Big data are generally characterized by three major fea-
tures, commonly known as “3 Vs”: volume, variety, and ve-
locity [29, 35, 36]. Volume means “how much data?”, variety
means “what kind of data?”, and velocity means “how fre-
quent or real-time is the data?” [37].

Subsequently the list of “Vs” was extended up to 5 Vs
(volume, velocity, variety, veracity, and value) [38], whereas
Andreu-Perez et al. [20] offered 6 Vs (value, volume, velocity,
variety, veracity, and variability), and recently 7 Vs is taken
into consideration (volume, velocity, variety, variability, ve-
racity, visualization, and value) [39, 40].

1. Volume is how much data we have which can be measured
in gigabytes (GB), in zettabytes (ZB), or even in yottabytes
(YB), yottabyte = 1,208,925,819,614,629,174,706,176
bytes) [41].

2. Velocity is the speed in which data is accessible. Current
opinion is presented by expression “if it’s not real-time
it’s usually not fast enough”.

3. Variety describes one of the biggest challenges of big data.
It can be unstructured, and it can include so many different
types of data. Organizing the data in a meaningful way is no
simple task, especially when the data itself changes rapidly.

4. Variability is different from variety. If the meaning of data
is constantly changing, it can have a huge impact on real
data homogenization.

5. Veracity is all about making sure that the data is accurate,
which requires processes to keep the bad data from accu-
mulating in the systems. The simplest example is contacts
with false names and inaccurate contact information.

6. Visualization is critical in today’s world. Using charts and
graphs to visualize large amounts of complex data is much
more effective in conveying meaning than spreadsheets
and reports chock-full of numbers and formulas.

7. Value is the end game. After addressing volume, velocity,
variety, variability, veracity, and visualization—which
takes a lot of time, effort, and resources—researcher and
the organization need to be sure to get value from the data.

Currently the final highest number of “Vs” was completed
by Borne K. [42] in big data 10 “Vs”:

1. Volume: lots of, we are now dealing with a “ton of
bytes”

2. Variety: complexity, thousands or more features per data
item, many data types, and many data formats

3. Velocity: high rate of data and information flowing into
and out of our systems, real-time, incoming

4. Veracity: necessary and enough data to test many differ-
ent hypotheses, vast training samples for various models

5. Validity: data quality, governance, data management on
massive, diverse, distributed, heterogeneous, “unclean”
data collections

6. Value: the all-important V, characterizing the business
value, and potential of big data to transform the organi-
zation from top to bottom (including the bottom line)

7. Variability: dynamic, evolving, spatiotemporal data,
time series, seasonal, and any other type of nonstatic
behaviour in data sources, customers, objects of study,
etc.

8. Venue: distributed, heterogeneous data from multiple
platforms, from different owners’ systems, with different
access and formatting requirements, private vs. public
cloud

9. Vocabulary: schema, data models, semantics, ontol-
ogies, taxonomies, and others

10. Vagueness: confusion over the meaning of big data

According to the author [11], the long list of 10 “Vs” illus-
trates big challenges of big data.

Sun [22] presents original vision of big data as 10 big
characteristics of big data “10 bigs”: big volume, big velocity,
big variety, big veracity, big intelligence, big analytics, big
infrastructure, big service, big value, and big market.
Volume, velocity, variety, and veracity are fundamental char-
acteristics of big data, whereas intelligence, analytics, and
infrastructure are technological characteristics, and remaining
service, market, and value are socioeconomic characteristics.

Faroukhi et al. [43] have recently published a transparent
review on the big data, and the authors are supporting the
theory of 7 “Vs” (volume, velocity, variety, veracity, value,
variability, and visualization).

Biobanks and big data

Big data velocity Big data is faster and faster. Velocity means
how fast is data generated. As data is coming continuously
from more and more resources, biobanks are facing to work
with both “old” data and “real-time data” and usually work
with both data together. Velocity of data makes the processing
of data more complicated because of different velocity of dif-
ferent data. When speaking about data, we usually speak
about stored data. Real-time patient data is coming continu-
ously from wearables and biosensors on/in patient’s body and
can be recorded, observed, and monitored almost
immediately—in real time. Growing proportion of health-
related data is generated on the go (top 12 ways). It makes
new dimension in data processing that requires new access to
the data and new tools to handle with. Another important
feature in real-time data systems is that for a special sample,
the scientists need additionally and retrospectively patients’
data that was not of importance during collecting and storing.
Historical data and real-time data enable machine learning
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models (will be specified later in text) and generate various
predictions or classifications. This will help predicting indi-
vidual patient outcomes, risks factors, and use of clinical notes
[44] and be “really” personal.

Big data volume The volume of data refers to the size of the
data sets that need to be analysed and processed, which are
now frequently larger than terabytes and petabytes. The sheer
volume of the data requires distinct and different processing
technologies than traditional storage and processing capabili-
ties. In other words, this means that the data sets in big data are
too large to process with a regular laptop or desktop processor
[45]. Regarding a single patient basic data, they are simple
data, e.g. age, sex, body parameters, laboratory analysis data,
and clinical trials data, that are measured regularly or on a one-
time basis or from wearable mobile applications continuously
[28]; this data is not of the volume of big data. Getting togeth-
er a group of patients, cohort, or a population, the data reach
the characteristics of big data. Recently a big contribution to
the biobanking big data is coming from imaging, multi-omics,
and EHRs. Then the volume of big data in biobanks is
enriched by data taken from a patient group or from a popu-
lation on a long-term basis as a discrete data or continuous
data [28]. Among big data types, imaging data can be consid-
ered the largest in volume [46].

Big data variety Big data in biobanks originates from dif-
ferent sources of different formats and different types, e.g.
personal data, body parameters, imaging, multi-omics, and
wearables [15, 20, 35]. Biobanking data is structured, un-
structured, or semistructured or as described by Faroukhi
et al. in 2020 [43] data structured, unstructured, and/or
between. The difference between the categories is clear:
structured, quantitative data that can be highly organized
and easily analysed (dates, numbers, patient names, body
parameters) and data that have pre-defined data model such
as databases; unstructured, qualitative data is the opposite;
it is textual or non-textual or human or machine generated
(audio, video, images, word documents, social media,
notes from EHRs, clinical trial results) [47, 48] data that
have not predefined data model [49]. The ratio between
structured and unstructured data is rapidly moving towards
unstructured data. Unstructured data is more difficult to
operate with, and when it is accessible, searchable, avail-
able, and relevant, it can be converted into information
[49]. According to the same source, e-mail is considered
semistructured data that have some organizational proper-
ties and is easier to operate than unstructured data. Variety
in big data also means that data comes from different
sources, data incomplete in the subject or in time [43].

Big data veracity means in general how accurate or truthful
a data set may be, cleaned from “not” trustworthy, reliable,
and secure data. Veracity is not just the quality of the data

itself but how trustworthy and reliable the data source, type,
and processing of it is. Removing abnormalities or inconsis-
tencies, duplication, and volatility are just a few aspects that
factor into improving the accuracy of big data [37]. Veracity is
the most important characteristics of big data; without this no
correct results could be achieved, or it can lead to wrong
predictions as the data context is not always known [20].
Big data veracity guarantees the right starting point for pre-
dictive models and new research theories creation.

Volatility as another “V”makes the situation more compli-
cated, because data changes during its life cycle. And the
speed of changes differs, some data change less, and some
change more frequently. Veracity also means to have enough
data to formulate hypotheses and to design models [29]. The
value of biobank big data lies especially in developing algo-
rithms for prevention, prediction, treatment, and follow-up.

Big data visualization means to make them as transparent
and descriptive as possible using tables, graphs, maps, 3D
models, animations, and so on [43], using graphical tools
and techniques. Visualization makes the decision-making
and models easier and better to present and to understand.

Big data life cycle

As biosamples also big data have their “data life cycle”: data
acquisition, data pre-processing and processing, data storage,
management, analysis, and finally visualization. Big data is a
new discipline, where data management techniques, tools, and
platforms can be applied [50, 51]. New science supporting
tools especially IT tools, AI, and machine learning are ex-
tremely important to keep up with the biobanking data
development.

Data acquisition

Current situation in gathering data often unstructured, disor-
dered, that are erroneously growing in value is a challenge for
bioinformatics, biostatisticians, and IT and AI specialists.
Primary data or raw data (raw data is the data that is measured
and collected directly from machine, web, etc.) usually is not
in the format that is ready to perform analysis [52].
Biobanking data is produced actively or passively by humans,
systems, or sensors from different resources and can appear in
structured, semistructured, or unstructured formats [49].

Data pre-processing

To work with these kinds of data is almost impossible, so the
next step is to pre-process data, because quality decisions need
quality data [51]. There are several steps how to make the raw
or primary data ready for next actions, so-called data pre-pro-
cessing: cleaning, which means using only complete data;
reduction, which means that the data follow a specific model
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and only the data with model parameters can be used; and
transformation means conversion of data to the specific for-
mat for intended analysis and discretization, which divides
data to special sets like subgroups, intervals, subsets, and files
[43]. Researchers need to qualify what data is crucial and
necessary and what data is ballast and not for the actual re-
search necessarily needed. Situation where the more data we
have the more research we can do is not the way nowadays.

Data storage

Data are stored, and it is necessary to take into consideration
that data are collected from diverse resources, so to provide
storage space great enough, reliable, and safe is a complex and
structured process. New technologies like cloud computing
services reveal a shift to a new computing paradigm, and it
has become increasingly challenging to assure consistency in
managing such large-scale data in cloud storage [53]. Local
storage space of biobanks is or will be in a short time full, and
the cloud storage system is becoming more and more impor-
tant. With this, the problem of security and safety of data in
clouds is raising, as well as the financial aspects and
sustainability.

Big data and artificial intelligence

Big data is closely connected with artificial intelligence (AI).
According to the widely accepted definition, AI refers to the
development of machines that are capable of perceiving,
thinking, learning, and adapting their behaviour, just like bio-
logical organisms [54]. Artificial intelligence is changing the
world we live in [55] and plays and will play a great role in
health research and care, by the ability to work with great
amount of data, sort them and process them to better predict
some risk factors, and thus contribute to formulation of pre-
ventive activities, more accurate diagnosis, and treatment and
finally predict the treatment outcomes [56]. Artificial intelli-
gence as new method is slowly making inroads into
biobanking. The interrogation of vast quantities of data from
a large biobank can now be completed within a few weeks
(even remotely) as opposed to months or years previously [6].
An efficient use of big data in real practice together with the
tools of artificial intelligence and machine learning enables to
evaluate the data, predict an incident, evaluate risk, and save
money and doctors time. Artificial intelligence thus will effec-
tively enable to make use of big data in health to prevent
disease, speed recovery, and save lives [55]. Machine learning
and deep learning, a type of AI, allows computers to “learn”
without being explicitly programmed. In any given domain, it
can help improve and automate decision-making [57]. AI is
important in managing big data and using them for new targets
for new drugs and new biomarkers. Imaging methods as non-
invasive methods produce huge amount of data, and with the

help of AI biopsies, tissue samples and other painful and
stressful processes could be avoid. In these cases, carefully
prepared models, algorithms, and other IT solutions can re-
place invasive actions. Based on discussion published by
Bresnick in 2018 [56] on health IT analytics, some other cru-
cial applications of AI in healthcare systems are in progress:
AI can in some way safe the staff in hospitals and healthcare
institutions and organizations, as well as in research centres.
Big data can be efficiently used for studying various popula-
tions and ethnics and their specific features and help to predict
risk factors. AI supports personalised medicine in many ways.
Personalised and precision healthcare can become a reality
rather than a concept [58].

Digitalization

Great future is predicted for digitalization. Currently we use
digital pathology, digital radiology, digital imaging, and other
digital functionalities. Digitalization as new IT tool in
biobanking brings not only new quality but also new great
amounts of data and with them requirements to safe collection,
storage, sharing, and processing of these data.

Automatisation

One of the basic prerequisites for results veracity, truthfulness,
and research reproducibility is the quality of samples and the
quality of data. The best possible way how to achieve it is
automatisation as much as possible. Not the whole process
of biobanking from collecting, transport storage, and sharing
can be fully automated. But the most recent tendency is to
automate as much as possible to avoid mistakes made by
human beings. Better situation is with data that can be auto-
mated at higher level and at better modes using IT solutions,
algorithms, and artificial intelligence. IT solutions help to cat-
egorize data and make catalogues and databases, taking into
account different biobanks, regions, networks, and consortia.
IT solutions provide visibility and utility of samples and data
stored in biobanks.

Big data in biobanks and personalised
medicine

Big data indicate the features of “personalisation”; they need
to be used at right data at the right time for the right patient
[59] and thus support implementation of principles of
personalised medicine in practice.

Big data contributes to the personalised medicine. Cirillo
and Valencia [24] in their review predicted that big data in
personalised medicine would require significant scientific and
technical developments, including infrastructure, engineering,
project, and financial management. Exploiting new tools to
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extract meaning from large volume information has the poten-
tial to drive real change in clinical practice, from personalised
therapy and intelligent drug design to population screening
and electronic health records mining [15].

Big data provides the opportunity to enable effective and
precision medicine by performing patient stratification [20];
fine patient stratification is the basic step towards real
personalised approach.

Big data and AI contribute to the changing paradigm in
personalised approach to the healthcare from treatment to pre-
vention and prediction. AI devices can be combined with each
other and with other wearables, biosensors, mobile diagnos-
tics, and telemedicine make possible to monitor a patient con-
tinuously and to receive a vast amount of data from an indi-
vidual for further scientific purposes. Machine learning algo-
rithms and their ability to synthesize highly complex datasets
may be able to elucidate new options for targeting therapies to
an individual’s unique genetic makeup [56]. AI contains gam-
ing, patient coaching, and virtual doctor interactions and es-
pecially in chronic patients contributes to a novel predictive,
preventive, and personalised approach, where patient is self-
managed [60, 61].

One good example of big data utilization in personalised
medicine is in cancer patients. Despite remarkable achieve-
ments in cancer research, in these patients does not exist reli-
able treatment [62]. New machine learning algorithms based
onmulti-omics approach and due to big data from a big cohort
of cancer patients can make it easier to find the best possible
treatment for every patient—personalised treatment [63].
Another aspect is the establishment of optimal biomarker
panels for individualized patient profiling and improved
multi-level predictive and prognostic diagnostics [64] and oth-
er factors like inflammatory cells in the tumour microenviron-
ment [65]. It has been a problem that drugs often have heter-
ogenous treatment responses even for the same type of cancer
and some drugs show sensitivity in a small number of patients
[66]. AI and predictive and preventive algorithms can identify
the accident more advanced than based on traditional proce-
dures. For these studies, algorithms and big data sets of excel-
lent quality can be used to produce reliable background for the
automatized decision-making programs. For all these auto-
mated or partly automated processes, models and algorithms
samples and data from specifically oriented biobanks are cru-
cial [38]. Big data enables connecting real cancer biobanks
into virtual biobanks with greater number of patients and re-
lated data and makes utilization of samples and data more
efficient.

Special attention for the future should be paid to the chil-
dren’s biobank. To obtain data from children patients is more
difficult because of the special and sensitive type of data. For a
child to be in a hospital is a stress, and to collect, store, and
share data of children patients are difficult even at national
levels. Children and youth are more open to new technical

devices, wearable devices, and even smart phones that are
usually better accepted than in adult patients and in home
environment, and data can be received continuously and at
the same conditions give sometimes more optimal results than
in hospital. Currently it is ready and successfully used in an
algorithm that can diagnose 90 disorders in children [56]. In
young population, also long-term collection of risk factors
data such as lifestyle, smoking, alcohol consumption, drug
abuse, overweight, hypertension, and others including inno-
vative screening programmes will contribute to better preven-
tion [67].

Future

Regarding the data, one does not know, indeed cannot know,
how data will be used in the future or what other data they will
be linked with [68]. Every day scientists face larger and larger
amount of data that can be now, and in the future, used for
better healthcare. The main task is to find the optimal tools
how to discover the secret hidden in the data.

Biobanks will play an essential role in the translation to
personalised medicine by linking biological data to electronic
medical records [12]. The more data from a single patient will
be available, the better and more personalised approach to the
prevention, diagnosis, and treatment will be available.

The future success of biobanks lies in using the data to
predict and treat diseases [12]. As we are facing paradigm shift
“from treatment to prevention” in healthcare, based on big
data, the risk factors could be identified early, and the more
effective preventive measures could be offered to a patient.
Models for predicting health risk assessment [69], survival
rates estimation, and therapeutic recommendations would
contribute to better healthcare [70].

Big data are becoming in some case personalised in
biobanking: researchers need to use right data at the right time
for better customer relationship [59]. The principles are to
identify as precisely as possible the scientific and patient’s
needs, to near-time or even real-time data processing. As in
other research and business fields, big data is a driving force in
research itself. It means to use all “Vs” of big data for the best
possible individual/personal outcomes.

World map of leaders in biobanking is continuously chang-
ing, when new biobanking players entered the place, e.g.
China [27], India, and Africa.

EU and big data

The importance of big data in biomedical research and human
health is highlighted by the European Commission (EC) in the
biggest European research and innovation program ever,
Horizon 2020.

338 EPMA Journal (2020) 11:333–341



Big data presents great opportunities as they help us devel-
op new creative products and services, for example, apps on
mobile phones or business intelligence products for compa-
nies. It can boost growth and jobs in Europe, but also improve
the quality of life of Europeans. Big data contribute to enhanc-
ing diagnosis and treatment while preserving privacy [71].
Several projects (AEGLE: An analytics framework for inte-
grated and personalised healthcare services in Europe, My
Health My Data, KConnect: Khresmoi Multilingual Medical
Text Analysis, Search and Machine Translation Connected in
a Thriving Data-Value Chain, MIDAS: The Meaningful
Integration of Data, Analytics and Services) offer various data
solutions for new drug discovery, treatment, and care and try
to find the optimal use of heterogenous resources like bio-
signal streams, health records, genomics, and other -omics,
with respect to the patient data privacy and safety [71].

Biobanking data that are primarily personal data are ac-
cording to a novel EU wide legal framework for the protection
of personal data EU GDPR (European Union General Data
Protection Regulation) sensitive data: data of birth, sex, age,
weight, blood pressure, and other body parameters and data
about lifestyle, employment, society, religion, and so on. EU
GDPR entered into force onMay 28, 2018, as binding rule for
every member state of European Union (EU) and totally
changed the rules for samples and data collecting, storing,
managing, and sharing not only within the EU but also within
other partners from all over the world. GDPR impacts the data
during the whole process of life cycle from collecting data,
their environment, their use and availability, storage and du-
ration limits, sharing and data access, and reproducibility.
GDPR is the first regulation with international scope, and as
such, it is affecting organizations around the world [68, 72].

EU’s goal is to personalize the care that means more effec-
tive care, less waste of time and resources, and greater patient
satisfaction [55].

Conclusions

Big data is necessary to support the biobank transformation to
the upgraded level, and biobanks on the other hand contribute
significantly to the big data issue to make the big data research
driven.

The big data paradigm shift is significantly transforming
healthcare and biomedical research [34], large amount of
multi-omics, imaging medical devices, and health electronic
records data allowing personalised medicine interventions
while engaging infrastructural and research management and
innovation and sustainability [24].

Big data enable the use of large volumes of medical infor-
mation to look for trends or associations that are not otherwise
evident in smaller data sets [15].

Big data offers both opportunities and challenges, and big
data make possible to ask and answer questions in new ways
[28].
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Glossary Machine learningAn algorithmic technique for learning from
empirical data and then using those lessons to predict future outcomes of
new data

Big dataThe de facto standard definition of big data is data that goes
beyond the traditional limits of data along three dimensions: volume,
variety, and velocity. The combination of these three dimensions makes
the data more complex to ingest, process, and visualize

Cloud generalTerm used to refer to any computing resources—soft-
ware, hardware, or service—that is delivered as a service over a network

ClouderaThe first commercial distributor of Hadoop. Cloudera pro-
vides enterprise

Semistructured dataUnstructured data that can be put into a structure
by available format descriptions

Structured DataData that has a preset format
Unstructured DataData that has no preset structure
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