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Radiomics improves efficiency for differentiating subclinical
pheochromocytoma from lipid-poor adenoma: a predictive, preventive
and personalized medical approach in adrenal incidentalomas
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Abstract
Objectives This study aims to define a radiomic signature for pre-operative differentiation between subclinical pheochromocy-
toma (sPHEO) and lipid-poor adrenal adenoma (LPA) in adrenal incidentaloma. The goal was to apply a predictive, preventive,
and personalized medical approach to the management of adrenal tumors.
Patients and methods This retrospective study consisted of 265 consecutive patients (training cohort, 212 (LPA, 145; sPHEO,
67); validation cohort, 53 (LPA, 36; sPHEO, 17)). Computed tomography (CT) imaging features were evaluated, including long
diameter (LD), short diameter (SD), pre-enhanced CT value (CTpre), enhanced CT value (CTpost), shape, homogeneity, necrosis
or cystic degeneration (N/C). Radiomic features were extracted and then were used to construct a radiomic signature (Rad-score)
and radiomic nomogram. The area under the receiver operating characteristic curve (AUC) was used to evaluate their
performance.
Results Sixteen of three hundred forty candidate features were used to build a radiomic signature. The signature was significantly
different between the sPHEO and LPA groups (AUC: training, 0.907; validation, 0.902). The radiomic nomogram based on
enhanced CT features (M1) consisted of Rad-score, LD, SD, CTpre, shape, homogeneity and N/C (AUC: training, 0.957;
validation, 0.967). The pre-enhanced CT features based radiomic nomogram (M2) included Rad-score, LD, SD, CTpre, shape,
and homogeneity (AUC: training, 0.955; validation, 0.958).
Conclusions Our radiomic nomograms based on pre-enhanced and enhanced CT images distinguished sPHEO from LPA. In
addition, the promising result using pre-enhanced CT images for predictive diagnostics is important because patients could avoid
the additional radiation and risk associated with enhanced CT.
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Abbreviations
AA Adrenal adenoma
AI Adrenal incidentaloma
AUC Area under the receiver operating characteristic

curve
CT Computed tomography
CTpre Pre-enhanced CT value
CTpost Enhanced CT value
ICC Intraclass correlation coefficient
LASSO Least absolute shrinkage and selection operator
LD Long diameter
LPA Lipid-poor adrenal adenoma
MRI Magnetic resonance imaging
N/C Necrosis or cystic degeneration
PET Positron emission tomography
sPHEO Subclinical pheochromocytoma
ROC Receiver operating characteristic
SD Short diameter

Introduction

In recent years, predictive, preventive, and personalized med-
icine (PPPM) has been advocated in the field of tumor re-
search and has become the direction of future research [1]. It
is evident that a paradigm shift in medicine is needed to move
from traditional reactive medical practice to PPPM to devise
treatment strategies [1–3]. Applying PPPM to the clinical
management of adrenal incidentalomas (AIs), it is important
to predict the pathology of the adrenal tumors before surgery
to prevent perioperative mobility and mortality. A subclinical
pheochromocytoma (sPHEO) may pre-dispose the patient to
life-threatening hypertensive crises during surgery, whichmay
lead to serious cardiovascular events. However, due to the
overlap in imaging features and non-specific clinical findings,
sPHEO is frequently misdiagnosed as other AIs, such as lipid-
poor adrenal adenoma (LPA) [4–9]. There has been no clear
way to distinguish sPHEO and LPA based on traditional ra-
diological analysis. New imaging-related methodologies with
a PPPM approach might be useful to improve predictive di-
agnosis for AI.

Radiomics is a PPPM-based approach that uses computer-
ized quantitative imaging analysis for extracting large num-
bers of image-related features, such as intensity, geometry, and
texture, from medical images [10]. In short, radiomics con-
verts medical images into numerical values that could not be
obtained by observation of the image. This process uses high-
throughput data-extraction algorithms, which enable subse-
quent data analysis and model building [11–13]. Recent
radiomic studies have shown promising results for tumor dif-
ferentiation and subtype classification [14, 15]. This method
provides an alternative to traditional imaging analysis, and it
may assist in the development of predictive diagnostics for

personalized medicine [16–18]. However, the effectiveness
of a radiomic approach in differentiating sPHEO from LPA
is not known.

In the present study, we retrospectively evaluated 265 cases
that had been surgically resected with pathological confirma-
tion of sPHEO and LPA. We developed radiomic nomograms
and validated their efficiency for differentiating between
sPHEO and LPA.

Materials and methods

Patients

This retrospective study was approved by the Ethics
Committee and Institutional Review Board in Xiangya
Hospital of Central South University, P. R. China (IRB No.
201612638). Informed consent was waived for all patients.

Data for surgically and pathologically confirmed adrenal
adenoma (AA) and pheochromocytoma cases in our hospital
were collected from 1 June 2006 to 31December 2017 using a
search of our institutional database andmedical record system.
None of the patients included in this study received tumor-
related therapy before the computed tomography (CT) scans.
Patients without detailedmedical records, pathological results,
or quality pre-operative CT images were excluded. The pa-
tients included in this study were divided into two cohorts
(training and validation) at a ratio of 4:1 using computer-
generated random numbers. This process is shown in Fig. 1.
Enhanced CT (CTpost) features and pre-enhanced (CTpre) fea-
tures were used to generate the radiomic nomograms M1 and
M2, respectively.

Fig. 1 The patient recruitment pathway, along with the inclusion and
exclusion criteria. Note: PHEO, pheochromocytoma; AA, adrenal
adenoma; sPHEO, subclinical pheochromocytoma; LPA, lipid-poor ade-
noma; CTpre, pre-enhanced CT value (Hu); CTpost, enhanced CT value
(Hu)
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CT image acquisition, retrieval, analysis, and feature
extraction

Details about CT image acquisition, retrieval, and analysis, as
well as the algorithms for radiomic feature extraction [19] are
in the Electronic supplementary material, along with
intraobserver (two observations by reader 1) and interobserver
(reader 1 vs. reader 2) reproducibility evaluation methods.

Radiomic feature selection and signature building

The least absolute shrinkage and selection operator (LASSO)
method, which is suitable for analyzing large sets of radiomic
features and regression of high-dimensional data, was applied
to select the most significant predictive feature from the train-
ing cohort. Most of the coefficients of the covariates were
reduced to zero, and the remaining non-zero coefficients were
selected by LASSO. The non-zero coefficients of the selected
features were used to construct the radiomic signature (Rad-
score). The Rad-score was calculated for each patient via a
linear combination of selected features that were weighted by
their respective coefficients.

Diagnostic validation of the radiomic signature

The potential use of the Rad-scores to differentiate the two
lesions was first evaluated in the training cohort and then in
the validation cohort using the area under the receiver operat-
ing characteristic (ROC) curve (AUC).

Development and performance of a radiomic
nomogram based on enhanced CT images

Multivariable logistic regression analysis was performed with
both the Rad-scores and the CT imaging features showing
significant differences between sPHEO and LPA patients. A
radiomic signature was applied to build a predictive model for
differentiating sPHEO from LPA using the training cohort.

To provide the clinicians with a quantitative tool for accu-
rate diagnosis, we built a nomogram (M1) using multivariable
logistic regression analysis of CTpost images in the training
cohort. AUC analysis was used to quantify the predictive per-
formance of the radiomics nomogram in the training cohort.
The AUC values were then used to test the predictive perfor-
mance of the radiomics nomogram in the validation cohort. A
calibration curve was obtained from multivariable Cox pro-
portional hazard regression analysis.

Development and performance of a radiomics
nomogram without enhanced CT features

To evaluate the feasibility and efficiency of the radiomic no-
mogram using non-enhanced CT images in the classification

task, another radiomic nomogram (M2) was developed for the
CTpre imaging features using the training cohort. The predic-
tive performance of the M2 model was validated in the vali-
dation cohort using AUC values. A calibration curve was
obtained from multivariable Cox proportional hazard regres-
sion analyses.

Statistical analysis

Quantitative data with a normal distribution are presented as
the mean ± SD, and the groups were compared using an inde-
pendent Student’s t test. Quantitative data with a non-normal
distribution are presented as medians (interquartile ranges),
and the groups were compared using a Wilcoxon rank sum
test. Patient sex ratios and lesion location ratios between the
two groups were compared using a chi-square test. The
LASSO regression was performed using MATLAB. Other
statistical analyses were performed using R software. A two-
sided P value was computed, and statistical significance was
set at 0.05.

Results

Clinical characteristics of the patients

The patient characteristics for the training and validation co-
horts are summarized in Table 1. There were no significant
differences in the clinical characteristics between the training
cohort and validation cohort, for either the sPHEO or LPA
group, which justified their use as training and validation
cohorts.

Inter- and intraobserver reproducibility
of radiomic feature extraction

Satisfactory inter- and intraobserver reproducibility of the tex-
ture feature extraction was achieved. The interobserver
intraclass correlation coefficients (ICCs) calculated based on
features extracted by reader 1 (first extraction) and reader 2
ranged from 0.775 to 0.907. The intraobserver ICCs, calculat-
ed based on reader 1’s feature extraction results from two
attempts, ranged from 0.794 to 0.933. Therefore, all outcomes
were based on the features extracted by reader 1.

Radiomic feature extraction and radiomic signature
construction

A total of 340 features were extracted from the unenhanced
CT images. Figure S1 contains a visual representation of the
extracted radiomic features of all the patients. From this rep-
resentation, an estimated classification was visible based on
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the differences in texture associated with the two diagnoses.
Of these features, 16 were selected by LASSO for inclusion
(Fig. S1) in the Rad-score calculation formula, as shown in the
Electronic supplementary material.

Figure S2 contains a graphical presentation of the Rad-
scores for the patients in the training and validation cohorts.
The patients’ diagnoses were represented by the color-coding
scheme, and the Rad-score values were sorted in ascending
order, a clear classification of LPA and sPHEO images could
be observed.

Diagnostic validation of the radiomic signature

A significant difference was found in the Rad-scores between
sPHEO and LPA patients in the training cohort (P < 0.001),
which was further confirmed in the validation cohort. Patients
with sPHEO generally had higher Rad-scores in the training

cohort. The radiomic signature yielded an AUC of 0.903 in
the training cohort and 0.904 in the validation cohort. A Rad-
score value of more than 0.661 was considered sPHEO, with a
sensitivity of 92.5% and specificity of 83.5%. ROC curves are
presented in Fig. 2.

Development of a radiomic nomogram

Multivariable logistic regression analysis was performed with
Rad-score, LD, SD, CTpre, shape, homogeneity, and N/C. A
prediction model incorporating the above predictors was de-
veloped and is presented as a nomogram in Fig. 3. This model
(M1) provided an AUC of 0.957 in the training cohort and
0.967 in the validation cohort (Fig. 3). An M1 value of more
than 75.97 could be diagnosed as sPHEO, with a sensitivity of
89.7% and specificity of 95.5%.

Table 1 Characteristics of patients in the training and validation cohorts

Characteristic Training cohort P value Validation cohort P value

sPHEO FA sPHEO FA

Gender (No. (%))

Male 28 (41.79) 81 (55.86) < 0.001 7 (41.18) 22 (61.11) < 0.001
Female 39 (58.21) 64 (44.14) 10 (58.82) 14 (38.89)

Age (mean ± SD, years) 47.8 ± 13.1 46.3 ± 12.5 0.262 46.4 ± 12.7 47.6 ± 10.2 0.804

LD (mm) (median
(interquartile range))

52.0 (39.0–68.0) 22.0 (15.5–32.0) < 0.001 46.0 (34.5–59.0) 21.5 (17.3–30.8) < 0.001

SD (mm) (median
(interquartile range))

43.0 (32.0–56.0) 18.0 (11.0–27.0) < 0.001 37.0 (30.0–51.0) 18.0 (12.0–26.5) < 0.001

CTpre (Hu) (median
(interquartile range))

35.4 (30.9–42.0) 22.0 (16.0–31.5) < 0.001 37.0 (30.5–40.0) 19.5 (15.3–30.0) < 0.001

Shape

Regular 40 (59.70) 118 (81.38) < 0.001 7 (41.18) 26 (72.22) 0.03
Irregular 27 (40.30) 27 (18.62) 10 (58.82) 10 (27.78)

Homogeneity

Homogenous 9 (13.43) 103 (71.03) < 0.001 4 (23.53) 27 (36.00) < 0.001
Heterogenous 58 (86.57) 42 (28.97) 13 (76.47) 9 (64.00)

Necrosis

No 18 (26.87) 131 (90.34) < 0.001 4 (23.53) 34 (94.44) < 0.001a

Yes 49 (73.13) 14 (9.66) 13 (76.47) 2 (5.56)

Calcification

No 64 (95.52) 140 (96.55) 0.710 16 (94.12) 36 (100) 0.321a

Yes 3 (4.48) 5 (3.45) 1 (5.88) 0 (0)

Counter

Sharp 1 (1.49) 4 (2.76) 0.677a 2 (11.76) 0 (0) 0.099a

Blotted 66 (98.51) 141 (97.24) 15 (88.24) 36 (100)

Rad-score (median
(interquartile range))

0.4315 (0.2939–0.5469) 0.8311 (0.6908–0.9176) < 0.001 0.4717 (0.3586–0.5759) 0.7976 (0.6959–0.9330) < 0.001

Note: P value is derived from the univariable association analyses between each of the clinicopathologic variables and LN status

Abbreviations: SD, standard deviation; LD, long diameter; SD, short diameter; CTpre, pre-enhanced CT values; Rad-score, radiomics score

*p < 0.05
a Fisher’s exact test
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Development of a radiomic nomogram
without enhanced CT features

To determine whether pre-enhanced CT images were suffi-
cient to distinguish sPHEO from LPA, the M2 nomogram
was constructed without inclusion of the imaging features
from the enhanced CT. M2, which was developed without
N/C, also showed a promising AUC of 0.955 in the training
cohort and 0.958 in the validation cohort. These were very

close to the values obtained when N/C was included. The
corresponding ROC curves are shown in Fig. 4. A M2 value
of more than 81.50 could be diagnosed as sPHEO, with a
sensitivity of 97.0% and specificity of 84.8%.

Validation of the radiomic nomogram

The calibration curves for the two radiomic nomograms to be
used for differentiation between sPHEO and LPA, based on

Fig. 3 The receiver operating
characteristic (ROC) curves and
the corresponding nomogram
with multiple predictors. Cut-off
values are indicated along the
curves. a ROC curve for the
training cohort. b ROC curve for
the validation cohort. c
Nomogram

Fig. 2 Receiver operating
characteristic (ROC) curve analy-
sis based on the radiomic signa-
ture (Rad-score). Cut-off values
are indicated along the curves. a
ROC curve of the training cohort.
b ROC curve of the validation
cohort. Fn, false-negative rate
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either enhanced or unenhanced images, are shown in Fig. S3.
They both showed good agreement between evaluation by the
radiomic nomogram and actual observation.

Discussion

Radiomics for medical imaging analysis facilitates identifica-
tion of predictive diagnostic imaging biomarkers, which al-
lows for a personalized approach to therapy [10]. Such infor-
mation may help clinicians use a PPPM approach [1–3] to
optimize presurgical diagnosis of subclinical pheochromocy-
toma. In the present study, we found that the Rad-score alone
could differentiate sPHEO from LPA. Our predictive models
combining the Rad-score with traditional imaging features
improved performance in differentiating the sPHEO from
LPA. Using AI as an example, our study showed the relevance
of using a PPPM approach to predict the tumor pathology
correctly before surgery, preventing any potential adverse out-
comes during surgery and enabling a personalized therapeutic
strategy for each patient.

Our study was designed to address a real dilemma that is
encountered by clinicians, especially radiologists and

surgeons [7, 20]. In clinical practice, AIs are often identified
when patients undergo a routine abdominal or chest CT scan,
even when it is only a non-contrast CT scan. A dedicated
multi-phase contrast-enhanced CT adrenal scan may help the
radiologists to make a definitive diagnosis regarding the pa-
thology of the tumor, but the potential risk of an additional CT
scan should be considered. The disadvantages of doing a sec-
ond scan include additional cost, radiation hazards and the
potential risks associated with contrast media, which include
allergy and potential renal damage. Unfortunately, the major-
ity of patients currently undergo an additional CT scan due to
the difficulty in distinguishing the various adrenal tumors with
traditional radiological analysis. Furthermore, the risks asso-
ciated with contrast media are further exacerbated in vulnera-
ble populations such as the elderly and pediatric populations.

Our approach has some advantages over the existing
methods in AI research filed. Our approach is part of a grow-
ing number of studies that use a new kind of predictivemodels
for pre-operative diagnosis of cancer. For example, one study
combined a large panel of predictors, including radiological
and clinicopathological features, to improve the prediction of
lymph node metastasis in colorectal cancer [21]. Notably, this
method relied heavily on the key factors chosen to construct

Fig. 4 Receiver operating
characteristic (ROC) curves based
on the nomogram without en-
hanced CT features (necrosis/
cystic degeneration, N/C). Cut-off
values are indicated along the
curves. a ROC curve for the
training cohort. b ROC curve for
the validation cohort. c
Nomogram without N/C
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the prediction model. In addition, in traditional predictive
model studies, their method required many cases to achieve
high efficiency (sensitivity and specificity), which was not
practical. The number of patients enrolled in clinical studies
is usually modest and therefore only a few features could be
included, which may lead to decreased accuracy in predictive
models. Our study overcame this issue by using Rad-score as
a single key factor through data reduction method for model-
ing throughout the study. Therefore, the impact on accuracy of
predictive modeling, which caused by the modest number of
patients included in the study or the limited number of features
should be included in the model building, seems to be over-
come transiently in our study, as it would have if the previ-
ously published method was used [21]. In addition, our study
introduces the Rad-score, which was calculated using 16
radiomic features selected by LASSO regression and showed
good classification ability in the ROC test. Our study results
indicated that the Rad-score might be a useful stand-alone
diagnostic indicator.

Application of radiomic analysis has been increasing in
medical imaging research [10, 22, 23]. Successful examples
have been reported for cancers throughout the body [10,
22–25]. Radiomic models have been reported as potential bio-
markers for distinguishing different types of tumors or differ-
ent subtypes of a common tumor. Furthermore, radiomic sig-
natures could be important predictors for differential diagno-
sis, therapeutic response, and survival in cancers [26, 27].
Most recently, radiomics has been used to differentiate small
angiomyolipoma without visible fat from renal cell carcinoma
with high accuracy, sensitivity, and specificity (93.9, 87.8, and
100%, respectively) [14]. Therefore, radiomic signatures can
be useful in clinical practice.

Our study has filled a gap in the literature on sPHEO in
the setting of AI. Previous studies on AIs have mostly
focused on the differentiation of benign and malignant
adrenal tumors. Prior studies have reported that some im-
aging characteristics on CT scans, as well as a dedicated
adrenal CT scan with washout and 15-min delayed imag-
ing, could be helpful in differentiating adenoma from oth-
er adrenal tumors [28–30]. However, specific data on LPA
and sPHEO has been lacking. Gufler et al. reported an
attempt to distinguish metastatic adrenal tumors from be-
nign lesions, using 56 adrenal tumor cases with a history
of malignancy [31]. The researchers developed a scoring
system based on traditional radiological features in pre-
enhanced CT images, which demonstrated a high efficien-
cy for identifying metastatic lesions. Our study is similar
to theirs in that both studies developed effective scoring
systems for identifying adrenal tumors. However, our
study focus was different; we studied benign adrenal tu-
mors, and they studied both benign and malignant adrenal
tumors. In addition, our study had the advantage of a
large study cohort with all cases pathologically confirmed

while their study had a much smaller cohort with only a
part of the cohort pathologically confirmed. To the best of
our knowledge, our study presents the largest cohort to
date for sPHEO and LPA in the setting of AI.

Our findings may have value for clinical practice. The goal
of imaging for an adrenal tumor is to differentiate a lesion that
may need treatment, such as pheochromocytoma, from a be-
nign Bleave-alone^ tumor, such as an adenoma. From a radio-
logical perspective, an optimal algorithm should be used to
differentiate the leave-alone lesions from the lesions that need
treatment using as few features as possible [28]. Our study has
yielded very encouraging results. It is exciting that wemay not
need the additional contrast-enhanced adrenal CT scan. A
non-contrast-enhanced CT scan is easier to obtain with reli-
able image quality, cheaper, and less time-consuming than
enhanced CT or other imaging modalities such as magnetic
resonance imaging (MRI) and positron emission tomography
(PET)/CT. More importantly, the CT images already obtained
for clinical purposes may be sufficient for clinicians to per-
form the calculations introduced in the present study.
Therefore, our results may be rapidly incorporated into clini-
cal practice.

There are several limitations to our study. First, due to
the retrospective nature of the study, there might be selec-
tion bias. Second, the clinical outcome and prognosis data
for the cardiology and oncology domains were not avail-
able due to lack of relevant documentation in the medical
records or loss of follow-up clinical visits. Because of the
benign nature of the adrenal tumors in this study, patients
and their doctors do not have a strong incentive to follow-
up after initial treatment. Third, we used a validation co-
hort that was from the same institution as the training
cohort, which prevented us from generalizing the results
to other institutions and other clinical settings. As a
single-center study, the patient population was relatively
small and homogeneous. A large-scale independent pro-
spective multicenter study is needed to assess the gener-
alizability of the results. Fourth, it is possible that adding
features from other imaging modalities, such as MRI or
PET/CT, might improve the accuracy of the model.
However, this was beyond the scope of this study and will
require further investigation. Fifth, although we only com-
pared sPHEO and LPA in the present study, this method
should be validated when adding other adrenal tumors
with similar overlapping CT findings in future studies.
Last, the radiomics features in our study were extracted
from the largest cross-sectional area of the tumor. We
recognize that different approaches, such as assessing
the entire tumor in a three-dimentional image may provide
additional information about tumor heterogeneity and may
affect the study results. Nevertheless, our method of
selecting the largest cross-sectional area of the tumor has
been validated in previous published studies [21, 32].
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Conclusions and expert recommendations

In conclusion, our PPPM-based radiomic models were effec-
tive in differentiating sPHEO from LPA in the setting of AI. In
addition, our pre-enhanced CT-based nomogram has the ad-
vantage of avoiding the additional radiation exposure, risk,
and cost of enhanced CT. The two models may allow clini-
cians to use existing pre-enhanced or enhanced CT images to
correctly predict the pathology of adrenal tumors before sur-
gery. Future prospective multicenter studies with larger sam-
ples may be needed to validate our models for clinical
practice.

Our promising study result may facilitate PPPM-based
efforts in both research and clinical practice. By assisting
clinicians to make an accurate pre-operative diagnosis
without additional imaging examination, the implementa-
tion of our diagnostic algorithm may improve personal-
ized therapy. Moreover, we believe this CT image-based
model and operational algorithm may be replicated by
other institutions.

Based on our experience from the present study, we
believe the following recommendations are important for
establishing an accurate pre-operative diagnosis of adre-
nal tumors using PPPM principles [1–3]. First, multidis-
ciplinary collaboration and partnership, including radiol-
ogists, urologists, cardiologists, and endocrinologists, are
essential for the successful planning, calculation, inte-
gration, and applicability of radiomic research results
in clinic practice. Second, quality CT images are vital
for achieving an accurate diagnosis. These recommenda-
tions can enable the radiomics method developed here
to improve predictive diagnostics and support personal-
ized medicine.
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