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© Springer Nature B.V. 2018

Abstract Informational theories of semantic content have been recently gaining
prominence in the debate on the notion of mental representation. In this paper we
examine new-wave informational theories which have a special focus on cognitive
science. In particular, we argue that these theories face four important difficulties:
they do not fully solve the problem of error, fall prey to the wrong distality attribution
problem, have serious difficulties accounting for ambiguous and redundant repre-
sentations and fail to deliver a metasemantic theory of representation. Furthermore,
we argue that these difficulties derive from their exclusive reliance on the notion of
information, so we suggest that pure informational accounts should be complemented
with (or perhaps substituted by) functional approaches.

Keywords

1 Introduction

Representations are puzzling entities. More than fifty years after the cognitive revolu-
tion and at a time in which representations are widely attributed in cognitive science,
fundamental questions about their nature still remain unanswered. For one thing, it is
not obvious what makes it the case that certain states are representations and some are
not. For another, we lack a satisfactory account of what determines representational
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content. Now, given that cognitive scientist systematically attribute representations, it
is not unreasonable to suppose that they might be implicitly assuming a set of intuitive
conditions that are sufficient or even necessary for a state to qualify as a represen-
tation. Following this intuition, recently some philosophers and psychologists have
tried to unravel this intuitive methodology and develop it into a full-blown naturalis-
tic theory of representation. Since the notion of information plays an essential role,
we will call them ‘Scientifically Guided Informational Theories’ (‘SGIT’, for short).

In this essay we would like to critically assess SGIT. In a nutshell, we will argue
that, even if some SGIT might capture central assumptions in current scientific
practice, they fail to satisfactorily explain the nature of representations and repre-
sentational content. More precisely, the four objections we will develop is that SGIT
do not account for some cases of error, fall prey to the wrong distality attribution
problem, have serious difficulties accounting for ambiguous and redundant represen-
tations and fail to deliver a metasemantic theory of representation. Hence, although
these accounts might faithfully embody (at least some of) the intuitive strategies
employed in neuroscience in order to attribute representations, we will argue that
they fail as theories of representation.

2 Representation and Information

Informational theories have a long history. One of the first and better known infor-
mational theories was Dretske’s (1981a), who tried to analyze semantic content by
appealing to informational content and defined informational content in terms of
probability relations. More precisely, according to his approach a state R carries
information about another state S iff given certain background conditionsP(S | R) =
1, but P(S) < 1 given background conditions alone. While the idea of explaining
semantic properties in terms of information was revolutionary and very influential,
there were at least two deep problems with Dretske’s proposal that caused a contin-
uous loss of support for informational accounts. First of all, in the natural world it is
extremely difficult (if not impossible) to find two different states such that the exis-
tence of one of them makes the other certain (even if certain background conditions
are assumed). Secondly, it was incompatible with the fact that representational states
can misrepresent. On Dretske’s approach, a brain state can represent a state of affairs
only if both obtain, so a typical case of misrepresentation (which usually involves
an existing state representing a non-existing one) is rendered impossible.1 These
and other difficulties led most people to think that a purely informational theory of
content was unworkable.

Recently, however, informational theories are reviving. To avoid these problems,
SGIT define and use the notion of information in different ways. The common thread

1Of course, Dretske (1981a) was well aware of these problems, and he tried to solve them by distinguishing
a learning period (in which misrepresentation is impossible) from a post-learning period. Unfortunately,
it is widely agreed that this proposal still faces daunting problems. For one thing, it seems that the same
difficulties reappear at the learning period.
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is the rejection of the requirement that P(S | R) = 1, which was the origin of the two
main objections to Dretske’s approach. Instead, many of them rely on the comparison
between probabilities. According to SGIT what is relevant is not how much a signal
raises the probability of another state, but whether it raises the probability of another
state more than any other representation does. In other words, these views focus on
the distinctive statistical dependence between a representation and its referent.

Eliasmith (2000, 2005a, b, 2013), for instance, has defended an informational
theory based on this intuition. According to him:

The set of events relevant to determining the content of neural responses is the
causally related set that has the highest statistical dependence with the neural
states under all stimulus conditions (Eliasmith 2000, p. 34).

Eliasmith puts forward two conditions for a state R to represent S: R represents S
iff there is a causal link and a statistical dependence relation between R and S.2 But
how does Eliasmith interpret the notion of ‘statistical dependence’? He claims that
“a statistical dependence between two events means that the occurrence of one event
changes (either increasing or decreasing) the probability of the occurrence of the
other event” (Eliasmith 2000, p. 69). There is a high statistical dependence between
two states when the occurrence of one of them increases or decreases the probability
of the other. Thus, in the context of cognitive science, Eliasmith holds that content is
fixed by the positive statistical dependence of stimuli on responses and also by the
statistical dependence of responses on stimuli (i.e. P(R | S) and P(S | R)). That
is what he calls taking the ‘observer’ and the ‘animal’s perspective’, respectively
(Eliasmith 2005b). A state represents3 the entity with which it has a higher statistical
dependency.

A precise summary and elegant formulation of this idea has also been defended
by Usher (2001). Usher, who explicitly bases his approach on Shannon’s notion of
mutual information, proposes that R represents S iff (1) the mutual information that
R carries about S is greater that the information R carries about any other entity and
(2) the mutual information that S carries about R is greater than the information S
carries about any other representation. More formally:

INFO Ri represents Si iff for all j �= i

1. P(Ri | Si) > P (Ri | Sj )

2. P(Si | Ri) > P (Si | Rj )
4

2Note, however, that the element that is doing the real work in fixing content is the statistical dependence
relation; the causal element is mainly introduced in order to avoid certain counterexamples, such as cases
involving two mental states with a common cause (Eliasmith 2000, p. 59).
3A terminological note: in this essay, we call ‘representational content’ what Eliasmith calls ‘referent’ (he
distinguishes ‘referent’ from ‘content’ understood in a different sense).
4The connection with Shannon’s measure of information becomes clear once it is noted that 1 and 2 are
simplifications of the following inequalities (Usher 2001, p. 321):

(a) MI(Ri; Si) = log
P (Ri |Si )
P (Ri )

> log
P(Ri |Sj )

P (Ri )
= MI(Ri ; Sj )

(b) MI(Ri; Si) = log
P (Si |Ri )

P (Si )
> log

P(Si |Rj )

P (Si )
= MI(R

j
; Si)
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These two conditions are supposed to capture the two dimensions that are relevant
for content determination: the backward and forward probabilities (corresponding to
what Eliasmith calls ‘observer’ and ‘animal perspectives’). The first condition claims
that among all the entities that increase the probability of Ri occurring, Si is the
one that increases this probability most. So, for example, although the activation of
certain neural population, which we can call ‘DOG’, can be triggered, under some
circumstances, by dogs, wolfs, fat cats, etc., DOG represents dogs partly because
among all the stimuli eliciting DOG, dogs are the entities that better predict tokens
of DOG. In what follows, we will sometimes express this idea by saying that DOG
’tracks’ dogs better. The second requirement does not compare stimuli but represen-
tational states. The idea is that Ri represents Si only if Ri is the representational state
that most increases the probability of Si being the case. Here the probability that mat-
ters is the backward probability, i.e. conditionalized on representational states. For
instance, suppose that there is a neural population that is sensible to all kinds of mam-
mals (call it ‘MAMMAL’). Even if MAMMAL is sometimes triggered by dogs, the
second condition determines that DOG, but not MAMMAL, represents dogs, because
it is more probable that there is a dog if DOG is instantiated than if MAMMAL is
tokened: P(Dog | DOG) > P(Dog | MAMMAL). Indeed, this inequality holds
even if no other stimulus is as efficient in triggering MAMMAL as dogs are in the
individual’s environment.

Both Eliasmith’s and Usher’s proposals try to naturalize representations by appeal-
ing to high statistical dependency relations between representations and representata.
A slightly different approach is suggested by Rupert (1999). Although he also ana-
lyzes representations in terms of probability relations between entities, he only
considers forward probabilities (i.e. conditionalized on entities rather than on states)
and he restricts his account to representations of natural kinds. On this account, repre-
sentational content exclusively depends on whether members of S are more efficient
in their causing R5 than are members of any other kind. His account can be effec-
tively considered a version of SGIT, in which condition 1 of SGIT is necessary and
sufficient for a state to represent another state, once Si and Sj are restricted to states
involving natural kinds.

SGIT have certain features that make them worth considering in detail. For one
thing, they seem to solve the two most pressing problems of Dretske’s approach,
namely the problem of misrepresentation and its empirical implausibility. First, since
they reject Dretske’s suggestion that the likelihood of the referent given the represen-
tation has to be one, these theories make it possible for a state to represent S when
S is not the case. Representational relations are grounded on statistical dependencies
between entities, so in a given occasion a representational state might be caused by
an entity that is not in its extension (see below). Secondly, SGIT are also far more

As Usher notes (p.320), since the logarithm is a monotonic function, and we only make use of ordinal
relations, we can rely on exp(MI) that provides the same expression but without the logarithm. As in 1 and
2 in INFO.
5Rupert does not formulate his approach in terms of representational states, but as applying to ’terms
in a language of thought’. Nonetheless, since the exact nature of the entity that does the representing is
irrelevant for our discussion, we describe all accounts as talking about states.
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realistic than previous proposals in this tradition. Indeed, as they insistingly point out,
these accounts might actually capture the way neuroscientists reason (Usher 2001, p.
320).6 For instance, following Hubel and Wiesel’s (1959) pioneering methodology,
many neuroscientists identify the referent of a neuronal structure in early vision with
the stimulus that is more likely to elicit a stronger response. Along the same lines, an
additional virtue of these approaches is that they provide a precise method for dis-
covering the content of neural events. They make very determinate predictions about
the content of representational states, which might be extremely valuable in scientific
projects (Eliasmith 2000, p. 71; Skyrms 2010a). And they also attempt to explain and
vindicate the nature of representations attributed by cognitive scientists.

For these and other reasons, in recent years there has been a growing body of
interest on informational theories (Skyrms 2010b; Birch 2014) and its relation to
cognitive science (e.g. Piccinini and Scarantino 2010; Stegmann 2013, 2015). In what
follows, however, we would like to argue that these theories fall prey to important
difficulties. These objections suggest that the tools employed by SGIT are probably
inadequate for analyzing representational states. If these arguments are on the right
track, the prospects of SGIT would need to be seriously revised.

3 Problems for SGIT

We will present four objections against SGIT: they suffer from the problem of error,
deliver proximal contents, do not allow for states with disjunctive contents or mul-
tiple states with the same content, and fail to provide a metasemantic account of
representation. Our first goal is to argue that new informational theories face these
difficulties. Secondly, we will show that the problem is rooted in some aspect of the
notion of information. That result would strongly suggest that informational theories
need to be supplemented with (or perhaps, replaced by) a theory with a different set
of tools.

3.1 Error

Let us begin with the first difficulty of classical informational theories that SGIT were
designed to solve: the problem of error. In this section we will argue that SGIT fail to
fully address the problem of error that caused the dismissal of previous approaches
in this tradition.

First of all, it is important to note that SGIT can indeed account for some error (so it
provides a significant improvement over Dretske’s approach). To accommodate some
cases of misrepresentation, an account only needs to be compatible with the following
two conditions: (1) R represents S and (2) ¬S. This is clearly possible on SGIT.

6The fact that INFO might capture the implicit assumptions made by neuroscientists in establishing
hypotheses about representational relations does not mean that SGIT are purely descriptive theories. Elia-
smith (2005b), for example, has criticized neuroscientists for excessively relying on what he calls ‘the
observer’s perspective’ (i.e. P(R | S)) and forgetting about the ‘animal’s perspective’ (i.e. P(S | R)).
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Indeed, any approach that requires a conditional probability below 1 automatically
leaves room for some cases of error (Kreamer 2013). For instance, a theory according
to which R represented S only if P(R | S) ≥ 0.8, would certainly allow for some
cases of misrepresentation.

However, whereas SGIT can actually account for occasional error and even for
some forms of common misrepresentation (Usher 2001, p. 331, for instance, presents
one such case), there are plausible cases of frequent misrepresentation that cannot
be accommodated. More precisely, we will argue that they cannot account for some
cases in which misrepresentation is more frequent that accurate representation.

Let us try to spell out this idea in detail and illustrate it with some examples.7

Recall that, according to the first condition of INFO, Ri’s representional content is
partly determined by the state Si that Ri tracks the best, i.e. for any other state Sj ,
P(Ri | Si) > P (Ri | Sj ). To challenge this claim, we need to find some examples
in which Ri represents Si and, nontheless, P(Ri | Si) < P (Ri | Sj ). Consider the
case of mimicry; the dronefly Eristalis tenax, for example, is a Batesian mimic of the
honeybee Apis mellifera: the former is a defenseless insect that has copied the appear-
ance of honey bee (including its flight – Golding et al. 2001) to avoid being preyed
upon. If the tokening of the predator’s brain state Ri depends upon the appearance
of the prey, and the dronefly mimics sufficiently well the appearance of the danger-
ous bee, we can assume that P(Ri | bee) = P(Ri | dronef ly). Indeed, this might
lead to a case in which P(Ri | bee) < P (Ri | dronef ly) for the following rea-
son: the fitness of the mimicked organism decreases when mimics expand (because
when only few bee-looking animals are actually bees, it might pay predators to risk
and prey them anyway – see Ceccarelli and Crozier, 2007); thus, bees could actu-
ally evolve in the direction of looking “less bee-like”, and as a result P(Ri | bee) <

P (Ri | dronef ly). This is a particular case of P(Ri | Si) < P (Ri | Sj ), which
should be troubling for INFO, since it seems that predators represent bees, although
this representation tracks droneflies better.

Now, there is a similar scenario to shows that INFO is incompatible with some
cases of systematic misrepresentation. Formally, systematic misrepresentation occurs
when R represents S, S �= S∗ and, nonetheless, P(S | Ri) < P (S∗ | Ri). In
principle, this situation is fully compatible with the two conditions stated in INFO.
Nevertheless, the problem pointed out in the previous paragraph suggests that there
are some cases of misrepresentation that cannot be accommodated. For instance,
suppose that both bees and droneflies cause the predator’s brain state in roughly a
similar proportion of cases, i.e. P(Ri | bee) = P(Ri | dronef ly). Let us say
that P(Ri | bee) = P(Ri | dronef ly) = 0.6. This is a forward conditional
probability (i.e. conditionalized on states), whereas the problem of systematic mis-
representation involves backward conditional probabilities (i.e.conditionalized on
representations). According to Bayes’ theorem, to get that value we need to con-
sider the marginal probabilities. Thus, suppose we know the marginal probabilities
of bees and dronelies, and imagine that the latter are slightly more common than the
former, e.g. P(bee) = 0.4 and P(dronef ly) = 0.6. In that case, P(bee | Ri) <

7We would like to thank an anonymous reviewer for pressing us on this issue.
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P(dronef ly | Ri).8 In other words, this is a situation in which Ri intuitively repre-
sents bees, but most of the time it is tokened when there is a dronefly (and, obviously,
bee �= dronef ly) so it is a systematic misrepresentation. However, since condition
1 is not satisfied, it is a case INFO cannot accommodate.

Indeed, as we see it, the difficulty is not just that in certain scenarios, such as the
one depicted above, INFO delivers the wrong results. The problem is that representa-
tional content heavily depends on the marginal probabilities of states, and that seems
to base content on the wrong kind of considerations. In general, Ri can only represent
Si consistent with false positives outnumbering true positives if P(Si) > ¬P(Si).
Basing content on comparisons between marginal probabilities seems inadequate; it
as if you could change the content of the frog’s mental state by simply killing some
bees.

As a response, one might bite the bullet and defend that predators do represent
the presence of droneflies. Rupert (1999, p. 336), for instance, at some point seems
to suggest this strategy. He discusses a similar example in which females of certain
species token a mental state to decide with whom to mate and claims that if this
mental state has a higher correlation with a male of a different species, that might be
what they in fact represent. Nonetheless, there are powerful reasons for resisting this
move. In Rupert’s example, the female’s behavior (and, indeed the very existence
of the representational mechanism) would be hard to explain unless it is assumed
that it represents conspecific males. Similarly, in mimicry, unless R means bee (or
dangerous animal or the like), the explanation of the organism’s mental states and
behavior would remain mysterious. Why do predators fail to prey on an insect when
Ri is tokened if it means dronefly and these insects are harmless food? It seems that
the only way to make sense of the whole process is by supposing that the brain state
means something like bee (or the like).9

Alternatively, one could try to resist this objection by claiming that predators
represent neither bees nor droneflies, but whatever appearance property they share
(something like bee-looking thing). This reply, however, only might seem plausible
if one thinks of predators without sophisticated cognitive capacities. but suppose that
predators are human beings. Certainly we can think of bees, not only of bee-looking
things (otherwise, this whole section would be unintelligible to you). However, it is
entirely possible that most of the time we apply the concept BEE to droneflies and
that around us droneflies are more common than bees. In any case, the suggestion that
representational states actually track proximal states rather than distal ones points at
a serious objection to INFO that will be discussed in the next section.

8According to Bayes’ rule, P(Si | Ri) = P(Ri |Si )(Si )
P (Ri )

. Thus, to derive P(bee | Ri) and P(dronef ly | Ri)

we need to know P(Ri). Fortunately, as Usher remarks (see foonote 4), in the present context this value
is not required, because we are only interested in comparing P(bee | Ri) and P(dronef ly | Ri), and in
both cases the numerator is the same, namely P(Ri). Thus, the fact that P(Ri | bee)P (bee) < P (Ri |
dronef ly)P (dronef ly) is enough for showing that P(bee | Ri) < P (dronef ly | Ri).
9As a reviewer suggested, at least one should grant the conceptual possibility of predators representing
bees even if they frequently mistake droneflies for bees and the former outnumber the latter. Depending
on one’s metaphysical assumptions, the mere fact that this is conceptually possible might be enough for
raising a problem for INFO.
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Consequently, SGIT have problems accommodating some cases of frequent
misrepresentation. Although occasional mistakes and some forms of regular mis-
representations are allowed, others are rendered impossible. Given that one of their
primary motivations for SGIT was to fully account for error, this is a significant
result. Furthermore, we argued that SGIT seem to base content attribution on the
wrong kind of considerations. The root of the problem is not hard to identify:
SGIT fail to leave room for this kind of mistakes due to their reliance on statistical
dependencies. Thus, the problem derives from their central assumption.10

3.2 Distality

The second difficulty we will discuss is the wrong distality attribution problem and
the best way to motivate it is to present a slightly different problem that SGIT do not
have: the indeterminacy problem. A theory suffers from the indeterminacy problem
when it underdetermines content attribution, that is, when there are just too many
entities that could be represented according to it. Suppose, for instance, a naive infor-
mational account, according to which a mental state R represents S iff the presence
of the state increases the probability of S. Since activity in our photoreceptor cells
raises the probability of certain photons striking the retina, but also the probability
of it being sunny, of the subject being awake, of shops being open and many oth-
ers, the content of R would be highly indeterminate. So the indeterminacy problem
seems to jeopardize this naive informational theory. In that respect, INFO fares much
better than the naive approach, because it picks up the single state that has the great-
est statistical dependence with the representational state. Unfortunately, this solution
to the problem of indeterminacy has two striking unwelcome consequences: the
wrong distality attribution problem, which will be developed here, and the problem
of ambiguous representations, which will be presented in the next section.

Consider the Fusiform Face Area (FFA), which is usually thought to represent
faces (Kanwisher et al. 1997; Desimone 1991). Suppose we discover that a certain
neural network R in the FFA selectively fires with significant intensity when there is
a face and also that, given that R is active, the entity that is more likely to be present
is a face. One might think these observations suffice for establishing the fact that
the brain state represents face according to SGIT. Unfortunately, it is unclear that
SGIT can deliver this result. Consider, for instance, the set of neuronal structures in
the thalamus that are active whenever there is a face in front of the subject. If R has
the highest statistical dependence with faces, it will also normally have the highest
statistical dependence with these neuronal states in early vision. Thus, SGIT would
entail that this activity in FFA represents neuronal activation in another part of the
brain. This is of course an extremely counterintuitive result. Indeed, even if there was
some principled way of excluding other brain states from being represented, other
inadequate contents such as face-looking thing could probably not be avoided.

10It has been argued that teleological theories are also incompatible with some forms of systematic
misrepresentation (Mendelovici 2013, 2016). For a response, see Artiga (2013).
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More generally, a theory suffers from the wrong distality attribution problem when
it systematically delivers content at the wrong level of distality.11 Since mental states
will normally have a higher statistical dependence with most proximal stimuli, SGIT
would tend to deliver contents that are too proximal. This result is at odds with our
intuitions and seems to be in tension with the claims made by cognitive scientists (see
Sebastián and Artiga forthcoming).

Of course, supporters of SGIT can insist that, if a representational state actually
means face, it will surely have higher statistical dependence with faces than with
face-looking things. However, this is a doubtful assumption. First, for the reasons
provided in the previous section, it is not obvious that a representation of faces needs
to correlate better with faces than with non-faces. Secondly, since we usually identify
faces by detecting face-looking things, it is not unreasonable to suppose that the
correlation with proximal stimuli is at least as good as the correlation with distal
stimuli. Similarly, given that we identify face-looking things by detecting certain
features, the correlation with the latter will be stronger. And so on. This reasoning can
be iterated until the most proximal state that actually triggers the brain state (which
in many cases will be another mental state) holds. Consequently, SGIT clearly suffer
from the wrong distality attribution problem.

Finally, one might think that the wrong distality attribution problem is less trou-
bling for Rupert’s account, since he restricts his approach to representations of natural
kinds. This is doubtful. His proposal still faces a daunting dilemma, whose horns
depend on whether the set of candidate properties that give rise to the wrong distal-
ity attribution problem qualify as natural kinds or not. If, for instance, light photons
or certain kind of neuronal states in early vision count as natural kinds, the problem
remains in all its force.12 If they do not qualify as natural kinds, then the approach
clearly excludes too much: these entities are sometimes represented by cognitive
states, so ruling them out by definition is clearly inadequate. A different answer to
this problem is briefly sketched by Eliasmith. He suggests an additional requirement:
the referent cannot “fall under the computational description”, that is, there must
not be any internal computational description relating the referent with the mental
state such that it could account for the statistical dependence (Eliasmith 2005a, p.
1047; Eliasmith 2000, p. 59-60). However, this proposal is still unsatisfactory. First
of all, many think that computations are defined over representations. For this reason,
to know whether two causally related brain states are computationally related, one
should know whether they are representations and how their content is related. Yet

11Some employ the label ’distality problem’ to refer to this difficulty, but this expression is also frequently
used for version of the indeterminacy problem (e.g. Neander 2017, ch.9; Schulte 2018). To avoid any sort
of misunderstanding, we call this objection the ’wrong distality attribution problem’.
As a reviewer pointed out, one might question whether in all cases the problem we present concerns

more distal vs. less distal features (consider, for instance, the contrast between faces and face-looking
things). We adopted this terminology here because it is very usual in the literature and in many cases there
is clearly a contrast in distality (e.g. faces vs. neuronal patterns). Nonetheless, the name is not important;
the key point is that the theory delivers the wrong content, but not in virtue of it being indeterminate.
12Actually Rupert (1999, p. 340) accepts a extremely liberal approach to natural kinds, according to which
“natural kinds are any kinds that successful non-intentional science finds theoretically interesting and
useful”. Thus, he probably faces the first horn of the dilemma.
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this is precisely what this condition is supposed to establish. Secondly, this approach
is also too exclusive and too inclusive at the same time. One the hand, it still includes
too much because the problem is not only caused by neuronal states, but also by exter-
nal entities (e.g. photons, object-looking things, etc...). On the other, it excludes too
much because some neuronal states indeed represent other states of the brain or the
body (Damasio 2010; Rosenthal 2005; Prinz 2004). For a more detailed discussion,
see Sebastián and Artiga (forthcoming).

How could one attempt to solve this problem? We think progress could be made
by appealing to some other notions such as function. In a nutshell, the idea is that
although a given mental state M has a higher statistical correlation with a proximal
feature F, it might still be its function to represent something more distal. Taking this
path, however, would have significant consequences: if mental states have a higher
statistical dependence with their most proximal cause while their function and con-
tent concerns a distal feature, it is not obvious that the notion of information is
actually playing any important role in a theory of representation. In other words, if
the mental states tend to have a stronger correlation with their proximal causes, but
tend to have distal contents, then it is unclear whether the former can be used to
provide an account of the latter. Of course, much more should be said to make this
thought fully compelling; one would need to spell out in detail this notion of func-
tion and show how it can deliver the right level of distality. Nonetheless, we think
that supporters of SGIT should seriously consider the possibility that the wrong dis-
tality attribution problem might show that the notion of higher statistical dependence
is actually an inappropriate tool for a theory of content.

3.3 Multiple Representations and Contents

We saw that the fact that SGIT restrict representational content to the single entity
that has a higher statistical dependence with a mental state helps them reduce the
indeterminacy faced by the naive informational approach, but it gives rise to the
wrong distality attribution problem. In this section we would like to highlight a sec-
ond negative consequence. It is a platitude that, in many cases, the relation between
representations and their contents is not one-to-one, but many-to-one or one-to-many.
As a matter of fact some representations have multiple referents and the same refer-
ent is sometimes represented by different states. However, SGIT render these facts
impossible by definition. By requiring content to be determined by the single entity
that has a higher statistical dependence, SGIT have difficulties in accounting for rep-
resentations with multiple contents and contents shared by multiple representations.
This problem derives from each of the two conditions included in INFO.

An example from our visual system might help illustrate the problem. Consider
the case of metamerism. The human eye contains only three types of cone cells,
which are responsible for color vision. Each of these these types of cell respond to
the cumulative energy from a broad range of wavelengths. Now, as it happens, differ-
ent combinations of light across all wavelengths can produce an equivalent receptor
response. Consequently,—on the assumption that colors are surface reflectances—
there are colors (called ‘metamers’) that despite having different spectral power
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distributions produce the very same neural network activation in the visual cortex.
Call ‘C1’ and ‘C2’ two such metamers. Consider the neural network, Ri , in the visual
cortex that satisfies condition 2 of INFO: P(C1 | Ri) > P (C1 | Rj ) for every
Rj �= Ri . Thus, Ri is the network that most strongly increments the probability of
C1. Imagine also that P(Ri | C1) > P (Ri | C2). Condition 1 is also satisfied, and
so, according to the theory, Ri represents C1. However, intuitively, the content of Ri

is rather C1 ∨ C2. The theory cannot provide this result, at least as there is a slight
difference in probabilities between C1 and C2. Under these conditions, organisms
cannot represent C2 , even if C2 were in fact the most common color after C1 in the
environment.

If SGIT face difficulties with representations with a disjunctive content, an analo-
gous problem arises in the context of multiple representations with the same content.
In particular, according to condition 2 of INFO, R represents a stimulus S only if
there is no other state Rj , such that P(Si | Rj ) > P (Si | Ri). That means that only
one representation can have S as its content. Thus, according to these theories by def-
inition two representations cannot have the same referent, yet we do have different
representations with a common reference. A striking example is provided by redun-
dant processing. Redundancy is the duplication of critical functions with the purpose
of increasing the reliability of the system. For example, if vision is lost in one eye
we do not become blind (although depth perception is impaired) and often the same
information is presented to both eyes. Redundancy is an important field of study in
cognitive science. There is strong evidence, for instance, that redundant presentation
of information across modalities recruits attention and enhances learning (what is
called the ‘intersensory redundancy hypothesis’ [IRH]: Bahrick et al. 2002; Bahrick
and Lickliter 2000; Bahrick et al. 2004). As Bremer and colleagues (2012, p. 955)
suggest:

According to the intersensory redundancy hypothesis, optimum conditions for
deriving benefit from provision of multisensory information would be those
in which both visual and auditory information provide congruent informa-
tion about an object’s trajectory. Under such conditions, visual and auditory
information would specify the object’s trajectory redundantly, and so could be
expected to enhance perception of trajectory continuity as the object passed
behind an occluder.

Whatever the merits are of the Intersensory Redundancy Hypothesis, it is a coherent
theory whose truth or falsity should be assessed empirically. However, SGIT seem
to be incompatible with its truth. To take a particular example, consider two differ-
ent networks representing the object’s trajectory, one in the visual cortex, Vt , and one
in the auditory cortex, At . According to the Intersensory Redundancy Hypothesis,
this redundancy enhances perception of the trajectory when the object passes behind
an occluder. In certain cases of maximal congruence, Vt and At provide the same
information and both represent the same trajectory, T . The problem is now straight-
forward: if, on the one hand, P(T | Vt ) > P (T | At), then At does not represent T ,
and if, on the other hand P(T | Vt ) < P (T | At), then Vt does not represent T . What
SGIT cannot accept is that both neural networks represent the trajectory of the object.
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Anticipating a similar problem, Rupert (1999, p. 349-350) suggested the following
amendment in the theory:

R has a truly disjunctive extension when the following conditions, (a), (b), and
(c), are met: (a) two or more natural kinds have equal or roughly equal success
rates relative to t; (b) no other natural kind has a success rate substantially
higher than those kinds whose success rates are equal or roughly equal relative
to t; and (c) the gap between the group of success rates at the top and those
farther down is substantial.

Generalizing this idea, the suggestion is to qualify condition 1 of INFO and accept
that the required probability need not be strictly higher; it suffices if P(Ri | Si) ≥
P(Ri | Sj ). In this way, SGIT could account for some ambiguous representations. A
similar modification of condition 2 (i.e. P(Si | R) ≥ P(Si | Rj )) could leave room
for multiple representations with the same content.

Does this suggestion provide a convincing way out to the problem? It is unclear
that this additional clause can give the right results. For one thing, there are surely
many cases of ambiguous or redundant representations in which the probabilities of
different stimuli or representations are unequal. For another, equal probabilities does
not ensure coreference, precisely because of the existence of regular misrepresenta-
tions. In Rupert’s formulation, the efficiency of the entities that relate to different
meanings in an ambiguous representation has to be equal or roughly equal, i.e. R
refers to two different entities iff a subject regularly and consistently applies R to
Si and Sj and this fact contrasts with how often Si and Sj cause other representa-
tions. Yet this suggestion does not take the possibility of recurrent misrepresentation
seriously enough. In particular, there is nothing in this approach that could distin-
guish ambiguous concepts from systematic mistakes. Taking the example discussed
earlier, consider the predator’s representations of bees: the predator might systemat-
ically confuse droneflies for bees and that does not mean that its representation is
ambiguous; it just means that it is wrong roughly half of the time. Unfortunately,
an exclusive reliance on statistical dependencies renders it unable to make this dis-
tinction. Thus trying to leave room for multiple contents and redundancy by simply
relaxing the conditions for representing, does not ensure that the right disjunctive
contents are predicted.

As a result, SGIT are probably unable to account for genuine cases of ambiguity
and redundancy. Again, other notions like functional role or teleofunction (Millikan
2000) might contribute to solving this problem. But statistical dependence does not
seem to be the right tool for the task at hand.

3.4 Metasemantics

The last problem of SGIT is that they do not even address the most pressing question
for a theory of representation, namely, what makes certain states representational. Let
us elaborate.

Generally, the discussion on naturalistic theories of content has failed to make
explicit an important distinction between two different goals. First of all, a theory of
representation must explain why a state R represents S1 rather than a different state
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S2. For instance, one might attempt to explain why certain neuronal activity in the
striate cortex indicates the presence of a vertical line rather than a circle. Secondly,
a satisfactory theory also has to provide an account of why R represents something
at all. According to this second way of addressing the problem, the goal is not to
explain why neuronal activity is supposed to detect vertical lines rather than some-
thing else, but why this state is a representation at all. Let us call the first kind of
theory ‘semantic’ and the second one ‘metasemantic’ (Artiga 2016).

Now, that distinction is important because solving the problem of intentionality
requires providing a semantic and a metasemantic theory. If we want a theory to
fully explain why certain states are representational and how their content is deter-
mined, we need to provide both kinds of theories. Merely explaining why a certain
state represents lines rather circles does not completely dispel the mystery posed by
representational phenomena, since there is still a fundamental question that remains
unanswered: why does this state represent something at all? Unless this issue is
addressed, we will lack a solution the problem of intentionality. The following com-
parison might be illuminating: the problem of consciousness cannot be completely
solved by merely providing a theory of why a subject experiences blue rather than
red (e.g. by mentioning the fact that different parts of the brain are active or that they
represent a different content). On top of that and more importantly (Kriegel 2009),
we need to answer the question of what makes it a conscious state. We abstract from
the particular ways having different experiences feel and concentrate on the problem
of what makes it the case that having a conscious experience feels any way at all.
Likewise, the problem of intentionality concerns the very nature of representational
states. Providing a semantic theory is of course a step in the right direction, but it
leaves unresolved a major question.

With this distinction in mind, it should be obvious why informational theories do
not provide a metasemantic theory of representation. Even if they correctly identified
the conditions that should be satisfied for a representational state R to refer to S1
rather than to S2, they do not put forward any criterion for determining when a certain
state is indeed a representation. Informational theories offer semantic theories, but
fail to deliver metasemantic ones.

Of course, it could be replied that the fact that there is an aspect of the project
that these theories have not yet addressed does not mean that they could not do it.
Future work might fill this gap without abandoning a purely informational frame-
work. Unfortunately, the problem seems to go much deeper than that: not only have
informational theories actually failed to provide a metasemantic account, but the
informational tools they employ seem to be inadequate for carrying it out. The rea-
son is well-known: informational relations are ubiquitous. Any state that is subject
to be in a causal chain—that is, any state that is not outside the causal order—carries
information about its possible causes and effects (among other things). However, we
do not want to maintain that representations are ubiquitous. Thus, the concept of
statistical dependence is not fine-grained enough for distinguishing what is a repre-
sentation from what is not. Carrying information, like the properties having a certain
weight or being an object are just too coarse-grained for the task at hand. What at
first glance might look like an oversight actually constitutes an important gap in the
theory.
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Certainly, we do not want to deny that there are metasemantic theories compatible
with informational accounts. Again, one could add functional roles, teleofunctions or
other tools in order to define what representations actually are. But, in any case, these
hybrid theories would provide a solution to the metasemantic problem only if they
go beyond the notion of information. Consequently, purely informational theories
(such as SGIT) are unlikely to provide a fully convincing account of representational
phenomena.

4 Conclusion

Summing up, in this paper we have shown that Scientifically Guided Informational
Theories (SGIT) face four important problems. Furthermore, we have argued that the
reasons they fail to overcome these difficulties are deep: because of their exclusive
reliance on information, they simply lack the resources for providing satisfactory
solutions. Thus, new-wave informational theories are unlikely to succeed in the
project of providing a theory of representation in the context of cognitive science.

Nonetheless, it is worth stressing that the arguments suggested here are not
intended to show that the notion of information is useless. Cognitive scientists heavily
rely on informational measures and the intuition that this notion captures something
important about cognition is a powerful one. Our arguments are not intended to
suggest that the notion of information should be eliminated, but rather that the con-
nection between information and representation needs to be reassessed. In particular,
attributions of representations in scientific practices might not just rely on statistical
dependence (at least not always, as some of the examples we have presented show).
Furthermore, other notions such as ’function’ might need to be added to address the
previous worries. Consequently, additional considerations have to be made explicit
and placed on the table for a proper assessment. Whether this should lead to a revision
of our current scientific methodology is an important question we leave for future
research.
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