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Abstract There is at present a lively debate in cognitive psychology concerning the
origin of natural number concepts. At the center of this debate is the system of mental
magnitudes, an innately given cognitive mechanism that represents cardinality and
that performs a variety of arithmetical operations. Most participants in the debate
argue that this system cannot be the sole source of natural number concepts, because
they take it to represent cardinality approximately while natural number concepts are
precise. In this paper, I argue that the claim that mental magnitudes represent
cardinality approximately overlooks the distinction between a magnitude and the
increments that compose to form that magnitude. While magnitudes do indeed
represent cardinality approximately, they are composed of a precise number of
increments. I argue further that learning the number words and the counting routine
may allow one to mark in memory the number of increments that composed to form a
magnitude, thereby creating a precise representation of cardinality.

1 Introduction

There is at present a lively debate in cognitive psychology concerning the origins of
natural number concepts. At the center of this debate is the system of mental
magnitudes, an innately given cognitive mechanism that represents cardinality and
that performs a variety of arithmetical operations. Most participants in the debate
argue that this system cannot be the sole source of natural number concepts, because
they take it to represent cardinality approximately, while natural number concepts are
precise. Weak nativists argue, however, that natural number concepts develop from
the combination of mental magnitudes with other innate representations.1 Strong
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1This is not entirely accurate of all weak nativists. Susan Carey (2004, 2009a, 2009b) and Le Corre and
Carey (2006, 2007) for example, argue that our acquisition of the first few natural number concepts
depends on innate systems for representing objects and for understanding natural language quantifiers, that
the system of mental magnitudes plays no role in this process, and that it only later plays a role in our
acquisition of larger number concepts. I describe this position below.
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nativists argue that natural number concepts cannot develop in this way, and that
human beings innately possess concepts of at least the first few natural numbers.2

In this paper, I argue that the claim that mental magnitudes represent cardinality
approximately overlooks the distinction between a magnitude and the increments that
compose to form that magnitude. While magnitudes do indeed represent cardinality
approximately, they are nevertheless composed of a precise number of increments. I
argue further that learning the number words and the counting routine may allow one
to mark in memory the number of increments that were composed to form a
magnitude, thereby creating a precise representation of cardinality. The resulting
hypothesis differs from strong nativist views in that it does not posit innate natural
number concepts. It differs from weak nativist views in that it claims that the system
of mental magnitudes is the only innate system to play a role in the acquisition of
natural number concepts.3

The paper will have six main sections. In the first, I will review some of the
experimental evidence that has led to the postulation of two innate representa-
tional systems. One is the system of mental magnitudes. The other is the
system of object-files, which represents small numbers of discrete objects. In
the second section I will describe an early attempt to explain the origin of
natural number concepts in terms of mental magnitudes, and why that attempt
has largely been rejected. In the third and fourth sections I will describe weak
and strong nativist accounts, respectively. In the fifth section I will present the
central argument of the paper: that because both strong and weak nativist
accounts overlook the distinction between magnitudes and the increments that
compose to form them, they overlook a way in which mental magnitudes may
be the sole innate system to play a role in the acquisition of natural number
concepts. In particular, mental magnitudes are composed of a precise number of
increments, and learning the number words and the counting routine may allow
one to mark in memory the number of increments in a magnitude, thereby
creating a precise representation of cardinality. In the sixth section I will argue
that the hypothesis offered here is not equivalent to any of the others discussed,
and I will also discuss several objections and challenges that the hypothesis
faces.

It is important to note that my intention here is primarily one of clearing logical
space. That is, the main goal of the paper is to describe and explain a hypothesis that I
believe has been overlooked in the literature, and to distinguish it from other extant
hypotheses. The empirical evidence I present is aimed at serving those two goals, and
not at arguing that the proposed hypothesis is on balance the best among the
alternatives. While I present evidence that supports the proposed hypothesis, I will

2 The use of the terms strong and weak nativism is due to Laurence and Margolis (2007).
3 Saying that the present hypothesis appeals only to the system of mental magnitudes is somewhat
inaccurate. In fact it will have to appeal to other resources, such as the ability to create one-to-one
correspondences between representations. These other resources will be appealed to by other extant
theories, however. Since my aim is to distinguish the present hypothesis from others, it is most useful to
say, for example, that while some hypotheses appeal to object-files and mental magnitudes, and while
others appeal to object-files and quantificational markers in natural language, the present hypothesis
appeals only to mental magnitudes.
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also acknowledge evidence that does not support it. To be sure, I will describe some
unresolved challenges that it faces. Still, while all of the extant hypotheses face their
own problems (as I discuss below), and thus the general debate remains unsettled, I
take it that exploring alternative hypotheses remains a useful endeavor.

Before beginning, it is also important to describe some terminology and
syntactic conventions I will use. First, let the natural numbers be the positive
integers {1, 2, 3…}. This is a departure from some treatments of the naturals,
which include the positive integers and zero {0, 1, 2…}, but the presentation
here is simplified by referring to the positive integers as the natural numbers,
and nothing substantive hangs on it. Second, when referring to the number of
objects or events in a group (a cardinal number) I will use the appropriate
number word (e.g., “There are fifty states in the U.S.”). When referring to the
place an object or event has in a list (an ordinal number) I will also use the
appropriate number word (e.g., “George Washington was the first U.S. presi-
dent. John Adams was the second.”). When referring to particular numbers
themselves, I will use the corresponding Arabic numeral (e.g., “2 is the unique
successor of 1”). When referring to particular Arabic numerals or particular
number words, I will use single quotes (e.g., “‘2’ and ‘two’ refer to 2”). When
referring to particular natural number concepts, I will use small capitals (e.g.,
“A person with the concept TWO can enumerate sets with two items”).

It is also imperative to begin by explaining what I mean by natural number
concepts, and by the idea that natural number concepts are precise. Examples
of natural number concepts are the concepts ONE, TWO, THREE…. These are
individual concepts meaning 1, 2, 3… respectively, and must be distinguished
from the general concept NATURAL NUMBER, meaning any n such that n is an
element of {1, 2, 3…}.4 The idea that number concepts are precise is the idea that a
person in possession of a natural number concept, N, is among other things able to
distinguish groups of objects with cardinality n from groups of objects with any other
cardinality, including n-1 and n+1. For example, given enough time (and perhaps pen
and paper) an adult in normal conditions will be able to determine that there are, say,
exactly ninety-seven people in a large room.

I intend this as a necessary, and not sufficient, condition on possession of
number concepts. I will not here attempt to provide a list of jointly sufficient
conditions on possession of number concepts. Moreover, although I have
phrased the requirement as behavioral, it restricts the class of representational
systems that can count as natural number concepts. That is, any representational
system that does not distinguish between the number n and its nearest neigh-
bors cannot be a system of natural number concepts, because its employment
could not explain the behavioral requirement. Finally, I want to stress the
conjunctive nature of the requirement. Anyone who can distinguish groups of
four objects from groups of three objects and groups of five objects, but who

4 Rips et al. (2006, 2008a) and Rips et al. (2008b) discuss the origin of the general concept NATURAL

NUMBER, and argue that it requires an at least implicit understanding of the axioms of arithmetic. But this is
a separate problem from the problem of the origin of individual natural number concepts, and I will not take
it up here. See Margolis and Laurence (2008) and Sarnecka (2008) for discussion.
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cannot distinguish groups of five objects from groups of six objects, may
possess the concept FOUR, but does not possess the concept FIVE.5 6

2 Approximate Numerical Competence, Mental Magnitudes, and Object-files

Recent decades have seen an amassing of evidence (from a variety of looking-time
methods7) that human infants possess a range numerical abilities, or in other words,
that they are responsive to the number of objects in a set or sets.8 In particular, it has
been well established that infants are able to compare the cardinalities of sets of
objects, and to compute sums and differences.9

For example, Xu and Spelke (2000) found that six-month-old infants habituated to
displays containing eight dots (and controlled for variables besides cardinality) would
dishabituate to displays containing sixteen dots (and when habituated to sixteen dots,
would dishabituate to eight dots).10 Similarly, Lipton and Spelke (2003) found that
when habituated to eight sounds, six-month-olds would dishabituate to sixteen
sounds (and again, vice versa). Moreover, McCrink and Wynn (2004) showed nine-
month-old infants computer displays of five objects being hidden behind a screen, to
which five more objects were then added. The screen then dropped, revealing either
five or ten objects. The infants who saw the mathematically incorrect outcome of five
objects showed surprise (longer looking times) while the infants who saw the
mathematically correct outcome of ten objects did not. McCrink and Wynn also
reversed this design, starting with ten objects and removing five. Again, the infants
who saw the mathematically incorrect outcome (ten objects) showed surprise, but the
infants who saw the mathematically correct outcome (five objects) did not.

It is important to note that infants’ abilities to distinguish sets of objects based on
the cardinalities of the sets appears to be dependent on the relative cardinalities of the
sets. For example, although six-month-olds distinguished between eight and sixteen

5 This is important because, as Wynn (1992a) shows, children come to meet this requirement in stages, first
developing the ability to distinguish groups of one from other groups, then groups of two, then groups of
three, and then all at once groups of any size. I will describe this process in more detail below.
6 Some may worry that the requirement as stated implies that we do not possess concepts for very large
numbers, since we would not be able to distinguish them from their nearest neighbors. For example, one
could not distinguish one billion trillion objects from one billion trillion plus one objects. But note that this
inability is due to a lack of sufficient time and memory resources. In contrast, small children are unable to
distinguish numbers from their nearest neighbors, even for very small numbers, so their inability cannot be
due to time and memory constraints. Thus, the caveat might be added that the requirement is in fact not
necessary for the possession of the concept N, if distinguishing N from its nearest neighbors would outstrip
the time and memory resources available to the subject. It would remain unclear then, exactly what the
necessary and sufficient conditions on possession of N would be. But that is not problematic for the present
account—we do not, after all, possess the concept ONE BILLION TRILLION in exactly the same way that we
possess small number concepts, and the present account is primarily concerned with the latter.
7 See Carey and Spelke (1996) for a useful discussion of looking-time methods and results.
8 There is also a great deal of research showing that many non-human animals also possess mathematical
abilities. For early results see e.g., Mechner (1958), Platt and Johnson (1971), and Meck and Church
(1983). For a recent review, see e.g., Cantlon et al. (2009a).
9 Feigenson et al. (2004) provide a useful review.
10 The numbers involved here are important. For some evidence suggests that cardinalities from one to
about three or four are represented not by mental magnitudes but by an object-tracking system. I will
describe this system below.
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objects, they failed to distinguish between eight and twelve objects (Xu and Spelke
2000). Similarly, while six-month-olds distinguish eight from sixteen sounds, they
fail to distinguish eight from twelve sounds (Lipton and Spelke 2003).11 12 This
implies that infants’ numerical abilities conform to Weber’s Law, which states that
whether or not a subject can discriminate two stimuli depends not on the absolute
values of the stimuli, but on the ratio between the two.

It is also important to note that early studies did not successfully show that infants
were in fact responding to cardinality. In particular, some studies used small numbers of
objects and thus left open the possibility that infants were tracking discrete physical
objects, a strategy that would implicitly provide correct arithmetical solutions.13 Also,
other continuous variables besides cardinality, such as total brightness of the displays or
total surface area of the objects in the displays, were not controlled.14 Thus it was
possible that infants were responding to these other variables instead of cardinality.
More recent work suggests that when small numbers of objects are involved, infants’
numerical abilities are subject to a set size limit of about three or four, rather than to
Weber’s Law. 15 Taken together these studies suggest that when small numbers are
represented, infants may rely on a system that tracks small numbers of discrete physical
objects (or events), and that they may in some instances respond to variables besides
number, such as total contour length of the objects in a display.

So it is now widely accepted16 that numerical competence in infants is to be
explained by two innate representational systems (Fig. 1). Many authors now believe
that in the small number range (one to about three or four objects or events) a system
of object-files explains numerical competence. Such a system tracks discrete physical
objects or events in an imagistic format that includes various properties of those
objects such as size and shape. This system does not represent cardinality per se, but
does implicitly represent cardinality in the sense that n objects are represented via n
object-files, and therefore supports arithmetic reasoning.

In the large number range (more than three or four objects or events) a system of
mental magnitudes is responsible for numerical competence. Such a system repre-
sents numbers as magnitude values that vary in size, with the variation increasing as
the numbers represented increase. Sometimes termed an accumulator, the model was
originally proposed by Meck and Church (1983) to explain numerical competencies
in rats. Because discussion of this system will take a central role in the rest of the
paper, I will take the next few paragraphs to describe it in detail.

11 Some early experiments revealed this pattern too, as both Starkey and Cooper (1980) and Antell and
Keating (1983) found that infants failed to discriminate four from six dots, and Strauss and Curtis (1981)
found that infants were unable to distinguish between four and five dots. Strauss and Curtis (1981) also
tested infants at three versus four, a discrimination which female infants were able to make and male infants
were not. But again, these early studies failed to control for variables besides number (see footnote 14).
12 Notice, however, that this sensitivity does appear to improve with age. While Lipton and Spelke (2003)
found that six-month-olds were unable to distinguish between eight and twelve sounds, they found that
nine-month-olds were successful at discriminating eight from twelve sounds, though they failed to
discriminate eight from ten.
13 For example, Wynn (1992b) used small numbers of toys.
14 For instance, Starkey and Cooper (1980) used displays containing arrays of dots, with dots of equal size
and spacing, such that an array with six dots would be longer and contain more total dot surface area than
an array with four dots. See also Strauss and Curtis (1981).
15 See for example Clearfield and Mix (1999, 2001) and Feigenson et al. (2002b).
16 Though not entirely – see for exampleGallistel et al. (2006) andCordes andBrannon (2008a, 2008b) for debate.
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Meck and Church (1983) originally described the system as having three parts: a
pacemaker, a switch, and several basins. The pacemaker creates pulses at a (somewhat)
constant rate. When the switch is closed, these pulses are transferred into a basin, where
they are stored. The switch may close and open again at periodic intervals, thus
increasing in steady increments the pulses that are passed into the basin. If n objects
are observed, n increments may be passed from the pacemaker to the basin.17

This is a system of magnitude values: representations are distinguished by their
size. For comparison, consider the Arabic numerals. Here the size of a numeral has
nothing whatsoever to do with what it represents. For example “2” and “2” both
represent the same number. Moreover, the accumulator is a proportional system:
representations grow in proportion to the number represented. For comparison,
consider again the Arabic numerals, and their common usage as a base ten system.
These representations do not grow in proportion to the number represented.18 19

However, the accumulator’s increments are inherently variable, in the sense that any
two increments are only roughly equivalent in magnitude. The result is that two repre-
sentations of the same number may differ in magnitude. That is, numbers are denoted not

17 Some authors hold that it can also be used to measure duration. See Meck and Church (1983). Also see
Gallistel et al. (2006).
18 They grow, in the sense of requiring more digits, (roughly) in proportion to the logarithm of the number
represented.
19 Note that there are non-proportional systems of magnitude values. For example, suppose I have cups of
water, each containing a number of ounces of water (from zero to nine ounces). But rather than use the
empty cup to represent 0, the cup with one ounce to represent 1, and so on, I assign numbers to cups
randomly so that e.g., cups with three ounces of water represent 7, cups with two ounces of water represent
9, etc.

Fig. 1 Stimuli and various representational formats of those stimuli (Feigenson et al. 2002)
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by particular magnitudes, but by ranges of magnitudes. In other words, it is not strictly
true that if two representations denote the same number, they have the same magnitude.

Finally, the variability inherent in individual increments compounds, such that
representations denoting larger numbers exhibit more variability than do representa-
tions denoting smaller numbers. More exactly, the standard deviation of the sizes of
magnitudes representing a given number is a linear function of the size of that
number.20 This feature of the system is known as scalar variability.21 An effect of
scalar variability is that, at a certain point, the range of magnitudes which may denote
a given number becomes large enough that there is overlap with the ranges of
magnitudes that may denote other nearby numbers. Thus two representations with
the same magnitude may differ in content.22 In other words, it is not strictly true that
if two representations have the same magnitude, they denote the same number. 23 24

An accumulator can be used to compare sets of objects by cardinality, by filling one
basin for each set, and comparing the levels of fullness of the basins. It can be used for
addition, by combining the contents of two or more basins. It can also be used for

20 As Le Corre and Carey (2007) put it, “Scalar variability holds the standard deviation of the estimate of
some quantity is a linear function of its absolute value” (397).
21 Note that I assume scalar variability is caused by the compounding of noise in the size in the individual
increments. Some may worry that this assumption is unfounded, as scalar variability could also be achieved
with increments that were not noisy in size, but if there was a probability that for each object observed, the
system produced between zero and two increments. But physical systems are inherently noisy, so there is
already a reasonable explanation of scalar variability without needing to appeal to too many or too few
increments. That hypothesis needlessly complicates matters.
22 A possible objection here that it is inappropriate to say that two magnitudes that are equal in size may
represent different numbers, and that it would be more correct to say that some magnitudes represent a
range of numbers. However, I take the representational content of a magnitude to be determined by the
number of objects in response to which it was formed. A magnitude represents, for example, the number 5
just in case it was formed when the subject observed five objects or events.
23 As an illustration of the accumulator, many authors have described a model accumulator constructed using a
supply of water and cups. Such a model provides an intuitive account of the variability inherent in accumulator
representations, and indeed, of why the accumulator exhibits scalar variability. For instance, Dehaene (1997) writes,

A clear drawback of the accumulator is that numbers, although they form a discrete set, are represented by a
continuous variable: water level. Given that all physical systems are inherently variable, the same number may be
represented, at different times, by different amounts of water in the [basin]. Let us suppose, for instance, that water
flow is not perfectly constant and varies randomly between 4 and 6 liters per second, with a mean of 5 liters per
second. If [the user] diverts water for two-tenths of a second into the [basin], one liter on average will be transferred.
However, this quantity will vary from 0.8 to 1.2 liters. Thus, if five items are counted, the final water level will vary
between 4 and 6 liters. Given that the very same levels could have been reached if four or six items had been
counted, [the] calculator is unable to reliably discriminate the numbers 4, 5, and 6. (29–30)
24 In the above description of the accumulator I have omitted three areas of disagreement. First, Meck and
Church’s (1983) model enumerates objects serially. Other models (e.g., Dehaene and Changeux 1993)
enumerate objects in parallel. Second, as described above there is variability inherently present in the model.
Other descriptions (e.g., Gallistel et al. 2006) take the variability to be present inmemory, not in the accumulator
itself. Third, as explained above, according to this model the system’s inability to distinguish between numbers
that are close together is due to scalar variability. In other models (e.g., Dehaene et al. 2008 and see also Cantlon
et al. 2009b and Dehaene et al. 2009) this inability is due to a logarithmic compression of increment size. The
second and third of these disagreements should have no effect on the arguments in the rest of this paper. The
first, however, is relevant. The view I present below depends on the accumulator adding increments serially, as
the subject slowly observes a group of objects (e.g., observes the objects one at a time). But the present view
does not depend on the accumulator only operating in this manner; it allows that the accumulator may also
operate in parallel. I will address this question in more detail in the concluding section. Note though that
whether it operates serially or in parallel, or both, remains an open question. So it is worth exploring what sorts
of hypotheses are available, assuming particular answers to that question. The present argument is that there is
an important hypothesis that has been overlooked, assuming that mental magnitudes can be formed serially.
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subtraction, multiplication, division, and so on.25 Wynn (1992c) gives a clear and
detailed argument in favor of using the model to explain numerical competencies in
infants. Moreover, the model provides an especially powerful explanation of why
infants’ numerical abilities are subject to Weber’s Law. In particular, because the system
exhibits scalar variability, it cannot reliably distinguish between nearby cardinalities,
where what counts as “nearby” is proportional to the size of the given cardinalities.

Recall, however, the requirement for possession of natural number concepts de-
scribed above: that one be able to distinguish between a given number n and its nearest
neighbors n+1 and n-1, regardless of the size of n. Because the accumulator exhibits
scalar variability, it does not distinguish between a given number and its nearest
neighbors, and therefore it cannot underlie this ability. In other words, the feature of
the accumulator that makes it so powerful an explanation of numerical competencies in
infants also rules it out as a candidate for providing natural number concepts.

Still, because the content of mental magnitudes are numerical (the accumulator
responds to cardinality, after all) it is natural to hypothesize that the system plays a
role in the development of mature numerical thought. But consider the details of the
problem. Infants possess an innate representational system that allows them to
distinguish between groups of objects based on the cardinality of those objects, but
only if there is sufficient difference between those cardinalities. Possession of natural
number concepts, however, requires a representational system that allows one to
distinguish between groups of objects based on cardinality even when the cardinal-
ities differ by one, regardless of the absolute size of the cardinalities. How, if at all,
can the former give rise to, or help to give rise to, the latter?

Authors have generally described this problem in terms of the problem of learning
specific number concepts. For example, a child does not have the concept SEVEN until
she understands that that concept (and the accompanying number word and symbol)
refers to an exact cardinality (i.e., that the concept no longer applies to a group to
which it formerly applied, when an item is taken away or another is added). How do
children acquire precise representations of number, given a system of representation
that does not distinguish between such nearby cardinalities?

At present, there are two kinds of answers to this question. The first says that
children solve this problem by making use not only of the system of mental
magnitudes, but also of the system of object-files. The second says that the problem
cannot be solved, and that humans must therefore be endowed with an innate system
that represents numbers precisely. Below, I will describe both approaches. I will begin
however, by presenting an early attempt to solve the problem by appeal only to the
accumulator, an attempt that has since been abandoned.

3 From Mental Magnitudes to Weak Nativism

Some authors have in fact argued that the system of mental magnitudes can explain
the development of precise number concepts (though as I will explain below, they
have since backed away from that claim). For instance Gallistel et al. (2006) suggest

25 Gallistel et al. (2006) argue that some animals compare rates of return from foraging in different areas,
and that positing an accumulator can explain this as well.
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that the process of learning the number words may allow a child to “pick out” precise
representations from her innate approximate ones. In particular, they claim that the
accumulator’s representations are homomorphic to the so-called counting principles,
described in Gelman and Gallistel (1978). Those principles describe what a child
must be able to do, before she can be said to have mastered the counting routine,
using a particular set of number symbols (words, numerals, etc.).

There are three principles.26 The first is the one-one principle: each symbol in the
set may be used only once in an episode of counting. The second is the stable-order
principle: the symbols must be used in a fixed order, that is, they must be used in the
same order in all episodes of counting. The third is the cardinality principle: the final
symbol used in a given count represents the cardinality of the set of objects counted.

The idea in Gallistel et al. (2006) is that the system of mental magnitudes operates
in accord with these principles, as do number words when used appropriately. Thus,
when we count, we use each count word only once, we use them in a fixed order, and
the last word in the count indicates the cardinality of the set counted. Gallistel et al.
claim that,

Each count in the nonverbal process defines a next magnitude. Thus… the
magnitude that results from the next step is always one fixed increment greater
than the magnitude that results from the previous step… Finally… the magni-
tude produced by the final increment in the nonverbal counting process [repre-
sents the cardinality of the set being counted]. (2006, 265)

And they claim that,

…the child perceives the homomorphism between the nonverbal and the verbal
counting process, and this leads to the assumption that the words used in the
counting process represent the same aspect of the world as do the mental
magnitudes obtained from the nonverbal counting process… [This] means that
the child thinks that the counting words refer to the same things in the world as
the mental magnitudes representing [cardinality] refer to…. (265–6)

Thus, Gallistel et al.’s proposed solution is that the process of learning to use
number words and symbols is the process of associating those words and symbols
with mental magnitudes, such that precise representations of number are generated or
picked out from mental magnitudes.27

26 Gelman and Gallistel (1978) also describe the abstraction principle: that the symbols may be used to
count heterogeneous groups of objects (e.g., toys together with cookies), and the order-irrelevance
principle: that the order in which the objects are counted does not affect the cardinality of the group.
Neither of these will affect the discussion here though, so I leave them out.
27 Gallistel et al. (2006) are not alone in this line of thinking. Dehaene (1997) describes the process in
similar ways. He explains that to learn the meaning of the word “three,” for example, the child must

correlate [his] preverbal representation with the words he hears. After a few weeks or months, he
should realize that the word ‘three’… is very often mentioned when his mental accumulator is in a
particular state that accompanies the presence of three items. Thus, correlations between number words
and his prior nonverbal numerical representations can help him determine that ‘three’ means 3. (107)

De Cruz (2008) writes that “Natural language is one among several tools that allow us to map exact
cardinalities onto our approximate… mental number [representations]” though she also says that “External
symbolic representations of natural numbers are not merely converted into an inner code; they remain an
important and irreducible part of our numerical cognition” (487).
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It is necessary to note here that Gallistel et al. take mental magnitudes to be a
continuous form of representation. They write that, “scalar variability suggests that
[cardinality] is represented… by mental magnitudes, that is, by real numbers, rather than
by discrete symbols like words or bit patterns” (252). Moreover, they say explicitly that,
“our underlying representation of [cardinality] has the continuous character of the real
numbers rather than the discrete character of integers” (268). But there is tension between
this view and their suggestion about how children acquire natural number concepts.

They write that their hypothesis,

raises interesting questions about where some of our intuitive convictions about
quantity come from. One of these concerns our concept of exact equivalence.
Empirically, there is no such thing as exact equivalence among uncountable
quantities… If we relied simply on our experience of uncountable quantities,
we would not have a concept of exact equivalence…

Nonetheless, we believe that when equals are added to equals, the results are
equal. We believe this despite the fact that it may or may not be true of mental
magnitudes, depending on whether the nonverbal system for reasoning with
magnitudes recognizes equivalence… and how it decides whether twomagnitudes
are equivalent. (2006, 266)

Gallistel et al. present several possibilities for how this problem might be solved,
though they are speculative.28

Laurence and Margolis (2005), however, argue that the idea that mental magnitudes
alone provide the origin of natural number concepts cannot be true, that none of Gallistel
et al.’s proposed solutions can work, in particular because mental magnitudes are not in
fact homomorphic with the counting routine. They explain that mental magnitudes do
not increment in a way that defines successor increments. Thus they write that,

Assuming that the Accumulator’s states do represent the reals, it’s hard to see
how the Accumulator could embody the counting principles. The idea that there
is a ‘next tag’ makes no sense with respect to the reals. The problem is that the
reals are dense in that between any two real numbers there is always another
real number. So ‘2’ is no more ‘the next tag’ after ‘1’ than ‘1.5’ is (or for that
matter, than any other number greater than 1 is). (224)

And second, they argue that,

…even if there was some sense in which ‘the next tag’ could be defined for a
system representing the reals, the Accumulator would still have to operate with
impossibly perfect precision to ensure that the same [basin] levels are applied in
the same order for each count. In all likelihood the level corresponding to ‘1’
would rarely be followed by the level corresponding to ‘2’; rather, it would
sometimes be followed by ‘2.0000000000103,’ sometimes by ‘2.000010021,’
and so on. But that’s just to say that the stable-order principle wouldn’t hold. (224)

28 For instance, they suggest that the system may judge two magnitudes to be equivalent if it cannot reliably
order them, or alternatively that the system may employ “shortcuts” such as assuming that when one
increment is added to each of two equivalent magnitudes the results are equivalent, or finally, that “the
discrete nature of the verbal representation… is the origin of our notion of exact equivalence” (Gallistel,
et al. 2006, 266–7).
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In later papers, Gallistel and Gelman have agreed that this problem is fatal for the
idea that the accumulator is the sole innate origin of natural number concepts.29 For
instance Leslie et al. (2008) write that,

One use we make of integers is counting things. A fundamental intuition here is
that if three things are counted, then the resulting cardinal value will be exactly
equal to the cardinal value that will result from counting them again. It is hard to
account for this intuition if the brain represents cardinal values by noisy reals [i.e.,
by mental magnitudes] because two exactly equal values will never occur. Al-
though we find compelling evidence for the existence of an analogue magnitude
representation underlying counting and other number tasks, exact equality chal-
lenges such models. We are left without an account of why our basic number
concepts—the ones picked out by language—should be integers rather than
reals…. Two real-valued measures of the same entity are, in general, infinitesi-
mally likely to be exactly equal, and infinitesimally likely to have an integer value.
Thus, the chance of a child entertaining an integer hypothesis would be infinites-
imal. If no child would learn integer values, then no languagewould contain words
for such values; yet both are commonplace. Exact equality is an important
constraint on representations underlying natural number concepts. (213–14)

They argue, therefore, that children must have innate natural number concepts,
explaining, “We argue that basic number representation in humans is not limited to
the reals; it must include a representation of the natural numbers qua integers” (215).
Laurence and Margolis (2007)30 also argue that human beings must possess innate
natural number concepts, though their account differs from Leslie et al.’s. I will describe
them both in some detail below, but these strongly nativist accounts are not the only
proposed solutions to the problem. Elizabeth Spelke and Susan Carey, for
instance, have each offered weakly nativist accounts, according to which natural
number concepts are arrived at by combining mental magnitude representations
with other innate representations. I turn now to a discussion of these solutions.

4 Weak Nativism

Recall that there is now wide agreement that numerical competence in infants is to be
explained by two systems. One is the accumulator, representing numbers of objects
greater than about three or four. The other is the system of object-files, representing
one to about three or four distinct physical objects, and representing cardinality only
implicitly. For weak nativists, the solution to the problem described above is that
while neither system is alone capable of providing natural number concepts, together
they are.31

29 Carey (2001) argues on similar grounds that mental magnitudes cannot be the sole source innate source
of natural number concepts.
30 See also Margolis and Laurence (2008).
31 Carey (2004, 2009a, 2009b) for instance, describes acquisition of natural number concepts as a process
of Quinean bootstrapping – the combination of innately given representations in ways that allow for new
conceptual representations. See Quine (1960).
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As Spelke (2003) explains the problem,

[The system of object-files] represents small numbers of persisting, numerically
distinct individuals exactly, and takes account of the operations of adding or
removing one individual from the scene. It… does not permit infants to discrim-
inate between different sets of individuals with respect to their cardinal values.
[The system of mental magnitudes] represents large numbers of objects or events
as sets with cardinal values, and it allows for numerical comparison across sets.
This system, however, fails to represent sets exactly… and therefore it fails to
capture the numerical operations of adding or subtracting one. (2003, 299)

In other words, neither system does what is needed: explicitly represent the precise
cardinalities of sets of objects. Though object-files represent cardinality precisely,
they do so only for small groups of objects, and they do so only implicitly, insofar as
they require n object-files to represent n objects. Mental magnitudes explicitly
represent cardinalities of larger groups of objects, but only approximately. What is
needed is a system that explicitly represents cardinalities, both small and large,
precisely.

However, Spelke sees the fact that there are two systems at work as the solution to
the problem. In particular, she argues that the explicit representation of precise
cardinal values results from the combination of the precision inherent in the object-
file system with the explicit representation of cardinal value inherent in mental
magnitudes. That combination, moreover, occurs over a period of time as children
learn to appropriately use the number words to identify cardinalities.

Following Wynn (1990, 1992a), Spelke explains that children generally learn the
counting routine, ‘one, two, three…’ well before they learn to apply these words
appropriately. She notes that there is a four-stage process during which children learn
to use the counting words correctly. During the first stage, children appropriately use the
word ‘one’ to refer to single objects, and they use number words besides ‘one’ to refer to
more than one object, but they fail to distinguish between these other words. For
example, when asked to point to a group of two, or a group of three fish, they will point
randomly at either group. In the literature, such children have come to be known as “1-
knowers”, because they possess the concept ONE, but no other number concepts.32

During the second stage, children begin to appropriately use the word ‘two’. They
will pick two items from a group when asked to, and they will pick more than two
items when asked for other numbers of items. However, they will not distinguish
between number words other than ‘one’ or ‘two’. If asked for a number of items
greater than two, that is, they will pick numbers of items at random. Such children are
described as “2-knowers”. Children similarly come to learn to use the word ‘three’
(“3-knowers”) and finally, they come to use words for numbers larger than three as a
group (they begin to use them appropriately all at the same time).33 These children are
described as “n-knowers”.

32 Note the relationship here to the necessary condition on possession of individual number concepts I gave
above. The requirement is that a person in possession of the concept N must be able to distinguish groups of
objects with cardinality n from groups of objects with cardinality n+1 and from groups of objects with
cardinality n-1. The intuition that 1-knowers possess the concept ONE, but no other number concepts, is the
source of this requirement.
33 See Spelke (2003, 299–301).
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The process takes about a year to a year and a half, and Spelke suggests that it
takes such a long time precisely because there are two mechanisms at work. In
particular, she thinks that the word ‘one’ is learned readily because it only represents
an individual object. That is, children learn the meaning of ‘one’ by “relating this
word to representations constructed by their… system for representing objects”
(2003, 301). Other numbers, however, require children to employ both the system
of object-files and the accumulator. She writes,

To learn the full meaning of two… children must combine their representations
of individuals and sets: they must learn that two applies just in case the array
contains a set composed of an individual, of another, numerically distinct
individual, and of no further individuals. The lexical item two is learned slowly,
on this view, because it must be mapped simultaneously to representations from
two distinct… domains. (2003, 301)

Eventually, children learn the meanings of ‘two’ and ‘three’, by mapping the
words to both systems. To learn the rest of the counting words, however, Spelke
suggests that children perform an induction from the pattern observed. That is,
children may notice that, “the progression from two to three in the counting routine
is marked by the addition of one individual to the set [and also by] an increase in the
cardinal value of the set” (302). Having noticed these facts, they may then “gener-
alize these discoveries to all other steps in the counting routine.” That is, they may,

realize that every step in the counting routine is marked by the successive
addition of one individual so as to increment the cardinal value of the set of
individuals. Because these representations exceed the limits of [both object-files
and mental magnitudes], these realizations depend on elaborate conceptual
combinations. Those combinations, in turn, may depend on the natural lan-
guage of number words and of the counting routine. (2003, 302–3)

In short, learning the correct use of number words takes several years because it is
the process whereby number words become associated with both object-files and
mental magnitudes. But while it is a slow process, it provides a solution to the
problem. That is, mental magnitudes and object-files become combined, and as such
come to be able to explicitly represent precise cardinal values.34

Spelke is not the only theorist to argue for a solution that does not involve innate
natural number concepts. Susan Carey does as well. One of the most interesting facets
of Carey’s approach though, is that mental magnitudes play no role in the initial
development of natural number concepts. Instead, natural number concepts first arise
only as small number concepts, provided by object-file representations, but
“enriched” by quantificational markers in natural language.

Carey explains that the object-file system,

creates working-memory models of sets. The symbols in these models represent
particular individuals—this box, which is different from that one. However…

34 Condry and Spelke (2008) put the hypothesis this way: “the counting routines of specific human cultures
engender spontaneous, constructive processes within the child and that these processes build a unitary
system of natural number concepts from a set of conceptual primitives delivered by distinct, core cognitive
systems” (37).
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even when drawing on [object-files] alone, infants have the capacity to repre-
sent two models and compare them on the basis on 1–1 correspondence. For
representations of this format to subserve the meanings of the singular deter-
miner or the numeral ‘one’ for subset-knowers [that is, 1-knowers, 2-knowers,
or 3-knowers], the child may create a long-term memory model of a set of one
individual and map it to the linguistic expression ‘a’ or ‘one’. Similarly, a long-
term memory model of a set of two individuals could be created and mapped to
the linguistic expression for a dual marker or ‘two’, and so on for ‘three’ and
‘four’… What makes these models represent ‘one’, ‘two’, and so forth is their
computational role. They are deployed in assigning numerals to sets as follows:
The child makes a working-memory model of a particular set he or she wants to
quantify… He or she then searches the models in long-term memory to find that
which can be put in 1–1 correspondence with this working-memory model,
retrieving the quantifier that has been mapped to that model. (2009a, 248–9)

Once the child has these long-term memory models, Carey thinks, he is in a position
to notice that whenever a set is accompanied by the word ‘two’, the recited counting
routine is ‘one, two’, and whenever a set is accompanied by the word ‘three,’ the recited
counting routine is ‘one, two, three’, etc. In other words, he is in a position to “notice that
for these words, at least, the last word reached in a count refers to the cardinal value of
the whole set” (2009a, 250). After noticing this, Carey thinks that the child may “notice
an analogy between next in the numeral list and next in the series of mental models…
related by adding an individual,” and that he is now in a position to make the “crucial
induction” that “if ‘x’ is followed by ‘y’ in the counting sequence, adding an individual
to a set with cardinal value x results in a set with cardinal value y” (2009a, 250).

Thus, Carey’s view is that the process of acquiring natural number concepts involves
first creating long-term memory models of sets of individuals and mapping the number
words to those models. Second, it involves noticing that the last word in an episode of
counting represents the cardinality of the set counted, and finally, it involves the
induction that for any subsequent word in the count list, it must refer to a subsequent
cardinality. Again, one of the most interesting aspects of this account is that it does not
involve the system of mental magnitudes. Carey acknowledges though, that “a further
bootstrapping episode… integrates the numeral list with analog magnitude number
representation, greatly enriching their numerical content” (2009a, 251). Still, Carey
admits that it is a “surprising upshot” that “one of the evolutionarily ancient systems
of representation with numerical content, the [mental] magnitude system, plays no role
in providing initial meaning for verbal numerals” (2009a, 251).

Some authors35 have complained that Carey’s account cannot explain the origins
of natural number concepts, since the content of the representations is not numerical.
As with object-files (without enrichment), they only implicitly represent numbers.
There are also problems for weak nativism in general, stemming from the idea that
object-files and mental magnitudes can combine to form new, meaningful represen-
tations. For instance, Gallistel et al. (2006) worry that if the ability to add has its
origins in the system of object-files, then it will not support the arithmetic closure
principle,

35 See for example, Montemayor and Balci (2007).
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because there will be no symbol to represent the results of adding ‘threeness to
threeness’. Thus, if operations with these very limited sets of mental symbols
are the foundation of numerical understanding, it is a puzzle how we come to
believe in the infinite extensibility of number, in the fact that you can always
add one more. (269–70)

Moreover, it remains unclear exactly how object-files and mental magnitudes com-
bine and what the resulting representations are like. Gallistel et al. (2006) write that,

The two systems would seem to be immiscible for the same reasons that analog and
digital computers cannot be hybridized. Although both do arithmetic, they do it in
fundamentally different ways. Thus, there is noway of adding a digitally represented
magnitude (for example, a bit pattern) to a magnitude represented by an analogical
magnitude (for example, a voltage), because the two forms of representation are
immiscible. It is hard to see why this same problem does not arise in the developing
humanmind, if it represents some numbers discretely and others bymeans of mental
magnitudes. If oneness is represented discretely but tenness is represented by a
mental magnitude, how is it possible to mentally add oneness and tenness? (270)

And Gelman and Gallistel (2004) ask the related question,

If the brain represents [for example] three and seven in fundamentally different
ways, how can it compose them arithmetically (order them, add them, etc.)?
What representation form do the resulting hybrids have? This is particularly
puzzling when two numbers beyond the discrete and precise range are
subtracted to yield a number inside it, as in 7 – 5 = 2. (442)36

Because of the difficulties for weak nativist positions, and because of the difficul-
ties for explaining natural number concepts solely in terms of mental magnitudes,
several authors have argued for strongly nativist positions. In the next section I will
describe two such accounts.37

5 Strong Nativism

According to strong nativists, human beings possess innate concepts of at least some
natural numbers. Leslie et al. (2008) for instance, suggest that humans possess an
innately given representation of the number one (i.e., the concept ONE),38 and an

36 Also see Laurence and Margolis (2005). Rips et al. (2006, 2008a) and Rips et al. (2008b) have argued
against both forms of weak nativism described here, on grounds that the induction required cannot
guarantee natural number concepts. The reason is that it cannot rule out other non-standard conceptual
structures, such as loops. As Margolis and Laurence (2008) have pointed out though, this appears to be an
instance of more general worries about induction (such as those discussed by Kripke 1982) and would seem
to affect any account of the acquisition of number concepts, including strongly nativist accounts. The only
exception would be an account according to which the entire set of natural number concepts is innate, but
such an account would appear absurd on its face, and no one has offered such an account.
37 There are other weakly nativist accounts, in addition to Spelke’s and Carey’s. For instance, Decock
(2008) discusses the possibility that number competence develops from the one-to-one principle, rather
than from enumeration.
38 Though they note the possibility that the innate complement of natural number concepts could include
the first few numbers.
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innately given recursive rule for producing the successor of any representation of a
natural number. Hence, all natural number concepts can be produced. They also posit
an innate inference rule guaranteeing the multiplicative identity of the concept ONE.
This rule is to account for the fact that the concept ONE is special among natural
number concepts, in that when any number n is multiplied by 1, the result is n.39

Moreover, they suggest that each innate or generated natural number representation is
associated with a mental magnitude value. This is simply in keeping with the
experimental evidence that links use of number words and symbols with deployment
of mental magnitudes.40

Leslie et al. note that these innate and generated representations could be akin to
mental hashmarks, but that such a system is limited in its usefulness, as any system is
whose symbols grow in proportion to the numbers they denote. For example, it would
be impossible to consider the solution to 1,809,672 x 3,432,864 if this were to be
computed in hashmarks. Thus they also posit a “compact notation,” in which
representations grow in proportion to the logarithm of the number represented, and
in which each representation is associated with a unique hashmark representation.
They allow that the compact notation itself may be innate or it may be acquired,
perhaps from natural language itself, since number words and common number
symbols do not grow in size in proportion to the numbers they represent.

Leslie et al. are not alone is positing innate representations of natural numbers.
Margolis and Laurence (2008) write that mental magnitudes “are by their nature
approximate and hence incapable of expressing a difference of exactly one” (935) and
they argue in favor of an innate “number module” that represents the first three or
four integers. Laurence and Margolis (2007) construe these representations as having
“precise numerical content,” but a minimal amount. For instance, they leave it open
whether the system possesses any understanding of the mathematical relations that
hold among the numbers it represents, including whether they are ordered. “What
makes [these representations] numerical,” they write, is just that they serve to detect
collections of specific sizes, for example, the representation corresponding to 2 is
uniquely responsive to collections that have precisely two items, independent of
whatever non-numerical properties the collections have” (146).

Since Margolis and Laurence do not posit any innate way of generating integers
beyond the first four (e.g., something akin to Leslie et al.’s recursive rule for
generating successors), it remains a question how children acquire concepts of the
natural numbers beyond the first few. They suggest the possibility that an “external
structured symbol system” such as natural language plays an important role. For
instance, children might map the words ‘one’, ‘two’, and ‘three’ directly to their
innate representations of those numbers provided by the number module. They may

39 Leslie et al. (2008) claim that any candidate for being the concept ONE must have this feature. But it is not
clear that all features of the concept ONE must be innate. The idea that the number 1 is the (unique)
multiplicative identity could be acquired as multiplication is learned. And this is true regardless of whether
the concept ONE is innate or not.
40 The experimental evidence shows that when estimating the cardinality of a group of objects, adults are
able to produce a number word, and adults’ rapid discrimination of Arabic numerals exhibits the well-
known “distance” and “magnitude” effects, which are corollaries of Weber’s Law, and hence suggests the
deployment of mental magnitudes. For further explanation and discussion, see for example Dehaene (1997)
and Gallistel et al. (2006).
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learn the counting routine as a game, but if they notice that the last word in the count
sequence expresses the number of objects in the group counted, that may provide an
understanding of the ordering of their innate representations. Also, their representa-
tion of the number 1 may allow them to notice that the numerical difference between
any two number words in the count list is one. Finally, they may be able to perform an
inductive inference concluding that for each successive number word in the counting
sequence, that successive number word refers to a number one greater than the last.

The argument for (some version of) strong nativism rests largely on the idea that
none of the weak nativist positions described above are sufficient to explain the origin
of natural number concepts. Since neither mental magnitudes alone, nor mental
magnitudes in conjunction with object-files can supply natural number concepts,
yet humans obviously possess these concepts, we must possess them innately. Of
course, weak nativist proposals themselves serve as arguments against strong nativ-
ism. From the weak nativist point of view, strong nativism is simply not necessary,
since number concepts can be accounted for in virtue of mental magnitudes.
Moreover, work with some indigenous groups of people suggests that concepts of
natural numbers are not innate. Thus, the Pirahã of Brazil lack words in their language
for numbers above about two (roughly, they possess a “one, two, many” language),
and by some accounts they do not possess even very small natural number concepts
(Gordon 2004, but also see Laurence and Margolis 2007 and Frank et al. 2008).41 42

It is important to recall here that what drives all these views, both strongly and
weakly nativist, is the idea that mental magnitudes represent cardinality in an
approximate manner, and therefore that they cannot alone be the source of natural
number concepts, since the latter are precise. Weak nativists attempt to solve the
problem by appeal to conceptual combinations, strong nativists to innate natural
number concepts. However, I think there is an important distinction overlooked in
the literature. The distinction is between a magnitude and the increments that
compose to form that magnitude. In the remainder, I will argue that attention to this
distinction may provide a new solution to the problem.

6 Magnitudes and Increments of Magnitudes

Consider three walls. The first is constructed of bricks, joined using mortar that is a
different color than the bricks. When the wall is complete, it is obvious that it was
formed by combining parts, and it is obvious where each of those individual parts
begins and ends. The second wall is constructed of blocks of ice, which are laid
directly against and on top of one another. The blocks of ice gradually melt together,
such that the wall no longer appears to have been constructed of parts, but rather

41 Also see Izard et al. (2008b), for discussion of speakers of Mundurucú, who possess numerical terms that
“approximately” correspond with the numbers one through five.
42 The argument from the claim that some cultures do not possess natural number concepts to the claim that
those concepts cannot be innate depends on a notion of innateness according to which if a concept is not
present in all cultures then it is not innate. Such an account would have to be defended if the argument were
to be successful. I am here noting that some have made the argument, but I am not relying on it, so I leave
that discussion aside.
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appears to have been constructed from a single large block of ice. The third wall is
constructed from a single large block of cement.43

Note that there are two distinctions here. The first is between objects that were
constructed from parts, regardless of whether those parts retain their individuality
after the object is constructed (the brick and ice walls), and objects that were not
constructed from parts at all (the cement wall). The second is between objects that
were constructed from parts and whose parts retain their individuality (the brick wall)
and objects that were constructed from parts but whose parts do not retain their
individuality (the ice wall).

Note also that these distinctions can be applied to representational systems.
Written English sentences are constructed from words, but those words are kept
separate from each other (by leaving spaces between the words in a sentence) such
that they retain their individuality after being brought together to form sentences.44

Imagine on the other hand a system that uses large piles of sand to represent the
weights of various objects, and which combines the piles of sand (i.e., into a single
larger pile of sand) to represent the combined weight of the objects. This would be a
representational system whose compound representations are constructed from parts,
but where those parts do not retain their individuality once they are combined.
Finally, consider the familiar red-yellow-green stop lights used at intersections.
Each of these colors is an atomic representation within the system, and they do not
combine at all; the system does not employ compound representations.

The point I want to make here is that mental magnitudes are of the second type of
representational system. They are formed by combining increments, but in such a
way that the system is unable to recover the number of increments that are
compounded to form a magnitude. Or in other words, the parts (increments) that
are combined to form compound representations (magnitudes) do not retain their
individuality once they are so combined.45 Since the increments are also variable in
size, this has the result that the system cannot distinguish between representations of
nearby numbers. Thus, focusing on magnitudes as completed representations (ignor-
ing the increments that were combined to form them) leads to the conclusion that they
are approximate representations of number. So, for example, Margolis and Laurence
(2008) write that mental magnitudes “are by their nature approximate and hence
incapable of expressing a difference of exactly one” (935). And Spelke (2003) writes
that the system of mental magnitudes “represents large numbers of objects or events as

43 It is important to imagine the cement wall having been poured all at once. One should not imagine it
being poured in separate forms that are then joined together.
44 Some might object to the example, since words can be individuated even when spaces are not left
between them. This is true, but the example is intended to show that there are at least some systems in
which representations are constructed from parts and the parts retain their individuality. Indeed, even when
a written sentence has no spaces, there remains a canonical breakdown of the sentence into words.
45 It is important here to distinguish between two hypotheses. The first is that the accumulator encodes an
increment for each object observed, and then combines these representations. In other words, it arrives at a
completed representation of a group of objects by first forming a representation of each object in the group.
The second is that the accumulator responds to individual objects, but does not encode separate represen-
tations for each – it creates the completed representation “all at once”. I am here suggesting the second, and
not the first of these hypotheses, at least in cases in which the objects are observed rapidly. The hypothesis I
offer below does, however, depend on the accumulator being able to add increments to a magnitude that has
already been encoded, when for example, the objects are observed slowly. I will say more about this
distinction below.
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sets with cardinal values,… however, [it] fails to represent sets exactly… and therefore
it fails to capture the numerical operations of adding or subtracting one” (299).

However, we may also focus on magnitudes as representations that are formed by
combining parts (increments) but whose parts do not retain their individuality after
being combined. And focusing on them in this way yields a different result—it yields
the result that mental magnitudes are formed by the composition of a precise number
of increments. For recall that experimental studies have controlled for variables
besides cardinality (such as total surface area or total brightness of a display) showing
that what the system responds to is the number of objects or events in a group (i.e.,
the group’s cardinality).46 In other words, when presented with n objects, the
system increments a magnitude n times. Of course, there is nothing approxi-
mate about the cardinality of a group of objects. There is nothing approximate
about n, whatever n is.47

It is important to note here that the idea that magnitudes are composed of
increments implies nothing at all about whether the medium of representation is
continuous or discrete. For instance, the increments employed by the system de-
scribed above that uses sand to represent weight are amounts of sand, a discrete
medium. In contrast, a system that compounded cups of water would also employ
increments, although the medium would be continuous (or at least, would appear
continuous to the naked human eye). Indeed, as Dehaene describes the water-based
accumulator, water is directed into the basin for a certain amount of time per object
observed. This system also employs increments, even if the user does not re-direct the
flow of water outside the basin between increments. An increment is just the amount
of water directed into the basin during the specified period of time.

Now recall the necessary condition on possession of the concept N that I gave
above: one must be able to distinguish groups of n objects from groups of n-1 objects
and groups of n+1 objects. The worry that many authors seem to have is that, because
the system of mental magnitudes does not distinguish a number from its nearest
neighbors, it therefore cannot underlie this necessary condition on possession of
natural number concepts. The point I am emphasizing now is that it is only when
we focus on the magnitudes as completed representations that the system does not
distinguish a number from its nearest neighbors. When we focus on them as repre-
sentations that are formed by combining parts, then the system does indeed distin-
guish between a number and its nearest neighbors. It does so in the sense that it
combines n increments to represent n objects.

Acknowledging the distinction between a mental magnitude and the increments
that were combined to form it allows, I think, for an account of their role in the
acquisition of natural number concepts that has been overlooked in the literature.

46 As I noted above, some evidence suggests that the accumulator does not in fact respond to cardinality at
all (at least in the small number range), but rather to continuous variables such as total contour length of the
objects in a display or the density of the objects. Thus, one should read the proposal here as hypothetical,
depending on the assumption that the accumulator creates a representation by incrementing a magnitude n
times for n objects.
47 Another way to make the point is that, while the literature on mental magnitudes has drawn a two-way
distinction between cardinality represented and magnitude doing the representing, what is needed is a three-
way distinction between cardinality represented, increments combined to form a total magnitude, and total
magnitude.

Mental Magnitudes and Increments of Mental Magnitudes 693



Specifically, I want to suggest the possibility that learning the number words and the
counting routine allows the child to store and recover the precise number of incre-
ments that combine to form a mental magnitude. As I noted in the introduction, my
intention is to explore this hypothesis as an alternative to those extant in the literature
and not to argue that it or any other is best supported by all the available evidence.
Below I will present some evidence in its favor, but I will also note evidence against
it, and I will discuss some unresolved challenges that it faces.

Recall the example of using a supply of water to count some number of objects.
The increments of water are variable and compound and there is no way to recover
the number of increments that were used to compose a representation. Thus, there is
no guarantee that when two sets of objects with equal cardinality are counted, the
resulting representations will appear as representations of the same cardinality. And
there is no guarantee that when two sets of objects with unequal (though nearby)
cardinalities are counted, the resulting representations will not appear as representa-
tions of the same cardinality.

Suppose we add a collection of pebbles, however, such that for every time an
increment of water is added, a pebble is placed in a bin. Because there is a one-to-one
correspondence between the number of objects counted and the number of increments
of water employed, and also between the number of increments of water employed
and the number of pebbles used, there will therefore be a one-to-one correspondence
between the number of objects counted and the number of pebbles used. If the user of
this system noticed this latter correspondence, she would be in a position to use the
pebbles to compare the cardinalities of groups of objects, instead of the water.

Of course, because the user of this system can recover the exact number of pebbles
that were compounded to form a representation, the system guarantees (barring user
error) that when two sets of objects with equal cardinality are counted, the resulting
representations will appear to be representations of equal cardinality. And it guaran-
tees (again barring user error) that when two sets of objects with unequal (though
nearby) cardinality are counted, the resulting representations will not appear as
representations of the same cardinality. The present suggestion, then, is that learning
the counting words is akin to adding the pebbles in the above metaphor. It provides a
way of recovering the precision that is present in the formation of mental magnitudes,
which is no longer present after they are formed. If this is right, then a child learning
to use the number words must map those words to the increments that are
compounded to form a magnitude,48 rather than to the final product, the resulting
magnitude. How can this be achieved?

To answer this question, it is important to recall that the experiments that have
revealed the existence of the system of mental magnitudes depend on subjects not
using language to count the objects in a display. For adult subjects, this is achieved by
forcing rapid estimation of cardinality (and sometimes including recital of words
other than number).49 Thus they force the rapid production of mental magnitudes.

48 Notice that this is not the same problem as somehow mapping number words to overlapping ranges of
mental magnitudes. I take it that problem is unsolvable (as strong nativists seem to agree) because it
requires mapping a precise system of representation directly to an approximate system. The present
problem requires mapping a precise system of representation to another precise system (the number of
increments combined in the formation of a mental magnitude).
49 See e.g., Mandler and Shebo (1982), Whalen et al. (1999), and Cordes, et al. (2001).
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Suppose however, that mental magnitudes may be produced slowly, one increment at
a time, as a group of objects is slowly observed. In this case, recital of each counting
word may serve to mark in memory the addition of a new increment to a magnitude
that is being formed.

For instance, imagine a child who has mastered the counting routine as a mean-
ingless string of words, but who does not yet understand the meanings of those
words. As she counts a group of objects, that is, as she recites the counting routine
one word for each object, she also creates an increment for each object in the group,
and these increments are compounded together, creating a final magnitude. Thus,
there is a one-to-one correspondence between the number of words that have been
recited and the number of increments that were compounded.

That the child be able to slowly attend to each object, reciting a counting word for
each, is important here. For, as noted above (footnote 45) when rapidly observing a
set of objects, the system may not encode an increment for each object and then
combine them, as two separate actions. Rather, it may simply create and combine
increments “all at once.” In that case, the child would not have the opportunity to
notice that a new increment was added for each object observed, and thus would not
be in a position to note a one-to-one correspondence between number words and
increments. In short, it is crucial for the present hypothesis that during number word
learning, some instances of counting take place slowly, such that the system is forced
to encode one increment at a time, even if it would not do so were the subject
observing a set of objects more rapidly.

Thus, the present hypothesis is that learning the meaning of the number words is a
process whereby the child maps those words to the individual increments that
compound to form magnitudes. In other words, it is a process whereby the child
learns to use the number words to mark in memory the number of times a mental
magnitude has been incremented. The number words therefore become precise
representations of precise numbers of objects or events, by recording the precise
numbers of increments that compose to form completed mental magnitudes.50

One piece of evidence for this view is the length of time it takes children to learn
the meaning of number words, even after having mastered the counting routine.
Recall that the process takes between a year and eighteen months, and proceeds in
recognizable stages: children first become 1-knowers, then 2-knowers, then 3-
knowers, and finally, n-knowers. Now suppose that the present hypothesis is true,
and imagine a 1-knower learning to use the word “two”.

The hypothesis is that she must learn that “two” is the appropriate word when and
only when a magnitude is composed of exactly two increments. Of course, she can
only know that if she knows that she has added exactly one increment to a magnitude
that previously consisted of exactly one increment. But in order to know that, she
must be in a position to know that the magnitude had previously been composed of
exactly one increment. To know that, she needs some way of recalling that a
magnitude had been so composed. According to the present hypothesis though, this
is exactly what learning the meaning of the word “one” implies. In short, the

50 There is also some evidence that learning a system of number words may also help to remove some of
the variability inherent in magnitude representations. See for example, Piazza and Izard (2009).

Mental Magnitudes and Increments of Mental Magnitudes 695



hypothesis predicts that children must understand “one” before they understand
“two”, which in fact they do.

The same argument can be made with respect to learning “three”. On the present
hypothesis one cannot learn the meaning of “three” before one learns the meaning of
“two”, because it requires being in a position to notice that exactly one increment has
been added to a magnitude that was previously composed of exactly two increments,
and one cannot be in that position unless one knows that the magnitude was
previously composed of exactly two increments. In general then, the present hypoth-
esis predicts that number words must be learned in order, as in fact they are, and
therefore that the process should take considerable time, as in fact it does. 51 52

Some may wonder in addition if there are neuroscientific studies that support the
present hypothesis. Indeed, there are many such studies concerning numerical cog-
nition in humans, including in children and infants, and also in non-human animals.
For example, neuroimaging studies have found that adults, children, and infants
represent non-symbolic numerical information in similar locations.53 Single-neuron
studies have implicated both the prefrontal cortex and the posterior parietal cortex in
the primate brain in numerical (and length) representation.54 Other studies provide
neural network models of numerical representation,55 and still others address the
connections that develop between areas of the brain that represent external numerical
symbols, such as number words, body parts, gestures, and numerals.56 57 However, it
is unclear that neuroscientific studies can yet distinguish between the present hypoth-
esis and the others discussed here.

The reason is because current neuroscientific studies are primarily concerned to
locate numerical processing in the brain, to describe the kind of information repre-
sented at varying locations, (e.g., continuous, discrete), and to identify similarities in
numerical processing across different areas of the brain. But consider, for example,
the difference between the present hypothesis and Spelke’s. Both claim that acquisi-
tion of precise number concepts involves associating number words with mental
magnitudes. Whereas the present hypothesis claims that number words are mapped to

51 It is true of course that Spelke (2003) argues that the length of time it takes children to learn the meaning
of number words is evidence for her view—that the system of object-files must also play a role in that
learning. There are two issues that point to the present hypothesis though, over Spelke’s. First, the present
hypothesis is simpler, in that it does not require object-files, as does Spelke’s account. Second, notice that
Spelke’s account does not predict that the number words must necessarily be learned in order. It allows that
they are, and of course that is what one would expect. But her hypothesis is compatible with a child learning
the number words out of order. The present hypothesis is not so compatible. Again, it requires that children
first learn the meaning of “one”, then “two,” and so on. On the other hand however, this may also be a
drawback for the present hypothesis. See the discussion of “Alex” the grey parrot, below.
52 Of course, after about “three” or “four” children learn the meanings of the rest of the number words all at
once, which requires an inductive inference of some kind. None of the extant theories—including the
present one— has an explanation of this part of the process. It must be acknowledged though, that the fact
that that inductive inference happens after about “three” or “four” rather than, for example, at “two” or
“five” is perhaps better explained by Spelke’s view, since that view relies on mapping number words to
object-files, and that system has a set-size limit of about three or four.
53 See for example Cantlon et al. (2006) and Izard et al. (2008a).
54 See for example, Tudusciuc and Nieder (2007, 2009).
55 See for example, Dehaene and Changeux (1993) and Verguts and Fias (2004).
56 See De Cruz (2008) for discussion.
57 See Nieder and Dehaene (2009), for example, for a review of neuroscientific studies on numerical
cognition.
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successive additions of increments of magnitudes, however, Spelke claims that
number words are mapped simultaneously to mental magnitudes and to object-files.

Confirming the present hypothesis and disconfirming Spelke’s, at the neural level,
would require showing something like the following: that the neural activity under-
lying slow recitation of the number words is highly correlated with the neural activity
underlying the slow production of mental magnitudes (if indeed they are sometimes
produced slowly) and that the former is not highly correlated with deployment of
object-files. Moreover, confirmation of the present hypothesis would require showing
that such a correlation between the neural activity underlying use of the number
words and neural activity underlying creation of mental magnitudes develops over
time—in particular, that it develops during the time period in which children progress
from not knowing the meaning of the number words, to being 1-knowers, to being n-
knowers. To my knowledge, so far there are no neuroscientific studies—or even
collections of such studies—that can offer that kind of detailed confirmation.58

7 Comparisons and Challenges

In this section I will argue that the present hypothesis is not equivalent to any of the
others considered here, and I will also discuss several important objections and
challenges facing the present hypothesis. To begin, recall the first hypothesis de-
scribed above. That hypothesis, offered by Gallistel et al. (2006) and suggested by
others as well, was that the system of mental magnitudes is homomorphic to the
counting routine, that the child recognizes this, and is therefore able to map count
words onto states of the accumulator. But this hypothesis was later abandoned,
because the approximate nature of completed magnitudes means that there are no
equal states of the accumulator onto which count words can map. As Leslie et al.
(2008) put the point,

A fundamental intuition here is that if three things are counted, then the
resulting cardinal value will be exactly equal to the cardinal value that will
result from counting them again. It is hard to account for this intuition if the
brain represents cardinal values by noisy reals because two exactly equal values
will never occur.” (213)

But this makes it clear that they are considering the words as being mapped to
completed magnitudes, and not to the number of increments that composed to form
those magnitudes. For it is only the completed magnitudes that are never equal. The
number of increments will be equal, if the cardinality of the set being counted remains
the same. Since the current hypothesis focuses on the number of increments

58 Note that in discussing the neuroscientific evidence, I am only arguing that it cannot distinguish between
the present account and the others discussed here. I am not arguing that there is no evidence speaking
against the theory that an accumulator mechanism is responsible for numerical competence in infants. As I
noted above (footnote 24), there is much debate about whether an accumulator or some other kind of
mechanism is responsible, and if it is an accumulator, exactly how it functions. But those debates remain
unsettled, so it is worth exploring, on the assumption that an accumulator is responsible for infant numerical
competence, the space of possible hypotheses concerning the acquisition of number concepts. The present
argument is that one important hypothesis within that space has been overlooked.
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composed, while the other hypothesis focuses on the completed magnitude, they are
not after all the same hypothesis.

The present account also differs from the strongly nativist accounts presented
above. After all, the hallmark of such accounts is the view that human beings possess
innate natural number concepts, and in some sense the present account argues for that
very claim. For on the present account, the process whereby mental magnitudes are
formed—an innate process—itself contains the precision required to represent the
natural numbers. However, both Leslie et al.’s (2008) account and Margolis and
Laurence’s (2008) account59 deny that the system of mental magnitudes can be the
source of natural number concepts. To account for natural number concepts, they
posit an innate system in addition to the system of mental magnitudes. The present
account posits no such additional system. Rather, the present claim is that while the
needed precision is contained in the process whereby increments are composed to
form magnitudes, that precision cannot be exploited until after acquisition of the
number words and the counting routine.

Nor indeed is the present account equivalent to Spelke’s. For according to Spelke,
children learn the meanings of number words by noticing that “the progression from [n]
to [n+1] in the counting routine is marked by the addition of one individual to the set
[and by] an increase in the cardinal value of the set” (302). The latter of these marks,
however, is represented by the addition of an increment to a magnitude. Thus the view
appears to be (in part) that children map number words to the addition of increments, as
is the case according the view offered here. But Spelke also claims that object-files play
a role, and indeed, that the number word “one” is initially mapped only to that system,
and that other small number words are mapped both to object-files and incremented
magnitudes. The appeal to both systems is, after all, what makes hers a weakly nativist
view. But the present account makes no appeal to object-files. On this account, for
example, children learn that when a magnitude is composed of exactly one increment,
the number word “one” applies to that magnitude, that when a magnitude is composed
of exactly two increments, the word “two” applies, and so on.

Finally, the present account differs significantly from Carey’s as well. Recall that her
account depends on the system of object-files, enriched by quantificational markers. It
does not depend on the system of mental magnitudes at all (in the early stages). Since the
present hypothesis does depend on mental magnitudes, and does not depend on object-
files or quantificational markers, the accounts are not equivalent. Still, some might object
that the present account does not after all depend on mental magnitudes, but instead
merely on the ability to create one-to-one correspondences. It is true that this ability plays
an important role in the present account (see footnote 3), and it is also true that completed
mental magnitudes do not play an important role in the present account, as they do not in
Carey’s. But still, the operation of the system of mental magnitudes does play a central
role, since according to the account number words are mapped to the individual incre-
ments that are tokened and compounded to form completed magnitudes.60

59 And Rips et al. (2008a) account as well.
60 Famously, Frege (1884/1953) showed that integer concepts could be derived from one-to-one corre-
spondence, which in turn could be reduced to logical relationships alone. I noted above that all of the
accounts described here will have to rely on the ability to create one-to-one correspondences. But they all
also rely on innate representational systems—mental magnitudes, object-files, or innate representations of
natural numbers—and so are all distinct from Frege’s view.
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Granting that the present hypothesis is distinct from others in the literature, there
are nevertheless important objections and challenges that it faces. Here I’ll present
four such concerns. First, some may question whether the number of increments in a
magnitude are open to awareness in a way that would enable children to notice that
there is, for example, a one-to-one correspondence between the number of increments
added to a magnitude on a given occasion of counting and the number words recited
on that same occasion. It is important to note though, that the present hypothesis does
not claim that children are consciously aware of any part of the process in question,
beyond their recitation of the number words and their attending to objects or events.
Mental magnitudes themselves are not available for conscious inspection—for chil-
dren or adults—and no one has proposed a theory that assumes they are. In other
words, if mental magnitudes play a role in the acquisition of precise number concepts,
that role is not open to introspection.

Second, I argued above that the length of time it takes children to learn the
meaning of number words, even after having mastered the counting routine, is
evidence for the present hypothesis. Indeed, I argued that the present hypothesis
implies that children must learn the meanings of the number words in order, passing
through the n-knower stages as they do. However, this may be a drawback for the
present hypothesis. Irene Pepperberg and her colleagues trained “Alex”, a grey parrot,
to correctly use the number words “one” through “six”. Alex did not learn the words
in order though, thus showing that it is possible to learn these meanings out of order.
Of course if learning the number words out of order is possible for a grey parrot, one
might expect it to be possible for human children as well, which indeed would be
problematic and perhaps fatal for the present hypothesis. Still, no examples of
children learning the number words out of order have been given. Moreover,
Alex’s training was importantly different than the process by which children learn
the number words, as he was never taught to recite the count list. Thus I take the Alex
studies to be, so far, inconclusive with respect to the possibility of children learning
the meaning of the number words out of order, given knowledge of the counting
routine (see Pepperberg 1994; Pepperberg and Gordon 2005, and Pepperberg and
Carey 2012).

Third, in her 2009 book The Origin of Concepts, Susan Carey considers what she
calls “Proposal 1”, which she describes as the idea that “analog magnitude represen-
tations are the numerical foundation for numeral list representations of number”
(2009b, 309), and she provides evidence that she takes to “conclusively rule out”
Proposal 1. Primarily that evidence is based on data from Le Corre and Carey (2006),
which suggest that children are unable to estimate (verbally) the number of objects in
a group until about six months after they become n-knowers (that is, after they
understand the meaning of n, for any n).

In particular, LeCorre and Carey showed n-knowers cards with between one and
ten dots. The cards were not displayed long enough for the children to count, but the
children were asked to say how many dots were on the cards. One group of these
children was successful at this task, and another was not. In short, although the
unsuccessful children were n-knowers, they were unable to token a magnitude and
then translate that magnitude into a corresponding number word. They had not, that
is, mapped number words to completed magnitudes. Since they knew the meanings of
the number words however, LeCorre and Carey conclude that mapping magnitudes to
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number words was not part of the process by which they learned the meanings of
those words. Moreover, the group that was successful had an average age of about six
months older than the average age of the unsuccessful group, and LeCorre and Carey
therefore concluded that magnitudes are not mapped to number words until about six
months after children become n-knowers.

This argument does seem fatal for Proposal 1, but Proposal 1 is the early proposal that
was considered above, that children map number words directly to completed mental
magnitudes, and that hypothesis is distinct from the present hypothesis, such that it is not
clear that the argument is also fatal for the present hypothesis. The present hypothesis is
that children map number words to the (precise number of) increments that are
compounded to create magnitudes, not to the completed magnitudes themselves. It
requires that children sometimes slowly increment a magnitude as they slowly count
objects. It does not imply that children be able to create a magnitude as an estimate of the
number of objects in a group that was observed rapidly and then produce a number word
based on that magnitude. The present hypothesis is silent as to when children should be
able to do that. That is, it is silent as to when children should have mapped number
words to completed mental magnitudes. Thus it allows that even after children have
learned the meanings of the number words, by mapping those words to the increments
that compose magnitudes, they may nevertheless not have mapped number words to
completed magnitudes. Thus LeCorre and Carey’s data does not seem fatal for the
present proposal, as it does for Proposal 1.

Still, it might seem odd that children would be able to use number words to store and
recall the number of increments composed to form a magnitude, yet not have mapped
number words to completed magnitudes. So while Carey’s argument is not clearly fatal
for the present hypothesis, it does point to this tension.Moreover, it points to the fact that
the present hypothesis has no answer to the question when children should havemapped
number words to completed magnitudes. Relieving that tension and answering that
question remain open challenges for the present hypothesis.

Finally, I noted above (footnote 24) that there is debate about whether the system
of mental magnitudes operates serially or in parallel. That is, when a subject observes
a group of objects, does the system compose all the increments at once, or does it
compose them one at a time? It may seem that the present account depends on the
system operating serially, since it depends on the child learning to map each succes-
sive count word to the addition of a new increment to a magnitude. If all the
increments were added at once, it would be impossible to notice each new addition
of an increment, so as to mark it with a number word. Indeed, the present account
does depend on the possibility that the system be able to operate serially. In particular,
the present account depends on the subject observing the objects slowly enough to
count them. In that case, the system needs to be able to operate serially, incrementing
as the subject observes each object.

Of course, that the system operates when objects or events are observed in
succession—even if too rapidly to count—provides evidence that the system operates
serially. For it would seem unlikely that the system wait until the subject has seen all
the objects or events she will see, and only then compound the increments all at once.
The system cannot know, after all, when the subject had seen all the objects she will
see. It seems much more likely that the system would add increments to a magnitude
as objects are observed. If they are observed in succession, then the increments would
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be added serially. And if they are observed in succession rather slowly, then the
increments would be added serially, and slowly enough for the subject to notice the
addition of each new increment. This does not rule out the possibility that the system
operate in parallel though, when a set of objects are observed all at once. Thus, while
the present hypothesis depends on the system being able to operate serially, it does
not depend on it only operating serially.61 62 Still, this points to another area in which
the present hypothesis needs attention. Since the empirical evidence is largely based
on rapidly observed objects and events, more confirmation of the idea that the
accumulator functions serially when objects or events are observed slowly is needed.

8 Conclusion

Thus I have argued that there is an important distinction between a mental magnitude
and the increments that were composed to form it. While completed magnitudes are
approximate representations of number, they are composed by a precise number of
increments. I believe this distinction has largely been overlooked in literature on
mental magnitudes, and therefore so too has an important hypothesis concerning the
role of mental magnitudes in the acquisition of precise number concepts.

That hypothesis is that acquisition of the number words and the counting routine
allows the child to use that routine, under ideal circumstances, to mark in memory the
number of increments that were composed to form a magnitude. Since a magnitude
represents n objects or events by composing n increments, and because n is precise,
recitation of the counting routine therefore serves to store in memory a precise
representation of the number of objects or events that were observed. This hypothesis
differs from strong nativist views in that it does not posit innate natural number
concepts. It differs from weak nativist views in that it claims that the system of mental
magnitudes is the only innate system to play a role in the acquisition of natural
number concepts. This hypothesis does face certain challenges, but as other extant
theories do as well, exploring alternative hypotheses remains a useful endeavor.
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