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Abstract
This paper aims to study Ap weights in the context of a class of metric measure spaces
with exponential volume growth, namely infinite trees with root at infinity equipped
with the geodesic distance and flow measures. Our main result is a Muckenhoupt
Theorem, which is a characterization of the weights for which a suitable Hardy–
Littlewood maximal operator is bounded on the corresponding weighted L p spaces.
We emphasise that this result does not require any geometric assumption on the tree
or any condition on the flowmeasure. We also prove a reverse Hölder inequality in the
case when the flow measure is locally doubling. We finally show that the logarithm
of an Ap weight is in BMO and discuss the connection between Ap weights and
quasisymmetric mappings.
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1 Introduction

The study of Ap weights originated with Muckenhoupt’s seminal work [22], which
initially characterized these weights in Rn in terms of the boundedness of the Hardy-
Littlewood maximal operator from the weighted L p space to itself. Subsequently,
Coifman and Fefferman introduced the fundamental concept of the reverse Hölder
inequality [5] and Calderón extended these results to spaces of homogeneous type
[4]. Moreover, Ap weights were further characterized in R by linking them to the
boundedness of the Hilbert transform in weighted L p spaces, as shown in [14]. This
line of inquiry led to a comprehensive theory regarding the boundedness of Calderón-
Zygmund operators in weighted L p spaces; we refer to [7, 8, 11, 12, 24] and the
references therein for more information on the topic.

This work focuses on trees, which are infinite connected graphs with no loops. It
is important to note that a tree, when equipped with the usual geodesic distance and
the counting measure, is a nondoubling metric measure space in most cases. In this
context, Muckenhoupt’s characterization of Ap weights fails. Indeed, on the one hand,
the Ap condition may be too weak, given that on some trees the Hardy–Littlewood
maximal operator can be unbounded on every L p for p < ∞ [17]. On the other hand,
it can be too strong since there are other examples of trees on which the Ap condition
is not necessary for the boundedness of the maximal operator [26]. For this reason,
we introduce different measures on trees, the flow measures, where we will be able to
prove a Muckenhoupt’s characterization of Ap weights. Before providing the details
of our results, some preliminaries are in order.

Let T be a tree and d denote the geodesic distance.We say that two vertices x, y ∈ T
are neighbours if and only if d(x, y) = 1. In this case, we write x ∼ y. Let ∂T be
the boundary of T defined as the set of all half-infinite geodesics starting from a fixed
reference vertex (see, e.g., [9, Section I.1]).We fix a reference pointω∗ in the boundary
of T and think of T hanging down from ω∗. This choice induces a partial order ≤ on
T , namely, x ≤ y if and only if y ∈ [x, ω∗), where [x, ω∗) denotes the semi-infinite
geodesic with endpoints x and ω∗. Fix a reference vertex o ∈ T and let {x j } j∈N be an
enumeration of [o, ω∗) such that x0 = o and d(x j , xk) = | j − k|. We define the level
function

�(x) = lim
j→∞ j − d(x, x j ), ∀x ∈ T . (1.1)

For every x ∈ T , let s(x) denote the set of successors of x , i.e,

s(x) := {y ∼ x �(y) = �(x) − 1}.

We call a positive function μ on T a flow measure if it satisfies the flow condition

μ(x) =
∑

y∈s(x)
μ(y). (1.2)
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We point out that, for a general flow measure μ, (T , d, μ) is not a doubling metric
measure space and themeasure of balls grows at least exponentially (see [18, Theorem
2.5 and Proposition 2.8]). For instance, let T be a homogeneous tree of order q + 1
equipped with the canical flow measure μ(·) = q�(·). Then, for every vertex x and
positive integer r

μ(B2r (x))

μ(Br (x))
= q2r+1 + q2r − 2

qr+1 + qr − 2
,

which tends to infinity as r → +∞. See [3, Proposition 1].
Since the doubling condition fails in this setting one has to identify a suitable

definition of Ap weights.
Let a flow measure μ on T be fixed. Inspired by a similar definition given in the

setting of homogeneous trees in [13], in [18] the authors introduced a family R of
admissible trapezoids in (T , d, μ) (see Sect. 2 for their precise definition) and used
those sets to replace balls and develop a Calderón–Zygmund theory in this setting, at
least whenμ is locally doubling. For this reason, it is quite natural to give a definition of
Ap(μ), p ∈ [1,∞), on (T , d, μ) which is similar to the classical one, where balls are
replaced by admissible trapezoids. In Sect. 2 we study the properties of such weights
and prove a result in the spirit of Muckenhoupt Theorem, showing that the Hardy–
Littlewood maximal operator Mμ associated to the family of admissible trapezoids
and the flow measure μ is bounded on the weighted L p(μw) space if and only if
w ∈ Ap(μ)when p ∈ (1,∞). Similarly,Mμ is bounded from L1(μw) to L1,∞(μw)

if and only if w ∈ A1(μ) (Theorem 2.9). It is remarkable that for this result we do
not require any condition on the geometry of the tree, which may have unbounded
degree (i.e., the number of neighbours of a vertex is not uniformly bounded on T )
and even not be locally finite, or on the measure μ which does not need to be locally
doubling. A key ingredient to study the boundedness properties of the operator Mμ

is the fact that every admissible trapezoid R admits an envelope set R̃ which plays a
role in a covering lemma and has flow measure comparable with the flow measure of
R. Unfortunately, R̃ is not admissible any longer; this makes quite involved to show
that also the weighted measure of R̃ and R are comparable for every Ap(μ) weight
(see Theorem 2.7).

In Sect. 3 we restrict our attention to the case when μ is locally doubling, which
implies that the tree has uniformly bounded degree. Under these conditions, we prove
a reverse Hölder inequality for Ap(μ) weights, and we provide a characterization of
the class A∞(μ), which we define as the union of all Ap(μ) spaces as p > 1. One
difficulty that we have to face is that in our setting the measure wμ is not a flow and is
nondoubling for a general weight w ∈ Ap(μ), so that a Calderón–Zygmund decom-
position for such ameasure is not available.We tackle this challenge in Proposition 3.5
where, despite the lack of a Calderón–Zygmund theory for wμ, we are able to control
the averages of a function on admissible trapezoids with respect to such measure. As
in the classical setting, we also prove that the space BMO(μ), defined in this context
in [18], coincides with the space of multiples of logarithms of A∞(μ) weights.

In Sect. 4, we discuss the connection between Ap(μ) weights and quasisymmetric
mappings. A classical theorem of Reimann [29] states that the Jacobian determi-
nant of a quasiconformal mapping on R

n is an Ap weight, which in turn implies
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that its logarithm is in BMO(Rn). Since Reimann’s result was published, several
attempts to generalise his results to different metric measure spaces were made, see,
e.g., [15]. Recently, in [25], the authors proved that the logarithm of the generalised
Jacobian of a quasisymmetric mapping on spaces of homogeneous type is always in
BMO. Following Reimann’s strategy, they first prove that the generalised Jacobian
of a quasisymmetric mapping is an Ap weight. The proof relies heavily on the dou-
bling property. It turns out that with the geodesic distance on the tree, the (suitably
defined) Jacobian of a quasisymmetric mapping is not an A∞(μ) weight, implying
that Reimann’s result is false in this context. In fact, we will show (Theorem 4.1) that
for a homogeneous tree equipped with the geodesic distance and the canonical flow
measure (see Sect. 4 for the precise definition), the Jacobian of an isometry is not an
A∞(μ) weight. However, if we change the metric to the Gromov distance, we can
establish a positive result: the Jacobian of a bilipschitz mapping and its reciprocal
belong to L∞ (see Theorem 4.2). Moreover, every such mapping induces (1,C)-
quasi-isometries with respect to the geodesic distance on the tree. It then makes sense
to argue that the link between BMO functions and Ap(μ) weights in the setting of
homogeneous trees, endowed with the geodesic distance, is better represented by (a
subset of) quasi-isometric bijections, rather than quasisymmetric mappings. We plan
to investigate this question in the future.

Let us discuss some other open problems related to the theory of Ap weights that
will be the object of further investigation. It would be interesting to study a suitable
version of a Fefferman-Stein inequality adapted to our setting in the spirit of [1, 10, 27]
and weighted estimates for integral operators, such as Riesz transforms and spectral
multipliers of the flowLaplacian, for which unweighted L p estimates were obtained in
[13, 16, 20, 21]. Another challenging problem is the study of two-weight inequalities
in this context (see [2] for a recent contribution in this direction).

It is also worth mentioning that the discrete setting of trees equipped with flow
measures has a natural continuous counterpart given by solvable extensions of stratified
Lie groups equippedwith flowmeasures (see [6, 13, 19, 31]). It is then natural to define
Ap weights in this context and study a characterization of such weights in terms of
the boundedness properties of a suitable maximal operator.

We will use the variable constant convention and write C , possibly with subscripts,
to denote a positive constant thatmay vary fromplace to place and depend on any factor
quantified (implicitly or explicitly) before its occurrence but not on factors quantified
afterwards. If two positive quantities A and B are comparable (i.e., 1

C B ≤ A ≤ CB
for some C > 0), we shall write A ≈ B. We may add a subscript to ≈ to trace the
dependence of C on a parameter.

2 Admissible trapezoids and Ap weights

Throughout this section, we consider an infinite tree T with root ω∗ at infinity and we
assume that

i) μ is a flow measure on T (possibly not locally doubling);
ii) w is a weight on T , i.e., a positive function defined on T .
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Notice that there are no assumptions on the geometry of T . Indeed, (T , d) need not
be a locally compact space.

Without loss of generality, we fix an integer β ≥ 12 once and for all and we define
for every s ≥ 0

�s� := min{ j ∈ N : j ≥ s}, s� := max{ j ∈ N : j ≤ s}.

Definition 2.1 A trapezoid with root x ∈ T and heights h1, h2 ∈ N, h1 < h2, is
defined by

Rh2
h1

(x) := {y ∈ T y ≤ x, h1 ≤ d(x, y) < h2}.
We point out that

μ(Rh2
h1

(x)) = (h2 − h1)μ(x). (2.1)

A trapezoid R = Rh2
h1

(x) is called admissible if 2 ≤ h2
h1

≤ β, and in such case we
define its envelope as the set

R̃ := Rh2β
�h1/β�(x). (2.2)

We observe that μ(R̃) �β μ(R).

We denote by R the family of all admissible trapezoids and singletons. We shall
think of a singleton {x} as a trapezoid with root x and we say that the envelope of a
singleton is the singleton itself.

We now recall some useful facts about admissible trapezoids. For detailed proofs,
we refer to [18].

Lemma [18, Lemma3.2 ]Let R1, R2 ∈ Rwith roots x1, x2 ∈ T , such that R1∩R2 �= ∅
and assume that μ(x1) ≥ μ(x2). Then, R2 ⊂ R̃1.

For every positive function m on T we define the associated noncentred Hardy–
Littlewood maximal operatorMm , that is the operator that acts on a function f on T
by

Mm f (x) = sup
R∈R : x∈R

1

m(R)

∑

y∈R

| f (y)|m(y) ∀x ∈ T .

As a consequence of 2, Mμ is bounded from L1(μ) to L1,∞(μ) and on L p(μ) for
every p > 1. We remark that this was proved assuming that μ is locally doubling.
A careful inspection of the proof of [18, Theorem 3.3] reveals that this property
is not necessary to prove the weak type (1, 1) boundedness of Mμ. Note that the
aforementioned assumption implies a restriction on the geometry of a tree. Specifically,
if T admits a locally doubling flow measure, then T has bounded degree (as discussed
in [18, Corollary 2.3]). We emphasize that in the first part of this paper, there are no
hypotheses regarding the geometry of the tree; it may not even be locally finite.
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Inspired by the classical results obtained in the Euclidean setting, namely on R
n

equipped with the Lebesgue measure (see [22]), we now focus on the study of the
boundedness ofMμ on L p(μw). In other words, the measure μ serves as the under-
lying measure, and our goal is to investigate the boundedness ofMμ on the weighted
L p spaces. Clearly, wμ is a weight. We denote by χE the characteristic function
supported on E ⊂ T .

Assume thatMμ is bounded on L p(μw) for some p ∈ (1,∞). By testingMμ on
χRw−p′/p where R ∈ R, it is easy to verify that necessarily

sup
R∈R

(
1

μ(R)

∑

y∈R

w(y)μ(y)

)1/p( 1

μ(R)

∑

y∈R

w(y)−1/(p−1)μ(y)

)1/p′

< ∞, (2.3)

where p′ is such that 1/p + 1/p′ = 1. Similarly, if Mμ is bounded from L1(μw) to
L1,∞(μw), then one can prove that

Mμ(w)(x) ≤ Cw(x), ∀x ∈ T .

This motivates the following definition of Ap(μ) weights.

Definition 2.2 Let p ∈ (1,∞). We say that a weight w is an Ap(μ) weight if

[w]Ap(μ) := sup
R∈R

(
1

μ(R)

∑

y∈R

w(y)μ(y)

)(
1

μ(R)

∑

y∈R

w(y)−1/(p−1)μ(y)

)p−1

< ∞.

(2.4)

We say that w is an A1(μ) weight if

[w]A1(μ) := sup
R∈R

(
1

μ(R)

∑

y∈R

w(y)μ(y)

)
‖w−1‖L∞(R) < ∞.

For notational convenience we set wμ(E) := ∑
y∈E w(y)μ(y) for every E ⊂ T .

Hence, for all p ∈ (1,∞) we can write

[w]Ap(μ) = sup
R∈R

wμ(R)

μ(R)

(
1

μ(R)

∑

y∈R

w(y)−1/(p−1)μ(y)

)p−1

,

and similarly

[w]A1(μ) = sup
R∈R

wμ(R)

μ(R)
‖w−1‖L∞(R).

The next proposition summarizes some properties of Ap(μ) weights.

Proposition 2.3 Let w ∈ Ap(μ) and p ∈ [1,∞). Then,
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i) [λw]Ap(μ) = [w]Ap(μ) for all λ > 0;
ii) if p ∈ (1,∞), then the function w−1/(p−1) is in Ap′(μ), where 1/p′ = 1 − 1/p,

and

[w−1/(p−1)]Ap′ (μ) = [w]1/(p−1)
Ap(μ) ;

iii) [w]Ap(μ) ≥ 1 and the equality holds if and only if w is a constant weight;
vi) the classes Ap(μ) are increasing with p, specifically

[w]Aq (μ) ≤ [w]Ap(μ),

whenever 1 < p ≤ q < ∞;
v) limq→1+[w]Aq (μ) = [w]A1(μ) if w ∈ A1(μ);
vi) we have the following equivalent characterization of Ap(μ) weights:

[w]Ap(μ) = sup
R∈R

sup
| f |�≡0 on R

(
1

μ(R)

∑
y∈R | f (y)|μ(y)

)p

1
wμ(R)

∑
y∈R | f (y)|pw(y)μ(y)

;

vii) if R1,R2 ∈ R and μ(R1) ≤ Cμ(R1 ∩ R2), then wμ(R1) ≤ C p[w]Ap(μ)wμ(R2);
viii) for every ξ ∈ (0, 1) and S ⊂ R ∈ R such that μ(S) ≤ ξμ(R), we have that

wμ(S) ≤
(
1 − (1−ξ)p

[w]Ap (μ)

)
wμ(R).

Proof Property vi i) follows easily from vi), and all the other properties can be proved
by using well-known arguments as in [12, Proposition 9.1.5, Lemma 9.2.1]; we omit
the details. ��

Recall that, as a particular case of the theory of Ap weights developed in the context
of spaces of homogeneous type in [4], one sees that w : Z → (0,∞) is an Ap weight
on Z with p ∈ (1,∞) if

[w]Ap(Z) := sup
I intervals in Z

(
1

|I |
∑

x∈I
w(x)

)(
1

|I |
∑

x∈I
w(x)−1/(p−1)

)p−1

< ∞,

where | · | denotes the counting measure on Z. Similarly,

[w]A1(Z) := sup
I intervals in Z

(
1

|I |
∑

x∈I
w(x)

)
‖w−1‖L∞(I ) < ∞.

One may inquire whether Ap(μ) is trivial. In this regard, we now show that it is
possible to construct plenty of nontrivial Ap(μ) weights.

We denote by L(T ) the family of weights w on T that only depend on the level,
i.e., w(x) = W (�(x)) for some W : Z → (0,∞) and for every x ∈ T . In the next
theorem we characterize the Ap(μ) weights in L(T ). Remarkably, it turns out that
such weights do not depend on the particular choice of μ.
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Theorem 2.4 For every p ∈ [1,∞), w ∈ L(T ) is an Ap(μ) weight on T if and only
if W ∈ Ap(Z). Moreover, we have that [w]Ap(μ) = [W ]Ap(Z).

Proof Assume that p ∈ (1,∞). Observe that for every R = Rh2
h1

(x0) ∈ R,

IR :=
(

1

μ(R)

∑

x∈R

w(x)μ(x)

)(
1

μ(R)

∑

x∈R

w(x)−1/(p−1)μ(x)

)p−1

=
(

1

μ(x0)(h2 − h1)

�(x0)−h1∑

�=�(x0)−h2+1

W (�)
∑

x≤x0,�(x)=�

μ(x)

)

×
(

1

μ(x0)(h2 − h1)

�(x0)−h1∑

�=�(x0)−h2+1

W (�)−1/(p−1)
∑

x≤x0,�(x)=�

μ(x)

)p−1

and since μ is a flow measure,
∑

x≤x0,�(x)=� μ(x) = μ(x0) for every � ≤ �(x0). We
conclude that

IR =
(

1

h2 − h1

�(x0)−h1∑

�=�(x0)−h2+1

W (�)

)(
1

h2 − h1

�(x0)−h1∑

�=�(x0)−h2+1

W (�)−1/(p−1)
)p−1

.

Since |[�(x0)−h2+1, �(x0)−h1]| = h2−h1, this implies that [w]Ap(μ) ≤ [W ]Ap(Z).
For the converse inequality, it suffices to prove that given an interval I = [a, b] ⊂ Z

there exists an admissible trapezoid Rh2
h1

(x0) (where h1, h2 and x0 depend on a and b)
such that

�(x0) − h1 = b, �(x0) − h2 + 1 = a and 2 ≤ h2
h1

≤ β.

Hence, we need to show that there exists x0 such that

⎧
⎪⎨

⎪⎩

1 ≤ h1 = �(x0) − b

h2 = �(x0) + 1 − a

2 ≤ h2
h1

≤ β.

For example, set h1 = b−a+1 and h2 = 2h1 so the third condition above is satisfied.
Next, �(x0) = 2b − a + 1 satisfies the first two conditions above and it is consistent
with h2 = 2h1.

Finally, if p = 1 the result follows by taking the limit for p → 1+, in view of
Proposition 2.3 v) and the corresponding property for Ap weights on Z. ��
Remark 2.5 Observe that Z can be seen as a tree in an obvious way and the counting
measure on Z is a flow measure. Theorem 2.4 applied to T = Z gives [w]Ap(|·|) =
[w]Ap(Z). This shows that the notion of Ap(μ) weight introduced in Definition 2.2 is
consistent with the one of Ap(Z) weight. Indeed, the fact that all integer intervals of
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Z are admissible trapezoids (else said, admissible trapezoids coincide with balls) is
shown in the proof of Theorem 2.4.

In a doubling metric measure space (X , ρ, ν), one can prove that the measure wν

is doubling (see e.g. [4, Lemma 4]), where w is an Ap weight defined as in (2.4) but
using balls instead of trapezoids. However, this does not hold true in our context due
to the nondoubling nature of a flow measure.

By drawing a parallel with the doubling setting, we aim to show that wμ(R̃) is
uniformly bounded by a multiple of wμ(R) for every admissible trapezoid R and
w ∈ Ap(μ). Notice that the envelope of an admissible trapezoid, as defined in (2.2),
never meets the criteria for admissibility. This fact prevents us from following the
classical proof. Indeed, if R̃ were admissible, choosing f = χR and R̃ in place of R
in Proposition 2.3 vi) we would directly deduce that wμ(R̃) ≤ Cwμ(R)[w]Ap(μ) for
every R ∈ R. For this reason, we shall use a different strategy based on the following
geometric lemma.

Lemma 2.6 Let R be an admissible trapezoid. Then R̃ is contained in the union of at
most 4 admissible trapezoids Q1, .., Q4, with μ(Qi ) ≈β μ(R), and such that, either
Qi intersects R, and in this case μ(Qi ∩ R) ≈β μ(R), or it intersects some Q j

intersecting R, and in this case μ(Qi ∩ Q j ) ≈β μ(R).

Proof Let R = Rh2
h1

(x) ∈ R.
We shall prove the following:

i) if h1 ≥ 3, set

Q1 := Rh1�h1/β�(x),

Q2 := R(h1+h2)/2�
�(h1+h2)/(2β)�(x),

Q3 := R(h1+h2)/2�β
(h1+h2)/2� (x),

Q4 := R�(h1+h2)/2�β/2�β
�(h1+h2)/2�β/2� (x).

Then,

R̃ ⊂
4⋃

j=1

Q j , (2.5)

Q j ∈ R, μ(R) ≈β μ(Q j ) for j = 1, 2, 3, 4 and

μ(R) ≈β μ(Q1 ∩ Q2) ≈β μ(Q2 ∩ R) ≈β μ(R ∩ Q3) ≈β μ(Q4 ∩ Q3); (2.6)

ii) if h1 = 1 and h2 ≥ 3 or h1 = 2, set

Q1 := Rβ
1 (x),

Q2 := Rβ/2�β
β/2� (x),
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Q3 := R(h1+h2)/2�β
(h1+h2)/2� (x),

Q4 := R�(h1+h2)/2�β/2�β
�(h1+h2)/2�β/2� (x).

Then,

R̃ ⊂
4⋃

j=1

Q j , (2.7)

Q j ∈ R for every j = 1, ..., 4 and

μ(R) ≈β μ(Q1 ∩ R) ≈β μ(R ∩ Q3) ≈β μ(Q2 ∩ Q3) ≈β μ(Q4 ∩ Q3) ≈β μ(Q4);
(2.8)

iii) if h1 = 1 and h2 = 2, then we define

Q1 := Rβ
1 (x),

Q2 := Rβ/2�β
β/2� (x),

and similarly we have that

R̃ ⊂
2⋃

j=1

Q j , (2.9)

Q j ∈ R for every j = 1, 2, and

μ(R) = μ(R ∩ Q1) ≈β μ(Q1 ∩ Q2) ≈β μ(Q1) ≈β μ(Q2).

We prove i). Suppose h1 ≥ 3. Then, it is clear that Q1, Q3, Q4 ∈ R. To show that
Q2 ∈ R we first observe that

 h1+h2
2 �

� h1+h2
2β � ≤ h1 + h2

2

2β

h1 + h2
= β.

On the one hand, if h1 + h2 < 2β we get

2 ≤ h1 ≤  h1+h2
2 �
1

,

on the other hand, if h1 + h2 ≥ 2β then

2 ≤ (β − 1)

2
= (β − 1)(h1 + h2)

2(h1 + h2)
≤ β(h1 + h2) − 2β

h1 + h2 + 2β
≤  h1+h2

2 �
� h1+h2

2β � .
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We now prove (2.5). For this purpose, we first notice that the smaller heights of Q1
and R̃ coincide by definition, and by the fact that β ≥ 12 and h2 ≤ βh1, we deduce
that

h1 >
h1
2

(1/β + 1) + 1 >
h1 + h2

2β
+ 1 > �(h1 + h2)/(2β)�,

which implies Q1 ∩ Q2 �= ∅. Moreover, Q4 entirely covers the lower part of R̃ since
�(h1 + h2)/2�β/2�β ≥ h2β.

It remains to prove (2.6). Formula (2.1) yields

μ(R ∩ Q2) ≈ μ(R ∩ Q3) ≈ μ(x)(h2 − h1) = μ(R),

μ(Q4 ∩ Q3) = μ(x)
(
β − β/2�)(h1 + h2)/2� ≈ μ(Q4) ≈β μ(R).

Moreover,
μ(Q1 ∩ Q2) = μ(x)

(
h1 − �(h1 + h2)/(2β)�).

By the admissibility condition h2 ≤ βh1, the fact that β ≥ 12, and the assumption
h1 ≥ 3,

h1 − �(h1 + h2)/(2β)� ≥ h1 − h1 + h2
2β

− 1 ≥ h1
(
1 − 1

2β
− 1

2

)
− 1 ≥ h1

β
.

(2.10)

This implies that

μ(Q1 ∩ Q2) ≥ μ(x)
h1
β

≈β μ(R),

as required to conclude the proof of i).
The remaining assertions are can be proved similarly, so we only sketch their proof.

Assume that R and Q j , j = 1, ..., 4 are as in i i). Then, Q1, Q2, Q3, and Q4 belong
toR because the ratio of their corresponding heights is equal to β. Observe that

Q1 ∪ Q2 ∪ Q3 ∪ Q4 = {y ∈ T y ≤ x, 1 ≤ d(x, y) < �(h1 + h2)/2�β/2�β},

and the set in the right-hand side contains R̃, so (2.7) follows. Observe that in this
case h2 ≈β h1 ≈β 1 and it is not hard to prove that the measure of every element
appearing in (2.8) is comparable to μ(x), with constants depending on β.

Finally, i i i) consists of one case and its proof is straightforward. ��
Theorem 2.7 Let w ∈ Ap(μ) for some p ∈ [1,∞). Then, there exists a constant
Cβ,p > 0 such that wμ(R̃) ≤ Cβ,p[w]2Ap(μ)wμ(R) for every R ∈ R.

Proof Let R be an admissible trapezoid and Q1, ..., Q4 be the associated admissible
trapezoids prescribed by Lemma 2.6. We know that for each i = 1, .., 4 there exists
j = j(i) such that R ∩ Q j , Qi ∩ Q j �= ∅. Then, by Lemma 2.6 and Proposition 2.3
i i i) and vi i) we have,

wμ(R̃)

wμ(R)
≤

4∑

i=1

wμ(Qi )

wμ(R)
=

4∑

i=1

wμ(Qi )

wμ(Q j )

wμ(Q j )

wμ(R)
�β,p [w]2Ap(μ).

��
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We now prove that Ap(μ) weights are those for which the maximal operator Mμ is
bounded on L p(μw).

The next result is an immediate consequence of Theorem 2.7.

Corollary 2.8 Letw be an Aq(μ)weight for some q ∈ [1,∞). Then,Mμw is bounded
from L1(μw) to L1,∞(μw) and on L p(μw) for every p ∈ (1,∞].
Proof It suffices to prove that Mμw is of weak type (1, 1) and interpolate with the
obvious L∞ bound.

Let f ∈ L1(μw), fix λ > 0 and set Eλ = {Mμw f > λ}. We observe that there
exists a sequence {R j } j∈J ⊂ R such that ∪ j∈J R j = Eλ and

wμ(R j ) <
1

λ

∑

y∈R j

| f (y)|w(y)μ(y), ∀ j ∈ J .

Reasoning as in the proof of [18, Theorem 3.3], one shows that there exists a subse-
quence {R jk }k ⊂ {R j } j∈J of mutually disjoint sets such that Eλ ⊂ ∪k R̃ jk . Thus, by
Theorem 2.7

wμ(Eλ) ≤
∑

k

wμ(R̃ jk ) ≤ Cβ,q,w

∑

k

wμ(R jk ) ≤ Cβ,q,w

λ
‖ f ‖L1(μw),

as desired. ��
The next theorem is the analogue of Muckenhoupt’s characterisation in our setting.

Theorem 2.9 Letw ∈ Ap(μ) for some p ∈ (1,∞). Then,Mμ is bounded on L p(μw).
Moreover, if w ∈ A1(μ), then Mμ is bounded from L1(μw) to L1,∞(μw).

Proof Corollary 2.8 allows us to follow the proof used in the Euclidean setting [12,
Theorem 9.1.9]; we provide the details for completeness. Assume that p ∈ (1,∞)

and let w be an Ap(μ) weight and f ∈ L p(μw). Define σ := w
− 1

p−1 . Observe that
for every R ∈ R

1

μ(R)

∑

y∈R

| f (y)|μ(y) = wμ(R)
1

p−1 σμ(R)

μ(R)p/(p−1)

(
μ(R)

wμ(R)

(
1

σμ(R)

∑

y∈R

| f (y)|μ(y)

)p−1) 1
p−1

.

(2.11)

It is clear that

1

σμ(R)

∑

y∈R

| f (y)|μ(y) ≤ Mμσ ( f σ−1)(x), ∀x ∈ R, (2.12)

thus

1

σμ(R)

∑

y∈R

| f (y)|μ(y) ≤ inf
x∈R

Mμσ ( f σ−1)(x)
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and

μ(R)

(
1

σμ(R)

∑

y∈R

| f (y)|μ(y)

)p−1

≤
∑

y∈R

[
Mμσ ( f σ−1)(y)

]p−1

μ(y).

Moreover, by definition of [w]Ap(μ)

wμ(R)σμ(R)p−1

μ(R)p
≤ [w]Ap(μ). (2.13)

By (2.11), (2.12), and (2.13)

1

μ(R)

∑

y∈R

| f (y)|μ(y) ≤ [w]1/(p−1)
Ap(μ)

[
Mμw

(
Mμσ (| f |σ−1)p−1w−1

)
(x)

]1/(p−1)

, ∀x ∈ R.

We deduce that Mμ f ≤ [w]1/(p−1)
Ap(μ)

[
Mμw

(
Mμσ (| f |σ−1)p−1w−1

)]1/(p−1)

. By

computing the L p
μ(w) norm, we obtain that

‖Mμ f ‖L p
μ(w) ≤ [w]1/(p−1)

Ap(μ) ‖Mμw

(Mμσ (| f |σ−1)p−1w−1)‖1/(p−1)

L p′
μ (w)

≤ [w]1/(p−1)
Ap(μ) ‖Mμw‖1/(p−1)

L p′
μ (w)→L p′

μ (w)
‖Mμσ (| f |σ−1)p−1w−1‖1/(p−1)

L p′
μ (w)

= [w]1/(p−1)
Ap(μ) ‖Mμw‖1/(p−1)

L p′
μ (w)→L p′

μ (w)
‖Mμσ (| f |σ−1)‖L p

μ(σ)

≤ [w]1/(p−1)
Ap(μ) ‖Mμw‖1/(p−1)

L p′
μ (w)→L p′

μ (w)
‖Mμσ ‖L p

μ(σ)→L p
μ(σ)‖ f ‖L p

μ(w).

The conclusion now follows by Corollary 2.8 and the fact that σ ∈ Ap′(μ) by
Proposition 2.3 i i).

If p = 1 and w ∈ A1(μ), we have that, for every f ∈ L1(μw)

wμ(R)

μ(R)

∑

y∈R

| f (y)|μ(y) = wμ(R)

μ(R)

∑

y∈R

| f (y)|w(y)

w(y)
μ(y)

≤ wμ(R)

μ(R)
‖w−1‖L∞(R)

∑

y∈R

| f (y)|w(y)μ(y)

≤ [w]A1(μ)

∑

y∈R

| f (y)|w(y)μ(y).

This implies that

Mμ f (x) ≤ [w]A1(μ)Mμw f (x), ∀x ∈ T .

Again, an application of Corollary 2.8 concludes the proof. ��
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In summary, we have proved the following version of the Muckenhoupt Theorem.

Corollary 2.10 Let w be a weight on T . Then,

i) Mμ is bounded on L p(μw) if and only if w ∈ Ap(μ);
ii) Mμ is bounded from L1(μw) to L1,∞(μw) if and only if w ∈ A1(μ).

3 Reverse Hölder inequality and A∞ weights

In this section we assume that μ is a locally doubling flow measure. Under this
additional assumption, which in turn implies that T has bounded degree, a Calderón-
Zygmund theory was developed on (T , d, μ) using admissible trapezoids instead of
metric balls (see [18, Section 3]). In particular, there exist a constant CD ∈ (0, 1) and
an integer N such that R ∈ R admits a partition of at most N admissible trapezoids
Q such that

μ(Q)

μ(R)
≥ CD for every Q in the partition. (3.1)

We point out that the quantities CD and N depend on the locally doubling constant.
The previous fact and a stopping-time argument provide the following useful result
(see [18, Lemma 3.5]).

Lemma 3.1 Let f be a function on T , λ > 0, R ∈ R and ν be a measure satisfying
(3.1) such that

1

ν(R)

∑

y∈R

| f (y)|ν(y) < λ.

Then, there exist a (possibly empty) family F of disjoint admissible trapezoids and a
constant DCZ such that for each E ∈ F the following hold:

i) 1
ν(E)

∑
y∈E | f (y)|ν(y) ≥ λ;

i) 1
ν(E)

∑
y∈E | f (y)|ν(y) < DCZλ;

iii) if x ∈ R\ ∪E∈F E, then | f (x)| < λ.

We aim to prove a reverse Hölder inequality. Now we can prove the reverse Hölder
inequality in our setting.

Theorem 3.2 (Reverse Hölder inequality) Letw ∈ Ap(μ) for some p ∈ [1,∞). Then,
there are C, ε > 0 such that for every R ∈ R

(
1

μ(R)

∑

y∈R

w(y)1+εμ(y)

)1/(1+ε)

≤ C

μ(R)

∑

y∈R

w(y)μ(y).

Proof Pick R ∈ R and define

γ0 = 1

μ(R)

∑

y∈R

w(y)μ(y).
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We fix γ ∈ (0, 1) and we define γk = (DCZγ −1)kγ0. Since γ0 < γk we can apply
Lemma 3.1 with λ = γk and f = w and we call Fk the obtained family of mutually
disjoint admissible trapezoids. Then, for every E ∈ Fk , the following properties are
satisfied

a) γk < 1
μ(E)

∑
y∈E w(y)μ(y) ≤ DCZγk;

b) w ≤ γk on R \Uk where Uk := ∪E∈Fk E;
c) each E ′ ∈ Fk+1 is contained in some E ∈ Fk .

Indeed, a), b) are immediate consequences of Lemma 3.1 i), i i), and c) follows by
recalling the stopping-time nature of the proof for Lemma 3.1. Observe that, ifw = γ0
on R, then the reverse Hölder inequality is trivially satisfied. So we can assume that w
is not constant on R, so thatU0 �= ∅. Let k = k(R, w) be the smallest positive integer
such that Uk = ∅, which exists because w ∈ L∞(R) and γk → ∞. We show that for
every k < k and E ∈ Fk ,

μ(E ∩Uk+1) < γμ(E). (3.2)

This is trivial when k = k − 1, whereas for every k < k − 1,

DCZγk ≥ 1

μ(E)

∑

y∈E
w(y)μ(y)

≥ 1

μ(E)

∑

y∈E∩Uk+1

w(y)μ(y)

= 1

μ(E)

∑

E ′∈Fk+1
E ′⊂E

μ(E ′)
μ(E ′)

∑

y∈E ′
w(y)μ(y)

>
μ(E ∩Uk+1)

μ(E)
γk+1

= μ(E ∩Uk+1)

μ(E)
DCZγ −1γk .

By (3.2) and Proposition 2.3 vi i i), we conclude that

wμ(E ∩Uk+1)

wμ(E)
≤ η = 1 − (1 − γ )p

[w]Ap(μ)

.

Taking the sum over all E ∈ Fk ,

wμ(Uk+1) ≤ ηwμ(Uk), ∀k < k.

The proof can be completed following the argument in the proof of [12, Theorem
9.2.2]. ��

Weobserve that the proof of Theorem 3.2 implies the followingmore general result.
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Proposition 3.3 Let w be a weight such that there exist ξ, η ∈ (0, 1) satisfying

μ(S) < ξμ(R) �⇒ wμ(S) < ηwμ(R), (3.3)

for every R ∈ R and S ⊂ R. Then, there are C, ε > 0 such that for every R ∈ R
(

1

μ(R)

∑

y∈R

w(y)1+εμ(y)

)1/(1+ε)

≤ C

μ(R)

∑

y∈R

w(y)μ(y).

Observe that Proposition 3.3 holds true more generally if μ is a measure satisfying
(3.1). The following are easy consequences of Theorem 3.2.

Corollary 3.4 The following hold:

i) let w ∈ Ap(μ) for some p ∈ [1,∞). Then, there exists ε > 0 such that w1+ε ∈
Ap(μ) and [w1+ε]Ap(μ) ≤ Cp,ε[w]1+ε

Ap(μ);
ii) if p ∈ (1,∞), then

Ap(μ) =
⋃

s∈(1,p)

As(μ).

Proof To prove i), given the reverse Hölder inequality, one can follow [12, Theorem
9.2.5]with obvious substitutions of cubeswith admissible trapezoids and the Lebesgue
measure with μ.

Next, givenw ∈ Ap(μ) and ε ∈ (0, 1) as in i), we set δ = 1
1+ε

and s = pδ+1−δ =
p+ε
1+ε

. We claim that

[wδ]As (μ) ≤ [w]δAp(μ). (3.4)

This easily follows by definition of Ap(μ). Indeed,

[wδ]As (μ) = sup
R∈R

(
1

μ(R)

∑

y∈R

w(y)δμ(y)

)(
1

μ(R)

∑

y∈R

w(y)−δ/(s−1)μ(y)

)s−1

≤ sup
R∈R

(
1

μ(R)

∑

y∈R

w(y)μ(y)

)δ( 1

μ(R)

∑

y∈R

w(y)−1/(p−1)μ(y)

)δ(p−1)

= [w]δAp(μ),

where in the above inequality we have used Hölder’s inequality. By (3.4) applied to
the weight w1/δ ∈ Ap(μ) instead of w and i), we conclude that

[w]As (μ) ≤ [w1+ε]1/(1+ε)

Ap(μ) ≤ Cp,ε[w]Ap(μ).

Since 1 < s < p, the desired result follows. ��
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We underline that if w ∈ Ap(μ), then wμ is not, in general, a flow measure or a
doubling measure, so a variant of Lemma 3.1 for the measure wμ is needed. To do so,
we will work with weights satisfying the following assumption.

Assumption 1 w is a weight and η ∈ (0, 1) is such that for every R ∈ R and S ⊂ R

μ(S) ≤ (1 − CD)μ(R) �⇒ wμ(S) ≤ ηwμ(R), (3.5)

where CD is as in (3.1).
Observe that Assumption 1 is automatically satisfied for Ap(μ) weights by

Proposition 2.3 vi i i).

Moreover, by applying (3.5) to R \ S and by measure additivity, Assumption 1 is
equivalent to

wμ(S) < (1 − η)wμ(R) �⇒ μ(S) < CDμ(R),

where S ⊂ R and η and CD are as in (3.5). Under Assumption 1, we can prove the
following variant of Lemma 3.1 for the measure wμ.

Proposition 3.5 Assume that w satisfies Assumption 1. Then, for every function f on
T , λ > 0 and R ∈ R such that 1

wμ(R)

∑
y∈R | f (y)|w(y)μ(y) < λ there exist a

(possibly empty) family F of disjoint admissible trapezoids and a constant D′
CZ such

that for each E ∈ F the following hold:

i) 1
wμ(E)

∑
y∈E | f (y)|w(y)μ(y) ≥ λ;

ii) 1
wμ(E)

∑
y∈E | f (y)|w(y)μ(y) < D′

CZλ;
iii) if x ∈ R\ ∪E∈F E, then | f (x)| < λ.

Proof Let R ∈ R and S ⊂ R. By replacing S with R \ S in (3.5), it is clear that
Assumption 1 is equivalent to the following: there exists δ ∈ (0, 1) such that

μ(S) ≥ CDμ(R) �⇒ wμ(S) ≥ δwμ(R). (3.6)

Let Q be any set in the partition of R introduced in (3.1). Combining (3.1) and (3.6),
it follows that

wμ(Q)

wμ(R)
≥ δ,

where δ is a constant independent of R. Hence,wμ satisfies the assumptions of Lemma
3.1 and the proof follows. ��
The next result is a consequence of the above proposition.

Corollary 3.6 If w is a weight which satisfies Assumption 1, then there exist ε,C > 0
such that the following reverse Hölder inequality holds

(
1

wμ(R)

∑

y∈R

w−1−ε(y)w(y)μ(y)

)1/(1+ε)

≤ C

wμ(R)

∑

y∈R

μ(y), ∀R ∈ R.
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Proof The proof follows the scheme of the one of Theorem 3.2 by replacing μ with
wμ and w by w−1. ��
We now introduce the class of A∞(μ) weights.

Definition 3.7 We define A∞(μ) = ⋃
p>1 Ap(μ) and we set

[w]A∞(μ) = sup
R∈R

1

μ(R)

∑

y∈R
w(y)μ(y) exp

[
1

μ(R)

∑

y∈R

log(w(y)−1)μ(y)

]
.

We establish below the equivalence between A∞(μ) and the weights satisfying
[w]A∞(μ) < ∞. Our main result is based on Corollary 3.6. We refer to [5, 11, 23] for
related results in the Euclidean setting and to [28] for an example in a nondoubling
setting.

Theorem 3.8 Suppose that w is a weight on T . The following are equivalent:

i) w ∈ A∞(μ);
ii) [w]A∞(μ) < ∞;
iii) there is γ0 ∈ (0, 1) such that for all γ ∈ (0, γ0) there exists δ = δ(γ ) ∈ (0, 1)

such that for all R ∈ R

μ
({

x ∈ R : w(x) ≤ γ

μ(R)

∑

y∈R

w(y)μ(y)
})

≤ δμ(R).

Furthermore, for every ε > 0 we can choose γ ∈ (0, γ0) such that δ(γ ) < ε;
iv) for every ξ ∈ (0, 1) there is η = η(ξ) ∈ (0, 1) such that for all R ∈ R and S ⊂ R

μ(S) ≤ ξμ(R) �⇒ wμ(S) ≤ ηwμ(R).

Proof Assume that w ∈ A∞(μ). Then, since the classes Ap(μ) are increasing with
p, w ∈ Ap(μ) for every p ≥ p0 for some p0 ∈ (1,∞). Then,

1

μ(R)

∑

y∈R

w(y)μ(y)

(
1

μ(R)

∑

y∈R

w(y)−1/(p−1)μ(y)

)p−1

≤ C < ∞,

for every p ≥ p0 and passing to the limit as p → ∞ we get that [w]A∞(μ) < ∞ (see
[30, Chapter 3, Exercise 5]).

We now prove that i i) implies i i i). Indeed, assume that [w]A∞(μ) < ∞ and let
R ∈ R. We can suppose without loss of generality that

∑
y∈R logw(y)μ(y) = 0

(otherwise we can divide w by a suitable constant) so that

1

μ(R)

∑

y∈R

w(y)μ(y) ≤ [w]A∞(μ). (3.7)
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Much like in [12, Theorem 9.3.3], we can prove that, given γ > 0 small enough to be
chosen later

μ
({

x ∈ R : w(x) ≤ γ

μ(R)

∑

y∈R

w(y)μ(y)
})

≤ 1

log(1 + (γ [w]A∞(μ))−1)

∑

y∈R

log(1 + w(y))μ(y)

=: I .

Next, we need a more precise estimate of I than the one obtained in the classical
proof. To achieve this, we multiply and divide I by μ(R) and therefore an application
of Jensen’s inequality yields

I ≤ μ(R)

log(1 + (γ [w]A∞(μ))−1)
log

(
1

μ(R)

∑

y∈R

(1 + w(y))μ(y)

)

≤ μ(R) log(1 + [w]A∞(μ))

log(1 + (γ [w]A∞(μ))−1)

= δ(γ )μ(R),

where in the last inequality we used (3.7) and we chose γ0 = [w]−2
A∞(μ), γ ∈ (0, γ0),

and

δ(γ ) := log(1 + [w]A∞(μ))

log(1 + (γ [w]A∞(μ))−1)
< 1.

Observe that when γ → 0+ we have that δ(γ ) → 0.
Next, assume that i i i) holds. Pick R ∈ R, fix ξ ∈ (0, 1) and suppose that wμ(S) >

ηwμ(R) for some η ∈ (0, 1) to be chosen.

Similarly to [12, Theorem 9.3.3] one can prove that μ(R \ S) <

(
δ + 1−η

γ

)
μ(R).

We now choose γ ∈ (0, γ0) small enough such that 1 − δ(γ ) > ξ (this is possible
because δ(γ ) → 0 as γ → 0+). Observe that 1− δ > ξ if and only if 1− ξ > δ thus
we choose η ∈ (0, 1) such that δ + 1−η

γ
= 1 − ξ . Such a η exists because δ < 1 − ξ

and δ + 1/γ > 1 > 1− ξ . Summarizing, we have proved that μ(E) < (1− ξ)μ(R),

namely, that μ(S) > ξμ(R) from which follows iv).
Next, iv) implies Assumption 1, thus, by Corollary 3.6 we get

(
1

wμ(R)

∑

y∈R

w−(1+ε)w(y)μ(y)

)1/(1+ε)

≤ C
μ(R)

wμ(R)
, ∀R ∈ R,

which is equivalent to

1

μ(R)
wμ(R)ε/(1+ε)

( ∑

y∈R

w−ε(y)μ(y)

)1/(1+ε)

≤ C, ∀R ∈ R,
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that is the Ap(μ) condition for w when ε = 1/(p− 1). This implies i) and concludes
the proof. ��

In [18, Section 4], the space BMO(μ) is defined by

BMO(μ) :=
{
f : T → R sup

R∈R
1

μ(R)

∑

y∈R

| f (y) − fR |μ(y) < ∞
}
,

where fR denotes the average of f on R with respect to the measure μ. This space
exhibits several good properties. For instance, it is isomorphic to the dual of a suitable
Hardy space and it also interpolates with L p(μ), p ∈ (1,∞) (see [18, Section 4]).

In the Euclidean setting, it is known that BMO functions coincide with (multiples)
of logarithms of Ap weights (see e.g. [11, Corollary 2.19]). In the next proposition,
we prove that the same phenomenon occurs in our setting.

Proposition 3.9 Let w ∈ Ap(μ) for some p ∈ (1,∞] and define g = logw. Then
g ∈ BMO(μ). Conversely, if f ∈ BMO(μ) then f = λ logw for some w ∈ Ap(μ)

and λ large enough. In other words, BMO(μ) = {λ logw,w ∈ A∞(μ), λ ∈ R}.
Proof It suffices to prove the first implication when w ∈ A2(μ). Indeed, if p < 2 we
have that w ∈ A2(μ) and if p > 2 then w−1/(p−1) ∈ Ap′(μ) ⊂ A2(μ) and replacing
w by w−1/(p−1) we obtain that −(p − 1) logw ∈ BMO(μ).

For every R ∈ R define

R+ = R ∩
{
x ∈ R g(x) − gR ≥ 0

}
, R− = R \ R+,

where g = logw. By Jensen’s inequality, we have that

exp

[
1

μ(R)

∑

y∈R

χR+(y)(g(y) − gR)μ(y)

]
≤ 1

μ(R)

( ∑

y∈R+
(w(y)e−gR )μ(y) +

∑

y∈R−
μ(y)

)
.

Moreover, since x �→ e−x is convex, again by Jensen’s inequality e−gR ≤ (w−1)R
and

1 =
(

1

μ(R)

∑

y∈R

w−1/2(y)w1/2(y)μ(y)

)2

≤ wR(w−1)R

by Cauchy-Schwarz inequality. It follows that

1

μ(R)

∑

y∈R

χR+(y)(g(y) − gR)μ(y) ≤ log[2wR(w−1)R].

A similar argument shows that

exp

[
1

μ(R)

∑

y∈R

χR−(y)(gR − g(y))μ(y)

]
≤ 1

μ(R)

( ∑

y∈R−
(egRw(y)−1)μ(y) +

∑

y∈R+
μ(y)

)
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≤ 2wR(w−1)R .

Therefore,

1

μ(R)

∑

y∈R

| logw(y) − (logw)R |μ(y) ≤ 2 log[2wR(w−1)R] ≤ 2 log(2[w]A2(μ)).

This shows that g ∈ BMO(μ).
Next, pick f ∈ BMO(μ) and fix p ∈ (1,∞). Define ψ = eλ f for some λ =

λ(p) > 0 to be chosen. Our goal is to show that ψ ∈ Ap(μ). Indeed,

1

μ(R)

∑

y∈R

ψ(y)μ(y)

(
1

μ(R)

∑

y∈R

ψ(y)−1/(p−1)μ(y)

)p−1

= 1

μ(R)

∑

y∈R

e( f (y)− fR)λμ(y)

(
1

μ(R)

∑

y∈R

e−λ( f (y)− fR)/(p−1)μ(y)

)p−1

≤
(

1

μ(R)

∑

y∈R

eη|( f (y)− fR |μ(y)

)p

,

where η := λmax{1, 1/(p − 1)}. The last expression is uniformly bounded by a
constant when λ is small enough by John-Nirenberg’s inequality, see [18, Proposition
4.2. (i)]. ��

4 A∞(�) and quasisymmetric mappings

In this section, we assume that T = Tq is the homogeneous tree of order q+1, namely
the tree such that every vertex has exactly q + 1 neighbours. The associated canonical
flow measure is μ(·) = q�(·) where � is the level function on T defined in (1.1). Let f
be a bijection from T onto itself and J f be the weight on T defined by

J f (x) = μ( f (x))

μ(x)
, ∀x ∈ T .

Observe that, for every finite E ⊂ T , since f is a bijection, we have

(J f )μ(E) :=
∑

y∈E
J f (y)μ(y) =

∑

y∈E
μ( f (y)) = μ( f (E)),

so J f can be thought of as the discrete version of the Jacobian of f . We remark that,
by Theorem 3.8, J f ∈ A∞(μ) if and only if for every ξ ∈ (0, 1) there exists η ∈ (0, 1)
such that for every R ∈ R and S ⊂ R

μ(S)

μ(R)
≤ ξ �⇒ μ( f (S))

μ( f (R))
= (J f )μ(S)

(J f )μ(R)
≤ η. (4.1)
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In the next proposition, we shall prove that isometries with respect to the geodesic
distance do not generally have Jacobian in A∞(μ). We refer to [9, Chapter 1] for more
information about the action of the group of isometries on the homogeneous tree.

Proposition 4.1 Let f be an isometry on T with respect to d that exchanges ω∗ with
another boundary point ω− ∈ ∂T . Then, J f does not belong to A∞(μ).

Proof Without loss of generality assume that o ∈ (ω−, ω∗) and that f (o) = o. Let
{xn}n∈Z denote an enumeration of the infinite geodesic (ω−, ω∗) such that �(xn) = n.

Then, we have that f (xn) = x−n . Let {Rn}n∈N ⊂ R be defined by Rn = R2n
n (o) and

set En := {x ≤ x−n} ∩ Rn . Then,

μ(En)

μ(Rn)
= q−n .

It suffices to disprove (4.1) showing that

μ( f (En))

μ( f (Rn))
→ 1 as n → ∞. (4.2)

Notice that f (En) contains f (x−2n+1) = x2n−1, thus

μ( f (En)) ≥ μ(x2n−1) = q2n−1.

Since f is an isometry, maxx∈Rn\En d(x−n+1, x) ≤ 3n − 1 and f (x−n+1) = xn−1,
one can see that

f (Rn \ En) ⊂ {y ∈ T y ≤ xn−1, d(xn−1, y) ≤ 3n − 1}.

Hence μ( f (Rn \ En)) ≤ 3nqn−1 and

μ( f (Rn \ En))

μ( f (En))
≤ 3n

qn
→ 0, as n → ∞.

It follows that

μ( f (En))

μ( f (Rn))
= μ( f (En))

μ( f (En)) + μ( f (Rn \ En))
→ 1, as n → ∞,

and (4.2) is proved. ��
Intuitively, the problem with these isometries is that they do not consistently pre-

serve the order relation ≤ between vertices, because the relationship between their
images under the isometry is not guaranteed in general.

We now introduce a different distance on T which is also natural when we deal
with admissible trapezoids. We define the Gromov distance ρ : T × T → [0,∞) by

ρ(x, y) =
{
e�(x∧y) x �= y,

0 x = y,

123



Ap weights on nonhomogeneous trees...

where x ∧ y denotes the confluent of x, y ∈ T , namely, the vertex of minimum level
which is above both x and y. It is easy to verify that ρ is a metric.

Recall that a map f from T to itself is bilipschitz with respect to ρ if there exists a
positive constant C such that

e−Cρ( f (x), f (y)) ≤ ρ(x, y) ≤ eCρ( f (x), f (y)), ∀x, y ∈ T . (4.3)

Proposition 4.2 Suppose that f is a surjective bilipschitz map on T with respect to ρ.
Then,

−C ≤ �(x) − �( f (x)) ≤ C ∀x ∈ T ,

where C is as in (4.3). In particular, it follows that J f , 1/J f ∈ L∞(T ) and thus
J f ∈ Ap(μ) for every p ∈ [1,∞].
Proof Observe that (4.3) readily implies that for every x, y ∈ T the following holds

− C ≤ �(x ∧ y) − �( f (x) ∧ f (y)) ≤ C . (4.4)

Since �(a ∧ b) ≥ max{�(a), �(b)} for every a, b ∈ T , and �(a ∧ b) = �(a) for
b ≤ a, choosing y ≤ x in (4.4) one obtains �(x)− �( f (x)) ≤ C , and choosing y such
that f (y) ≤ f (x), which exists since f is surjective, one gets �(x) − �( f (x)) ≥ −C .
This concludes the proof. ��

In the next proposition, we study some properties of isometries on T with respect
to the Gromov distance ρ.

Proposition 4.3 Let f be a surjective isometry on T with respect to ρ. Then, f is a
level and order-preserving map, namely,

i) �(x) = �( f (x)), for every x ∈ T ;
ii) x ≤ y ⇐⇒ f (x) ≤ f (y), for every x, y ∈ T .

Proof Let f be a surjective isometry with respect to ρ. Then, i) directly follows by
Proposition 4.2 when C = 0. Next, we prove i i).

Let y < x . Then ρ(x, y) ≤ ρ(x, z), for any z �= x , with equality holding if and
only if z < x . Choose a point ξ < f (x) and let z = f −1(ξ). Then, if f is an isometry,

ρ(x, y) ≤ ρ(x, z) = ρ( f (x), ξ) ≤ ρ( f (x), f (y)) = ρ(x, y).

It follows that ρ( f (x), f (y)) = ρ( f (x), ξ) which implies f (y) < f (x), that is i i).��
Remark 4.4 One may prove that any isometry on T with respect to ρ is in fact
surjective. We omit the details because the proof is quite involved.

It turns out that bilipschitz maps with respect to ρ are quasi-isometries with respect
to d.
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Proposition 4.5 Suppose that f is bilipschitz on T with respect to ρ. Then f is a
(1, 4C)-quasi-isometry bijection with respect to d, namely

d( f (x), f (y)) − 4C ≤ d(x, y) ≤ d( f (x), f (y)) + 4C,

for all x, y ∈ T . In particular, every isometry with respect to ρ is an isometry with
respect to d.

Proof Proposition 4.2 implies that

−C ≤ �(x) − �( f (x)) ≤ C .

Moreover, (4.3) readily implies that

−C ≤ �(x ∧ y) − �( f (x) ∧ f (y)) ≤ C .

On the one hand, for every x, y ∈ T ,

d(x, y) = 2�(x ∧ y) − �(x) − �(y)

≤ 2�(x ∧ y) + C − �( f (x)) + C − �( f (y)) + 2�( f (x) ∧ f (y))

− 2�( f (x) ∧ f (y))

= 4C + d( f (x), f (y)).

On the other hand,

d( f (x), f (y)) = 2�( f (x) ∧ f (y)) − �( f (x)) − �( f (y))

≤ 2�( f (x) ∧ f (y))+C−�(x) + C − �(y) + 2�(x ∧ y) − 2�(x ∧ y)

= 4C + d(x, y).

The statement about the isometries follows by setting C = 0. ��

The latter twopropositions identify a class of quasi-isometric bijections on (T , d, μ)

whose Jacobian is in L∞. In a subsequent paper, we plan to investigate the statement
that quasisymmetric mappings on (T , ρ, μ) are a subset of (L,C)-quasi-isometric
bijections on (T , d, μ), and that these quasi-isometries have Jacobian in Ap(μ) for
some p.
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