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Abstract
We address a detailed study of the convexity notions that arise in the study of weak*
lower semicontinuity of supremal functionals, as well as those arising by the L p-
approximation, as p → +∞ of such functionals. Our quest is motivated by the
knowledge we have on the analogous integral functionals and aims at establishing a
solid groundwork underlying further research in the L∞ context.

Keywords Generalized convexity · Supremal functionals · Approximation · L∞-
variational problems

Mathematics Subject Classification 26B25 · 49J45

1 Introduction

In the past decades there has been a growing interest towards L∞ variational problems,
partly because of their main applications. Indeed, in the first instance, they appeared
empirically in the search for bounds in optimal design problems such as determining
the yield set of a polycrystal, or the first failure of a dielectric, in particular, in con-
nection with power-law (L p-) approximation. This latter method has shown to be a
quite efficient procedure to describe the mentioned phenomena. In fact, not only it was
adopted in physics literature (see [58, 78–80]) but, later on, a rigorous mathematical
justification was provided, see [1, 12, 23, 25–30, 33, 39, 48, 53, 55, 65, 70, 74].

Variationalmodels in L∞ have also emerged in connectionwith Lipschitz extension
problems [24, 47, 61], or more general minimization problems (in these frameworks
absolute minimizers are the appropriate solutions to look for, see [39, Definition 1.1]
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and [60]). The L∞ setting can also be used to provide an energy formulation of non
linear partial differential equations (see for, by now, classical results [6–9], the more
recent contributions, [14, 18] and the higher order problems contained in [10, 40, 41]
and the bibliography contained therein).

Since then, a wide literature has been developed, also in the non-Euclidean setting,
starting from [61] and its quoting literature, in connection with Dirichlet forms, pre-
fractal sets, Finsler structures, etc., see [36, 37, 56, 57, 66], among a much wider
scientific production.

It is worth recalling that these mathematical models play also an important role in
the context of optimal transport, game theory, partial differential equations, non-local
problems also in connection with artificial intelligence problems, etc., see e.g. [15, 31,
34, 35, 52, 67, 68].

Many of the above models are formulated in terms of what is called a supremal
functional

F(u, O) = ess sup
x∈O

f (x, u(x), Du(x)), O ⊆ � open , u ∈ W 1,∞(O;RN )

(1.1)

where � is an open and bounded set in R
n and f : � × R

n × R
N×n −→ R is a

Carathéodory function. We call the function f supremand. For both the minimization
and the L p- approximation, a crucial property which emerges in the application of
the Direct Methods of the Calculus of Variations is the lower semicontinuity with
respect to the weak* topology of W 1,∞ of the functional F in (1.1). Consequently it
is crucial to look for necessary and sufficient conditions on the supremand f for this
lower semicontinuity. These conditions reflect, as in the integral setting, on appropriate
convexity notions of f (x, u, ·) (see, e.g. [2, 21] among a wider literature), rather than
the convexity of the functional F . For what concerns the convexity properties inherited
by F , we refer to [56]. Themain goal of our paper is to develop a deep understanding of
the convexity notions of the supremands f . We trust the present paper provides a clear
baseline to researchers dealing with problems in the field, as it gathers many properties
and results dispersed in the literature, clarifying some features of the concepts under
study, adding also novel insights contributing to a unified approach to the study of
supremal problems.

Indeed, in the seminal paper by Barron et al. [21], a necessary and sufficient con-
dition on the supremand f for the sequential weak* lower semicontinuity of F(·,�)

was found. The condition was named strong Morrey quasiconvexity and it is renamed
in Definition 3.1 as strong BJW-quasi-level convexity in honor to Barron, Jensen, and
Wang. To facilitate checking this condition in applications, necessary and sufficient
conditions for strong BJW-quasi-level convexity were also introduced. Namely, the
sufficient condition of poly-level convexity and the necessary conditions of weak
BJW-quasi-level convexity and rank-one level convexity. It is also worth taking into
account that problem (1.1) was already interesting in the scalar setting, i.e. n = 1 or
N = 1, with the necessary and sufficient condition for the sequential weak* lower
semicontinuity of F(·,�) on the supremand f detected by [14, 19, 20] and known in
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the optimization literature as quasiconvexity and later on named level convexity by [2,
72, 73], and used for the supremal representation in [16, 17, 38].

Broadly speaking, one has the following

f level convex ⇒ f poly-level convex ⇒ f strong BJW-quasi-level convex
⇒ f weak BJW-quasi-level convex ⇒ f rank-one level convex.

If one is acquainted with the DirectMethod of the Calculus of Variations in the context
of integral minimization and the related theory for vectorial problems, the previous
chain of implications seems familiar and natural. As we will see, the specificity of
supremal problems brings into play new features and, even the above implications shall
be read with care under appropriate additional assumptions. Besides, the treatment of
minimization problems through L p-approximation, cf. [4, 5, 39, 74], brought into play
other relevant conditions.

Another target of this work consists of a full revision of these later concepts, unveil-
ing new perspectives on the subject. We also believe that this is a fundamental step to
further proceed to our ultimate goal, that we postpone for a future work, which is to
extend to the vectorial setting the previous work of the authors [75], namely, to provide
conditions to ensure the existence of minimizers when the supremand f fails to satisfy
the strong BJW-quasi-level convexity and the Direct Methods cannot be applied.

Next, we describe how the paper is organized, as well as the ideas and questions
that have driven our analysis. We note that, with the exception of Appendix B, in
all our work we restrict to supremands depending on the gradient variable only. This
allows to distinguish whether additional assumptions that one finds in the literature
are intrinsic, or not, to the property under study.

Section 2 is devoted to the integral notion of quasiconvexity (see Definition 2.1)
which is the fundamental property associated with the sequential weak* lower semi-
continuity in W 1,∞(�;RN ) of functionals of the form

I (u) :=
∫

�

f (Du(x)) dx, u ∈ u0 + W 1,∞
0 (�;RN )

for a given function f : RN×n → R.Essentially, we recall existing results and, despite
the different context, thiswill be useful in the subsequent sections. In order to formulate
our results with the greatest possible generality in the later sections, we refer to the
presentation of the forthcoming monograph [50], while in a slightly more restrictive
setting the same statements could be made by referring to [43]. Let us highlight, that,
in Proposition 2.3, we establish a new characterization of quasiconvexity, motivated
by the supremal notion of strong BJW-quasi-level convexity treated later on, in Sect. 3.

In Sect. 3 we consider in detail the notions introduced by Barron, Jensen, and
Wang, previously mentioned. Several of the questions that we address in this section
are motivated by properties that are well known in the integral setting. In particular, we
observe that the convexity notions emerging in the integral setting inherit also the lower
semicontinuity, while, as we will see in Proposition 3.5, among the notions considered
in Sect. 3 for the supremal setting, only the strong BJW-quasi-level convexity encodes
this property.
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Another question that led our investigation was, whether in the case the supremand
f is strong BJW-quasi-level convex and the boundary condition u0 is an affine map,
u0 is also a minimizer for the functional F(u,�) in (1.1). The analogue to this in
the integral setting is well known and amounts to the fact that the quasiconvexity
notion is independent of the domain where the integral is considered. Therefore, we
are led to the question of the independence of domain for strong BJW-quasi-level
convex functions. If we return to the starting point of this discussion, our question is
precisely equivalent to the independence of domain for weak BJW-quasi-level convex
functions. While for weak BJW-quasi-level convexity we obtained a positive answer,
cf. Proposition 3.7, and thus, we get that affine boundary conditions are minimizers to
the problem described above, cf. Corollary 3.8, the independence of domain for strong
BJW-quasi-level convexity was only ensured under some conditions on the sets, in
particular, its convexity, see Proposition 3.10. We note that the result on independence
of the domain in the definition of strong BJW-quasi-level convexity has been obtained
by exploiting the lower semicontinuity of the related supremal functional, requiring
to adapt results from [21]. This is left to Appendix A. We just observe here that the
independence of the domain in the convexity notions combines well with the fact
that, in the nonhomogeneous setting, the supremal representation in terms of suitably
‘convex’ densities requires weakly* lower semicontinuity in every domain [38, 71,
72, see counterexamples] and the bibliography contained therein.

A deeper understanding of minimization of integral functionals shows that the
condition which is intrinsic to the weak* lower semicontinuity is the equivalent con-
dition to quasiconvexity which is given by (2.1), but testing on periodic functions.
This is another direction that warrants investigation: whether in the notion of strong
BJW-quasi-level convexity, periodic functions can be considered. At this point, our
analysis is not conclusive, motivating us to introduce the concept of periodic-weak
BJW-quasi-level convexity.

Still in Sect. 3, we investigate how do the notions of convexity introduced in this
section relate to each other. Our aim is to obtain an exhaustive study of these relations,
therefore,whenever possible,we also provide counter-examples andwe end the section
with a list of the relations forwhich a satisfactory answerwas not obtained.Also a proof
of a characterization in terms of supremal Jensen’s inequality involving probability
measures under very mild assumptions is given in Appendix C.

In Sect. 4, our interest is to relate strong BJW-quasi-level convexity with the con-
vexity concepts raised by power-law approximation, “namely L p-approximation as
p → +∞”, not only as a way to deal with lower semicontinuity of L∞-variational
problems, but also in order to rigorously obtain the latter ones by means of variational
convergence emanating from L p- type norm functionals. More precisely, we relate
strong BJW-quasi-level convexity with the notions of curl(p>1)-Young quasiconvex-
ity, curl-Young quasiconvexity, and curl − ∞ quasiconvexity, cf. Definition 4.2, not
necessarily under these names in the literature. As in Sect. 3, we also provide some
counterexamples and we list some open questions of interest. In particular, we will
see that coercivity always plays a crucial role. To this end, we start recalling the
counterexamples to representation of weakly* lower semicontinuous supremal func-
tionals, depending on gradients, in terms of non-homogeneous level convex densities
(of the form f (x, ξ)) already in the scalar case, see [72] and the bibliography con-
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tained therein. Thus it arises naturally the question of comparing the notions providing
sufficient conditions for representation of lower semicontinuous supremal functionals
under coercivity hypotheses. Finally, due to the deep connections with Young mea-
sures, appearing already in some definitions, we will provide in Appendix B a new
proof of sufficiency of curl-Young quasiconvexity for weak* lower semicontinuity of
supremal functionals (also in the nonhomogeneous setting).

For the sake of completeness, we consider, in Sect. 5, the interplay between the
convexity notions arising in the integral and the supremal settings.

We will leave for further studies the comparison with supremal convexity notions
using the duality theory in Convex analysis as in [22] and [71] or making use of
the intrinsic distances as, e.g., in [54] and [56], or rephrasing the notions exploiting
the connections with variational unbounded integral functionals and/or differential
inclusions, see [68, 74, 81].

1.1 Notation

In the sequel we will make use of the following notation

• We denote by Q the unit cube of Rn centered at the origin with side length 1, i.e.
Q := (− 1

2 ,
1
2

)n
.

• By Ln we denote the n-dimensional Lebesgue measure.
• For any set E ⊂ R

d , χE denotes its characteristic function, i.e. χE (x) ={
1 if x ∈ E,

0 otherwise.

• For every open set� ⊂ R
n we denote byW 1,∞

0 (�;RN ) as in [43, Definition 12.9

(iv)], the setW 1,∞(�;RN )∩W 1,1
0 (�;RN ), where the latter set is theW 1,1-closure

of C∞
c (�;RN ), recalling that when � is a bounded, connected and with Lipschitz

boundary set, W 1,∞
0 (�;RN ) coincides with the set of (globally) Lipschitz maps

wich are null at the boundary ∂�, i.e.

Lip0(�;RN ) :=
{
ϕ : � −→ R

N
∣∣∣ ϕ is Lipschitz in � and ϕ = 0 on the boundary

}
.

• For any cube C ⊂ R
n , byW 1,∞

per (C;RN ) we denote the subset ofW 1,∞(Rn;RN ),
made by C-periodic functions.

2 A review of the integral notion of quasiconvexity and of some of its
properties

We recall the definition of quasiconvex functions, fundamental in the minimization
of vectorial integral functionals. A classic reference on this subject is the monograph
[43]. In the sequel we sometimes refer to the forthcoming monograph [50] where the
quasiconvexity notion is given without requiring a priori the local boundedness of the
function. This shall be useful belowwhen dealing with curl-∞ quasiconvex functions.

123



A. M. Ribeiro, E. Zappale

We call the attention for the new characterization of quasiconvexity established in
Proposition 2.3.

Definition 2.1 A Borel measurable function g : RN×n → R is called quasiconvex if

g(ξ) ≤
∫
Q
g(ξ + Dϕ(x)) dx (2.1)

for every ξ ∈ R
N×n and for every ϕ ∈ W 1,∞

0 (Q;RN ), where Q := (− 1
2 ,

1
2

)n
.

Remark 2.2 (i) In the definition of quasiconvexity, one can also consider functions
taking values in [−∞,∞] but many properties may fail in this case. (See [13].)

(ii) In the forthcoming monograph [50] it has been shown that if g is real valued then
it is locally-Lipschitz, i.e. for every ξ ∈ R

N×n and every R > 0, there exists a
constant L ≡ L(ξ, R) such that

|g(ζ ) − g(ζ ′)| ≤ L|ζ − ζ ′| for every ζ, ζ ′ ∈ BR(ξ)

hence continuous and locally bounded, thus, a posteriori Definition 2.1 coincides
with [43, Definition 5.1, (ii)].

(iii) In (2.1) the cube Q := (− 1
2 ,

1
2

)n
can be replaced by any bounded open set �

(averaging the integral in (2.1) by the measure of �), cf. [43, Proposition 5.11].
On the other hand in [50] it has been proven thatDefinition 2.1 can be equivalently
given by testing with functions ϕ ∈ Lip0(O;RN ) only requiring the set O to be
open and bounded, with Ln(∂O) = 0..

(iv) If g is real valued (then it is locally bounded) one can replace in the definition of
quasiconvexity, via reverse Fatou’s lemma, W 1,∞

0 by C∞
c .

(v) We can replace W 1,∞
0 (Q;RN ) by W 1,∞

per (Q;RN ) as well as, by
{
ϕ ∈ W 1,∞

loc
(Rn;RN )| Dϕ is Q-periodic and

∫
Q Dϕ(x) dx = 0

}
. Moreover, the unit cube

Q can be replaced by any cube, provided that the integral in (2.1) is averaged by
the measure of the cube.

(vi) The notion of quasiconvexity coincides with the A-quasiconvexity (cf. [51,
Remark 3.3]) in the case A = curl.

Next we provide a new characterization of quasiconvexity, stemming from the
results from [21], in particular Proposition 2.4. We present the proof for the readers’
convenience.

Proposition 2.3 Let g : RN×n −→ R be a Borel measurable function. Consider the
following condition

∀ ε > 0 ∀ ξ ∈ R
N×n ∀ K > 0 ∃ δ = δ(ε, K , ξ) > 0 :

ϕ ∈ W 1,∞(Q;RN )

||Dϕ||L∞(Q) ≤ K
maxx∈∂Q |ϕ(x)| ≤ δ

⎫⎬
⎭ �⇒ g(ξ) ≤

∫
Q
g(ξ + Dϕ(x)) dx + ε. (2.2)
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One has that g is quasiconvex if and only if g satisfies (2.2).

Proof Quasiconvexity follows immediately from (2.2) applied to test functions ϕ ∈
W 1,∞

0 (Q;RN ), letting ε → 0.
To prove the reverse implication let ε > 0, ξ ∈ R

N×n and K > 0 be arbitrary. Let
ϕ ∈ W 1,∞(Q;RN ) be such that ‖Dϕ‖L∞(Q) ≤ K and maxx∈∂Q |ϕ(x)| ≤ δ for some
δ to be chosen later. Then, having in mind that, by the Lipschitz continuity of ϕ in Q,
|ϕ(y) − ϕ(x)| ≤ K |y − x | for any x ∈ ∂Q and y ∈ Q, one has |ϕ(y)| ≤ 2δ for any
y = (y1, . . . , yn) ∈ Q, with |yi | ≥ 1/2−η for some 1 ≤ i ≤ n, provided that η ≤ δ

K .
Now, given η > 0 small, let ψη ∈ C1(Rn) be such that 0 ≤ ψη(y) ≤ 1 for all

y ∈ R
n , ψη ≡ 1 for y ∈ (1 − η)Q, ψη ≡ 0 for y /∈ Q, and |Dψη(y)| < c0

η
for every

y ∈ R
n for some constant c0 independent of η.

The quasiconvexity of g entails that

g(ξ) ≤
∫
Q
g(ξ + D(ψηϕ)(x)) dx

=
∫
Q
g(ξ + Dϕ(x)) dx +

∫
Q\(1−η)Q

(g(ξ+ D(ψηϕ)(x)) − g(ξ + Dϕ(x))) dx .

To conclude the proof it suffices to estimate the latter integral on the right hand
side by ε. To achieve this, observe that, since g is quasiconvex, by (ii) in Remark 2.2,
it is locally Lipschitz, thus, in particular, choosing R := K (1 + 4 c0), there exists a
constant L depending on ξ and K above such that

|g(ζ ) − g(ζ ′)| ≤ L|ζ − ζ ′| for every ζ, ζ ′ ∈ BR(ξ). (2.3)

Observe that ‖Dϕ‖L∞(Q) ≤ K ≤ R and, if we take η = δ
2 K , then

‖D(ψηϕ)‖L∞(Q) ≤ (2c0 + 1)K ≤ R. Therefore, by (2.3), and observing that
Ln(Q \ (1 − η)Q) ≤ c1η, for some constant c1 only depending on the dimension
n, one gets

∫
Q\(1−η)Q

∣∣g(ξ + D(ψηϕ)(x)) − g(ξ + Dϕ(x))
∣∣ dx

≤ L
∫
Q\(1−η)Q

(|Dϕ(x)| + |Dψη(x)| |ϕ(x)|) dx

≤ L(Kc1η + 2c0c1δ) = c1L( 12 + 2c0)δ.

Then it suffices to take δ sufficiently small so that the last term is smaller than ε. ��
Definition 2.4 Let g : R

N×n → R be a Borel measurable function. The greatest
quasiconvex function below g is called the quasiconvex envelope of g and it is denoted
by Qg, i.e. Qg : RN×n → [−∞,+∞) is such that

Qg(ξ) := sup
{
h(ξ)

∣∣∣ h : RN×n → R, h(ξ) ≤ g(ξ) for all ξ ∈ R
N×n, h is quasiconvex

}
.
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Remark 2.5 Note that, Qg is well defined and it is a Borel measurable function, see
[43].

The following lemma will be useful in the remaining part of this paper. It relies
on the notion of strong quasiconvexity introduced in [50]. Indeed, a Borel function
f : RN×n → R is called strongly quasiconvex at ξ ∈ R

N×n if

f

(
ξ +

∫
C
Dϕ(x) dx

)
≤
∫
C

f (ξ + Dϕ(x)) dx

for every unit cube C ⊂ R
N and for all functions ϕ ∈ W 1,∞

loc (RN ;Rn) with Dϕ C-
periodic. The function f is called strongly quasiconvex if it is strongly quasiconvex at
every ξ ∈ R

N×n .

Lemma 2.6 Let g : RN×n −→ R be a Borel measurable function. Then, for every
ξ ∈ R

N×n, one has

Qg(ξ) = inf

{∫
Q
g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞

loc (Rn;RN ), with Dϕ Q-periodic and

∫
Q
Dϕ(x) dx = 0

}

= inf

{∫
Q
g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞

per (Q;RN )

}

= inf

{∫
Q
g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞

0 (Q;RN )

}

= inf

{
1

Ln(�)

∫
�

g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞
0 (�;RN )

}

if � ⊆ R
n is open and bounded with Ln(∂�) = 0.

Proof Explicit constructions together with Riemann-Lebesgue lemma allow to prove
that any quasiconvex function is strongly quasiconvex (details about this proof can be
found in the forthcoming monograph [50]) hence the quasiconvex envelope is strongly
quasiconvex, and thus

Qg(ξ) ≤ inf

{∫
Q
Qg(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞

loc (Rn;RN ), with Dϕ Q-periodic and

∫
Q
Dϕ(x) dx = 0

}

≤ inf

{∫
Q
g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞

loc (Rn;RN ), with Dϕ Q-periodic and

∫
Q
Dϕ(x) dx = 0

}

≤ inf

{∫
Q
g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞

per (Q;RN )

}
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≤ inf

{∫
Q
g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞

0 (Q;RN )

}

≤ Qg(ξ),

where in the last inequality we argue as in [43]. Thus all the formulas above coincide.
Moreover, in view of Remark 2.2 (iii) exploiting similar arguments as in the chain
of inequalities above, and the invariance of the domain, proven in [43], Qg(ξ) also
coincides with

inf

{
1

Ln(�)

∫
�

g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞
0 (�;RN )

}

and with

inf

{
1

Ln(�)

∫
�

g(ξ + Dϕ(x)) dx : ϕ ∈ Lip0(�;RN )

}

provided � ⊆ R
n is open and bounded with Ln(∂�) = 0 (see [50]). ��

The following definition has been introduced by Ball andMurat (cf. [13, Definition
2.1]).

Definition 2.7 Let 1 ≤ p ≤ ∞.ABorel function g : RN×n → R isW 1,p-quasiconvex
at ξ ∈ R

N×n if

g(ξ) ≤
∫
Q
g(ξ + Dϕ(x)) dx

for every ϕ ∈ W 1,p
0 (Q;RN ). We say that g is W 1,p-quasiconvex if it is W 1,p-

quasiconvex at every ξ ∈ R
N×n .

Remark 2.8 (i) Note that W 1,∞-quasiconvexity is the quasiconvexity introduced in
Definition 2.1.

(ii) The above definition can be given also when the range of g is [−∞,+∞].
(iii) The set Q can be replaced by any bounded open set � such that Ln(∂�) = 0

replacing the integral by an averaged integral in �.
(iv) If g is W 1,p-quasiconvex for some 1 ≤ p ≤ +∞, then it is W 1,q -quasiconvex

for all p ≤ q ≤ +∞ (cf. [13, Remark 2.2]). Thus quasiconvexity and W 1,1-
quasiconvexity are, respectively, the weakest and the strongest condition.

(v) If g : RN×n → R and satisfies the following growth condition: there existC > 0
and 1 ≤ p < +∞, such that

g(η) ≤ C(1 + |η|p) (2.4)

for all η ∈ R
N×n , then g is W 1,p-quasiconvex at ξ if and only if for every

bounded and open set �,

g(ξ) ≤ 1

Ln(�)

∫
�

g(ξ + Dϕ(x)) dx
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for every ϕ ∈ C∞
c (�;RN ).

(vi) Also, if g is W 1,p-quasiconvex and satisfies the following coercivity condition:
there exist C ′ > 0, and 1 < p < +∞ such that

g(η) ≥ C ′(|η|p − 1)

for all η ∈ R
N×n , then g is W 1,1-quasiconvex.

The previous remark allows to state, in the spirit of the characterizations obtained
in Lemma 2.6 for the quasiconvex envelope of a function, an alternative formula in
terms of W 1,p

0 (�;RN ) test functions.

Lemma 2.9 Let 1 ≤ p < +∞, and let g : R
N×n −→ R be a Borel measurable

function satisfying the growth condition (2.4). Let� be open, bounded withLn(∂�) =
0. Then

Qg(ξ) = inf

{
1

Ln(�)

∫
�

g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,p
0 (�;RN )

}
.

Furthermore, under the extra assumption that g is upper semicontinuous, one has

Qg(ξ) = inf

{∫
Q
g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,p

per (Q;RN )

}
.

Proof The first statement follows from the previous remark, observing that under
our assumptions Qg is Borel measurable, quasiconvex and satisfies the same growth
condition as g. Indeed, by Remark 2.8 (v) and then by (iii) one has

Qg(ξ) ≤ inf

{
1

Ln(�)

∫
�

Qg(ξ + Dϕ(x)) dx : ϕ ∈ W 1,p
0 (�;RN )

}

≤ inf

{
1

Ln(�)

∫
�

g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,p
0 (�;RN )

}

≤ inf

{
1

Ln(�)

∫
�

g(ξ + Dϕ(x)) dx : ϕ ∈ W 1,∞
0 (�;RN )

}

= Qg(ξ)

invoking the characterization ofQg provided in Lemma 2.6 to obtain the last identity.
For the second statement,we start byobserving that one inequality follows from the fact
that W 1,∞

per (Q;RN ) ⊆ W 1,p
per (Q;RN ) and by the characterization of Qg provided by

Lemma 2.6. For the other inequality, consider for a fixed function ϕ ∈ W 1,p
per (Q;RN ),

the convolution with a sequence of mollifiers (ρε)ε, defined as ρε(x) := 1
εn

ρ
(
x
ε

)
,

where

ρ ∈ C∞
c (Rn), suppρ ⊂ B1, ρ ≥ 0, ρ(−x) = (x), and

∫
B1

ρ(x) dx = 1,
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denoting B1 the unit ball inRn centered at the origin. Note that ϕ ∗ρε is still a periodic
function and moreover it belongs to W 1,∞(Rn;RN ). Then by the quasiconvexity of
Qg, one has

Qg(ξ) ≤ lim sup
ε→0

∫
Q
g(ξ + D(ϕ ∗ ρε)(x)) dx .

Note that, by (2.4), the right-hand side in the previous inequality is bounded. This
allows to use the reversed Fatou’s lemma and get

Qg(ξ) ≤
∫
Q
lim sup

ε→0
g(ξ + D(ϕ ∗ ρε)(x)) dx .

Finally, the upper semicontinuity assumption ensures that the integrand converges
pointwise to g(ξ + Dϕ(x)), as desired. ��

3 On some convexity notions for functions and sequential weak*
lower semicontinuity of L∞ functionals

In this section we revisit some convexity notions previously introduced by Barron
et al. [21] in the context of L∞ functionals. The notions of strong (respectively
weak) Morrey quasiconvexity are renamed to strong (respectively weak) BJW-quasi-
level convexity in honour to Barron, Jensen, and Wang, while the the notions of
polyquasiconvexity and rank-one quasiconvexity are renamed to poly-level convexity
and rank-one level convexity as previously done in [4]. These notions are related
to the problem of existence of minimizers for supremal functionals and to the not
fully understood notion of quasiconvexity for unbounded integral functionals (see
[21, Lemma 1.4] and the last section in [59]). Our goal, in this section, is to better
understand each of these notions as well as the relations between them. The questions
addressed here aremotivated by the knowledge on the analogous notions in the context
of integral minimization problems.

Once the convexity notions are introduced, we consider, in a first moment, some
properties that are intrinsic to them. Namely, lower semicontinuity and invariance on
the domain. For this last property we achieve, as in the integral setting, that the cube Q
can be replaced by other open and bounded sets �, satisfying further suitable restric-
tions according to the specific notion under analysis. We also get a characterization of
periodic-weak BJW-quasi-level convexity and existence of minimizers for some class
of supremal problems. Afterwards, in Sect. 3.1, we explore which are the conditions
that are sufficient and which are necessary.

Definition 3.1 Let N , n ∈ N and let f : RN×n −→ R.

(1) The function f is said to be level convex if, for every ξ, η ∈ R
N×n and for every

0 < λ < 1, one has

f (λξ + (1 − λ)η) ≤ max{ f (ξ), f (η)},
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namely for every t ∈ R, the sublevel sets Lt ( f ) := {ξ ∈ R
N×n : f (ξ) ≤ t} are

convex.
(2) The function f is said to be poly-level convex if, there exists a level convex

function g : Rτ(n,N ) −→ R such that, for every ξ ∈ R
N×n ,

f (ξ) = g(T (ξ)),

where

τ(n, N ) :=
min{n,N }∑

s=1

σ(s), with σ(s) =
(
N

s

)(
n

s

)
= N ! n!

(s!)2(N − s)!(n − s)!

and T (ξ) is a vector with all the minors of ξ , namely

T (ξ) := (ξ, adj2ξ, . . . , adjmin{n,N }ξ)

being adjsξ (2 ≤ s ≤ min{n, N }) the matrix of all s × s minors of ξ .
(3) Assume that the function f is Borel measurable. We say that f is strong BJW-

quasi-level convex if

∀ ε > 0 ∀ ξ ∈ R
N×n ∀ K > 0 ∃ δ = δ(ε, K , ξ) > 0 :

ϕ ∈ W 1,∞(Q;RN )

||Dϕ||L∞(Q;RN×n) ≤ K
maxx∈∂Q |ϕ(x)| ≤ δ

⎫⎬
⎭ �⇒ f (ξ) ≤ ess sup

x∈Q
f (ξ + Dϕ(x)) + ε.

(4) Assume that the function f is Borel measurable. We say that f is weak BJW-
quasi-level convex if

f (ξ) ≤ ess sup
x∈Q

f (ξ + Dϕ (x)) , ∀ ξ ∈ R
N×n, ∀ ϕ ∈ W 1,∞

0 (Q;RN ).

(5) Assume that the function f is Borel measurable. We say that f is periodic-weak
BJW-quasi-level convex if, for every ξ ∈ R

N×n and for everyϕ ∈ W 1,∞
per (Q;RN ),

f (ξ) ≤ ess sup
x∈Q

f (ξ + Dϕ (x)) .

(6) The function f is said to be rank-one level convex if, for every ξ, η ∈ R
N×n such

that rank(ξ − η) = 1 and for every 0 < λ < 1, one has

f (λξ + (1 − λ)η) ≤ max{ f (ξ), f (η)},

i.e. for every t ∈ R, Lt ( f ) contains all segments [ξ, η] connected through a
rank-one matrix.
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Remark 3.2 (i) Regarding the notion of strong BJW-quasi-level convexity, to ease
the parallel with the integral setting, one shall have in mind the characterization
of quasiconvexity provided in Proposition 2.3. In this way, we obtain that the
supremal version of (2.2) provides the notion of strong BJW-quasi-level convex-
ity, while the supremal version of (2.1) leads to weak BJW-quasi-level convexity.
As we shall see in Proposition 3.17 these two notions, weak and strong BJW-
quasi-level convexity, do not coincide.

(ii) We will work with the conditions defining strong BJW-quasi-level convexity and
weak BJW - quasi-level convexity on domains other than the cube Q, namely
� ⊆ R

n . In that case we will refer to those conditions as strong BJW-quasi-level
convexity in � or weak BJW-quasi-level convexity in �. In Propositions 3.7
and 3.10 we will see these notions are independent of the domain in some appro-
priate classes of sets. In an analogous way, we will also refer to periodic-weak
BJW-quasi-level convexity in a cube C ⊆ R

n if the inequality in (5) is valid for
test functions in W 1,∞

per (C;RN ).

(iii) The definition of periodic-weak BJW-quasi-level convexity is new as a defini-
tion, but it was already used in [21, Lemma 2.8] through a formulation, that we
will prove to be equivalent in Proposition 3.6. It appears as an intermediate step
to prove that sequential weak* lower semicontinuity of a supremal functional of
the form F(·,�), as in (1.1), implies weak BJW-quasi-level convexity. Exam-
ple 3.15 below provides a counter-example to the reverse implication. The notion
of periodic-weak BJW-quasi-level convexity also coincides with the notion of
A-weak quasiconvexity considered in [4] in the case of the curl operator, since
by Proposition 3.6, periodic-weak BJW-quasi-level convexity can be tested on
functions with periodic gradients.

Having in mind the relevant convexity notions to treat minimization problems of
integral form (see [43]), one should note that since convex functions are continu-
ous in their effective domain, the lower semicontinuity is encoded in polyconvexity,
quasiconvexity and rank-one convexity. This is not the case in the context under our
attention here. Indeed, there exist level convex, poly-level convex, weak and periodic-
weak BJW-quasi-level convex, and rank-one level convex functions that are not lower
semicontinuous. On the other hand, it will be seen, cf. Proposition 3.5, that strong
BJW-quasi-level convex functions are always lower semi-continuous. To this end, we
start by recalling the following preparatory result (see [21, Proposition 2.5]), which
proof is presented for the convenience of the reader.

Lemma 3.3 Let f : R
N×n −→ R be a Borel measurable function that is strong

Morrey quasiconvex on a bounded and open set � ⊆ R
n with Lipschitz boundary i.e.

∀ ε > 0 ∀ ξ ∈ R
N×n ∀ K > 0 ∃ δ = δ(ε, K , ξ) > 0 :

ϕ ∈ W 1,∞(�;RN )

||Dϕ||L∞(�;RN×n) ≤ K
maxx∈∂� |ϕ(x)| ≤ δ

⎫⎬
⎭ �⇒ f (ξ) ≤ ess sup

x∈�

f (ξ + Dϕ(x)) + ε. (3.1)
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Then, for every ξ ∈ R
N×n and for every sequence (ϕk)k∈N ⊆ W 1,∞(�;RN ) weakly*

converging to 0 in W 1,∞(�;RN ), it follows that

f (ξ) ≤ lim inf
k→∞ ess sup

x∈�

f (ξ + Dϕk(x)).

Proof The weak* convergence of ϕk to 0 in W 1,∞(�;RN ) entails that (ϕk)k∈N
is bounded in W 1,∞(�;RN ). In particular, there exists K > 0 such that
‖Dϕk‖L∞(�;RN×n) ≤ K , for every k ∈ N. Moreover, by Rellich-Kondrachov
theorem (see [32, Theorem IX.16], which holds since � is a bounded and open
set with Lipschitz boundary) or, equivalently, by applying Arzelà-Ascoli theorem),
ϕk ∈ C(�;RN ) and ϕk → 0 strongly in L∞(�;RN ). Therefore, given ξ ∈ R

N×n ,
ε > 0, and δ = δ(ε, K , ξ) > 0 as in the assumption, one has, for sufficiently large
k, supx∈∂� |ϕk(x)| ≤ δ(ε, K , ξ). Thus, the strong BJW-quasi-level convexity of f
implies that

f (ξ) ≤ ess sup
x∈�

f (ξ + Dϕk) + ε,

for k sufficiently large. Passing to the limit on k we obtain

f (ξ) ≤ lim inf
k→∞ ess sup

x∈�

f (ξ + Dϕk) + ε.

The arbitrariness of ε concludes the proof. ��
The following example shows that lower semicontinuity is not a necessary condition

of functions enjoying the other convexity notions.

Example 3.4 Let f : RN×n −→ R be such that f = χA where A = {ξ ∈ R
N×n :

ξ11 ≥ 1} and for every η ∈ R
N×n , η11 denotes the first entry of the matrix η. Note that

f is not lower semicontinuous. Indeed, considering the sequence (ξk)k∈N ⊆ R
N×n

such that (ξk)
1
1 = 1 − 1

k and all the other components are zero, one has lim ξk = ξ

where ξ11 = 1, being all the other components of ξ equal to zero. However,

f (ξ) = 1 > 0 = lim inf f (ξk).

On the other hand, one can easily get that f is level convex as well as poly-level
convex, weak BJW-quasi-level convex, periodic-weak BJW-quasi-level convex and
rank-one level convex, (see also Theorem 3.12 below). Observe that f is not strong
BJW-quasi-level convex because f is not lower semicontinuous, (cf. Proposition 3.5
below).

Proposition 3.5 Let N , n ≥ 1.

(i) If f : RN×n −→ R is strong BJW-quasi-level convex in a bounded and open set
� with Lipschitz boundary, then it is lower semicontinuous.
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(ii) There are functions f : RN×n −→ R that are not lower semicontinuous but that
are either level convex, poly-level convex, weak BJW-quasi-level convex, periodic-
weak BJW-quasi-level convex or rank-one level convex.

Proof The proof of (i) follows by Lemma 3.3. Indeed, taken a sequence ξk → 0 in
R

N×n , we can define for every x ∈ �, ϕk(x) := ξk x . This sequence of functions lying
in W 1,∞(�;RN ) converges strongly to 0 in W 1,∞(�;RN), hence, by the previous
proposition it follows that

f (ξ) ≤ lim inf
k→∞ f (ξ + ξk).

Condition (ii) is a consequence of Example 3.4. ��
We now prove an equivalent formulation to periodic-weak BJW-quasi-level con-

vexity.

Proposition 3.6 (Periodic-weak BJW-quasi-level convexity.) Let f : RN×n −→ R

and let C ⊆ R
n be a cube. Then f is periodic-weak BJW-quasi-level convex in C if

and only if for every ϕ ∈ W 1,∞
loc (Rn;RN ), such that Dϕ is C-periodic, one has

f (ζ ) ≤ ess sup
x∈C

f (Dϕ (x)) ,

where ζ = 1
Ln(C)

∫
C Dϕ(x) dx.

Proof For the non-trivial implication, let ϕ ∈ W 1,∞
loc (Rn;RN ) be a function with C-

periodic gradient and let ζ = 1
Ln(C)

∫
C Dϕ(x) dx . By an argument similar to that in

Lemma 2.6 (see the forthcoming monograph [50] fro details), the function defined
in C by w(x) := ϕ(x) − ζ · x can be extended by C-periodicity to an element in
W 1,∞

per (C;RN ). Using the hypothesis of periodic-weak BJW-quasi-level convexity in
C , one gets

f (ζ ) ≤ ess sup
x∈C

f (ζ + Dw (x)) = ess sup
x∈C

f (Dϕ(x)) ,

as whished. ��
Next we are going to address the question of independence of domain in the notions

ofweakBJW-quasi-level convexity and strongBJW-quasi-level convexity.Weobserve
that the class of sets that we can achieve in an equivalent notion of weak BJW-quasi-
level convexity is more general than for strong BJW-quasi-level convexity. Actually,
while in the first setting (cf. Proposition 3.7) the argument relies on Vitali’s covering
argument, in the second one, the proof of Proposition 3.10 exploits the lower semicon-
tinuity of the associated supremal functional as a necesssary condition to the strong
BJW-quasi-level convexity of the supremand (cf. Proposition A.1) that involves a
strong version of Besicovitch derivation theorem constraining the class of admissible
sets.
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Proposition 3.7 The notion of weak BJW-quasi-level convexity remains unchangeable
if the set Q is replaced by any other bounded and open set in R

n with boundary of
null Ln-measure.

Proof We need to show that, if f : RN×n −→ R is a Borel measurable function such
that

f (ξ) ≤ ess sup
x∈O

f (ξ + Dϕ (x)) , ∀ ξ ∈ R
N×n, ∀ ϕ ∈ W 1,∞

0 (O;RN )

where O is a given open set in R
n , then, for any bounded open set � of Rn whose

boundary has null Ln-measure, one has

f (ξ) ≤ ess sup
x∈�

f (ξ + Dψ (x)) , ∀ ξ ∈ R
N×n, ∀ ψ ∈ W 1,∞

0 (�;RN ).

Let O and f be as above and let � be a bounded and open set with Ln(∂�) = 0.
Let ξ ∈ R

N×n and ψ ∈ W 1,∞
0 (�;RN ). Without loss of generality, assume � is

connected, otherwise consider one of its connected components.
Let x0 ∈ � and define�0 = {x−x0 : x ∈ �} := �−x0. Consider,G, the collection

of open sets a + ε �0, for a ∈ R
n and ε > 0. By the Vitali covering theorem (see

[44, Corollary 10.5]), up to a set of measure zero, the set O can be covered with a
countable number of sets G ∈ G with disjoint closures. More precisely, for some
countable collection G′ ⊆ G,

⋃
G∈G′

G ⊆ O, Ln

⎛
⎝O\

⋃
G∈G′

G

⎞
⎠ = 0,

and G ∩ F = ∅ for G, F ∈ G′ with G �= F .
Each set G ∈ G′ has the form a + ε �0. On each of these sets, define a function

ψa,ε as

ψa,ε(y) = εψ

(
y − a

ε
+ x0

)
.

Observe that

Dψa,ε(y) = Dψ

(
y − a

ε
+ x0

)
.

Patching these functions together, we construct a function ϕ defined on O as ϕ =
ψa,ε in each a + ε �0 ∈ G′, and ϕ = 0 in O\ ∪G∈G′ G. In this way, one gets
ϕ ∈ W 1,∞

0 (O;RN ), and thus, using the hypothesis, we get

f (ξ) ≤ ess sup
y∈O

f (ξ + Dϕ (y)) ≤ ess sup
x∈�

f (ξ + Dψ (x)) ,

as desired. ��
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Proposition 3.7 provides an answer to the question raised in the introduction regard-
ing the minimization of some supremal functionals on a set of functions with a
prescribed affine boundary condition. This is stated in the next corollary, and is an
immediate consequence of the previous result.

Corollary 3.8 Let � be a bounded open set with boundary of null Ln-measure and let
f : RN×n −→ R be a Borel measurable function. Consider the functional

I (u) = ess sup
x∈�

f (Du(x)), for u ∈ W 1,∞(�;RN ).

Let ξ ∈ R
N×n and denote by uξ an affine (vector-)function with gradient ξ .

If f is weak BJW-quasi-level convex, then uξ minimizes I on uξ + W 1,∞
0 (�;RN ).

Next we address the invariance of domain in the notion of strong BJW-quasi-level
convexity. We start with translation of sets.

Remark 3.9 If f : RN×n −→ R is strong BJW-quasi-level convex in a bounded open
set � ⊆ R

n

then, it is also strong BJW-quasi-level convex in any translation of �. That is, for
any x0 ∈ R

n

∀ ε > 0 ∀ ξ ∈ R
N×n ∀ K > 0 ∃ δ = δ(ε, K , ξ) > 0 :

ϕ ∈ W 1,∞(x0 + �;RN )

||Dϕ||L∞(x0+�;RN×n) ≤ K

maxx∈∂(x0+�) |ϕ(x)| ≤ δ

⎫⎪⎬
⎪⎭ �⇒ f (ξ) ≤ ess sup

x∈x0+�

f (ξ + Dϕ(x)) + ε, (3.2)

where x0 + � denotes the translation of the set � by the vector x0. Observe that
∂(x0 + �) = x0 + ∂� and that x0 + � is also bounded and open. Also, observe that
for every function ϕ ∈ W 1,∞(x0 + �;RN ), defining ψ(x) := ϕ(x0 + x) for x ∈ �,
one has ψ ∈ W 1,∞(�;RN ). If ‖Dϕ‖L∞(x0+�;RN×n) ≤ K , it results

‖Dψ‖L∞(�;RN×n)‖ = ‖Dϕ‖L∞(x0+�;RN×n) ≤ K ,

and, if maxx∈∂(x0+�) |ϕ(x)| ≤ δ, then

max
x∈∂�

|ψ(x)| = max
x∈∂(x0+�)

|ϕ(x)| ≤ δ.

Thus, by (3.1), we have for every ε > 0, ξ ∈ R
N×n , K > 0 that there exists a

δ ≡ δ(ε, K , ξ) > 0 such that

f (ξ) ≤ ess sup
x∈�

f (ξ + Dψ(x)) + ε = ess sup
x∈x0+�

f (ξ + Dϕ(x)) + ε,

thus proving (3.2).
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Our next goal is to address more general cases. On the one hand, it is hard to deal
with the strong BJW-quasi-level convexity notion directly. But, on the other hand, we
can relate it with lower semicontinuity of supremal functionals, independently of their
domain of definition, (see Propositions A.1 and A.2 in the Appendix). Therefore to
achieve our goal we pass through properties of supremal functionals.

Proposition 3.10 In the notion of strong BJW-quasi-level convexity, the set Q can be
replaced by any other bounded, open, and convex set in Rn.

Proof Assume that f is strong BJW-quasi-level convex in a bounded, convex, and
open set� ⊆ R

n . By Proposition A.1 one has that F(u, O) := ess supx∈� f (Du (x))
is sequentially weakly* lower semicontinuous inW 1,∞(O;RN ) for any bounded and
open set O ⊆ R

n . Then it suffices to invoke Proposition A.2 to conclude that f is also
strong BJW-quasi-level convex in O . ��

As a side result, we also get that the sequential weak* lower semicontinuity of F
is independent of the domain � in the class of bounded, open and convex sets.

Proposition 3.11

F(u,�) := ess sup
x∈�

f (Du (x)) ,

where � is a bounded open set in Rn and u ∈ W 1,∞(�;RN ).
If F(·,O1) is sequentially weakly* lower semicontinuous in W 1,∞(O1;RN ) with

O1 bounded, convex, and open, then F(·,O2) is sequentially weakly* lower semicon-
tinuous in W 1,∞(O2;RN ) for any bounded open set O2.

In particular, the sequential weak* lower semicontinuity of F(·,�) is independent
of the domain � in the class of bounded, convex, and open sets.

Proof The result follows directly from the Propositions A.1 and A.2. ��

3.1 Hierarchy of convexity notions

The convexity notions related to the lower semicontinuity of the supremal functionals
under consideration having been introduced, we investigate in the sequel how they are
interconnected with each other. We retake the work by [21] and we try to make an
exhaustive study of the notions of convexity introduced above in terms of necessary
and sufficient conditions to each of them. We review the properties stated therein, we
establish other relations and we provide counter-examples whenever possible. The
section finishes with a list of questions that remain open.

Theorem 3.12 Let N , n ∈ N and let f : RN×n −→ R.

(1) If f is level convex then f is poly-level convex and rank-one level convex. If f is
also Borel measurable then f is weak and periodic-weak BJW-quasi-level convex.
Moreover, if f is additionally lower semicontinuous, then f is strong BJW-quasi-
level convex.
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(2) Assume that f is poly-level convex and satisfies one of the following hypotheses:

(i) f = g ◦ T , where T is as in the definition of poly-level convexity and g :
R

τ(n,N ) −→ R is level convex and lower semicontinuous;
(ii) f is lower semicontinuous and lim|ξ |→+∞ f (ξ) = +∞,

then f is strong BJW-quasi-level convex. If f is poly-level convex and f = g ◦ T ,
with g level convex and Borel measurable, then f is weak and periodic-weak
BJW-quasi-level convex. If f is poly-level convex then f is rank-one level convex.

(3) If f is strong BJW-quasi-level convex then f is weak and periodic-weak BJW-
quasi-level convex.

(4) If f is periodic-weak BJW-quasi-level convex then f is weak BJW-quasi-level
convex.

(5) If f is weak BJW-quasi-level convex and upper semi-continuous then f is rank-one
level convex.

(6) If f is periodic-weak BJW-quasi-level convex in any cube C ⊆ R
n then f is rank-

one level convex. In particular, if f is strong BJW-quasi-level convex then f is
rank-one level convex.

(7) Let n = 1 or N = 1. Then f is level convex if and only if it is poly-level convex
and if and only if it is rank-one level convex. Furthermore

(i) if f is lower semicontinuous, then f is level convex if and only if it is strong
BJW-quasi-level convex,

(ii) if f is upper semicontinuous then f is level convex if and only if f is weak
BJW-quasi-level convex, and if and only if it is periodic-weak BJW-quasi-level
convex.

In particular, if f is continuous, all the notions are equivalent. If n = 1, the upper
semicontinuity can be replaced by Borel measurability, to get that f is level convex
if and only if f is weak BJW-quasi-level convex and if and only f is periodic-weak
BJW-quasi-level convex.

To ease the reading of the theorem, consider the following figure (Fig. 1).

Remark 3.13 (1) As observed earlier, strong BJW-quasi-level convex functions are
lower semicontinuous while poly-level convex functions may fail to enjoy this
property. For that reason we considered in (2) of the previous proposition lower
semicontinuity assumptions. As we will see in Proposition 3.17 the upper semi-
continuity hypothesis cannot be removed in (5).

(2) With respect to (6), observe that if we only assume f is periodic-weak BJW-quasi-
level convex (in the cube Q) thenwe can only get the rank-one level convexity of f
in some rank-onedirections, namely those that are given bymatrices with only one
non-null column. Note that this is what is established by Ansini and Prinari in [4,
Proposition 5.1 (i)] in the case of the curl operator. Actually, as alreadymentioned,
curl-weak quasiconvexity in [4] is what we called periodic-weak BJW-quasi-level
convexity. According to [4, Proposition 5.1 (i)], this ensures the level convexity
inequality in the directions of the kernel of the curl operator that are the directions
that we find in our argument (cf. Remark 3.2 (iii)).
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Fig. 1 The figure shall be considered to accompany Theorem 3.12. Namely, the labels to each implications
refer to the items in the theorem containing the referred implication and, when additional hypotheses are
required, the label is signed with ∗

(3) Contrary to the case n = 1, where weak BJW-quasi-level convexity and
periodic-weak BJW-quasi-level convexity imply level convexity, we shall see in
Proposition 3.17, that in the case N = 1, this is not true for weak BJW-quasi-level
convexity, even if the function f is lower semicontinuous, while it is currently
open in the periodic-weak BJW-quasi-level convex setting.

Proof Conditions (1), (3), (4) and (6) follow from standard arguments, as well as the
last two assertions of (2). For the first statement of (1), it suffices tomake use of the first
component of the vector function T . The second assertion of (1) follows by restricting
to rank-one connected matrices. The next two assertions of (1) follow from Jensen’s
inequality (cf. Theorem C.1) applied with ϕ = ξ + Dψ , for ψ ∈ W 1,∞

0 (Q;RN ) or

ψ ∈ W 1,∞
per (Q;RN ), � = Q, and μ the Lebesgue measure restricted to the cube Q if

we observe that, eitherW 1,∞
0 (Q;RN ) andW 1,∞

per (Q;RN ) have zero integral average.
The last assertion of (1) follows from the previous ones and (2) (i), once this is proved.

With respect to (3), given ϕ ∈ W 1,∞
per (Q;RN ), define ϕn(x) := 1

nϕ(nx). Then let
ε = 1

n , K = ||Dϕ||L∞(Q;RN×n), and ξ ∈ R
N×n . Consider the constant δ > 0 provided

by the assumption of strong BJW-quasi-level convexity. Note that, for sufficiently
large n, maxx∈∂Q |ϕn(x)| ≤ δ. Therefore, applying the assumption, one gets

f (ξ) ≤ ess sup
x∈Q

f (ξ + Dϕn(x)) + 1

n
= ess sup

x∈Q
f (ξ + Dϕ(x)) + 1

n
,

and the desired inequality is achieved by letting n → ∞. Regarding (4), it suffices to
observe that W 1,∞

0 (Q;RN ) ⊆ W 1,∞
per (Q;RN ). With respect to the second assertion

in (2), let ξ ∈ R
N×n and ϕ ∈ W 1,∞

per (Q;RN ). Since adjs , 2 ≤ s ≤ min{n, N }, are
quasiaffine functions (in the sense of [43, Definition 1.5]),
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T (ξ) =
∫
Q
T (ξ + Dϕ(x)) dx

and thus, by Theorem C.1,

f (ξ) = g(T (ξ)) = g

(∫
Q
T (ξ + Dϕ(x)) dx

)
≤ ess sup

x∈Q
g (T (ξ + Dϕ (x)))

= ess sup
x∈Q

f (ξ + Dϕ (x)) .

In this way we proved that f is periodic-weak BJW-quasi-level convex. Next, we
prove the last assertion of (2). Let ξ, η ∈ R

N×n such that rank(ξ − η) = 1. Then, for
some level convex function g : Rτ(n,N ) −→ R, f = g ◦ T and

f (λξ + (1 − λ)η) =g(T (λξ + (1 − λ)η)) = g(λT (ξ) + (1 − λ)T (η))

≤max{g(T (ξ)), g(T (η))} = max{ f (ξ), f (η)}

where we have used [43, Lemma 5.5] and the level convexity of g, achieving the rank-
one level convexity of f . Finally, we prove (6). It follows as in [43, proof of Theorem
7.7 (ii)]. Let ξ, η ∈ R

N×n be such that rank(ξ −η) = 1. Then ξ −η = a⊗ν for some
a ∈ R

N and ν ∈ R
n is a unit vector. Let R ∈ SO(n) be a special orthogonal matrix

such that Re1 = ν, where e1 is the first vector of the canonical basis ofRn , and denote
by C the cube RQ. Then, we can construct a function ϕ ∈ W 1,∞

per (C;RN ) such that
Dϕ ∈ {(1 − λ)(ξ − η),−λ(ξ − η)} a.e. in C . Therefore, applying the periodic-weak
assumption on f in every cube, one gets

f (λξ + (1 − λ)η) ≤ ess sup
x∈C

f (λξ + (1 − λ)η + Dϕ) = max{ f (ξ), f (η)},

proving the rank-one level convexity. The statement regarding strong BJW-quasi-level
convexity, follows from Proposition 3.10 combined with the previous.

Condition (5) was proved in [75, TheoremA.5]. Regarding (7), it suffices to observe
that level convexity is equivalent to rank-one level convexity and poly-level convexity.
All the previous points guarantee the remaining equivalences, up to the last assertion,
which follows by standard arguments.

It remains to prove the first part of (2).
This relies on results regarding lower semicontinuity of functionals presented

in the Appendix. By Proposition A.2 combined with Proposition 3.10, it suf-
fices to show that, under each of the two set of hypotheses, the functional
F(u, O) := ess supx∈� f (Du (x)) is sequentially weakly* lower semicontinuous
in W 1,∞(O;RN ).

First we present the proof of the sequential weak* lower semicontinuity of the
functional F under assumption (i). Let (uk)k∈N ⊆ W 1,∞(O,RN ) be an arbitrary
sequence weakly* converging to some function u inW 1,∞(O,RN ). We want to show
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that

F(u, O) ≤ lim inf
k→∞ F(uk, O).

Since, by [43, Theorem8.20, Remark 8.21 (iv)], T (Duk)weakly* converges to T (Du)

in L∞(O;Rτ(n,N )), it suffices to show that

G(V , O) := ess sup
x∈O

g (V (x)) , V ∈ L∞(O;Rτ(n,N ))

is sequential weak* lower semicontinuous in L∞(O;Rτ(n,N )). Let then (Vk)k∈N ⊆
L∞(O;Rτ(n,N )) be an arbitrary sequence weakly* converging in L∞(O;Rτ(n,N )) to
some function V .

Let r := lim infk→∞ G(Vk, O) = limi→∞ G(Vki , O) for some subsequence
(Vki )i∈N of (Vk)k∈N. Then, by definition of limit, for arbitrary ε > 0, there is i0 ∈ N

such that, for i ≥ i0,

g(Vki (x)) ≤ ess sup
x∈O

g
(
Vki (x)

) = G(Vki , O) ≤ r + ε for a.e. x ∈ O.

That is, denoting Er+ε := {S ∈ R
τ(n,N ) : g(S) ≤ r + ε} one has, for i ≥ i0,

Vki (x) ∈ Er+ε for a.e. x ∈ O and thus d(Vki (x), Er+ε) = 0 for a.e. x ∈ O, where
d(·, Er+ε) denotes the distance function to the set Er+ε. Since g is level convex, the
set Er+ε is convex and by [49, Theorem 5.14] the functional

D(V , O) :=
∫
O
d (V (x); Er+ε) dx

is sequentially weakly* lower semicontinuous in L∞(O;Rτ(n,N )). Therefore,

0 ≤
∫
O
d (V (x); Er+ε) dx ≤ lim inf

i→∞

∫
O
d
(
Vki (x); Er+ε

)
dx = 0

and d (V (x); Er+ε) for a.e. x ∈ O . Using the hypothesis that g is lower semicon-
tinuous we have that Er+ε is closed and thus V (x) ∈ Er+ε for a.e. x ∈ O that
gives

ess sup
x∈O

g (V (x)) ≤ r + ε

ensuring the desired condition by letting ε → 0 and recalling the definition of r .
Finally, we prove the sequential weak* lower semicontinuity of the functional F

under condition (ii). As before, let (uk)k∈N ⊆ W 1,∞(O,RN ) be an arbitrary sequence
weakly* converging to some function u in W 1,∞(O,RN ). Let (uki )i∈N be a sub-
sequence of (uk)k∈N such that lim infk→∞ F(uk, O) = limi→∞ F(uki , O) and let
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r := limi→∞ F(uki , O). Defining Er+ε := {ξ ∈ R
N×n : f (ξ) ≤ r + ε}, one has

that, given ε > 0, there is i0 ∈ N such that, for i ≥ i0,

T (Duki (x)) ∈ T (Er+ε) for a.e. x ∈ O.

In particular, d(T (Duki (x)), T (Er+ε)) = 0 for a.e. x ∈ O and also

d(T (Duki (x)), co(T (Er+ε))) = 0 for a.e. x ∈ O.

Now we invoke, as above, the sequential weak* lower semicontinuity in
L∞(O;Rτ(n,N )) of the functional

B(V , O) :=
∫
O
d (V (x); co(T (Er+ε))) dx .

Since, T (Duki ) weakly* converges to T (Du) in L∞(O;Rτ(n,N )),

0 ≤
∫
O
d (T (Du(x)); co(T (Er+ε))) dx

≤ lim inf
i→∞

∫
O
d
(
T (Duki (x)); co(T (Er+ε))

)
dx = 0

giving

d (T (Du(x)); co(T (Er+ε))) = 0 for a.e. x ∈ O. (3.3)

Since f is lower semicontinuous, the set Er+ε is closed. Moreover, the growth
assumption on f , ensures that Er+ε is bounded and thus compact. Therefore, T (Er+ε)

is also compact and we can apply [43, Theorem 2.14] to ensure that co(T (Er+ε)) is
closed. This, together with (3.3) entails that

T (Du(x)) ∈ co(T (Er+ε)) for a.e. x ∈ O.

It is now enough to show that

{ξ ∈ R
N×n : T (ξ) ∈ co(T (Er+ε))} = Er+ε (3.4)

to conclude that Du(x) ∈ Er+ε for a.e. x ∈ O that, in turn, ensures f (Du(x)) ≤
r for a.e. x ∈ O as wished.

Regarding (3.4), it follows from [43, Theorem 7.4 (iii)] and the fact that Er+ε is
polyconvex in the sense of [43, Definition 7.2 (ii)], by [43, Theorem 7.4 (ii)] and the
poly-level convexity of f . ��

We give, next, several examples of functions enjoying or not the convexity notions
discussed above. These examples, besides the interest in itself, will be useful to discuss
in Proposition 3.17 below the validity of the counter-implications of the previous
proposition.
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Example 3.14 Let g : R −→ R be the characteristic function g = χ]1,∞) and, for
n > 1, define f : R

n×n −→ R as f (ξ) = g(det(ξ)). Trivially, since g is level
convex, f is poly-level convex. However, one can easily see that f is not level convex.
Moreover, f is lower semicontinuous because g is lower semicontinuous and the
determinant is a continuous function.

Example 3.15 This example was given in [75, Example A.3]. Exploiting it further,
it also serves to discuss periodic-weak BJW-quasi-level convexity. Let N ≥ 1 and
n > 1. Let S := {ξ, η} ⊂ R

N×n such that rank(ξ −η) = 1 and let f := 1−χS , where
χS is the characteristic function of S. As proved in [75, Example A.3], the function f
is not rank-one level convex, but it is weak BJW-quasi-level convex. In particular, as
noticed in [73, Example 2.7], f is not strong BJW-quasi-level convex. Note also, that
f is lower semicontinuous (although it is not continuous).
Moreover, if we choose ξ and η such that ξ − η = a ⊗ e1 for some a ∈ R

N (e1
being the first vector of the canonical basis inRn), arguing as in [45, proof of Theorem
3.2 (ii)] (see also [43, page 319]) we conclude that f is not periodic-weak BJW-quasi-
level convex. (Note that here we need to construct a function ϕ ∈ W 1,∞

per (Q;RN ) and
that is the reason to choose ξ and η so that ξ − η is compatible with the cube Q.) In
an analogous way, considering appropriate matrices ξ and η we can ensure that f is
not periodic-weak BJW-quasi-level convex in a given cube C .

Example 3.16 According to a result proved by Kirchheim [64] (see also [43, Theorem
7.12]), if N ≥ 2 and n ≥ 2, there is a finite number of N × n matrices, ξ1, . . . , ξm ∈
R

N×n , such that rank(ξi −ξ j ) > 1, ∀ i �= j and there exist ξ0 /∈ {ξ1, . . . , ξm} and u ∈
uξ0 + W 1,∞

0 (Q;RN ) (where uξ0 denotes an affine function verifying Duξ0(x) ≡ ξ0)
with Du(x) ∈ {ξ1, . . . , ξm}, a.e. in Q. Consider then the function f = 1−χS where
S = {ξ1 − ξ0, . . . , ξm − ξ0} and χS is the characteristic function of S. Of course f is
lower semi-continuous and, by the properties stated above it is rank-one level convex,
but not strong BJW-quasi-level convex. To show this last statement, it’s enough to
consider ϕ := u − uξ0 ∈ W 1,∞

0 (Q;RN ) to get a contradiction to strong BJW-quasi-
level convexity. Indeed, take ε ∈ (0, 1), ξ = 0, and K = max{|ξ0−ξ1|, . . . , |ξ0−ξm |}
and observe that f (0) = 1 > ε = ess supx∈Q f (0 + Dϕ(x)) + ε.

Proposition 3.17 Let N , n ∈ N and denote by f a real valued function defined in
R

N×n.

(i) If N , n > 1, there exist (lower semicontinuous) non-level convex functions f
that are poly-level convex, strong BJW-quasi-level convex, periodic-weak BJW-
quasi-level convex, weak BJW- quasi-level convex, and rank-one level convex.

(ii) For N ≥ 1 and n > 1, there exist (lower semicontinuous) functions f that
are weak BJW-quasi-level convex, but neither poly-level convex, nor strong
BJW-quasi-level convex, nor rank-one level convex, nor periodic-weak BJW-
quasi-level convex in a fixed cube C. In particular, taking C = Q, there exist
non periodic-weak BJW-quasi-level convex functions satisfying all the previous
properties.

(iii) If N , n > 1, there exist (lower semicontinuous) rank-one level convex functions
f that are not strong BJW-quasi-level convex.
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Proof Statement (i) is proved by Example 3.14 having in mind the implications (2) (i),
(3) and (5), stated in Theorem 3.12. Observe that this example can be easily adapted to
the case N �= n. Statement (ii) is proved byExample 3.15 having inmindTheorem3.12
(2). Finally, statement (iii) is proved by Example 3.16. ��
Example 3.18 If f : RN×n → R is a lower semicontinuous poly-level convex func-
tion, satisfying lim|ξ |→+∞ f (ξ) = +∞, then the bounded function arctan( f ) :
R

N×n → (−π/2, π/2) is poly-level convex and strong BJW-quasi-level convex.

The previous analysis leaves open several questions that we list below.

(1) Example 3.18 shows that the assumptions of Theorem3.12 (2)(ii) are not sharp.We
can wonder if the coercivity condition lim|ξ |→+∞ f (ξ) = +∞ can be removed in
general. Recall also that if we assume f is level convex and lower semicontinuous
( which in particular is poly-level convex) then f is strong BJW-quasi-level convex
with no need of any growth assumption.

(2) Canwe obtain an example showing that strongBJW-quasi-level convexity does not
imply poly-level convexity? Recall that in the integral setting there exist examples
of quasiconvex functions which are not polyconvex ([43, Theorem 5.51].

(3) Does periodic-weak BJW-quasi-level convexity imply poly-level convexity?
(4) Does periodic-weak BJW-quasi-level convexity in any cubeC together with lower

semicontinuity imply strongBJW-quasi-level convexity? (This being the case, then
the two conditions are equivalent.)

(5) Does weak BJW-quasi-level convexity together with the continuity of the function
imply strong BJW-quasi-level convexity?

(6) The results of next section suggest that necessary and sufficient conditions may
be obtained under a coercivity assumption. In particular does weak BJW-quasi-
level convexity imply rank-one or strong BJW-quasi-level convexity in the class
of coercive functions?

Questions (3) and (4) are open even in the scalar case N = 1.

4 Convexity notions arising in connection with Lp- approximation

In this section, we address the comparison between definitions of the previous sections
and those arising in the context of so-called power-law (i.e. L p-) approximation, in
particular the notions of curl−∞ quasiconvexity and curl-Young quasiconvexity (see
Definition 4.2). The importance of these notions goes beyond the lower semicontinuity
of supremal functionals andwe review, in the next introductory paragraphs, the context
of their introduction in the literature as well as the motivation to our analysis. Having
in mind the scope of power-law approximation in the applications (see the list of
references in Sect. 1), we start our discussion focusing on its interplay with the broader
notion of A − ∞ quasiconvexity, A denoting a generic differential constraint (e.g.
A = div, in the case of plasticity, or A = (curl, div) in the case of micromagnetics,
or A = curl, as in our subsequent analysis).

At this point it is worth to recall that the theory of A-quasiconvexity has been
introduced by Dacorogna, (see e.g. [42, pp. 100–102]), the theory was later formalized
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in [51], in the case of constant rank operators, (towhichwe refer for a detailed treatment
of the subject). It has been then extended to the context of L∞ problems, first in the case
whenA = div treated byBocea andNesi [29] and later, withmuchwider generality, by
Ansini and Prinari in [4, 5], giving particular emphasis to power-law approximation.

Indeed, departing from thematerial science’s results alreadymentioned in the intro-
duction, where it was satisfactory to provide sufficient conditions on a supremand
f : � × R

m → [0,+∞), in order to guarantee the variational convergence, as
p → +∞, of functionals of the type

v �→
(∫

�

f p(x, v(x)) dx

) 1
p

(4.1)

towards

v �→ ess sup
x∈�

f (x, v(x)), (4.2)

with v possibly satisfyingAv = 0 (cf. [25, 29, 39, 48, 53] among awider literature), the
asymptotic behaviour of functionals of the type (4.1) has been object of investigation,
leading to limiting L∞ energies different from (4.2), see for instance [4, 5, 11, 33, 74].

In particular, in [4, Theorem 4.2], the �-limit with respect to the L∞-weak* con-
vergence of (4.1), has been computed for Carathéodory integrands, under a generic
differential constraint A on the fields v and a linear coercivity condition on f on the
second variable, i.e. when there exists α > 0 such that

f (x, ξ) ≥ α|ξ |, (4.3)

for every ξ ∈ R
m and a.e. x ∈ �. Having inmind the case ofA = curl andm = N×n,

the obtained limit energy has the form

v �→ ess sup
x∈�

Q∞ f (x, v(x)),

where the density Q∞ f is the so-called curl − ∞ quasiconvex envelope of f (x, ·),
namely the greatest curl − ∞ quasiconvex minorant of f (x, ·) (see [4, Section 3.2]
and [5] for definitions and proofs of this result in a more general framework and
(4.11) below for an equivalent definition). More precisely, in [4, Theorem 4.4] it has
been proven that the curl − ∞ quasiconvexity of f is necessary and sufficient for the
L p- approximation of (4.2) in terms of (4.1) in the continuous, homogeneous (and
curl-free, among more general operators A) setting, assuming (4.3).

With curl − ∞ quasiconvexity playing a crucial role for the attainment of a varia-
tional limit with supremal form, the question of comparing this notion with the other
(necessary and) sufficient conditions for this variational convergence, arises natu-
rally and consequently the question of necessary and sufficient conditions for lower
semicontinuity of supremal functionals given in Sect. 3. It is worth, indeed, to recall
that, from the theoretical stand-point, the variational power-law approximation (for
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instance obtained via �-convergence), guarantees that the limit functional is weakly*
lower semicontinuous (see [46]). This entails that the ‘convexity’ hypotheses which
provide power-law approximation are sufficient conditions for the lower semicontinu-
ity of the limiting supremal functional, however leaving open the necessity condition.
With the aim of adopting power-law approximation to get lower semicontinuity of
their limiting supremal functionals, the definition of generalized Jensen’s inequality
has been introduced in [39], later revisited by [5] (for general operators A), leading
to the notion of curl-Young quasiconvexity, and curl(p>1)-Young quasiconvexity (see
Definition 4.2). Hence the question of comparing and establishing a hierarchy among
the notions of curl(p>1)-Young, curl − ∞ and curl-Young quasiconvexity (and those
introduced in Sect. 3) emerges as well. At this point it should be emphasized that the
question was already completely solved in the scalar case n = 1 in [22], using three
different approaches. Performing an L p-approximation, by means of the duality the-
ory in Convex Analysis, and making use of Young measures, level convex envelopes
appear as densities of relaxed functionals. It is not yet known how to obtain the relax-
ation in the vectorial framework, and, at the same time, how to deal with the three
approaches mentioned above.

In order to introduce some of the mentioned properties we will need the concept
of (gradient) Young measures. We start recalling the fundamental theorem of Young
measure theory, which we present as in [76, Theorem 4.1].

Denote by Pr(Rm) the set of Borel probability measures defined in R
m .

Theorem 4.1 Let� ⊆ R
n beanopen, bounded, connected setwithLipschitz boundary.

Let (Vj ) j∈N be a sequence bounded in L p(�;Rm), where p ∈ [1,+∞]. Then, there
exists a subsequence (not explicitly labeled) and a family of probability measures,
{νx }x∈� ⊂ Pr(Rm), called the (L p)-Young measure generated by the (sub)sequence
(Vj ) j∈N, such that the following assertions are true:

(i) The family {νx }x∈� is weakly* measurable, that is, for all Carathéodory inte-
grands f : � × R

m → R, the compound function

x �→ 〈 f (x, ·), νx 〉 =
∫
Rm

f (x, ξ) dνx (ξ), x ∈ �

is Lebesgue measurable,
(ii) If p ∈ [1,+∞), it holds that

∫
�

∫
Rm |ξ |p dνx (ξ) dx < +∞, or, if p = ∞, there

exists a compact set K ⊂ R
m such that supp νx ⊂ K for a.e. x ∈ �.

(iii) For all Carathéodory integrands f : � × R
m → R with the property that the

family ( f (x, Vj )) j∈N is uniformly bounded in L1 and equiintegrable, it holds
that f (x, Vj )⇀

(
x �→ ∫

Rm f (x, ξ) dνx (ξ)
)
in L1.

In the case p < ∞, (i i i) follows by (i) and (i i), (cf. [76, Problem 4.3]) and thus we
will refer to (L p)-Youngmeasure to any family of parametrizedmeasures ν = {νx }x∈�

satisfying (i) and (i i), either if p ∈ [1,+∞) or p = +∞.

We will write Vj
Y→ ν to refer to the sequence (Vj ) j∈N which generates the Young

measure ν. The Young measure ν is said to be homogeneous if there is a measure
ν0 ∈ Pr(Rm) such that νx = ν0 for Ln- a.e. x ∈ �.
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In the sequel, we will be interested in Young measures that are generated by
sequences of gradients. Recall that, given an (L p)-Youngmeasure ν ≡ {νx }x∈� we say
that ν is a W 1,p-gradient Young measure, p ∈ [1,+∞], if there exists u j ∈ W 1,p(�)

such that Du j generates ν ≡ {νx }x∈�. If p = +∞ we can simply say that {νx }x∈�

is a gradient Young measure (we refer to Kinderlehrer and Pedregal [62, 63], and to
Rindler [76], where these measures are called W 1,∞-gradient Young measures). A
homogeneous W 1,p-gradient Young measure (homogeneous gradient Young measure
respectively) is a W 1,p-gradient Young measure (a gradient Young measure respec-
tively) which is homogeneous in the above mentioned sense.

Having in mind the more general setting of A- free fields in L p, and in order
to understand the results available in literature dealing with L p-approximation, the
Fundamental Theorem can be considered also to justify the introduction of A − ∞
Young measures, as in [51, Section 2] and [5]. Indeed, without loss of generality, these
are measures generated by sequences in L∞(�;Rd×N )∩KerA (where KerA denotes
the kernel of the operator A) uniformly bounded in the L∞ norm (or equivalently,
possibly passing to a subsequence, weakly* converging in L∞ (see [51, Section 2])).
In the case A = curl, it results that curl − ∞ Young measures are gradient Young
measures. In the following, we will adopt the latter terminology.

Definition 4.2 Let f : RN×n −→ R be a Borel measurable function.

(1) Assume that f is lower semicontinuous and bounded from below. We say that f
is curl(p>1)-Young quasiconvex, if

ess sup
x∈Q

f

(∫
RN×n

ξ dνx (ξ)

)
≤ ess sup

x∈Q

(
νx − ess sup

ξ∈RN×n
f (ξ)

)
, (4.4)

whenever ν ≡ {νx }x∈Q is a W 1,p-gradient Young measure for every p ∈ (1,∞).
(2) Assume that f is lower semicontinuous and bounded from below. We say that f

is curl-Young quasiconvex, if

ess sup
x∈Q

f

(∫
RN×n

ξ dνx (ξ)

)
≤ ess sup

x∈Q

(
νx − ess sup

ξ∈RN×n
f (ξ)

)
, (4.5)

whenever ν ≡ {νx }x∈Q is a gradient Young measure.
(3) Assume that f is non-negative. We say that f is curl − ∞ quasiconvex if for every

ξ ∈ R
N×n

f (ξ) = lim
p→+∞ inf

⎧⎨
⎩
(∫

Q
f p(ξ + Du(x)) dx

) 1
p : u ∈ W 1,∞

per (Q;RN )

⎫⎬
⎭ .

Remark 4.3 (i) We observe that the double essential suprema in (4.4) and (4.5) of the
previous definition are meaningful because the function f is assumed to be lower
semicontinuous and bounded from below. In principle, one can give definitions
of curl(p>1)-Young and curl-Young quasiconvexity without these assumptions,
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adding the condition that the right-hand sides of (4.4) and (4.5) make sense. This
may be the approach done in [5, 39]. Next, we describe why the assumptions of
lower semicontinuity and boundedness from below are sufficient for this goal.
We first observe that there is no loss of generality assuming the bound from below
is zero. In that case,

νy − ess sup
ξ∈RN×n

f (ξ) = lim
k→∞ || f ||Lk (RN×n;νy).

This identity ensures theLebesguemeasurability of y �→ νy − ess sup
ξ∈RN×n f (ξ)

in view of the Lebesgue measurability of

y �→
∫
RN×n

| f (ξ)|k dνy

which follows from Theorem 4.1 (i), extended to normal integrands by using [49,
Corollary 6.30].

(ii) The notion of curl(p>1)-Young quasiconvexity already appeared in [39, Eq. (3.1)
in Theorem 3.1, under the name of ’generalized Jensen’s inequality’]. There, the
function f is considered with also x and u dependence.

(iii) Note that, if 1 ≤ p < q ≤ ∞, then everyW 1,q -gradientYoungmeasure (gradient
Young measure if q = ∞) is also aW 1,p-gradient Young measure. Therefore, to
verify curl(p>1)−Young quasiconvexity it suffices to check (4.4) for parametrized
measures that are W 1,p-gradient Young measures for every p ∈ (p0,∞) with
p0 > 1.

(iv) The set Q in the definition of curl-Young quasiconvexity can be replaced by
any other bounded open set as observed in [5, Remark 4.3] in the context of
A−quasiconvexity under a coercivity assumption.

(v) the notion of curl − ∞ quasiconvexity can be found in [4, Definition 3.3], with
A = curl.

Next we provide some characterizations of curl(p>1)-Young quasiconvexity and of
curl-Young quasiconvexity.

Proposition 4.4 Let f : R
N×n −→ R be a lower semicontinuous function and

bounded from below. Then the following conditions are equivalent

(i) f is curl(p>1)-Young quasiconvex;
(ii) f satisfies

f

(∫
RN×n

ξ dνx (ξ)

)
≤ νx − ess sup

ξ∈RN×n
f (ξ) for a.e. x ∈ Q

whenever ν ≡ {νx }x∈Q is a W 1,p-gradient Young measure for every p ∈ (1,∞);
(iii) f satisfies

f

(∫
RN×n

ξ dν(ξ)

)
≤ ν − ess sup

ξ∈RN×n
f (ξ) (4.6)
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whenever ν is a homogeneous W 1,p-gradient Young measure for every p ∈
(1,∞).

Moreover, in the definition of curl(p>1)-Young quasiconvexity the domain Q can be
replaced by any open, bounded, connected set � ⊆ R

n, with Lipschitz boundary.
An analogous statement holds by replacing curl(p>1)-Young quasiconvexity by curl-

Young quasiconvexity and W 1,p-gradient Young measures for every p ∈ (1,∞) by
gradient Young measures.

Remark 4.5 We observe that the result just stated is still true without the lower semi-
continuity and boundedness from below assumptions, if conditions (4.4) and (4.5) are
meaningful in the sense of Remark 4.3 (i).

Proof Clearly (ii) entails (i). On the other hand, (i) is equivalent to (iii). Indeed, (i)
implies (iii) because homogeneousW 1,p-gradientYoungmeasures are particular cases
of W 1,p-gradient Young measures. In turn, (iii) implies (i) taking into account that
given an arbitrary W 1,p-gradient Young measure {νx }x∈Q , each νx (for almost every
x fixed) is a homogeneous W 1,p-gradient Young measure (cf. [76, Proposition 5.14
and Remark 5.15]). Similarly, (i) implies (ii).

In particular, by (iii), we conclude that (i) does not depend on the domain Q.
Actually, reasoning as above we can show that (iii) is equivalent to

f

(∫
RN×n

ξ dνx (ξ)

)
≤ ess sup

y∈�

(
νy − ess sup

ξ∈RN×n

f (ξ)

)
, a.e. x ∈ �

whenever ν ≡ {νx }x∈� is aW 1,p-gradient Youngmeasure for every p ∈ (1,∞)where
� ⊆ R

n is any open, bounded, connected set with Lipschitz boundary.
The proof of the case of curl-Young quasiconvex functions is analogous to the

previous one. ��
Nextwe provide a characterization of curl−∞ quasiconvexity through a power-law

approximation of quasiconvex hulls.

Proposition 4.6 Let f : RN×n −→ [0,∞) be a Borel measurable function. Then f
is curl − ∞ quasiconvex if and only if

f (ξ) = lim
p→+∞(Q( f p))1/p(ξ), (4.7)

whereQ( f p) stands for the quasiconvex envelope of f p. In particular, if f is curl−∞
quasiconvex then f is lower semicontinuous and locally bounded.

Remark 4.7 Note that, combining (4.7) with the several characterizations of a qua-
siconvex envelope provided in Lemmas 2.6 and 2.9 (this second lemma applies to
functions with linear growth), we can explicit curl − ∞ quasiconvex functions in
terms of a limit of several type of minimization problems.

123



Revisited convexity notions for L∞ variational problems

Proof The characterization of curl − ∞ quasiconvexity follows from Lemma 2.6
applied to f p.

Now assume that f is a curl−∞ quasiconvex function. By Remark 2.2 (ii),Q( f p)
is lower semicontinuous. Therefore, also (Q( f p))1/p is lower semicontinuous and
thus, f being the limit of a monotone increasing family of lower semicontinuous
functions, it is also lower semicontinuous. Finally, to show that f is locally bounded,
we invoke [3, Exercise 5.11]. Indeed, sinceQ( f p) is quasiconvex, it is also separately
convex and we get that, for h ∈ N,

sup
ξ∈[−h,h]N×n

Q( f p)(ξ) ≤ (2N×n+1 − 1)max
{
Q( f p)(ζ ) : ζ ∈ [−h − 1, h + 1]N×n ∩ Z

N×n
}

≤ (2N×n+1 − 1)max
{
f p(ζ ) : ζ ∈ [−h − 1, h + 1]N×n ∩ Z

N×n
}

.

implying

sup
ξ∈[−h,h]N×n

(Q( f p))1/p(ξ) ≤ (2N×n+1 − 1)1/p max

{
f (ζ ) : ζ ∈ [−h − 1, h + 1]N×n ∩ Z

N×n
}

that provides a local bound for f if we have in mind (4.7). ��
As a complement to Theorem 3.12, we state a result, establishing some relations

between the convexity notions introduced above and those of the previous section. We
will consider the following growth and coercivity conditions

(G) ∃ C > 0 : f (ξ) ≤ C(1 + |ξ |) for every ξ ∈ R
N×n

(C) ∃ α, β > 0 : f (ξ) ≥ α|ξ | − β for every ξ ∈ R
N×n .

Theorem 4.8 Let f : R
N×n → R be a Borel measurable function, bounded from

below.

(1) If f is level convex then it satisfies inequality (4.6) for everyW 1,p-gradient Young
measure, for p ∈ (1,+∞]. In particular, if it is also lower semicontinuous then
f is curl(p>1)−Young quasiconvex and curl-Young quasiconvex.

(2) If f : RN×n → [0,+∞) is level convex, lower semicontinuous, and satisfies
the coercivity condition (C), then f is curl − ∞ quasiconvex.

(3) If f : R
N×n → [0,+∞) and poly-level convex with f = g ◦ T , for g :

R
τ(n,N ) −→ R level convex and lower semicontinuous and satisfying (C) in

R
τ(n,N ) then f is curl − ∞ quasiconvex.

(4) If f is poly-level convex with f = g ◦ T , for g : Rτ(n,N ) −→ R level convex
then f satisfies (4.6) for every W 1,p-gradient Young measure for p ∈ (1,+∞].
In particular, if f is also lower semicontinuous then f is curl(p>1)−Young
quasiconvex and curl-Young quasiconvex.

(5) If f is curl(p>1)−Young quasiconvex, then f is curl−Young quasiconvex.
(6) Let f : RN×n → [0,+∞) be a curl(p>1)−Young quasiconvex function satisfy-

ing the coercivity condition (C). If, moreover, either f is upper semi-continuous
or f satisfies the growth condition (G), then f is curl − ∞ quasiconvex.
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Fig. 2 The figure shall be considered to accompany Theorem 4.8. Namely, the labels to each implications
refer to the items in the theorem containing the referred implication and, when additional hypotheses are
required, the label is signed with ∗. The subscript + means that the corresponding implication only applies
to nonnegative functions

(7) If f : R
N×n → [0,+∞) is curl − ∞ quasiconvex then f is curl−Young

quasiconvex. Moreover if it also satisfies the growth condition (G), then f is
curl(p>1)−Young quasiconvex.

(8) If f : R
N×n → [0,+∞) is curl−Young quasiconvex and locally bounded

and satisfies the coercivity condition (C), then f is also curl − ∞ quasiconvex.
Moreover, if f satisfies the growth condition (G), then f is curl(p>1)- Young
quasiconvex.

(9) If f is either curl-Young quasiconvex or curl(p>1)−Young quasiconvex then f
is strong BJW-quasi-level convex. Moreover, if we only assume (4.6) for every
W 1,p-gradient Young measure with p > 1 or for any gradient Young measure,
then f is weak BJW-quasi-level convex. Also, if f satisfies (4.6) for every gradi-
ent Young measure, or for every W 1,p-gradient Young measure for every p > 1
then f is rank-one level convex.

(10) If f : RN×n → [0,+∞) is curl−∞ quasiconvex, then f is strong BJW-quasi-
level convex. In particular, it is periodic-weak BJW-quasi-level convex in any
cube C ⊂ R

n, weak BJW-quasi-level convex, and rank-one level convex.

Fig. 2, above depicts the implications stated in Theorem 4.8 concerning the notions
introduced in this section. Note that the theorem contains broader results.

Remark 4.9 (i) In view of (5), (1) improves [5, Proposition 3.3 (2)] in the case of
A = curl. Observe also that the proof of (1) ensures that level convex func-
tions satisfy condition (4.6) without any assumption of lower semicontinuity
nor on the sign of the function. These assumptions are only needed to relate
with curl(p>1)−Young quasiconvexity.
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(ii) As a by-product of the proof of (2), we have obtained a generalization of [74,
Proposition 5.1] asserting

lim
p→+∞

(
( f p)∗∗)1/p = f

under the weaker coercivity assumption (C). (The notation ( f p)∗∗ stands, as
usual, for the bidual of f p, cf. [43, Definition 2.41 (ii)].

(ii) We observe that (3) has been already proven under continuity assumptions of g
in [4, Proposition 5.7].

(iv) Regarding (4), the fact that a poly-level convex function is also curl-Young
quasiconvex has been already proven in [5, Proposition 6.3] in the case of a
nonnegative and a lower senjcontinuous g, since their argument exploits our
first implication of (7).

(v) We observe that the first implication of (7) in the above result has been proved
in [5, Proposition 3.4], in the more general setting of A − ∞-Young measures,
under the continuity assumption on f . As seen in (7), this extra requirement can
be removed in the case A = curl. Note, however that, in this case, as observed
in Remark 4.6, f is lower semicontinuous.

(vi) The assertion of (9) related to rank-one level convexity has been proved in [5,
Proposition 6.4 (3)] under the extra lower semicontinuity assumption.

(vii) If n = 1 or N = 1, f is level convex if and only if it satisfies (4.6) for every
W 1,p-gradient Young measure, for any p ∈ (1,+∞]. In particular, if f is
also lower semicontinuous it is level convex (equivalently strong BJW-quasi-
level convex) if and only if it is curl(p>1)-Young quasiconvex and if and only
if it is curl-Young quasiconvex. The above considerations follow by (1) and
(9), recalling that in the scalar case, rank-one level convexity reduces to level
convexity. Note, however, that, with this restriction, in the proof of (9) we can
invoke the zig-zag lemma, cf. [46, Lemma 20.2], in place of the construction of
approximate solutions.We recall that if N = 1 there exist lower semicontinuous
functions which are weak BJW-quasi-level convex but neither curl(p>1)-Young
quasiconvex nor curl-Young quasiconvex.

(viii) If n = 1 or N = 1 and f : RN×n → [0,+∞) satisfies (C), then it is level
convex, lower semicontinuous (equivalently strong BJW-quasi-level convex) if
and only if it is curl − ∞ quasiconvex.

Proof (1) The argument to prove this implication follows from the fact that level con-
vexity and Borel measurability entail the supremal Jensen’s inequality. Namely

f

(∫
�

ϕ dμ

)
≤ μ − ess sup

x∈�

f (ϕ(x))

for every probability measure μ on R
d supported on the open set � ⊆ R

d , and
every ϕ ∈ L1

μ(�;Rn) (see Theorem C.1 for a proof). We apply the previous
inequality with ϕ = id, � = R

N×n , and μ any probability measure in RN×n . In
particular, we observe that f satisfies (4.6), whenever ν is a homogeneousW 1,p-
gradient Youngmeasure for every p ∈ (1,∞]which, by Proposition 4.4, implies
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that f is curlp−Young quasiconvex and curl-Young quasiconvex provided f is
also lower semicontinuous.

(2) This result has been obtained under the requirement that f (ξ) ≥ α|ξ |, for every
ξ ∈ R

N×n in [5, Proposition 2.9]. Here we observe that this condition can be
relaxed. We start observing that

lim sup
p→+∞

(Q( f p)(ξ))1/p ≤ f (ξ).

Having in mind that ( f p)∗∗ ≤ Q( f p), we will prove the opposite inequality,
showing that

f (ξ) ≤ lim sup
p→+∞

(( f p)∗∗(ξ))1/p.

To this end we will invoke [72, Corollary 3.11] which relies on the relaxation
result [72, Theorem 3.9] where the coercivity is only needed to ensure bound-
edness of gradients. Therefore [72, Corollary 3.11] can be generalized to the
coercivity condition f (ξ) ≥ α|ξ | − β. However, [72, Corollary 3.11] requires
continuity and linear growth from above. To deal with these assumptions, we
replace f by its Pasch-Hausdorff transform, as in [5, Proposition 2.9]. This is
defined as fλ(ξ) := inf{max{ f (η), λ|ξ − η|} : η ∈ R

N×n} for every λ > 0 and
it turns out that fλ is level convex, continuous and f = supλ>0 fλ. Moreover
fλ(ξ) ≤ max{ f (0), λ|ξ |} ≤ f (0) + λ|ξ |, so it has linear growth from above.
For what concerns the coercivity condition, it results that

fλ(ξ) ≥ inf
{
max{α|η| − β, λ|ξ − η| − β} : η ∈ R

N×n
}

= inf
{
max{α|η|, λ|η − ξ |} : η ∈ R

N×n
}

− β

≥ inf
{
max{α|η|, α|η − ξ |} : η ∈ R

N×n
}

− β; for λ ≥ α.

Then, in view of the level convexity of | · |,

fλ(ξ) ≥ 1

2
α|ξ | − β, for λ ≥ α.

Applying [72, Corollary 3.11] to fλ, we have the same chain of inequalities as
in [5, Proposition 2.9], i.e.

f (ξ) = sup
λ>0

fλ(ξ) = sup
λ>0

(sup
p>1

((( fλ)
p)∗∗(ξ))1/p

= sup
p>1

sup
λ>0

((( fλ)
p)∗∗(ξ))1/p ≤ sup

p>1
(( f p)∗∗(ξ))1/p.
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Finally, observe that, since {(( f p)∗∗(ξ))1/p} is nondecreasing,

sup
p>1

(( f p)∗∗(ξ))1/p = lim
p→+∞(( f p)∗∗(ξ))1/p

concluding the proof.
(3) The proof develops along the lines of [4, Proposition 5.7]. Taking into account

the arguments developed in (2), we can deal with the weaker assumptions of our
statement, allowing us to write

lim
p→+∞

(
(gp)∗∗)1/p (T (ξ)) = g(T (ξ)) = f (ξ).

On the other hand,

f (ξ) = g(T (ξ)) = lim
p→+∞((gp)∗∗)1/p(T (ξ)) ≤ lim

p→+∞ f p(ξ) ≤ f (ξ), (4.8)

where, adopting the same notation as in [5] and [4],

f p(ξ) := inf

⎧⎨
⎩
(∫

Q
f p(ξ + Du(x)) dx

) 1
p : u ∈ W 1,∞

per (Q;RN )

⎫⎬
⎭ .

Indeed the polyconvex function (gp)∗∗(T (ξ)) ≤ gp(T (ξ)) = f p(ξ), from
which the first inequality in (4.8) follows. Finally, (4.8) concludes the proof
of the statement.

(4) If follows as the proof of (1), by applying Jensen’s inequality withW 1,p-gradient
Young measures, (p ∈ [1,∞]) to the function g, recalling that T is quasiaffine
and invoking [76, Corollary 5.12].

(5) As observed in Remark 4.3, gradient Young measures are W 1,p-gradient Young
measures for every 1 ≤ p ≤ ∞. This entails the desired implication.

(6) In the case f is upper semicontinuous, the result follows from [39, Theorem
3.1] together with [4, Theorem 4.4] (note that these results are still valid under
the current weaker coercivity assumption). We stress that Theorem 4.4 in [4]
requires the continuity of the function. Regarding the other case, first we invoke
[74, Theorem 2.2, (61), and Remarks 3.3 and 5.1], where it has been proven that
the �-limit with respect to the uniform (L∞) convergence in C(Q;RN ) of

Fp(u) :=

⎧⎪⎨
⎪⎩

(∫
Q

f p(Du(x)) dx

) 1
p

if u ∈ W 1,p(Q;RN ) ∩ C(Q;RN ),

+∞ otherwise

(4.9)
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is given by

F(u) =
⎧⎨
⎩
ess sup
x∈Q

Q∞ f (Du) if u ∈ W 1,∞(Q;RN ) ∩ C(Q;RN ),

+∞ otherwise
(4.10)

where

Q∞ f (ξ) := sup
n∈N

(Q( f n)(ξ))1/n = lim
p→∞(Q( f p)(ξ))1/p. (4.11)

On the other hand, since f is curl(p>1)-Young quasiconvex, by [39, Theorem
3.1], the �-limit (with respect to the uniform convergence in C(Q;RN )) of the
functionals Fp coincides with ess supx∈Q f (Du(x)), when u ∈ W 1,∞(Q;RN )∩
C(Q;RN ). Therefore we can conclude that

ess sup
x∈Q

f (Du(x)) = ess sup
x∈Q

Q∞ f (Du(x)),

for every u ∈ W 1,∞(Q;RN ) ∩ C(Q;RN ). Applying the equality to linear fuc-
tions u with Du = ξ arbitrary, we obtain

f (ξ) = Q∞ f (ξ).

Having in mind the characterization of curl − ∞ quasiconvexity provided by
(4.7) and recalling (4.11), this proves our claim.

(7) We prove the second part of the statement, the first being very similar, just
observing that [76, Theorem 7.15] applies to gradient Young measures with no
need of any growth condition. Let {νx }x∈Q be a parametrized measure that is a
W 1,p-gradient Young measure for every p ∈ (1,∞). The growth assumption
(G) allows to apply [76, Theorem 7.15] to get,

Q( f p)

(∫
RN×n

ξ dνx (ξ)

)
≤
∫
RN×n

f p(ξ) dνx (ξ).

Therefore

Q( f p)

(∫
RN×n

ξ dνx (ξ)

)
≤
∫
RN×n

f p(ξ) dνx (ξ) ≤ νx − ess sup
ξ∈RN×n

f p(ξ).

Taking the power 1
p on this inequality and passing to the limit as p → ∞ we get

the curl(p>1)−Young quasiconvexity of f , having in mind the assumption that
f is curl − ∞ quasiconvex and condition (4.7).

(8) The last assertion follows by the first part and (7). For the first part, start con-
sidering the functionals Fp and F introduced in (4.9) and (4.10), as in the proof
of (6). First, observe that [74, (5) in Remark 5.2] guarantees that the �-limit
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with respect to the L∞ convergence of the restriction of the functionals Fp to
W 1,∞(Q;RN ) is given by the functional F in (4.10). Therefore, if we consider,
for every u ∈ W 1,∞(Q;RN ), the functional

F(u) := inf

{
lim inf
p→+∞

(∫
Q

f p(Dup) dx

) 1
p : u p ∈ W 1,∞(Q;RN ),

sup
p

‖u p‖W 1,∞ < +∞, u p → u in L∞
}

, (4.12)

one has

ess sup
x∈Q

Q∞ f (Du(x)) = F(u) ≤ F(u) for every u ∈ W 1,∞(Q;RN ).

In order to prove the opposite inequality, i.e.

F(u) ≤ ess sup
x∈Q

Q∞ f (Du(x)) for every u ∈ W 1,∞(Q;RN ),

we start observing that, under our coercivity (C) assumptions on f , by [43,
Theorem 9.1] and [46, Proposition 6.16], for every p, the functional

inf

{
lim inf
n→+∞

(∫
Q

f p(Dun(x))

) 1
p : sup

n
‖un‖W 1,∞ <+∞, un →u in L∞

}

=
(∫

Q
Q( f p)(Du(x)) dx

) 1
p

. (4.13)

Hence, by [46, Proposition 6.11], in view of (4.13), (4.12) can be written as

F(u) = inf

{
lim inf
p→+∞

(∫
Q
Q( f p)(Dup) dx

) 1
p : u p ∈ W 1,∞(Q;RN ),

sup
p

‖u p‖W 1,∞ < +∞, u p → u in L∞
}

.

Thus,

F(u) ≤ lim inf
p→+∞

(∫
Q
Q( f p)(Du(x)) dx

) 1
p

≤ lim inf
p→+∞

(
ess sup
x∈Q

Q( f p)(Du(x))

) 1
p

= lim inf
p→+∞ ess sup

x∈Q
(Q( f p))

1
p (Du(x))

123



A. M. Ribeiro, E. Zappale

≤ ess sup
x∈Q

Q∞ f (Du(x))

where we have exploited [46, Proposition 6.8 and 6.11], and the definition of
Q∞ f and the monotonicity of (Q( f p))1/p. Now we have that

F(u) = inf

{
lim inf
p→+∞

(∫
Q

f p(Dup(x)) dx

)1/p

: u p ∈ W 1,∞(Q;RN ),

sup
p

‖u p‖W 1,∞ < +∞, u p
∗
⇀u in W 1,∞(Q;RN )

}
, (4.14)

Indeed, the inequality ‘≤’ is consequence of Rellich theorem and the opposite
one follows by Banach-Alaoglu-Bourbaki theorem. To finish our proof, we recall
that, under the assumption of curl-Young quasiconvexity on f , [5, Theorem 4.1]
provides

ess sup
x∈Q

f (Du(x)) ≤ lim inf
p→+∞

(∫
Q

f p(Dup(x)) dx

)1/p

,

for every u p
∗
⇀u in W 1,∞(Q;RN ), i.e.

ess sup
x∈Q

f (Du(x)) ≤ F(u) for every u ∈ W 1,∞(Q;RN ).

The opposite inequality is a consequence of the standard approximation of L∞
norm by the L p one, i.e.

F(u) ≤ lim inf
p→+∞

(∫
Q

f p(Du(x)) dx

) 1
p = ess sup

x∈Q
f (Du(x)).

Finally, putting together the representations for F , obtained for (4.12) and its
equivalent (4.14), we can conclude that

ess sup
x∈Q

f (Du(x)) = ess sup
x∈Q

Q∞ f (Du(x))

for every u ∈ W 1,∞(Q;RN ). This, in turn, provides the equality f (ξ) =
Q∞ f (ξ) for every ξ ∈ R

N×n , which proves the curl − ∞ quasiconvexity of
f .

(9) By (5), to prove the first statement it suffices to consider the case f is curl-
Young quasiconvex. Then the result follows from [5, Proposition 6.1], which
in turn relies on the lower semicontinuity result in Theorem B.2 (see also [5,
Theorem 4.2] for another argument). For what concerns the second implication,
let ξ ∈ R

N×n , ϕ ∈ W 1,∞
0 (Q;RN ), u(x) = ξ · x + ϕ(x) and the push-forward

measure ν = Du�LN×n . As observed in [3, p. 60], the measure ν coincides
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with the generalized product Ln ⊗ δDu(x). Considering [62, Theorem 2.1], we
observe that this latter measure is a homogeneous gradient Youngmeasure whose
barycenter is ξ . Hence, by (4.6),

f (ξ) = f

(∫
Q
Du(x) dx

)
= f

(∫
RN×n

ξ dν(ξ)

)
≤ ν-ess sup

ξ∈RN×n
f (ξ) =

= Ln ⊗ δDu(x)-ess sup
(x,ξ)∈Q×RN×n

f (ξ) = ess sup
x∈Q

f (Du(x))

proving the weak BJW-quasi-level convexity. For the next implication, let ξ, η ∈
R

N×n be such that rank(ξ − η) = 1 and let 0 < λ < 1. One needs to show that

f (λξ + (1 − λ)η) ≤ max{ f (ξ), f (η)}.

Considering the construction of approximate solutions carried out in [69, p. 97],
one gets a sequence (u j ) ⊆ W 1,∞(Q;RN ) such that u j (x) = (λξ +(1−λ)η) ·x
on ∂Q and dist(Du j , {ξ, η}) → 0 in measure in Q. As discussed in [69, p. 120],
Du j generates the homogeneous Young measure νx = λδξ + (1 − λ)δη. This
measure has λξ + (1 − λ)η as barycenter, thus

f (λξ+(1−λ)η)= f

(∫
RN×n

ζ dνx (ζ )

)
≤νx-ess sup

ζ∈RN×n
f (ζ )=max{ f (ξ), f (η)}.

where we have also used (4.6).
(10) The first implication is a consequence of [74, Proposition 5.2] together with (4.7).

For what concerns the second implication since f is strong BJW-quasi-level
convex and, invoking Proposition 3.10, we get that f is also strong BJW-quasi-
level convex in any other cubeC . Hence, using (3) in Theorem 3.12, we conclude
that f is periodic-weak BJW-quasi-level convex in the cube C . The last parts are
also consequences of (3) and (6) in Theorem 3.12.

��

We observe that many implications in Theorem 4.8 do not invert. Indeed, we have
the following result.

Example 4.10 (1) In [5, Example 6.6] it has been shown that the function arctan(det) :
ξ ∈ R

2×2 → [−π/2, π/2] is poly-level convex (hence curl-Young quasiconvex)
but not level convex.

(2) The example provided in [5, Example 6.7] shows that to ensure that a curl-Young
quasiconvex function is curl − ∞ quasiconvex, some additional assumption, like
(C) in (8) of Theorem 4.8, should be imposed. Indeed the function W : R2×2 →
[0,+∞), defined as

W (ξ) = sup{h(|ξ |), k(ξ)},
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with h and k given by k(ξ) := arctan(detξ) and h(t) =
⎧⎨
⎩
0 if t ≤ 1,
t − 1 if 1 ≤ t ≤ 2,
1 if t ≥ 2

is

curl-Young quasiconvex but neither curl − ∞ quasiconvex, nor quasiconvex, nor
level convex.

(3) In [4, Proposition 5.9] it has been observed that the continuous function f : R →

[0,+∞) given by f (t) :=
⎧⎨
⎩
0 if t ≤ 0,
t if 0 ≤ t ≤ 1,
1 if t ≥ 1.

is periodic-weak BJW-quasi-level

convex and strong BJW- quasi-level convex since it is level convex. On the other
hand, it has been proven that f is not curl − ∞ quasiconvex.

Proposition 4.11 (1) There exist curl-Young quasiconvex functions which are not level
convex, i.e. (1) in Proposition 4.8 does not invert.

(2) There exist level convex and poly-level convex functions which are not curl − ∞
quasiconvex.

(3) A function f which satisfies (4.6) for every homogeneous gradient Young measure
is not necessarily curl−∞ quasiconvex. Moreover, even if the function is assumed
lower semicontinuous and bounded from below, (4.6) does not imply that the
function is curl − ∞ quasiconvex, i.e. curl-Young quasiconvexity does not imply
curl − ∞ quasiconvexity.

(4) There exist lower semicontinuous level convex (hence lower semicontinuous and
poly-level convex, strong BJW-quasi-level convex, periodic-weak BJW-quasi-level
convex, weak BJW-quasi-level convex and rank-one level convex) functions
which are not curl − ∞ quasiconvex.

Proof Condition (1) follows from Example 4.10(1).
Condition (2) relies on the fact that curl − ∞ quasiconvex functions are lower

semicontinuous (cf. Proposition 4.6), while level convexity and poly-level convexity
do not entail lower semicontinuity (cf. Example 3.4).

The first part of (3) follows by the same argument as in (2). Indeed, condition (4.6)
follows from (1) in Theorem 4.8 and by Proposition 4.6, a function that is not lower
semicontinuous, it is not curl− ∞ quasiconvex. To prove the second assertion of (3),
it suffices to refer to Example 4.10(2).

The proof of (4) follows by Example 4.10(3). ��
In the following result we show a partial converse of (3) in Proposition 4.8. It utilises

ideas from [13, Theorem 4.1] and [43, Theorem 5.46].

Proposition 4.12 Let f : RN×n → [0,+∞) be a curl − ∞ quasiconvex function, of
the form

f (ξ) = g(α + 〈β, T (ξ)〉),

with α ∈ R and β ∈ R
τ(N ,n) (see [43, Theorem 5.46]), or in particular f : RN×N →

[0,+∞)

f (ξ) := g(det ξ), (4.15)
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where g : R → [0,+∞) is a lower semicontinuous function and there exist a1 >

0, a2 ∈ R such that for every δ ∈ R

g(δ) ≥ a1|δ| + a2.

Then g is level convex, hence f is poly-level convex.

Proof By (4.7), [43, Theorem 6.24], [74, Proposition 5.1] and the arguments used in
(2) of Proposition 4.8 to weaken the coercivity condition,

f (ξ) = lim
p→+∞

(Q( f p)(ξ)
) 1
p = lim

p→+∞(Q(gp(α + 〈β, T (ξ)〉))) 1
p

= lim
p→+∞((gp)∗∗(α + 〈β, T (ξ)〉))) 1

p = glslc(α + 〈β, T (ξ)〉)), (4.16)

where glslc denotes the lower semicontinuous and level convex envelope of g (see
[75]). Hence f is poly-level convex. Putting together (4.15) and (4.16), from the
arbitrariness of α + 〈β, T (ξ)〉 ∈ R, we obtain the level convexity of g. ��

The previous analysis leaves several open questions about the convexity notions
treated in this section.

(1) We have seen that curl(p>1)-Young quasiconvexity, curl−Young quasiconvexity,
curl−∞ quasiconvexity, imply strong BJW-quasi-level convexity. One may won-
der if strong BJW-quasi-level convexity is indeed below in this hierarchy, in the
class of coercive functions. Note that the function in Example 4.10 (3) is not coer-
cive. In the same spirit one may wonder if weak BJW-quasi-level convexity entails
curl − ∞ quasiconvexity in the class of functions satisfying (C).

(2) In (7) and (8) we have proven that curl(p>1)-Young quasiconvexity, curl−Young
quasiconvexity and curl− ∞ quasiconvexity are equivalent, but it is not known if
the assumptions are sharp.

(3) In (8) we obtained that curl-Young quasiconvex functions are curl(p>1)-Young
quasiconvex requiring that f is non-negative since our proof relies on proving that
f is also curl−∞ quasiconvex. One may wonder if a direct proof can be provided
removing this artificial assumption.

Remark 4.13 In regard to question (1) dealing with coercivity, it is worth to recall
that [4, Theorem 4.2] in the curl-free setting, has been improved in [74, Theorem
2.2]. Indeed, the Carathéodory assumption has been relaxed to Lebesgue ⊗ Borel-
measurability for f , but under a linear growth constraint from above and below on
f (x, ·) for a.e. x ∈ �, obtaining a strong BJW-quasi-level convex limiting den-

sity, f∞ (see [74, Eq. (61) and (62)]), i.e. � − limp→+∞(
∫
�

f p(x, Du(x))dx)
1
p =

ess supx∈� f∞(x, Du(x)). Moreover, it has been proven that f∞ coincides with Q∞ f
either assuming in addition upper semicontinuity on f (x, ·) or in the homogeneous set-
ting, requiring just Borel measurability and (up to a constant) (4.3) (see [74, Remark
5.2]). This latter case reinforces the curiosity towards proving (or disproving) that
strong BJW-quasi-level convexity and coercivity could imply curl− ∞ quasiconvex-
ity.
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Moreover by the above mentioned �-convergence results from [4] and [74], it fol-
lows that curl−∞ quasiconvexity is necessary and sufficient for the L p-approximation
under continuity and coercivity assumptions, but it is not completely clear if this notion
is really necessary under the sole assumption of lower semicontinuity.

Then, question (1) above can be rephrased as follows:
in the vectorial case the relaxation of supremal functionals of the type (1.1) (namely

the characterization of the greatest L∞ lower semicontinuous functional below a given
one) is currently open. The curl−∞ quasiconvexity (and curl-Young quasiconvexity)
of the supremand appears only as a sufficient condition for the lower semicontinuity
of such functionals, but it is not known if this is also a necessary condition, even under
coercivity assumptions.

In the same order of ideas, emanating from the results in [74] one can observe that
strong-BJW-quasi-level convexity is necessary for power-law approximations, while
its sufficiency is currently open.

Finally, regarding the scalar case, we underline that, in the homogeneous and scalar
case in [74, Remark 5.2], i.e. v(x) = Du(x) ∈ R

n×N , with either n = 1 or N = 1,
the limiting density f∞ coincides with the level convex and lower semicontinuous
envelope of f , thus recovering the results in [5], cf. Proposition 2.9 and Theorem 2.10
therein, and the particular cases discussed in [11, 33, 39, 53], and leads by means of
power-law approximation strategies, to the same conclusions as (vi i i) in Remark 4.9.

5 Relating convexity definitions from the integral and supremal
settings

It is easily seen that convexity is a sufficient condition to level convexity. Indeed, we
will see that the convexity notions arising on the minimization of integral functionals
are strictly stronger than the corresponding ones appearing in the minimization of
supremal functionals.

Proposition 5.1 (1) If f is polyconvex, i.e., for some convex function g : Rτ(n,N ) −→
R,

f (ξ) = g(T (ξ)),∀ ξ ∈ R
N×n

being τ(n, N ) and T (ξ) as in Definition 3.1, then f is poly-level convex.
(2) If f is quasiconvex, then f is curl-Young quasiconvex.
(3) If f is quasiconvex, then f is strong BJW-quasi-level convex.
(4) If f is quasiconvex and non-negative then f is curl − ∞ quasiconvex.
(5) If f is rank-one convex, i.e. f is convex along rank-one directions, then f is

rank-one level convex.

Remark 5.2 The proof of (4) is presented for the reader’s convenience since it is given
by [4, Proposition 3.6] for the A-free setting, under the extra explicit assumptions of
local boundedness and upper semicontinuity. These requirements are not needed in
the curl-free setting, since they are granted for any quasiconvex function, see (ii) in
Remark 2.2.
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Proof (1) and (5) The results follow immediately from the fact that convex functions
are also level convex.

(2) The proof is in [5, Proposition 3.3 (1)], in the more general case of the operator
curl replaced by a generic partial differential operatorAwith constant rank and under
the extra assumption that f is continuous. By (ii) in Remark 2.2, the continuity is
implicitly guaranteed by the quasiconvexity of f .

(3) Having in mind Proposition 2.3 it suffices to observe that a function satisfying
(2.2) is strongBJW-quasi-level convex.Toobtain this, it suffices to estimate the integral
by the essential supremum.

(4) It follows by the equalities

f (ξ) = f p(ξ)1/p =
(
inf

{∫
Q

f p(ξ + Dϕ(y))dy : ϕ ∈ W 1,∞
0 (Q;RN )

})1/p

where in the second one it has been exploited the quasiconvexity of f p due to the
quasiconvexity of f , which follows from the increasing monotonicity of (·)p, the
Jensen’s inequality applied to this latter function, and the fact that inf and 1

p power
interchanges. Hence it suffices to pass to the limit as p → +∞ to get the assertion. ��

In view of the previous proposition, one might wonder if the supremal convexity
notions imply some integral convexity notions. This is not likely to happen since
clearly level convexity does not imply rank-one level convexity. The next example
taken from [4, Example 5.5] proves our claim considering a continuous, non-negative
function with linear growth defined in RN×n .

Example 5.3 Let f : RN×n → [0,+∞) be the continuous function given by

f (ξ) :=
⎧⎨
⎩

|ξ | if |ξ | ≤ 1,
1 if 1 ≤ |ξ | ≤ 2,
1
2 |ξ | if |ξ | ≥ 2.

Then f is level convex (see (2) in Theorem 4.8) but it is not rank-one level convex.

Proposition 5.4 There exist functions which are level convex (and thus poly-level con-
vex, curl − ∞ quasiconvex, curl(p>1) quasiconvex, curl-Young quasiconvex, strong
BJW-quasi-level convex, rank-one level convex) which are not rank-one level convex
(hence neither convex, nor polyconvex, nor quasiconvex).

Proof The result follows from Example 5.3, Proposition 4.8 and Theorem 3.12, and
[43, Theorem 5.3]. ��

Appendix A

In [21] it was proven that a necessary and sufficient condition to the sequential weak*
lower semicontinuity in W 1,∞(�,RN ) of a functional

F(u) := ess sup
x∈�

f (Du (x)) , u ∈ W 1,∞(�,RN )
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is the strong BJW-quasi-level convexity of the supremand f . Here, we exploit the
arguments employed to achieve this statement, with the ultimate goal of showing that
the cube Q in the definition of strong BJW-quasi-level convexity can be replaced by
other sets in an appropriate class, cf. Proposition 3.10.

Proposition A.1 Let � ⊆ R
n be a bounded, convex, and open set, and let f :

R
N×n −→ R be a strong BJW-quasi-level convex on the set �. That is, f satis-

fies (3.1).
Let O ⊆ R

n be a bounded open set. Then, the functional F(u, O) :=
ess supx∈O f (Du (x)) is sequentiallyweakly* lower semicontinuous inW 1,∞(O,RN ).

Proof The result follows as in [21, Theorem 2.6]. By Remark 3.2, we can reduce to
the case that � contains the origin. Then invoking the strong version of Besicovitch
derivation theorem (cf. [3, Theorem 5.52]) that allows to work with more general sets
than the cube, that need to be convex. Moreover we make use of Lemma 3.3 instead of
[21, Proposition 2.5]. Note that bounded, open, convex sets have Lipschitz boundary
thus the hypotheses of the lemma are fulfilled. ��

The next goal is to show that strong BJW-quasi-level convexity is also a necessary
condition to sequential weak* lower semicontinuity of F(·, O) in W 1,∞(O;RN ).
Again, we follow the same procedure of the proof of [21, Theorem 2.7, Lemma 2.8.].
We stress that we don’t require the sequential weak* lower semicontinuity in any
set as in [21] because we work in the same set, either in the sequential weak* lower
semicontinuity of the functional and in the strong BJW-quasi-level convexity. This is
not a restriction if we combine it with Proposition A.1, as it will be made clear in
Proposition3.10.

The following result can be proven.

Proposition A.2 Let f : RN×n −→ R be a Borel measurable function and consider
the functional

F(u,�) := ess sup
x∈�

f (Du (x)) ,

where � is a bounded open set in R
n. If F(·,�) is sequentially weakly* lower semi-

continuous in W 1,∞(�;RN ) then

(i) f is lower semicontinuous and it is periodic-weak BJW-quasi-level convex (con-
sidering any cube in place of Q). In particular, f is also weak BJW-quasi-level
convex (considering also any cube in place of Q).

(ii) If additionally we have that ∂� is Lipschitz, then f is strong B JW-quasi-level
convex.

Remark A.3 Item (i) above, together with the Proposition 3.7 entail that, if F is
sequentially weakly* lower semicontinuous in W 1,∞(�;RN ), then f is weak BJW-
quasi-level convex in any bounded and open set � with boundary of null Ln-measure.

Proof The proof of (i) follows as in [21, Lemma 2.8]. The lower semicontinuity of
f follows simply considering, for a given sequence (ξk)k∈N ⊆ R

N×n converging to
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ξ ∈ R
N×n , the sequence of affine functions uk(x) = ξk x that converges to u(x) := ξ x

in W 1,∞(�;RN ) since � is bounded.
It remains to prove that f is periodic-weak BJW-quasi-level convex since, in view

of Theorem 3.12 (4), the weak BJW-quasi-level convexity then follows immediately.
Let C be any cube in Rn , ξ ∈ R

N×n , and ϕ ∈ W 1,∞
per (C;RN ). We want to show that

f (ξ) ≤ ess sup
x∈C

f (ξ + Dϕ (x)) .

Then consider ϕε(x) := εϕ
( x

ε

)
. Of course, as ε tends to 0, ϕε converges weakly*

in W 1,∞(�;RN ) to 0. Therefore uε(x) := ξ x + ϕε(x) converges weakly* in
W 1,∞(�;RN ) to uξ (x) := ξ x , as ε tends to 0. Applying the sequential weak* lower
semicontinuity of F(·,�), one gets

f (ξ) = ess sup
x∈�

f
(
Duξ (x)

) ≤ lim inf
ε→0

ess sup
x∈�

f (Duε (x))

= lim inf
ε→0

ess sup
x∈�

f
(
ξ + Dϕ

( x
ε

))
≤ ess sup

z∈C
f (ξ + Dϕ (z))

where we used in the last inequality the periodicity of ϕ.
The proof of (i i) is the same as the one of [21, Theorem 2.7]. That is, assume by

contradiction that there exist ε > 0, ξ ∈ R
N×n , and K > 0 such that, for every δ > 0

there is a function

ϕδ ∈ W 1,∞(�;RN )

such that

||Dϕδ||L∞(�) ≤ K , max
x∈∂�

|ϕδ(x)| ≤ δ and f (ξ) > ess sup
x∈�

f (ξ + Dϕδ(x)) + ε.

It can be ensured that, up to a subsequence, ϕδ weakly* converges inW 1,∞(�;RN ) to
some function ϕ ∈ W 1,∞

0 (�;RN ). Indeed,� being a bounded open set with Lipschitz
boundary, by Sobolev’s embedding theorems, ϕδ ∈ C(�;RN ). Moreover, the func-
tions ϕδ are Lipschitz continuous with Lipschitz constant bounded by ||Dϕδ||L∞(�) ≤
K . Therefore, the sequence ϕδ is equicontinuous and by Ascoli-Arzelá’s theorem,
up to a subsequence, ϕδ converges uniformly to a function ϕ ∈ C(�;RN ). On
the other hand, the Lipschitz inequality enjoyed by the functions ϕδ , together with
maxx∈∂� |ϕδ(x)| ≤ δ, ensure that ϕδ is a bounded sequence in W 1,∞(�;RN ). Thus,
up to a subsequence, it converges weakly* in W 1,∞(�;RN ). We can then conclude
that the uniform limit, ϕ, belongs to W 1,∞(�;RN ) and it is also the weak* limit
in W 1,∞(�;RN ). Finally the estimates on the traces on ∂� of ϕδ , also imlpy that
ϕ ∈ W 1,∞

0 (�;RN ).
Then, by the sequential weak* lower semicontinuity of F(·,�), one gets

ess sup
x∈�

f (ξ + Dϕ (x)) ≤ lim inf
δ→0

ess sup
x∈�

f (ξ + Dϕδ (x)) < f (ξ) − ε < f (ξ).
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This contradicts the fact that, by (i) and Proposition 3.7,

f (ξ) ≤ ess sup
x∈�

f (ξ + Dψ (x)) , ∀ ξ ∈ R
N×n, ∀ ψ ∈ W 1,∞

0 (�;RN ),

where we used the fact that we are assuming � bounded, open, and with Lipschitz,
thus with boundary of null measure. ��

Appendix B

The following result is a key tool to provide an alternative argument to the proof of [5,
Theorem 4.2]. It extends to the inhomogeneous setting [68, Lemma 2.5], where the
continuity assumption of [14, Theorem 34] was relaxed.

Lemma B.1 Let U ⊂ R
n be an open set with finite measure and let f : U × R

m →
R be a normal integrand ( i.e., f is Lebesgue ⊗ Borel-measurable; and f (x, ·) is
lower semicontinuous for a.e. x ∈ U), bounded from below. Further, let (uk)k∈N be a
uniformly bounded sequence of functions in L∞(U ;Rm) generating a Young measure
ν = {νx }x∈U . Then,

lim inf
k→∞ ess sup

x∈U
f (x, uk(x)) ≥ ess sup

x∈U
f̄ (x),

where f̄ (x) := νx-ess supξ∈Rm f (x, ξ) for x ∈ U.

Proof We give the details of the proof for the reader’s convenience, which follows the
lines of [68, Lemma 2.5].

Without loss of generality we can assume that f is non negative. Let ε > 0 be
fixed, and choose a set S ⊂ U with positive Lebesgue measure such that f̄ (x) ≥
‖ f̄ ‖L∞(U ) − 2ε for all x ∈ S. Next, we show that there exists a measurable subset
S′ ⊂ S with Ln(S′) > 0 such that

(∫
Rm

| f (x, ξ)|p dνx (ξ)
) 1

p ≥ ‖ f̄ ‖L∞(U ) − ε (5.1)

for all x ∈ S′ and p > 1 sufficiently large. Indeed, with

Sk :=
{
x ∈ S : (∫

Rm f (x, ξ)pdνx (ξ)
) 1
p ≥ ‖ f̄ ‖L∞(�) − ε for all p ≥ k

}

for k ∈ N, one has that S = ⋃∞
k=1 Sk . Since Ln(S) > 0, there must be at least one k′

for which Ln(Sk′) > 0, and setting S′ := Sk′ shows (5.1).
We take the inequality in (5.1) to the pth power and integrate over S′. Along with

Theorem4.1 (i), extended to normal integrands by using [49,Corollary 6.30], it follows
that

Ln(S′)(‖ f̄ ‖L∞(�) − ε)p ≤
∫
S′

∫
Rm

| f (x, ξ)|p dνx (ξ) dx
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≤ lim inf
k→∞

∫
U

| f (x, uk(x))|p dx
≤ lim inf

k→∞ ‖ f (·, uk(·))‖p
L∞(U )Ln(U ).

Hence,

lim inf
k→∞ ‖ f (·, uk(·))‖L∞(U ) ≥

(Ln(S′)
Ln(U )

) 1
p (‖ f̄ ‖L∞(U ) − ε

)

for p > 1 sufficiently large. Letting p → ∞ and recalling that ε > 0 is arbitrary
concludes the proof. ��

We are in position to prove that curl-Young quasiconvexity is a sufficient condi-
tion for the lower semicontinuity of supremal functionals. The result can be trivially
extended to the A-free setting, thus providing an alternative argument to the one pro-
posed in [5, Theorem 4.2].

Theorem B.2 Let f : �×R
N×n → R be a normal integrand, bounded frombelow and

such that f (x, ·) is curl−Young quasiconvex for a.e. x ∈ �. Let F : W 1,∞(�;RN ) →
R be the functional defined by

F(u) = ess supx∈� f (x, Du(x)).

Then F is sequentially weakly* lower semicontinuous in W 1,∞(�;RN ).

Proof The result follows from Lemma B.1 and Definition 4.2 (2). Without loss of
generality we can assume that f is non negative.

Indeed, taken any sequence (uk)weakly* converging to u inW 1,∞(�;RN ), which
generates a W 1,∞-gradient Young measure, νx with baricenter Du(x), we have

lim inf
k→∞ F(uk) ≥ ess supx∈� νx − ess supξ∈RN×n f (x, ξ)

≥ f

(
x,
∫
RN×n

ξdνx (ξ)

)
for a.e.x ∈ �.

Consequently

lim inf
k→∞ F(uk) ≥ ess supx∈� f (x, Du(x)) = F(u),

which proves the desired lower semicontinuity result. ��

Appendix C

The result below relates the level convexity of a function with a generalization of
Jensen’s inequality in the supremal setting. A proof can be found in Barron [14,
Theorem 30], (see [21, Theorem 1.2], where the theorem is stated under a lower
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semicontinuity hypothesis, and [20, Lemma 2.4] where one implication has been
shown in order to provide a Hopf-Lax formula). It is possible to avoid this condition
as already mentioned without proof in [75]. For convenience of the reader we include
the proof here.

Theorem C.1 A Borel measurable function f : Rn → R is level convex if and only if
it satisfies the supremal Jensen’s inequality:

f

(∫
�

ϕ dμ

)
≤ μ − ess sup

x∈�

f (ϕ(x))

for every probability measure μ on Rd supported on the open set � ⊆ R
d , and every

ϕ ∈ L1
μ(�;Rn).

In particular, considering the Lebesgue measure, if � is a set with finite Lebesgue
measure,

f

(
1

Ln(�)

∫
�

ϕ(x) dx

)
≤ ess sup

x∈�

f (ϕ(x)), ∀ ϕ ∈ L1(�;Rn).

Proof To show that a function satisfying the supremal Jensen’s inequality is level
convex, it suffices to take for every t ∈ [0, 1] a function ϕ whose values are ξ on a set
of μ-measure t and η on a set of μ-measure 1 − t .

Nowwe prove that, if f is level convex then it satisfies supremal Jensen’s inequality.
To this end it suffices to prove that, given an open set � ⊆ R

d , for every probability
measure μ on R

d supported on �, if ϕ ∈ L1
μ(�;Rn) is such that ϕ(x) ∈ C , μ-a.e.

x ∈ � with C ⊂ R
n a convex set with finite dimension, then

∫
�

ϕ dμ ∈ C . (5.2)

Indeed, once this is proved we obtain supremal Jensen’s inequality taking C
as the level set of f corresponding to μ − ess sup

x∈�

f (ϕ(x)), symbolised by
{
f ≤ μ − ess sup

x∈�

f (ϕ(x))

}
which is convex under the level convexity assumption

on f .
Thus, it remains to prove that under the above assumptions (5.2) holds. We argue

by an inductive argument on the dimension N of the convex set C . Clearly there is
nothing to prove if N = 0. Assume that C is a convex set of dimension N > 0, that
is the smallest affine space containing C has dimension N . If ϕ(x) ∈ C for μ-a.e.
x ∈ �, clearly

ξ0 :=
∫

�

ϕ dμ ∈ C,

which is still convex. The thesis is obvious if ξ0 belongs to the interior of C relative to
the smallest affine subset containing C , in symbols ξ0 ∈ rel intC , thus we can reduce
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ourselves to the case when ξ0 ∈ C\rel intC , the relative boundary of C . By [77,
Theorem 6.3], ξ0 ∈ C\rel intC and thus, [77, Theorem 11.6] ensures the existence of
a non trivial supporting hyperplane H = {ξ ∈ R

n : 〈α, ξ 〉 = c} to C containing ξ0.
That is, 〈α, ξ0〉 = c and 〈α, ξ 〉 ≥ c, ∀ ξ ∈ C . Therefore

〈α, ξ − ξ0〉 ≥ 0, ∀ ξ ∈ C

and taking, in particular, ξ = ϕ(x), we get

〈α, ϕ(x) − ξ0〉 ≥ 0, μ − a.e. x ∈ �.

Integrating in �, it results

∫
�

〈α, ϕ(x) − ξ0〉 dμ(x) = 〈α,

∫
�

ϕ(x) − ξ0 dμ(x)〉 = 0.

Therefore, 〈α, ϕ(x) − ξ0〉 = 0, μ − a.e. x ∈ � which means that μ − a.e. x ∈ �,
ϕ(x) ∈ H ∩ C which is a convex set with dimension less than N , thus by induction
hypothesis ξ0 ∈ H ∩ C , and thus it is also in C . That concludes the proof. ��
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