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Abstract
We derive, using a heuristic method, a p-adic mate of bilateral Ramanujan series. It
has (among other consequences) Zudilin’s supercongruences for rational Ramanujan
series.
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1 Rational Ramanujan series for �−m

At the beginning of the twenty first century we discovered new families of Ramanujan-
like series, but of greater degree [2], and proved several of them by the WZ (Wilf–
Zeilberger) method [3].

We can write the rational Ramanujan-like series as

∞∑

n=0

R(n) =
∞∑

n=0

(
2m∏

i=0

(si )n
(1)n

)
m∑

k=0

akn
kzn0 =

√
(−1)mχ

πm
,

where z0 is a rational such that z0 �= 0 and z0 �= 1, the parameters a0, a1, ..., am are
positive rationals, and χ the discriminant of a certain quadratic field (imaginary or
real), which is an integer. In case that |z0| > 1 we understand the series as its analytic
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continuation. An example is

1

2048

∞∑

n=0

( 1
2

)7
n

( 1
4

)
n

( 3
4

)
n

(1)9n
(43680n4 + 20632n3 + 4340n2 + 466n + 21)

(
1

212

)n

= 1

π4 ,

conjectured by Jim Cullen, and recently proved by Kam Cheong Au, using the WZ
method [1].

2 Bilateral Ramanujan series

We define the function f : C −→ C in the following way:

f (x) = e−iπx
∏

sk

cosπx − cosπsk
1 − cosπsk

∑

n∈Z
R(n + x).

Then there exist coefficients αk and βk (which we conjecture are rational) such that
f (x) = F(x), where

F(x) =
√

(−1)mχ

πm

(
1 −

m∑

k=1

(αk(cos 2πkx − 1) + βk sin 2πkx)

)
,

is the Fourier expansion of f (x).

Proof The function f (x) is 1-periodic because the product over sk is 1-periodic as
each sk = s, has a companion sk = 1 − s, and the sum over Z is clearly 1-periodic
as well. In addition f (x) is holomorphic because the zero of cosπx − cosπsk at
x = −sk cancels the pole of (sk)n+x at x = −sk , and as f (x) is periodic all the
other poles are canceled as well. As f (x) is holomorphic and periodic, it has a Fourier
expansion. Finally, we can prove that f (x) = O(e(2m+1)π |Im(x)|), and therefore the
Fourier expansion terminates at k = m.

Example 2.1

1

8

∑

n∈Z

( 1
2

)5
n+x

(1)5n+x

(20(n + x)2 + 8(n + x) + 1)

(−1

4

)n+x

= eiπx 1 − 1
2 (cos 2πx − 1) + 1

2 (cos 4πx − 1)

π2 cos5 πx
.
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Example 2.2

1

384

∑

n∈Z

( 1
2

)
n+x

( 1
3

)
n+x

( 2
3

)
n+x

( 1
6

)
n+x

(
5
6

)

n+x

(1)5n+x

(
−36

46

)n+x

×
(
1930(n + x)2 + 549(n + x) + 45

)

= eiπx 3 − 14(cos 2πx − 1) + 6(cos 4πx − 1)

π2 cosπx (4 cos2 πx − 1)(4 cos2 πx − 3)
.

Example 2.3

1

32

∑

n∈Z

( 1
2

)3
n+x

( 1
4

)
n+x

( 3
4

)
n+x

(1)5n+x

(
1

16

)n+x

(120(n + x)2 + 34(n + x) + 3)

= eiπx 1 − 7
2 (cos 2πx − 1) + 3

2 (cos 4πx − 1) + ( 1
2 sin 2πx − 1

2 sin 4πx
)
i

π2 cos3 πx (2 cos2 πx − 1)
.

Example 2.4

1

6

∑

n∈Z

( 12 )
3
n+x (

1
3 )n+x (

2
3 )n+x

(1)5n+x

[
28(n + x)2 + 18(n + x) + 3

]
(−27)n+x

= eiπx 3 + (cos 2πx − 1) + 3
4 (cos 4πx − 1)

π2 cos3 πx(4 cos2 πx − 1)
.

3 Series to the right and to the left

The series to the right hand side is

∞∑

n=0

R(n + x) =
∞∑

n=0

(
2m∏

i=0

(si )n+x

(1)n+x

)
m∑

k=0

ak(n + x)k zn+x
0 ,

extended by analytic continuation to all z0 different from 0 and 1, and the series on
the left hand side is

∞∑

n=1

R(−n + x) =
∞∑

n=1

(
2m∏

i=0

(si )−n+x

(1)−n+x

)
m∑

k=0

ak(−n + x)k z−n+x
0

= x2m+1
∞∑

n=1

(
2m∏

i=0

(1)n−x

(si )n−x

)
m∑

k=0

ak(−n + x)k−2m−1 z−n+x
0

= x2m+1zx0

(
2m∏

i=0

(si )x
(1)x

) ∞∑

n=1

(
2m∏

i=0

(1 − x)n
(si − x)n

)
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m∑

k=0

ak(−n + x)k−2m−1 z−n
0 ,

extended by analytic continuation to all z0 different from 0 and 1. We see that

∞∑

n=0

R(n) −
∞∑

n=0

R(n + x) =
√

(−1)mχ

πm
− eiπx

∏

sk

1 − cosπsk
cosπx − cosπsk

√
(−1)mχ

πm

(
1 −

m∑

k=1

(αk(cos 2πkx − 1) + βk sin 2πkx)

)

+(A + Bx + Cx2 + · · · )x2m+1, |x | < 1,

where (A + Bx +Cx2 + · · · )x2m+1 is the development of the series on the left hand
side at x = 0, that is

zx0

(
2m∏

i=0

(si )x
(1)x

) ∞∑

n=1

(
2m∏

i=0

(1 − x)n
(si − x)n

)
m∑

k=0

ak(−n + x)k−2m−1 z−n
0 = A + Bx + Cx2 + · · · .

4 Heuristic derivation of a p-adic mate

Let

S(N ) =
∞∑

n=0

R(n) −
∞∑

n=0

R(n + N ) =
N−1∑

n=0

R(n).

As in a Ramanujan-like series each sk < 1/2 has a companion 1− sk , we notice that

eiπx
∏

sk

1 − cosπsk
cosπx − cosπsk

= eiπx
∏

sk= 1
2

1

cosπx

∏

sk<
1
2

1 − cos2 πsk
cos2 πx − cos2 πsk

tends to 1 as x → N because there is an odd number of factors when sk = 1/2. Hence
for x → N , we formally have

S(x) =
∞∑

n=0

R(n) −
∞∑

n=0

R(n + x)

=
√

(−1)mχ

πm

(
m∑

k=1

(αk(cos 2πkx − 1) + βk sin 2πkx)

)

+(A + Bx + Cx2 + · · · )x2m+1.

123



Heuristic derivation of Zudilin’s...

Let

G(x) =
√

(−1)mχ

πm

m∑

k=1

(αk(cos 2πkx − 1) + βk sin 2πkx) .

For obtaining the p-adic analogues Gp(xp) and Gp(x), we develop G(xp) and G(x)
in powers of x . Then, replace the powers of π using values of Dirichlet L-functions,
and the L-functions with the corresponding p-adic L-functions. Finally, the standard
properties of the L p-functions dictate turning even powers of π to 0 when χ > 0, or
odd powers of π when χ < 0. After making the replacements, we see that

lim
x→ν

Gp(xp)

Gp(x)
= pm .

For x = ν, where ν = 1, 2, 3, . . . , we see that

zν0

(
2m∏

i=0

(si )ν
(1)ν

) ∞∑

n=1

(
2m∏

i=0

(1 − ν)n

(si − ν)n

)
m∑

k=0

ak(−n + ν)k−2m−1 z−n
0 = A′ + B ′ν + C ′ν2 + · · · ,

where

A′ = zν0

(
2m∏

i=0

(si )ν
(1)ν

)
A, B ′ = zν0

(
2m∏

i=0

(si )ν
(1)ν

)
B, . . . .

On the other hand, we see that

S(ν) = (A′ + B ′ν + C ′ν2 + · · · )ν2m+1

= zν0

(
2m∏

i=0

(si )ν
(1)ν

)
(A + Bν + Cν2 + · · · )ν2m+1.

To get the p−adic mate of S(x) we must divide Sp(ν p) enter Sp(ν), taking into
account that the contribution ofG(x) is (χ/p)pm , and the contribution of the left hand
sum is given by

(Ap + Bpν p + Cpν
2 p2 + · · · )p2m+1ν2m+1

(A + Bν + Cν2 + · · · )pν2m+1

= zν0

(
2m∏

i=0

(si )ν
(1)ν

)
(Ap + Bpν p + Cpν

2 p2 + · · · )p2m+1ν2m+1

Sp(ν)
.

Associating (χ/p) to Sp(ν p) and noting that �p(1/2)4m = 1 by the properties of the
p-adic �-function, we have

S(ν p) = S(ν)

(
χ

p

)
pm + T (ν)(Ap + Bpν p + Cpν

2 p2 + · · · )p2m+1ν2m+1,
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where Ap, Bp,Cp . . . , are p-adic analogues of A, B,C . . . , and

T (ν) = zν0

(
2m∏

i=0

(si )ν
(1)ν

)
.

Observe that taking positive integers values of ν we can eliminate some of the constants
Aq , Bq ,.., and obtain a new kind of supercongruences (mod p2m+k). For example,
eliminating Aq and Bq , we obtain supercongruences (mod p2m+3) relating S(p),
S(2p) and S(3p).

We can apply a similar technique of bilateral series and p-adic mates to other kind
of hypergeometric series, for example to those in [4].

5 Extended Zudilin’s supercongruences

The above p-adic mate has (among other consequences) a generalization for positive
integers ν of Zudilin’s ν = 1 supercongruences [7] and [5], namely

S(ν p) = S(ν)

(
χ

p

)
pm (mod p2m+1),

except for very few values of p.

Example 5.1 See the Ramanujan-like series [2, Eq. (1–3)]. Let

S(N ) =
N−1∑

n=0

( 1
2

)5
n

(1)5n

(−1

4

)n

(20n2 + 8n + 1)

If p is a prime number (except for very few of them), then

S(ν p) ≡ S(ν)

(
1

p

)
p2 (mod p5),

for positive integers ν. Observe that for all prime p we have (1/p) = 1.

Example 5.2 See the Ramanujan-like series [2, Eq. (4–1)]. Let

S(N ) =
N−1∑

n=0

( 1
2

)7

(1)7n

(
1

64

)n

(168n3 + 76n2 + 14n + 1)

If p is a prime number (except for very few of them), then

S(ν p) ≡ S(ν)

(−4

p

)
p3 (mod p7),

for positive integers ν.
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Example 5.3 See the Ramanujan-like series [2, Eq. (2–4)]. Let

S(N ) =
N−1∑

n=0

( 1
2

)
n

( 1
2

)
n

( 1
3

)
n

( 2
3

)
n

( 1
6

)
n

(
5
6

)

n

(1)5n

( −1

803

)n

(5418n2 + 693n + 29)

If p is a prime number (except for very few of them), then

S(ν p) ≡ S(ν)

(
5

p

)
p2 (mod p5),

for positive integers ν.

6 Extended Zhao’s supercongruences

By identifying numerical approximations, we conjecture that A = r L(χ,m + 1),
where r is a rational. The p-adic analogue of A is Ap = r L p(χ,m + 1). We have the
following supercongruences:

S(ν p) ≡
(

χ

p

)
S(ν)pm + r zν0

(
2m∏

i=0

(si )ν
(1)ν

)
L p(χ,m + 1)p2m+1 (mod p2m+2).

which generalizes for positive integers ν the Yue Zhao’s supercongruences for ν = 1
(author Y. Zhao at mathoverflow). To check these supercongruences use the following
congruences

L p(χ,m + 1) ≡ L(χ, 2 + m − p) (mod p),

ζp(m + 1) ≡ bernoulli(p − m − 1)

m + 1
(mod p).

Observe that L(1,m + 1) = ζ(m + 1) and L p(1,m + 1) = ζp(m + 1). For Bernoulli
numbers associated to χ see [6].

Example 6.1 See the Ramanujan-like series [2, Eq. (1–3)]. Let

S(N ) =
N−1∑

n=0

( 1
2

)5
n

(1)5n

(−1

4

)n

(20n2 + 8n + 1), T (ν) =
(−1

4

)ν
( 1
2

)5
ν

(1)5ν
.

If p is a prime number (except for very few of them), then

S(ν p) ≡ S(ν)p2 + 448T (ν)ζp(3)ν
5 p5 (mod p6),

for positive integers ν.
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Example 6.2 See the Ramanujan-like series [2, Eq. (4–1)]. Let

S(N ) =
N−1∑

n=0

( 1
2

)7
n

(1)7n

(
1

64

)n

(168n3 + 76n2 + 14n + 1), T (ν) =
(

1

64

)ν
( 1
2

)7
ν

(1)7ν
.

If p is a prime number (except for very few of them), then

S(ν p) ≡ S(ν)

(−4

p

)
p3 + 1536T (ν)L p(−4, 4)ν7 p7 (mod p8),

for positive integers ν.

Example 6.3 See the Ramanujan-like series [2, Eq. (2–4)]. Let

S(N ) =
N−1∑

n=0

( 1
2

)
n

( 1
2

)
n

( 1
3

)
n

( 2
3

)
n

( 1
6

)
n

(
5
6

)

n

(1)5n

( −1

803

)n

(5418n2 + 693n + 29),

and

T (ν) =
( −1

803

)ν
( 1
2

)
ν

( 1
3

)
ν

( 2
3

)
ν

( 1
6

)
ν

(
5
6

)

ν

(1)5ν
.

If p is a prime number (except for very few of them), then

S(ν p) ≡ S(ν)

(
5

p

)
p2 + 42000T (ν)L p(5, 3)ν

5 p5 (mod p6),

for positive integers ν.

7 An application of the extended supercongruences

In next examples, we use the generalized Zudilin’s supercongruences to obtain the
rational parameters of the rational Ramanujan series. For that aim (except for a global
rational factor) we just need taking a sufficiently large prime p and m values of ν. In
addition, we can check that there is a rational r such that Zhao’s supercongruences
hold for that prime p and those m values of ν. Hence Ap = r L p(χ,m + 1), and we
conclude that A = r L(χ,m + 1). Finally, observe that if |z0| > 1 then the series for
A is convergent.

Example 7.1 We want to see that there is a series of the following form:

∞∑

n=0

( 1
2

)5
n

(1)5n

(−1)n

4n
(a0 + a1n + a2n

2) = t0

√
χ

π2 , χ = 1,
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where a0, a1, a2, t0 are positive integers. Indeed, using the Wilf–Zeilberger (WZ
method) we proved that a0 = 1, a1 = 8, a2 = 20. Here

S(ν p) − S(ν)p2 ≡ 0 (mod p5), ν = 1, 2, 3, . . . ,

and taking p = 11, and ν = 1, 2, we get the linear system

103175a0 + 126304a1 + 81213a2 ≡ 0 (mod 115),

23608a0 + 21777a1 + 22319a2 ≡ 0 (mod 115).

Let a0 = t . From the above equations, we obtain

−66812987t − 95491225a2 ≡ 0 (mod 114),

−35044211t − 95491225a1 ≡ 0 (mod 114).

Solving the equations taking into account that the inverse (mod 114) of 95491225 is
12252, we obtain

a2 = −14621t (mod 114) = 20t,

a1 = −14633t (mod 114) = 8t,

Hence the solutions are of the following form:

a0 = t, a1 = 8t, a2 = 20t .

Example 7.2 We want to know if there is a series of the following form:

∞∑

n=0

( 1
2

)
n

( 1
3

)
n

( 2
3

)
n

( 1
4

)
n

( 3
4

)
n

(1)5n

(−1)n

48n
(a0 + a1n + a2n

2) = t0

√
χ

π2 , χ = 1,

andwhere a0, a1, a2, t0 are positive integers. Using the PSLQ algorithmwe conjecture
that a0 = 5, a1 = 63, a2 = 252 and t0 = 48. Here

S(ν p) − S(ν)p2 ≡ 0 (mod p5), ν = 1, 2, 3, . . . ,

and taking p = 13, and ν = 1, 2, we get the linear system

155250a1 + 1838a2 + 327490a0 ≡ 0 (mod 135),

304350a1 + 329224a2 + 67674a0 ≡ 0 (mod 135).

Let a0 = 5t . From the above equations, we obtain

26628a1 + 7535t ≡ 0 (mod 134),

26628a2 + 1579t ≡ 0 (mod 134).
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As the inverse (mod 134) of 26628 is 9279, we obtain

a2 = −28309t (mod 134) = 252t,

a1 = −28498t (mod 134) = 63t,

Hence the solutions are: a0 = 5t, a1 = 63t, a2 = 252t .

Example 7.3 We want to know if there is a series of the following form:

∞∑

n=0

( 1
2

)7
n

(1)7n

(
1

64

)n

(a0 + a1n + a2n
2 + a3n

3) = t0

√−χ

π3 , χ = −4,

where a0, a1, a2, a3, t0 are positive integers. Using the PSLQ algorithm, we conjecture
that a0 = 1, a1 = 14, a2 = 76, a3 = 168 and t0 = 16. Here

S(ν p) − S(ν)

(−4

p

)
p3 ≡ 0, (mod p7) ν = 1, 2, . . . ,

and taking p = 11, and ν = 1, 2, 3, we get the equations

2078533a1 + 9963171a2 + 11695266a3 + 16073136a0 ≡ 0 (mod 117),

12453192a1 + 988367a2 + 3883033a3 + 14086913a0 ≡ 0 (mod 117),

17113786a1 + 2247378a2 + 4011161a3 + 7012796a0 ≡ 0 (mod 117).

Let a0 = t . From the above equations, we obtain

7854385a1 + 3429250a2 + 19159030t ≡ 0 (mod 114),

3851936a1 + 8961898a2 + 5481146t ≡ 0 (mod 114).

Solving the equations, we obtain

a1 = −11965t (mod 114) = 14t,

a2 = −1255t (mod 114) = 76t,

a3 = −14473t (mod 114) = 168t .

Example 7.4 We want to know if there is a series of the following form:

∞∑

n=0

( 1
2

)
n

( 1
3

)
n

( 2
3

)
n

( 1
6

)
n

(
5
6

)

n

(1)5n

( −1

803

)n

(a0 + a1n + a2n
2) = t0

√
χ

π2 , χ = 5,
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andwhere a0, a1, a2, t0 are positive integers. Using the PSLQ algorithmwe conjecture
that a0 = 29, a1 = 693, a2 = 5418 and t0 = 128. Here

S(ν p) − S(ν)

(
5

p

)
p2 ≡ 0 (mod p5), ν = 1, 2, 3, . . . ,

and taking p = 41, a0 = 29t , and ν = 1, 2, we get the linear system

76877806a2 + 113924268a1 + 43501045t ≡ 0 (mod 415),

88965067a2 + 84189111a1 + 113390736t ≡ 0 (mod 415).

From the above equations, we obtain

38939a1 + 32305t ≡ 0 (mod 413),

29982a2 + 4321t ≡ 0 (mod 413).

As the inverse of 38939 (mod 413) is 55540, we obtain

a2 = −63503t (mod 413) = 5418t,

a1 = −68228t (mod 413) = 693t,

Hence the solutions are: a0 = 29t, a1 = 693t, a2 = 5418t .
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