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Abstract
Let G = (V , E) be an infinite graph. The purpose of this paper is to investigate the
nonexistence of global solutions for the following semilinear heat equation

{
∂t u = �u + u1+α, t > 0, x ∈ V ,

u(0, x) = u0(x), x ∈ V ,

where � is an unbounded Laplacian on G, α is a positive parameter and u0 is a
nonnegative and nontrivial initial value. Using on-diagonal lower heat kernel bounds,
we prove that the semilinear heat equation admits the blow-up solutions, which is
viewed as a discrete analog of that of Fujita (J Fac Sci Univ Tokyo 13:109–124, 1966)
and had been generalized to locally finite graphs with bounded Laplacians by Lin and
Wu (Calc Var Partial Diff Equ 56(4):22, 2017). In this paper, new techniques have
been developed to deal with unbounded graph Laplacians.
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1 Introduction andmain results

Recently, there have been increasingly more studies on non-linear partial differential
equations on graphs, especially the existence and nonexistence of solutions for such
equations. For example, Grigor’yan, Lin and Yang [7, 8] used the variation method
to get the existence results for Yamabe type equations and Kazdan-Warner equations
on graphs. Using the Nehari method, Zhang and Zhao [20] proved that the nonlinear
Schrödinger equation has a nontrivial ground state solution, and the ground state
solution is convergent. Lin and Yang [13] proposed a heat flow for the mean field
equation and obtained the existence of a unique solution on graphs.

On Rn, Fujita [4] considered the following Cauchy problem of the semilinear heat
equation {

∂t u = �u + u1+α, t > 0, x ∈ R
n,

u(0, x) = u0(x), x ∈ R
n,

(1.1)

where α > 0 and u0 is initial value. Fujita showed that if α < n
2 , then for any

nonnegative and nontrivial initial value, the solution of Eq. (1.1) blows up in finite
time. The discretization of this problem has attracted lots of attentions. For example,
Lin and Wu [15, 16] studied blow-up phenomenon of the semilinear heat equation
on locally finite graphs. In [19], Wu established a new heat kernel lower estimate on
graphs, and used it to improve the blow-up result that was done in [15]. Based on [16],
Lenz, Schmidt and Zimmermann [12] presented a sufficient condition for blow-up of
solutions to the abstract semilinear heat equation onmeasure spaces, including graphs.
Chung and Choi [1] developed a new condition for blow-up solution to the semilinear
heat equation on networks. Liu [11] considered the semilinear heat equation on a finite
subgraph and investigated the conditions of blow-up phenomenon.

The common thing of the existing conclusions about blow-up phenomenon of the
semilinear heat equation on graphs is for bounded Laplacians. However, in the case of
manifolds, the geometry does not need to be assumed to be bounded, and it was able
to work with for unbounded Laplacians. Furthermore, in the studies of the existence
of solutions to partial differential equations on graphs, there are very few of them
concerned with unbounded Laplacians. Recently, by assuming that the weights of the
graph have a positive lower bound and the distance function of the graph belongs to
L p, which allows an unbounded Laplcian, Lin and Yang [14] derived the existence
of solutions to Schrördinger equation, Mean field equation and Yamabe equation on
locally finite graphs.

In this paper, we focus on the existence and non-existence of solutions to the semi-
linear heat equation on locally finite graphs with unbounded Laplcians. To deal with
unbounded Laplcians, we introduce mild solution to avoid exchanging Pt (semigroup)
and �, and then prove the existence of mild solution with small time to the semilinear
heat equation (Theorem 1.2). Furthermore, by introducing intrinsic metric to graphs,
we obtain on-diagonal lower heat kernel bounds (Theorem 1.1) and then get the nonex-
istence of solutions to the semilinear heat equation for unbounded Laplcians (Theorem
1.3).

Let us recall some basic notations and definitions for weighted graphs. Let V be a
countable discrete space as the set of vertices of a graph, ω : V × V → [0,∞) be an
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edge weight function that satisfies ωxy = ωyx for all x, y ∈ V and ωxy > 0 if and
only if xy is an edge (which is denoted by x ∼ y), and m : V → (0,∞) be a positive
measure on V . These induce a weighted graph G = (V , ω,m). We assume that the
measure is non-degenerate,

m0 := inf
x∈V m(x) > 0.

The graph is called locally finite if the sets {y ∈ V : wxy > 0} are finite for all x ∈ V .

In this paper, we are interested in connected and locally finite graphs.
The space of real valued functions on V is denoted byC(V ) and the space of finitely

supported functions is denoted by C0(V ). C0(V ) is dense in �p(V ,m), p ∈ [1,∞],
the �p spaces of functions on V with respect to the measure m.

On C(V ), we define the Laplacian as

� f (x) = 1

m(x)

∑
y∼x

ωxy( f (y) − f (x)).

As well known, the Laplacian � is bounded in �2(V ,m) if and only if

D :=
∑

y∼x ωxy

m(x)
< ∞.

In this paper, we consider unbounded Laplacians. We denote by Pt = et� the semi-
group associated to �. The heat kernel p(t, x, y) with t > 0, x, y ∈ V is the smallest
non-negative fundamental solution for the discrete heat equation ∂t u = �u.Moreover,
for any f ∈ �p(V ,m) with p ∈ [1,∞] and x ∈ V ,

Pt f (x) =
∑
y∈V

m(y)p(t, x, y) f (y).

In order to adapt to unbounded Laplacians, we use the intrinsic metric on graphs.
For manifolds, the intrinsic metric naturally arises from the energy form as well as
from the geometry, which was introduced on graphs by Keller and Lenz [10] and
improved by Frank et al. [5].

Definition 1.1 [Intrinsic metric] An intrinsic metric ρ : V ×V → [0,∞) is a distance
function satisfying for any x ∈ V

∑
y∈V

ωxyρ
2(x, y) ≤ m(x).

We say ρ has finite jump, if there exists a positive constant j such that the jump size

sup{ρ(x, y) : x, y ∈ V , x ∼ y} ≤ j .

Fixed a point x ∈ V , the ball on graphs with the intrinsic metric ρ is defined by

Bρ(x, r) = {y ∈ V : ρ(x, y) ≤ r},
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where r ≥ 0.We say Bρ(x, r) is finite, if it is of finite cardinality, namely �Bρ(x, r) <

∞. The volume of balls Bρ(x, r) is

Vρ(x, r) =
∑

y∈Bρ(x,r)

m(y).

Definition 1.2 [Polynomial volume growth] G has polynomial volume growth of
degree n ∈ N+, if there exist constants C > 0 and r0 > 0, such that for all x ∈ V ,
r ≥ r0,

Vρ(x, r) ≤ Crn . (1.2)

In this paper, we investigate the non-existence of global solutions for the following
semilinear heat equation

{
∂t u = �u + u1+α, t > 0, x ∈ V ,

u(0, x) = u0(x), x ∈ V ,
(1.3)

on locally finite connected weighted graphs, where � is an unbounded graph Lapla-
cian, α is a positive parameter and u0 is an initial value. We will study non-negative
mild solution of Eq. (1.3), which is motivated by the following observation. Let
u : [0, T ) × V → R be continuously differentiable with respect to t and satisfy-
ing ∂t u = �u + u1+α . If we further assume that � is a bounded Laplacian, then u
satisfies the following integral equation

u(t, x) = Ptu0(x) +
∫ t

0
Pt−s(u(s, ·)1+α)(x)ds, (1.4)

for any t ∈ [0, T ), which depends on the exchangeability of integral and limit, as well
as �Pt = Pt�. In the case of unbounded Laplacians, they are not always true.

Definition 1.3 [Mild solution and Global solution] A function u : [0, T ) × V → R

is a mild solution of Eq. (1.3) on [0, T ) if u is continuously differentiable on (0, T ),
uniformly bounded and Eq. (1.4) is satisfied on [0, T ) × V . If T = ∞, then we call
u a global solution of Eq. (1.3).

Now, we are ready to introduce our main results.

Theorem 1.1 Let G = (V , ω,m) be a weighted graph with an intrinsic metric ρ with
finite jump size and finite balls. Suppose that the graph has polynomial volume growth
property with power n. Then, for all sufficiently large t and all x ∈ V ,

p(t, x, x) ≥ 1

4Vρ(x, c
√
t log t)

,

where c >
√

n
2 .
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Theorem 1.2 Suppose that G = (V , ω,m) be a weighted graph. Then there exists a
unique mild solution of Eq. (1.3) for any bounded initial value on [0, T ) with some
T > 0.

Theorem 1.3 Let G = (V , ω,m) be a weighted graph with an intrinsic metric ρ with
finite jump size and finite balls. Suppose that the graph has polynomial volume growth
property with power n. If 0 < nα < 2, then there is no non-negative global solution
of Eq. (1.3) for any bounded, non-negative and non-trivial given initial value.

2 Upper bounds of heat kernel

In this section, we introduce the on-diagonal upper bounds of heat kernel. First, we
recall some important properties about the heat kernel from spectral theory [17, 18].

Lemma 2.1 For t, s > 0 and any x, y ∈ V , we have

(1) p(t, x, y) is continuous with respect to t;
(2) p(t, x, y) = p(t, y, x);
(3) p(t, x, y) ≥ 0;
(4)

∑
y∈V m(y)p(t, x, y) ≤ 1;

(5) ∂t p(t, x, y) = �x p(t, x, y) = �y p(t, x, y);
(6)

∑
z∈V m(z)p(t, x, z)p(s, z, y) = p(t + s, x, y);

(7) p(t, x, x) is non-increasing with respect to t .

The weighted graph G = (V , ω,m) is called stochastically complete if

∑
y∈V

m(y)p(t, x, y) = 1

for all t > 0 and x ∈ V . Using the intrinsic metric, Huang et.al established the
volume growth criterion of stochastically complete for graphs, which is the exact
discrete analogue to the works of Grigor’yan [6] on manifolds and can be found in [9,
Theorem 1.1], as follows.

Lemma 2.2 Let log� = max{log, 1}. Let G = (V , ω,m) be a weighted graph with an
intrinsic metric ρ with finite distance balls Bρ(r). If

∫ ∞ r

log�(Vρ(r))
dr = ∞,

then the graph is stochastically complete.

Remark 1 The use of log� instead of log is to deal with the case when the measurem is
small. And the actual value of the constant 1 can be replaced by any positive number.

Remark 2 Under the same assumptions as Lemma 2.2, if G satisfies the polynomial
volume growth of degree n for large r , then G is stochastically complete. Indeed,
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when the measure of the graph is finite, the conclusion is obvious from the definition
of log�. If m(V ) = ∞, we have

Vρ(r) ≤ Crn ≤ Cr2n ≤ Cn!er2

for large r , which implies that

∫ ∞ r

log(Vρ(r))
dr ≥

∫ ∞ r

log(Cn!er2)dr =
∫ ∞ r

log(Cn!) + r2
dr = ∞.

These two cases yield the conclusion.

The following upper bounds of the heat kernel comes from Davies [2].

Lemma 2.3 Let H be the set of all positive functions φ on V such that φ±1 ∈ �∞(V ).
Then, for any x, y ∈ V and all t ≥ 0, we have

p(t, x, y) ≤ (
m(x)m(y)

)− 1
2 inf

φ∈H{φ(x)−1φ(y)ec(φ)t },

where c(φ) := supx∈V b(φ, x) − λ,

b(φ, x) := 1

2m(x)

∑
y∼x

ωxy

(
φ(y)

φ(x)
+ φ(x)

φ(y)
− 2

)
,

and λ ≥ 0 is the bottom of the �2 spectrum of −�.

For given x, y ∈ V , we choose φ = e−sψ , where s > 0 and

ψ(z) = min{ρ2(x, z), ρ2(x, y)},

to yield the following upper bounds of the heat kernel.

Proposition 2.1 Let G = (V , ω,m) be a weighted graph with an intrinsic metric ρ

with finite jump size j > 0. For any s > 0, the inequality

p(t, x, y) ≤ (
m(x)m(y)

)− 1
2 exp

(
−sρ2(x, y) + 1

2
(se j

2s − se− j2s)t − λt

)
(2.1)

holds for all t > 0 and x, y ∈ V .

Proof It is easy to see that

φ(x) = 1, φ(y) = e−sρ2(x,y).

From the mean value theorem, we obtain there exists ξ ∈ (0, ρ2(x, y)) ⊂ (0, j2] such
that

φ(y)

φ(x)
= e−sρ2(x,y) = −se−sξ ρ2(x, y) + 1 ≤ −se− j2 sρ2(x, y) + 1.
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Similarly,
φ(x)

φ(y)
= esρ

2(x,y) ≤ se j
2 sρ2(x, y) + 1.

Together with the definition of ρ, it yields

b(φ, x) ≤ 1

2
(se j

2 s − se− j2 s).

Thus, applying Lemma 2.3 to complete the proof. 
�
Remark 3 For the graph with bounded Laplacians, Davies deduced the upper bounds
of the heat kernel using the combinatorial distance [2, Theorem 10]. Moreover, Folz
obtained another non-Gaussian upper bound of the heat kernel for the intrinsic metrics
with finite jump size [3, Theorem 2.1].

3 Proof of main theorems

Proof of Theorem1.1. Notice that m0 := infx∈V m(x) > 0. For any x ∈ V , summing
the inequality (2.1) in Proposition 2.1 with respect to y on Bρ(x, r)c with r > 0, we
obtain for all s > 0, t > 0,

∑
y∈Bρ(x,r)c

m(y)p(t, x, y)

≤ 1

m0

∑
y∈Bρ(x,r)c

m(y) exp

(
−sρ2(x, y) + 1

2
(se j

2 s − se− j2 s)t − λt

)
.

Since Bρ(x, r)c can be decomposed into the union of Bρ(x, 2k+1r)\Bρ(x, 2kr) from
k = 0 to ∞, we obtain

∑
y∈Bρ(x,r)c

m(y)p(t, x, y)

≤ 1

m0

∞∑
k=0

∑
y∈Bρ(x,2k+1r)\Bρ(x,2kr)

m(y) exp

(
−sρ2(x, y) + 1

2
(se j

2 s − se− j2 s)t − λt

)

≤ 1

m0

∞∑
k=0

∑
y∈Bρ(x,2k+1r)\Bρ(x,2kr)

m(y) exp

(
−4ksr2 + 1

2
(se j

2 s − se− j2 s)t − λt

)

≤ 1

m0

∞∑
k=0

exp

(
−4ksr2 + 1

2
(se j

2 s − se− j2 s)t − λt

) ∑
y∈Bρ(x,2k+1r)

m(y)

= 1

m0

∞∑
k=0

Vρ(x, 2k+1r) exp

(
−4ksr2 + 1

2
(se j

2 s − se− j2 s)t − λt

)
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Together with the polynomial volume growth (1.2), we get for r ≥ r0 and s > 0,

∑
y∈Bρ (x,r)c

m(y)p(t, x, y) ≤ C

m0

∞∑
k=0

(
2k+1r

)n
exp

(
−4ksr2 + 1

2
(se j

2s − se− j2s )t − λt

)
. (3.1)

Let

ak :=
(
2k+1r

)n
exp

(
−4ksr2 + 1

2
(se j

2s − se− j2s)t − λt

)
, k = 0, 1, · · · .

It is easy to see that

ak+1

ak
= 2n exp

(
−4k+1sr2 + 4ksr2

)
≤ 2n exp

(
−3sr2

)
.

Here, we choose

r = c
√
t log t and s = 1

t
,

where t > 1, c >
√

n
2 . Notice that there exists a T1 ≥ e such that, for any t ≥ T1,

3sr2 = 3c2(log t)2 ≥ 3c2 log t ≥ n.

Thus,
ak+1

ak
≤

(
2

e

)n

< 1,

which implies
∞∑
k=0

ak ≤ a0

1 − ( 2
e

)n . (3.2)

Applying (3.2) to (3.1), we obtain for r ≥ r0 and t ≥ T1,

∑
y∈Bρ(x,r)c

m(y)p(t, x, y) ≤ βrn exp

(
−sr2 + 1

2
(se j

2s − se− j2s)t − λt

)
, (3.3)

where β = 2nC

m0

(
1−

(
2
e

)n) , r = c
√
t log t and s = 1

t . By combining the above conditions

r ≥ r0 and t ≥ T1, there exists a T2 ≥ T1 such that the inequality (3.3) holds for any
t ≥ T2. More precisely, for any t ≥ T2,
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∑
y∈Bρ(x,r)c

m(y)p(t, x, y)

≤ β
(
c
√
t log t

)n
exp

(
−c2(log t)2 + 1

2

(
1

t
e
j2
t − 1

t
e−

j2
t

)
t − λt

)

≤ β
(
c
√
t log t

)n
exp

(
−c2 log t + 1

2

(
e
j2
t − e−

j2
t

)
− λt

)

= cnβ

⎛
⎝ log t

t
c2
n − 1

2

⎞
⎠
n

e−λt exp

(
1

2

(
e
j2
t − e−

j2
t

))
,

(3.4)

where c2 > n
2 .

We claim that the right-hand side of (3.4) approaches to 0 as t → +∞. Indeed,
observe that e−λt ≤ 1 for any t ≥ T2 since λ ≥ 0, and

e
j2

t − e− j2

t → 0, t → +∞.

Moreover, since c2 > n
2 , one has

lim
t→+∞

(
log t

t
c2
n − 1

2

)n

= lim
t→+∞

(
1

( c
2

n − 1
2 )t

c2
n − 1

2

)n

= 0.

The proof of the claim is complete. Thus, there exists a real number T ≥ T2 such that
for any t ≥ T , ∑

y∈Bρ(x,r)c
μ(y)p(t, x, y) ≤ 1

2
, (3.5)

where r = c
√
t log t with c >

√
n
2 .

Using the properties of the heat kernel described in Lemma 2.1, stochastic com-
pleteness in Remark 2 along with Cauchy-Schwarz inequality, we obtain for any t > 0
and all x ∈ V ,

p(t, x, x) ≥ p(2t, x, x)

=
∑
y∈V

m(y)p2(t, x, y)

≥
∑

y∈Bρ(x,r)

m(y)p2(t, x, y)

≥ 1

Vρ(x, r)

⎛
⎝ ∑

y∈Bρ(x,r)

m(y)p(t, x, y)

⎞
⎠

2

= 1

Vρ(x, r)

⎛
⎝1 −

∑
y∈Bρ(x,r)c

m(y)p(t, x, y)

⎞
⎠

2

.

(3.6)
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Set r = c
√
t log t with c >

√
n
2 and t ≥ T in (3.6). Combining (3.5) to complete the

proof of Theorem 1.1. 
�
Proof of Theorem 1.2. Set

FT = { f : [0, T ] × V → R| f (t, x) is bounded and is continous with respect to t }.

The norm in FT is defined by

‖ f ‖FT = sup
[0,T ]×V

| f |.

Obviously, FT is a Banach space.
For any u ∈ FT , we consider

ψ(u)(t, x) =
∑
x∈V

m(y)p(t, x, y)u(0, y) + φ(u)(t, x),

where φ(u)(t, x) = ∫ t
0

∑
y∈V m(y)p(t − s, x, y)u(s, y)1+αds. The integral is well-

defined, since u ∈ FT . Next, we show that ψ(u) is a contraction on the small closed
ball

B(u0, A‖u0‖FT ) := {u ∈ FT : ‖u − u0‖FT ≤ (A − 1)‖u0‖FT }
into itself, where A ≥ 1

α
+ 1. Indeed, for any t1, t2 ∈ [0, T ] and any x ∈ V , from the

fact that
∑

y∈V m(y)p(t, x, y) ≤ 1 for any t > 0, we have

∣∣∣∣∣∣
∫ t2

t1

∑
y∈V

m(y)p(t − s, x, y)u(s, y)1+αds

∣∣∣∣∣∣ ≤ ‖u‖1+α
FT

|t1−t2| ≤ A1+α‖u0‖1+α
FT

|t1−t2|.
(3.7)

Combining the continuousness of
∑

x∈V m(y)p(t, x, y)u(0, y) with respect to t , it
follows that ψ(u)(t, x) is continuous with respect to t . Moreover, let

T <
1

Aα(1 + α)‖u0‖α
FT

, (3.8)

for any (t, x) ∈ [0, T ] × V ,

|ψ(u)(t, x)| ≤ ‖u0‖FT + ‖u‖1+α
FT

T <

(
1 + A

1 + α

)
‖u0‖FT ≤ A‖u0‖FT , (3.9)

which means that ψ(u) ∈ B(u0, A‖u0‖FT ). Furthermore, for any u, v ∈
B(u0, A‖u0‖FT ) with u(0, ·) ≡ v(0, ·), from the mean value theorem, we have

|u1+α −v1+α| ≤ (1+α)max{‖u‖α
FT

, ‖v‖α
FT

}|u−v| ≤ Aα(1+α)‖u0‖α
FT

‖u−v‖FT .
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Then, for any (t, x) ∈ [0, T ] × V ,

|ψ(u) − ψ(v)|(t, x) ≤ Aα(1 + α)‖u0‖α
FT

T ‖u − v‖FT . (3.10)

Therefore, from the contraction mapping principle, there exists a unique solution
u ∈ B(u0, A‖u0‖FT ) of the following integral equation

{
u(t, x) = ∑

x∈V
m(y)p(t, x, y)u(0, y) + φ(u)(t, x), (t, x) ∈ (0, T ] × V ,

u(0, x) = u0(x), x ∈ V ,
(3.11)

when Aα(1 + α)‖u0‖α
FT

T < 1, namely T satisfies the condition (3.8). 
�
Given a mild solution u of Eq. (1.3) and t ∈ (0, T ), denote

Jt (s, x) = Pt−s(u(s, ·))(x)

and
Kt (s, x) = Pt−s(u(s, ·)1+α)(x)

for any 0 < s < t and x ∈ V . The following lemma is the crucial ingredient of
proving Theorem 1.3, which is the discrete version of [4, Lemma 2.1], and it can be
founded in [16, Lemma 4.1] for bounded Laplacians.

Lemma 3.1 Let G = (V , ω,m) be a weighted graph with an intrinsic metric ρ with
finite balls. Suppose that the initial value function u0 is positive at a given vertex x0.
Let T > 0, if u = u(t, x) is a non-negative bounded mild solution of Eq. (1.3) in
[0, T ) × V , then we have

Jt (0, x0)
−α − u(t, x0)

−α ≥ αt, t ∈ [0, T ).

Proof First, we claim that for any h ∈ R, we have

Jt (s + h, x) − Jt (s, x) =
∫ s+h

s
Kt (τ, x)dτ.

To end the claim, let ηk = 1Bρ(x0,k) be the characteristic function with 1 on Bρ(x0, k)
and 0 otherwise. Note that ηk ∈ C0(V ), we have

Pt−s

(∫ s

0
Ps−τ

(
u(τ, ·)1+α

)
dτ · ηk

)
=

∫ s

0
Pt−s(Ps−τ (u(τ, ·)1+α) · ηk)dτ.

By virtual of

Pt−s(Ps−τ (u(τ, ·)1+α) · ηk) ≤ Pt−s(Ps−τ (u(τ, ·)1+α) · ηk+1)
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and Pt−s(Ps−τ (u(τ, ·)1+α) · ηk) ≤ Pt−τ (u(τ, ·)1+α) ≤ ‖u1+α‖FT . Monotone
convergence theorem yields that

Pt−s(Ps−τ (u(τ, ·)1+α) · ηk) → Pt−τ (u(τ, ·)1+α), k → ∞.

Similarly,

Pt−s

(∫ s

0
Ps−τ

(
u(τ, ·)1+α

)
dτ · ηk

)
→ Pt−s

(∫ s

0
Ps−τ

(
u(τ, ·)1+α

)
dτ

)
, k → ∞.

From Dominated convergence theorem,

∫ s

0
Pt−s(Ps−τ (u(τ, ·)1+α) · ηk)dτ →

∫ s

0
Pt−τ (u(τ, ·)1+α)dτ

as k → ∞. These imply

Pt−s

(∫ s

0
Ps−τ

(
u(τ, ·)1+α

)
dτ

)
=

∫ s

0
Pt−τ (u(τ, ·)1+α)dτ.

Therefore,

Jt (s, x) = Pt (u0)(x) +
∫ s

0
Kt (τ, x)dτ.

which complete the claim. From the claim, we have for any 0 < s < t and x ∈ V ,

∂s Jt (s, x) = Kt (s, x). (3.12)

Since u is a mild solution, we have u(s, x) > 0 on (0, t)×V since p(s, x0, x0) > 0
with s > 0 and u0(x0) > 0. It follows that Jt (s, x) > 0 for all (s, x) ∈ [0, t] × V .
From (3.12), Jensen’s inequality and stochastically completeness of G, we obtain

∂s Jt (s) ≥ Jt (s)
1+α, s ∈ [0, t],

which yields
Jt (0, x0)

−α − Jt (t, x0)
−α ≥ αt .

That ends the proof. 
�

Proof of Theorem 1.3. Suppose that there exists a non-negative global solution u =
u(t, x) of Eq.(1.3). From Theorem 1.1 and the polynomial volume growth property,
we have that there exists a T ′ > 1 such that for any t > T ′ and c2 > n

2 ,

p(t, x0, x0) ≥ 1

4Vρ(x0, c
√
t log t)

≥ 1

4Ccn

(√
t log t

)−n
.
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Hence, for any t > T ′, we have

Jt (0, x0) =
∑
x∈V

m(x)p(t, x0, x)u0(x)

≥ m(x0)u0(x0)p(t, x0, x0)

≥ C ′ (√
t log t

)−n
,

(3.13)

where C ′ = m(x0)u0(x0)
4Ccn .

On the other hand, it follows from Lemma 3.1 that for any t > 0,

Jt (0, x0)
−α ≥ u(t, x0)

−α + αt ≥ αt . (3.14)

Combining (3.13) and (3.14) yields for any t > T ′,

log t

t
2−nα
2nα

≥ C ′′, (3.15)

where C ′′ = (α(C ′)α)
1
nα . When 0 < nα < 2, we have

lim
t→+∞

log t

t
2−nα
2nα

= 0,

which gets a contradiction with (3.15) and ends the proof of the theorem. 
�
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