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Abstract
A k-configuration of type (d1, . . . , ds), where 1 � d1 < · · · < ds are integers, is
a set of points in P

2 that has a number of algebraic and geometric properties. For
example, the graded Betti numbers and Hilbert functions of all k-configurations in
P
2 are determined by the type (d1, . . . , ds). However the Waldschmidt constant of

a k-configuration in P
2 of the same type may vary. In this paper, we find that the

Waldschmidt constant of a k-configuration in P2 of type (d1, . . . , ds)with d1 ≥ s ≥ 1
is s. Thenwedealwith theWaldschmidt constants of standardk-configurations inP2 of
type (a), (a, b), and (a, b, c) with a ≥ 1. In particular, we prove that theWaldschmidt
constant of a standard k-configuration in P2 of type (1, b, c) with c ≥ 2b+2 does not
depend on c.
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1 Introduction

A set of points X in P
2 is called a k-configuration of type (d1, . . . , ds), where 1 �

d1 < · · · < ds are integers, when there exists a partition of X = X1 ∪ · · · ∪ Xs and
s distinct lines L1, . . . , Ls ⊆ P

2 such that, for each i = 1, . . . , s we have |Xi | = di ,
Xi ⊆ Li and, for i > 1, Li ∩ (X1 ∪ · · · ∪Xi−1) = ∅. The last condition forces a point
in X to belong to the set Xi corresponding to the largest index of a line containing it.

The k-configurations were introduced in the 1980s by Roberts and Roitman in [26]
and extensively studied in the literature for their several interesting properties, see for
instance [5, 12, 14, 15, 17, 18].

In 1995, Harima [23] extended this definition to P
3, and then in 2001 Geramita,

Harima, and Shin [14, 16] generalized the definition to P
n . Moreover, Roberts and

Roitman showed that all k-configurations in P
2 of type (d1, . . . , ds) have the same

Hilbert function, which can be encoded from the type. This result was generalized
again by Geramita, Harima, and Shin [16, Corollary 3.7] to show that all graded Betti
numbers of the associated ideal of a k-configuration in P

n depend on the type only.
However, it should be noted that k-configurations in P

n of the same type can have
very different algebraic and geometric properties [6, 7].

In this paper we are interested in the study of the Waldschmidt constant.
TheWaldschmidt constant of a homogeneous ideal I in R = k[x0, x1, . . . , xn]was

introduced in [28] as

α̂(I ) = lim
t→∞

α(I (t))

t
,

where I (t) is the t-th symbolic power of the ideal I , definedby I (t) = ⋂

P∈Ass(I )(I t RP∩
R), and α(I (t)) is the least degree among all minimal homogeneous generators of I (t).
In [3, Lemma 2.3.1] it was proved that this limit exists.

A prolific line of research involves the study of the Waldschmidt constant of zero
dimensional schemes in P

n , see [2, 4, 8–11, 20, 21, 24, 27] just to cite some papers.
In particular, in [5] and in [25], the authors give some results about the Waldschmidt
constant of star configurations.

Note that if IX is the ideal defining a set of distinct points X = {P1, . . . , Ps}
in P

n and IPi is the ideal of the point Pi , then the t-th symbolic power of IX is

I (t)
X

= I tP1 ∩ · · · ∩ I tPs , that is, I
(t)
X

defines a homogeneous set of fat points supported
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Fig. 1 k-configurations X and Y in P2 of type (1, 2, 3)

at X, denoted by tX. If IX is the ideal of a set of points X, instead of “Waldschmidt
constant of IX”, we simply write “Waldschmidt constant of X”.

In [5, Section 3.3] the authors showed that two different k-configurations of the
same type may have different Waldschmidt constants (Fig. 1). For an easy example,
consider the following two k-configurations X and Y in P2 of type (1, 2, 3).

Then the Waldschmidt constants of X and Y are different, i.e.,

α̂(IX) = 7

3
and α̂(IY) = 2,

respectively (see [5, 13]).
As we have seen above, k-configurations in P2 of the same type may have different

Waldschmidt constants. Here we extend some results in [5]. In particular we focus
on the so called standard k-configurations in P

2, see Definition 2.4, and we find the
Waldschmidt constants of all standardk-configurations of type (a), (a, b) and (a, b, c),
except for type (2, 3, 5), as summarized in Table 1.

The paper is structured as follows.
In Sect. 2 we recall some definitions and useful tools; in particular we prove, in a

more general context, the existence of irreducible curves in a certain linear system
(see Lemma 2.7). In Sect. 3 we describe a method to find the Waldschmidt constant
of a set X of points, that works in particular when X is supported on some lines in
a specific way, e.g., when X is a k-configuration. In Sect. 4 we consider particular
schemes with support on lines, when the number of points on each line is bigger
than the number of lines. As an application, we find the Waldschmidt constants of
standard k-configurations of type (a) and, for a > 1, of type (a, b). To complete
the case (a, b), we recall the result in [11, Proposition 3.3]. In Sect. 5, we find the
Waldschmidt constants of standard k-configurations of type (1, b, c). In Sect. 6, we
find the Waldschmidt constants of standard k-configurations of type (a, b, c), with
a > 1, except the type (2, 3, 5).

To lighten the reading load, the proofs of some theorems of Section 5, that are
very similar to the proofs of other theorems in the same section, can be found in the
Appendix, where an interested reader will find all the details.
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Table 1 The Waldschmidt constant of standard k-configurations of type (a), (a, b), (a, b, c)

The type of X Note α̂(IX) From

(a) 1 Corollary 4.2

(1, b)
2b − 1

b
Remark 4.4

(a, b) a ≥ 2 2 Corollary 4.2

(1, b, b + 1) b even, b ≥ 4
9b − 4

3b
Theorem 5.4

(1, b, c) c even, c ≤ 2b − 4
6b + 3c − 4

2b + c
Theorem 5.1

(1,b,c) c odd, b+1 < c ≤ 2b − 3
6b + 3c − 7

2b + c − 1
Theorem 5.2

(1,b,2b-2)
6b2 − 14b + 6

2b2 − 4b + 1
Theorem 5.5

(1,b,2b-1)
6b2 − 8b + 1

2b2 − 2b
Theorem 5.6

(1,b,2b)
6b − 5

2b − 1
Theorem 5.7

(1,b,2b+1)
6b2 − 2b − 3

2b2 − 1
Theorem 5.8

(1,b,c) c ≥ 2b + 2
3b − 1

b
Theorem 5.10

(2,3,4)
17

6
Theorem 6.1

(2,3,5)
17

6
≤ α̂(IX) ≤ 71

24
Remark 6.6

(2,3,c) c≥ 6 3 Theorem 6.5

(2,b,c) b≥4 3 Theorem 6.5

(a,b,c) a≥ 3 3 Theorem 6.7

2 Preliminaries

We will work with an algebraic closed field k of characteristic zero. We recall the
definition of the Waldschmidt constant for an ideal (see [3, Lemma 2.3.1] for the
existence of the limit, and [10] where the authors refer to that limit as “Waldschmidt
constant”).

Definition 2.1 For a homogeneous ideal J ⊆ k[Pn] we denote by α(J ) the initial
degree of J , i.e., the least degree of nonzero elements in J . TheWaldschmidt constant
of J is the following limit

α̂(J ) = lim
t→∞

α(J (t))

t
,

where J (t) is the t-th symbolic power of J .
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Note that (see the proof of [3, Lemma 2.3.1])

α̂(J ) ≤ α(J (t))

t

for every t > 0.
If IX is the ideal defining a set of distinct points X = {P1, . . . , Ps} in Pn and IPi is

the ideal of the point Pi , then the t-th symbolic power of IX is I (t)
X

= I tP1 ∩ · · · ∩ I tPs ,

that is, I (t)
X

defines a homogeneous set of fat points supported at X, which we will
denote by tX.

In this paper we will work with special sets of simple distinct points in P
2. By

abuse of notation, we will refer to [IX]d as the linear system of all the plane curves of
degree d containing X, since this is, from a geometrical point of view, what the forms
in [IX]d correspond to, and we simply write dim[IX]d instead of dimk[IX]d .

We have the following useful lemma.

Lemma 2.2 Let X be a set of simple distinct points in P2, and let IX be its ideal. Let μ
and d be positive integers such that the initial degree of the scheme of fat points mμX

is md for each integer m > 0. Then the Waldschmidt constant of IX is

α̂(IX) = d

μ
.

Proof Since, by definition, α̂(IX) = limt→∞
α(I (t)

X
)

t , if we let t = mμ, we have

α(I (t)
X

) = α(ImμX) = md, and so

α̂(IX) = md

mμ
= d

μ
.

��
We now recall the definitions of k-configurations and standard k-configurations.

Definition 2.3 [14, 15, 26]
Let 1 � d1 < · · · < ds be integers and let L1, . . . , Ls ⊆ P

2 be distinct lines. A
k-configuration of points in P

2 of type (d1, . . . , ds) is a finite set X of points in P
2

such that:

1. X = ⋃s
i=1 Xi , where the Xi are subsets of X;

2. |Xi | = di and Xi ⊆ Li for each i = 1, . . . , s;
3. Li (1 < i � s) does not contain any points of X j for all j < i .

In analogy with [14, Section 4] in P
3 and [15, Section 4] in P

n , here we
give an explicit definition of standard k-configurations in P

2, which are special k-
configurations of points in P2 whose coordinates are integer values.
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Definition 2.4 Let k[x0, x1, x2] be the homogeneous ring for P2, and let (d1, . . . , ds)
be the type of a k-configuration in P2. We construct a set of points which realizes this
type, and whose points are located in the following lines Li , where

L1 = {x2 = (s − 1)x0}, L2 = {x2 = (s − 2)x0}, . . . , Ls = {x2 = 0}.

On each of these lines Li we place di points as follows

d1points onL1with coordinates [1 : j : s − 1] 0 ≤ j ≤ d1 − 1,

d2points onL2with coordinates [1 : j : s − 2] 0 ≤ j ≤ d2 − 1,
...

dspoints onLswith coordinates [1 : j : 0] 0 ≤ j ≤ ds − 1.

If 1 ≤ d1 < · · · < ds , we call the k-configuration of points in P2 constructed as above
a standard k-configuration of type (d1, . . . , ds).

We conclude this section with two lemmas, that are key tools for the proofs in this
paper.

Thefirst one is a technical lemma fromour previous paper [5], and it is an application
of Bezout’s Theorem.

The second lemma is useful to compute the Waldschmidt constants of all the stan-
dard k-configurations from type (1, b, 2b − 2) to (1, b, 2b + 1), since for those cases
we need the existence of irreducible curves.

Lemma 2.5 Let m1, . . . ,ms and d be positive integers and let P1, . . . , Ps be s points
lying on a line L with s > 1. Let X be the scheme m1P1 + · · · + ms Ps. Set

μ =
⌈

m1 + · · · + ms − d

s − 1

⌉

, (2.1)

and assume [IX]d 
= {0}. Then
(i) μ ≤ d;
(ii) the line L is a fixed component of multiplicity at least μ for the plane curves of

degree d defined by the forms of the ideal [IX]d .
Proof (i) Since [IX]d 
= {0}, then d ≥ mi for any i , hence

μ =
⌈

m1 + · · · + ms − d

s − 1

⌉

≤
⌈

sd − d

s − 1

⌉

= d;

(ii) follows from [5, Lemma 2.5]. ��
Remark 2.6 Note that, as we proved in (i), the condition μ ≤ d follows from the
hypothesis [IX]d 
= {0}. (Hence the condition μ ≤ d among the hypotheses of [5,
Lemma 2.5] was redundant).
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Fig. 2 The scheme X

Lemma 2.7 Let L, M be two distinct lines, and let b be a positive integer. Let
P1, . . . , Pb, Q1, . . . , Qb, R be distinct points such that R /∈ L ∪ M, and, for any
1 ≤ i ≤ b, Pi ∈ L, Qi ∈ M, and the point L ∩ M /∈ {P1, . . . , Pb, Q1, . . . , Qb}.
Moreover R, Pi , Q j do not lie on a line, for any i and j . Then

(i) the scheme X = P1 + · · · + Pb + Q1 + · · · + Qb + (b − 1)R gives independent
conditions to the curves of degree b (see Fig.2);

(ii) the only curve of degree b in [IX]b is irreducible.

Proof (i) It is well known that the fat point (b − 1)R gives independent conditions to
the curve of degree b. Consider the following curve Gi of degree b

Gi = L + N1 + · · · + Ni−1 + Ni+1 · · · + Nb,

where N j is the line RQ j , j 
= i , so that Gi contains the scheme X − Qi , but it does
not contain Qi . Analogously we can construct a curve of degree b passing through
X− Pi , that does not contain Pi . Hence {P1, . . . , Pb, Q1, . . . , Qb} gives independent
conditions to the curves defined by the linear system [I(b−1)R]b, and thus (i) follows.

(ii) Note that since

(

b + 2

2

)

−
(

b + b +
(

b

2

))

= 1,

then from (i) there exists only one curve of degree b through X, say C. Now we prove
by induction on b that the curve C is irreducible. Obvious for b = 1, assume b > 1.
Assume that

C = C1 + · · · + Cr ,

where r > 1 and the Ci are the irreducible components of C. Let bi = deg Ci , and let
mi be the multiplicity of Ci at R.

Note that if bi = 1, i.e., Ci is a line, then mi ≤ 1; if bi > 1, since Ci is irreducible,
then mi ≤ bi − 1.

If for each i we have bi > 1, then

b − 1 ≤ m1 + · · · + mr ≤ (b1 − 1) + · · · + (br − 1) = b − r ,

hence r ≤ 1, and we get a contradiction.
Otherwise, without loss of generality, we can assume that b1 = 1, that is, C1 is a

line.
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If R /∈ C1, then C1 contains at most b simple points of X. So since the curve
H = C2 + · · · + Cr has degree b − 1, and contains the fat point (b − 1)R, then it is
union of b−1 lines through R. Moreover, recalling that R, Pi , Q j are not collinear for
any i and j , and so each line through R contains at most one point ofX−(b−1)R, then
H cannot containsX−(b−1)R−C1.Hence R ∈ C1 and soC1 contains atmost one other
point ofX. HenceH = C2+· · ·+Cr is a curve of degree b−1 throughX−C1, that is,
through (b−2)R and at least 2b−1points in the set {P1, . . . , Pb, Q1, . . . , Qb}.Wemay
assume thatH contains P1+· · ·+ Pb+Q1+· · ·+Qb−1. By the inductive hypothesis,
the only curve of degree b−1 through (b−2)R+ P1+· · ·+ Pb−1+Q1+· · ·+Qb−1
is irreducible. Hence H has to be that curve. But Pb ∈ H, so, by Bezout’s Theorem,
L is a component of H, hence, since H is irreducible, we get L = H. It follows that
Q1 ∈ L , a contradiction. ��

3 Method

In this section we describe the main method that we will use to find the Waldschmidt
constant of a k-configuration X in P2. Our computation is structured as follows.

Step 1. We look for a curve F of degree d, which contains each point of X with
multiplicity exactly μ, so that, for each m > 0, mF is a curve in the linear
system

[

ImμX

]

md and so
[

ImμX

]

md 
= {0}.
Step 2. We show that

[

ImμX

]

md−1 = {0}, for each m ≥ 1 and we prove it by contra-
diction. For this purpose we define

m̄ = min{m|[ImμX]md−1 
= {0}}.

We prove, mostly directly, that m̄ 
= 1. For m̄ > 1, applying Lemma 2.5
several times, we show that F is a fixed component for the linear system
[

Im̄μX

]

m̄d−1. Thus, by removing F , we get

dim
[

Im̄μX

]

m̄d−1 = dim
[

Im̄μX−F
]

m̄d−1−d

and, since F contains each point of X with multiplicity exactly μ, we have

[

Im̄μX−F
]

m̄d−1−d = [

I(m̄−1)μX
]

(m̄−1)d−1

and the contradiction comes from the minimality of m̄.
Step 3. Since the initial degree of

[

ImμX

]

is md, then, by Lemma 2.2 we have

α̂(IX) = d

μ
.

Note that if X is a standard k-configuration, then the curve F strictly depends on
the type ofX. In certain casesF is a union of lines, and in other cases it has irreducible
components of higher degrees.
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4 Waldschmidt constants of k-configurations of type (d1, . . . ,ds)
with d1 ≥ s

In the next lemmawe compute theWaldschmidt constant of a set of pointsX contained
in s lines, where each line contains at least s points of X and no two lines meet in a
point of X.

The following lemma will be useful for computing the Waldschmidt constants of
both a k-configuration of type (d1, . . . , ds) and a standard k-configuration of the same
type (d1, . . . , ds), when d1 ≥ s.

Lemma 4.1 Let s be a positive integer, and let L1, . . . , Ls be distinct lines. Let Xi be
a finite set of di points on the line Li (1 ≤ i ≤ s), and let X = ⋃s

i=1 Xi . If di ≥ s, for
each 1 ≤ i ≤ s, and any intersection point of two lines Li and L j , for i 
= j , is not
contained in X, then the Waldschmidt constant of X is

α̂(IX) = s.

Proof for s = 1, it is immediate. So we assume s > 1.
Let m be a positive integer. The curve F = L1 + · · · + Ls has degree s and passes

through the points of X with multiplicity 1, hence

mF ∈ [ImX]ms .

Now we prove that for each m > 0,

[ImX]ms−1 = {0},

so the initial degree of ImX will be ms and the conclusion will follow from Lemma
2.2.

Assume that for some m, [ImX]ms−1 
= {0}. Note that if [ImX]ms−1 
= {0}, then
since each Li contains di points, and each point has multiplicity m, and the degree
we are considering is ms − 1, then by Lemma 2.5, each Li is a fixed component of

multiplicity at least
⌈

mdi−(ms−1)
di−1

⌉

for the plane curves of the linear system [ImX]ms−1.

Now, since di ≥ s ≥ 2, then

⌈

mdi − (ms − 1)

di − 1

⌉

≥ 1, (4.1)

hence F is a fixed component for the curves defined by this linear system.
Set

m̄ = min{m|[ImX]ms−1 
= {0}}. (4.2)

First observe that m̄ 
= 1. In fact, for m = 1, since degF = s, then [IX]s−1 = {0}. By
removing F from the curves of the linear system [Im̄X]m̄s−1, since any intersection
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point of two lines Li and L j is not contained in X, we get

dim[Im̄X]m̄s−1 = dim[Im̄X−F ](m̄s−1)−s = dim[I(m̄−1)X](m̄−1)s−1,

and by (4.2) this is zero, a contradiction. ��
Corollary 4.2 Let X be a standard k-configuration of type (d1, . . . , ds) with d1 ≥ s.
Then the Waldschmidt constant of X is

α̂(IX) = s.

Proof It follows from the previous lemma. ��
Corollary 4.3 With notation as in Definition 2.3, if X is a k-configuration of type
(d1, . . . , ds) with d1 ≥ s, then the Waldschmidt constant of X is

α̂(IX) = s.

Proof Let F = L1 + · · · + Ls, thus mF ∈ [ImX]ms . Hence

α̂(IX) ≤ s.

Now let X′ be the subset of X that we get after we remove the possible points of X in
the intersections Li ∩ L j , for i 
= j . Let X′

i = X
′ ∩ Li . Recalling Definition 2.3 it is

easy to show that by Lemma 4.1 we have

α̂(IX′) = s.

Since X′ ⊆ X, we have α̂(IX′) ≤ α̂(IX). Thus, the conclusion follows from

s = α̂(IX′) ≤ α̂(IX) ≤ s.

��
Remark 4.4 From Corollary 4.2, we immediately get that the Waldschmidt constant
of a standard k-configuration of type (d1) is 1, and of type (d1, d2) with d1 ≥ 2 is 2.
For the case (1, d2) see [11, Proposition 3.3], where it is proved that ifX is a standard
k-configuration of type (1, d2), then α̂(IX) = 2d2−1

d2
.

5 Waldschmidt constants of standard k-configurations of type
(1,b, c)

In this section we compute the Waldschmidt constant of a standard k-configuration X
of type (1, b, c) as in Definition 2.4, for any values of b and c.
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Fig. 3 A standard
k-configuration of type (1, b, c)

It is interesting to note that the Waldschmidt constant stabilizes at c = 2b+ 2, that
is,

α̂(IX) = 3b − 1

b
for c ≥ 2b + 2

(see Theorem 5.10). One could expect that, for each fixed b, theWaldschmidt constant
strictly increases with c until c = 2b + 2. But this is not always the case, as shown in
Corollary 5.3, since for c ≤ 2b − 3 it behaves in a similar way as a step function.

We fix the notation of this section, summarized in Fig. 3, that will be used in the
proofs.

Let Pi = [1 : i − 1 : 0], for 1 ≤ i ≤ c, Qi = [1 : i − 1 : 1], for 1 ≤ i ≤ b, and
R = [1 : 0 : 2] be the points of X (see Definition 2.4).

Let

L1 be the line through P1, P2, . . . , Pc;
L2 be the line through Q1, Q2, . . . , Qb;
M1 be the line through P1, Q1, R;
M2 be the line through P3, Q2, R;

...

Mi be the line through P2i−1, Qi , R, fori ≤ band2i ≤ c + 1;
N1 be the line through P2, R;
N2 be the line through P4, R;

...

Ni be the line through P2i , R, f or2i ≤ c;
Ti be the line through Qi , R, f ori ≤ b and 2i ≥ c + 2.

Note that each lineMi contains three points ofX, whereas the linesNi and Ti contain
two points of X.

Theorem 5.1 Let X be a standard k-configuration of type (1, b, c). If c is even and
c ≤ 2b − 4, then

α̂(IX) = 6b + 3c − 4

2b + c
.

Proof Define

F = 2b + c − 2

2
L1 + 2b + c − 2

2
L2 + M1 + · · · + M c

2
+ N1 + · · ·
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+N c
2

+ T c+2
2

+ · · · + Tb.

F is the union of 6b+3c−4
2 lines, and F contains each point of X with multiplicity

exactly 2b+c
2 . Hence, for m > 0,

mF ∈ [

I 2b+c
2 mX

]

6b+3c−4
2 m .

Now we prove by contradiction that for each m > 0,

dim
[

I 2b+c
2 mX

]

6b+3c−4
2 m−1 = 0,

and the conclusion will follow from Lemma 2.2.
To this aim, we will use Lemma 2.5 many times in order to get a fixed component

for the curves defined by the forms of
[

I 2b+c
2 mX

]

6b+3c−4
2 m .

So, assume that for some m,
[

I 2b+c
2 mX

]

6b+3c−4
2 m−1 
= {0}, thus by Lemma 2.5, by

recalling that c > b, we get that L1 is a fixed component of multiplicity at least

⌈ 2b+c
2 cm − 6b+3c−4

2 m + 1

c − 1

⌉

=
⌈

((2b + c − 6)(c − 1) + 4c − 4b − 2)m + 2

2(c − 1)

⌉

≥ 2b + c − 6

2
m (5.1)

for the plane curves of the linear system
[

I 2b+c
2 mX

]

6b+3c−4
2 m−1.

By removing 2b+c−6
2 mL1 from those curves, we get

dim[I 2b+c
2 mX

] 6b+3c−4
2 m−1 = dim[I 2b+c

2 mX− 2b+c−6
2 mL1

] 6b+3c−4
2 m−1− 2b+c−6

2 m .

If the dimension above is zero, we get a contradiction and we are done. If it is different
from zero, by Lemma 2.5, by observing that 6b+3c−4

2 m − 1− 2b+c−6
2 m = (2b + c +

1)m − 1, we get that L2 is a fixed component of multiplicity at least

⌈ 2b+c
2 bm − (2b + c + 1)m + 1

b − 1

⌉

=
⌈

((2b + c − 6)(b − 1) + 4b − c − 8)m + 2

2(b − 1)

⌉

≥ 2b + c − 6

2
m, (5.2)

for the plane curves of the linear system [I 2b+c
2 mX− 2b+c−6

2 mL1
](2b+c+1)m−1. By remov-

ing 2b+c−6
2 mL2 from those curves, we get

dim[I 2b+c
2 mX− 2b+c−6

2 mL1
](2b+c+1)m−1

= dim[I 2b+c
2 mX− 2b+c−6

2 mL1− 2b+c−6
2 mL2

]
(2b+c+1)m−1− 2b+c−6

2 m, (5.3)
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where

2b + c

2
mX − 2b + c − 6

2
mL1 − 2b + c − 6

2
mL2

= 2b + c

2
mR +

∑

Pi∈L1

3mPi +
∑

Qi∈L2

3mQi .

If the dimension in (5.3) is zero, we get a contradiction and we are done. If it is
different from zero, by Lemma 2.5, by observing that (2b+c+1)m−1− 2b+c−6

2 m =
2b+c+8

2 m − 1, and

−2b + 5c − 8 = −2b + 6c − c − 8 ≥ −2b + 6c − (2b − 4) − 8 = 4(c − b) + 2c − 4 ≥ 2c,

we have that L1 is a fixed component of multiplicity at least

⌈

3cm − 2b+c+8
2 m + 1

c − 1

⌉

=
⌈

(−2b + 5c − 8)m + 2

2(c − 1)

⌉

≥ m, (5.4)

for the curves of the linear system
[

I 2b+c
2 mR+∑

Pi∈L1
3mPi+∑

Qi∈L2
3mQi

]

2b+c+8
2 m−1. We

now remove mL1 and we get

dim[I 2b+c
2 mR+∑

Pi∈L1
3mPi+∑

Qi∈L2
3mQi

] 2b+c+8
2 m−1

= dim[I 2b+c
2 mR+∑

Pi∈L1
2mPi+∑

Qi∈L2
3mQi

] 2b+c+8
2 m−1−m .

So, if the dimension above is zero, we get a contradiction and we are done. If it
is different from zero, then, by Lemma 2.5, by recalling that we have the hypothesis
2b ≥ c+4, and so 4b ≥ 2b+c+4, we get thatL2 is a fixed component of multiplicity
at least

⌈

3mb − 2b+c+6
2 m + 1

b − 1

⌉

=
⌈

(4b − c − 6)m + 2

2(b − 1)

⌉

≥
⌈

(2b + c + 4 − c − 6)m + 2

2(b − 1)

⌉

=
⌈

m + 1

(b − 1)

⌉

≥ m, (5.5)

for the curves of the linear system
[

I 2b+c
2 mR+∑

Pi∈L1
2mPi+∑

Qi∈L2
3mQi

]

2b+c+6
2 m−1.

Hence

dim
[

I 2b+c
2 mR+∑

Pi∈L1
2mPi+∑

Qi∈L2
3mQi

]

2b+c+6
2 m−1

= dim
[

I 2b+c
2 mR+∑

Pi∈L1
2mPi+∑

Qi∈L2
2mQi

]

2b+c+4
2 m−1.
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If this dimension is different from zero, then we go on and we apply Lemma 2.5 to
the lines Mi , Ni , and Ti . Since

⌈ 2b+c
2 m + 2m + 2m − 2b+c+4

2 m + 1

2

⌉

=
⌈

2m + 1

2

⌉

> 1, and

⌈ 2b+c
2 m + 2m − 2b+c+4

2 m + 1

1

⌉

= 1, (5.6)

the lines Mi , Ni , and Ti are fixed components for the curves of the linear system

[

I 2b+c
2 mR+∑

Pi∈L1
2mPi+∑

Qi∈L2
2mQi

]

2b+c+4
2 m−1.

Hence, from the computations in (5.1), (5.2), (5.4), (5.5), and (5.6), we get that the
following curve

2b + c − 4

2
mL1 + 2b + c − 4

2
mL2 + M1 + · · · + M c

2
+ N1 + · · · + N c

2

+T c+2
2

+ · · · + Tb (5.7)

is a fixed component for the curves defined by the linear system
[

I 2b+c
2 mX

]

6b+3c−4
2 m−1.

Now set

m̄ = min{m | [I 2b+c
2 mX

] 6b+3c−4
2 m−1 
= {0}}. (5.8)

First observe that m̄ 
= 1. In fact for m = 1, the curve F ′ of degree 6b+3c−8
2

F ′ = 2b + c − 4

2
L1 + 2b + c − 4

2
L2 + M1 + · · · + M c

2
+ N1 + · · ·

+N c
2

+ T c+2
2

+ · · · + Tb

should be a fixed component for the linear system [I 2b+c
2 X

] 6b+3c−4
2 −1, so

dim[I 2b+c
2 X

] 6b+3c−4
2 −1 = dim[I 2b+c

2 X−F ′ ] 6b+3c−4
2 −1− 6b+3c−8

2
= dim[IP1+···+Pc+Q1+···+Qb ]1 = 0,

a contradiction.
So m̄ > 1. By (5.7), since 2b+c−4

2 m̄ ≥ 2b+c−2
2 , we get that F is a fixed component

for the linear system [I 2b+c
2 m̄X

] 6b+3c−4
2 m̄−1, hence, by recalling that degF = 6b+3c−4

2

and F contains each point of X with multiplicity 2b+c
2 , we get

dim[I 2b+c
2 m̄X

] 6b+3c−4
2 m̄−1 = dim[I 2b+c

2 m̄X−F ] 6b+3c−4
2 m̄−1− 6b+3c−4

2

= dim[I 2b+c
2 (m̄−1)X] 6b+3c−4

2 (m̄−1)−1,

which is zero by (5.8), a contradiction. ��
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Theorem 5.2 Let X be a standard k-configuration of type (1, b, c). If c is odd, and
b + 1 < c ≤ 2b − 3, then

α̂(IX) = 6b + 3c − 7

2b + c − 1
.

Proof Let

F = 2b + c − 3

2
L1 + 2b + c − 3

2
L2 + M1 + · · · + M c+1

2
+ N1 + · · · + N c−1

2

+T c+3
2

+ · · · + Tb.

F is the union of 6b+3c−7
2 lines, and F contains each point of X with multiplicity

exactly 2b+c−1
2 . Hence, for m > 0,

mF ∈ [

I 2b+c−1
2 mX

]

6b+3c−7
2 m .

By Lemma 2.2 it follows that α̂(IX) ≤ 6b+3c−7
2b+c−1 .

Now, by recalling that c − 1 > b, we can consider the standard k-configuration
X

′ of type (1, b, c − 1), which is contained in the standard k-configuration X. Hence
α̂(IX) ≥ α̂(IX′). Since c − 1 ≤ 2b − 4 and c − 1 is even, by Theorem 5.1 we have
that α̂(IX′) = 6b+3(c−1)−4

2b+(c−1) = 6b+3c−7
2b+c−1 , and the conclusion follows. ��

Corollary 5.3 LetX andY be standard k-configurations of type (1, b, c) and (1, b, c+
1), respectively. If c is even, and c ≤ 2b − 4, then α̂(IX) = α̂(IY).

Proof By Theorem 5.1 we have that α̂(IX) = 6b+3c−4
2b+c . Now by applying Theorem

5.2 to Y we get α̂(IY) = 6b+3(c+1)−7
2b+(c+1)−1 = 6b+3c−4

2b+c = α̂(IX). ��
From Theorems 5.1 and 5.2, we can compute the Waldschmidt constants of any

standard k-configurations of type (1, b, c), when c ≤ 2b − 3, except for the con-
figuration X of type (1, b, b + 1) with b even. In the following theorem we will
compute the Waldschmidt constant of this type of configuration, and we will find that
α̂(IX) = 9b−4

3b .
Alternatively we could have considered the subscheme Y = X − Pb+1, and com-

puted theWaldschmidt constant ofY, and found that α̂(IY) = 9b−4
3b . With this method

the conclusion would be followed from a theorem analogous to Theorem 5.2.
In the next theorem we study the case (1, b, b + 1), when b ≥ 4 is even. Note

that when b = 2, the formula in Theorem 5.4 gives 7/3, but the correct answer is
α̂(IX) = 9/4 (see Theorem 5.6).

Theorem 5.4 Let X be a standard k-configuration of type (1, b, b+ 1). If b ≥ 4 is an
even integer, then

α̂(IX) = 9b − 4

3b
.
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Proof The proof proceeds as in Theorem 5.1. See [Appendix 7 Proof of Theorem 5.4]
for more details. ��

Nowwestudy the standardk-configurations from type (1, b, 2b−2) to (1, b, 2b+1).
From our computations it will emerge that in this range the Waldschmidt constant is
strictly increasing. A useful tool for the proofs is Lemma 2.7. Also even if the method
is always the same, we prefer to give some details since the proof is more tricky than
the previous cases.

Theorem 5.5 Let X be a standard k-configuration of type (1, b, 2b − 2). Then

α̂(IX) = 6b2 − 14b + 6

2b2 − 4b + 1
.

Proof Note that from the definition of a standard k-configuration, we have b > 2. Let

Ci be the irreducible curve of degree(b − 1)throughP2, P4, . . . , P2b−2, Q1, . . . , ̂Qi , . . . ,

Qb, (b − 2)Rfor1 ≤ i ≤ b − 1(see Lemma 2.7),

and let

F = (2b2 − 5b + 2)L1 + (2b2 − 6b + 4)L2 + (b − 1)M1

+ · · · + (b − 1)Mb−1 + (b − 2)Tb + C1 + · · · + Cb−1.

So F is a curve of degree 6b2 − 14b + 6 with multiplicity 2b2 − 4b + 1 at each point
of X. Hence for m > 0

mF ∈ [I(2b2−4b+1)mX](6b2−14b+6)m .

We now prove that for m > 0,

[I(2b2−4b+1)mX](6b2−14b+6)m−1 = {0}.

Then the result follows from Lemma 2.2.
Assume that for some m, [I(2b2−4b+1)mX](6b2−14b+6)m−1 
= {0}. Thus by Lemma

2.5, L1 is a fixed component of multiplicity at least

⌈

(2b2 − 4b + 1)(2b − 2)m − (6b2 − 14b + 6)m + 1

2b − 3

⌉

≥ (2b2 − 6b + 3)m

(5.9)

for the plane curves of the linear system [I(2b2−4b+1)mX](6b2−14b+6)m−1. We remove
(2b2 − 6b + 3)mL1, and we get that L2 is a fixed component of multiplicity at least
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⌈

(2b2 − 4b + 1)bm − (6b2 − 14b + 6 − 2b2 + 6b − 3)m + 1

b − 1

⌉

≥ (2b2 − 6b + 3)m.

(5.10)

Remove (2b2 −6b+3)mL2. Recalling that now we are in degree (6b2 −14b+6)m−
2(2b2 − 6b + 3)m − 1 = (2b2 − 2b)m − 1, and the points on L1 have multiplicity
(2b − 2)m, we get that L1 is a fixed component of multiplicity at least

⌈

(2b − 2)(2b − 2)m − (2b2 − 2b)m + 1

2b − 3

⌉

= (b − 2)m +
⌈

(b − 2)m + 1

2b − 3

⌉

.

(5.11)

Hence L1 is a fixed component of multiplicity at least (2b2 − 6b+ 3)m + (b− 2)m =
(2b2 − 5b + 1)m.

By removing (b − 2)mL1 we get

dim[I(2b2−4b+1)mX](6b2−14b+6)m−1

= dim[I(2b2−4b+1)mR+∑

Pi∈L1
bmPi+∑

Qi∈L2
(2b−2)mQi

](2b2−3b+2)m−1.

If the above dimension is different from zero, then each Mi is a fixed component of
multiplicity at least

⌈

(2b2 − 4b + 1 + b + 2b − 2)m − (2b2 − 3b + 2)m + 1

2

⌉

= (b − 2)m +
⌈

m + 1

2

⌉

.

(5.12)

By removing the b − 1 multiple lines (b − 2)mMi , the residual scheme is

Y = (b2 − b − 1)mR +
∑

Pi∈L1, with i odd

2mPi +
∑

Pi∈L1, with i even

bmPi

+
b−1
∑

i=1

bmQi + (2b − 2)mQb,

and we are left in degree (2b2 − 3b + 2)m − 1 − (b − 1)(b − 2)m = b2m − 1.
Hence

dim[I(2b2−4b+1)mX](6b2−14b+6)m−1 = dim[IY]b2m−1.

If this dimension is still different fromzero, thenTb is a fixed component ofmultiplicity
at least

(b2 − b − 1 + 2b − 2)m − b2m + 1 = (b − 3)m + 1. (5.13)
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By removing (b − 3)mTb we get

dim[I(2b2−4b+1)mX](6b2−14b+6)m−1 = dim[IY−(b−3)mTb ]b2m−1−(b−3)m

= dim[IY′ ](b2−b+3)m−1,

where

Y
′ = (b2 − 2b + 2)mR +

∑

Pi∈L1, with i odd

2mPi +
∑

Pi∈L1, with i even

bmPi

+
b−1
∑

i=1

bmQi + (b + 1)mQb.

If H is a curve of the linear system [IY′ ](b2−b+3)m−1, the multiplicity of intersection
between each Ci and H is at least

|Ci · H| ≥ (b − 2)(b2 − 2b + 2)m + (b − 1)bm + (b − 2)bm + (b + 1)m

= (b3 − 2b2 + 4b − 3)m,

and this number is bigger than the product of the degree of Ci and H, which is (b −
1)((b2−b+3)m−1) = (b3−2b2+4b−3)m−b+1.Hence, by Bézout’s Theorem,
each curve Ci is a fixed component for the curves of [IY−(b−3)mTb ]b2m−1−(b−3)m .

Now let

m̄ = min{m| [I(2b2−4b+1)mX](6b2−14b+6)m−1 
= {0}}. (5.14)

We have m̄ > 1. In fact for m = 1, from (5.10), (5.11), (5.12), (5.13), using also
the ceiling parts, by an easy computation we get that F is a curve of the linear system
[I(2b2−4b+1)X]6b2−14b+5. But degF = 6b2 − 14b + 6, a contradiction.

Hence m̄ > 1.
By the computation above F is a fixed component for the linear system

[I(2b2−4b+1)mX](6b2−14b+6)m−1, hence we have

dim[I(2b2−4b+1)m̄X](6b2−14b+6)m̄−1 = dim[I(2b2−4b+1)m̄X−F ](6b2−14b+6)m̄−1−(6b2−14b+6)
= dim[I(2b2−4b+1)(m̄−1)X](6b2−14b+6)(m̄−1)−1,

which is zero by (5.14 ), a contradiction. ��
Theorem 5.6 Let X be a standard k-configuration of type (1, b, 2b − 1). Then

α̂(IX) = 6b2 − 8b + 1

2b2 − 2b
.

Proof See [Appendix 7 Proof of Theorem 5.6]. ��
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Fig. 4 The scheme Yc

Theorem 5.7 Let X be a standard k-configuration in of type (1, b, 2b). Then

α̂(IX) = 6b − 5

2b − 1
.

Proof See [Appendix appendix, Proof of Theorem 5.7]. ��
Theorem 5.8 Let X be a standard k-configuration in of type (1, b, 2b + 1). Then

α̂(IX) = 6b2 − 2b − 3

2b2 − 1
.

Proof See [Appendix 7, Proof of Theorem 5.8]. ��
Now we will prove that the Waldschmidt constant of a standard k-configuration of

type (1, b, c) only depends on b when c ≥ 2b + 2. In order to do that, we need the
following lemma.

Lemma 5.9 Let L1, L2 be two distinct lines, and let b, c be positive integers, with
c ≥ b + 2. Let P1, . . . , Pc ∈ L1, Q1, . . . , Qb ∈ L2, and R, be distinct points such
that R /∈ L1 ∪ L2, and the point L1 ∩ L2 /∈ {P1, . . . , Pc, Q1, . . . , Qb}. Moreover,
assume that R, Pi , Q j do not lie on a line, for any i and j . Let Yc be the scheme (see
Fig. 4)

Yc = P1 + · · · + Pc + Q1 + · · · + Qb + R.

Then

α̂(Yc) = 3b − 1

b
.

If b = 1, Yc is a k-configuration of type (2, c), hence α̂(Yc) = 2 follows from
Corollary 4.3. The proof for b = 2 is analogous to the proof for b > 2, and it is left
to the reader, so assume b > 2.

First we prove the lemma for c = b + 2. For this case, we denote Yb+2 simply by
Y. Let Mi be the line through Qi and R, ( 1 ≤ i ≤ b), and let

F = bL1 + (b − 1)L2 + M1 + · · · + Mb.
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Note that degF = 3b − 1, and F has multiplicity exactly b at all points of Y. Hence
for m > 0

mF ∈ [IbmY](3b−1)m .

Now we will show that for m > 0,

[IbmY](3b−1)m−1 = {0},

and the conclusion will follow from Lemma 2.2.
Assume that for some m > 0, [IbmY](3b−1)m−1 
= {0}.
By Lemma 2.5, L1 is a fixed component of multiplicity at least

⌈

b(b + 2)m − (3b − 1)m + 1

b + 1

⌉

≥ (b − 2)m.

So we can remove (b − 2)mL1, and we get that

dim[IbmY](3b−1)m−1 = dim[IbmY−(b−2)mL1](2b+1)m−1.

If this dimension is different from zero, we get that L2 is a fixed component of multi-
plicity at least

⌈

b2m − (2b + 1)m + 1

b − 1

⌉

= (b − 2)m +
⌈

(b − 3)m + 1

b − 1

⌉

,

and then that L1 is a fixed component of multiplicity at least

⌈

2(b + 2)m − (b + 3)m + 1

b + 1

⌉

= m +
⌈

1

b + 1

⌉

.

Hence

dim[IbmY](3b−1)m−1 = dim[IbmY−(b−1)mL1−(b−2)mL2 ](b+2)m−1
= dim[I∑b+2

i=1 mPi+∑b
i=1 2mQi+bmR](b+2)m−1.

Now, by Bezout’s Theorem, each Mi is a fixed component ( 1 ≤ i ≤ b) for
[IbmY](3b−1)m−1.

Now let

m̄ = min{m|[ImbY]m(3b−1)−1 
= {0}}. (5.15)

We have m̄ > 1, in fact for m = 1 from the computation above, we have that F is a
curve of degree 3b − 1 of the linear system [IbY]3b−2, a contradiction.
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Hence m̄ > 1. Now from the equalities above,F is a fixed component for the linear
system [Im̄bY]m̄(3b−1)−1, hence

dim[Im̄bY]m̄(3b−1)−1 = dim[Im̄bY−F ]m̄(3b−1)−1−(3b−1) = dim[I(m̄−1)bY](m̄−1)(3b−1)−1,

which is zero by (5.15), a contradiction.
Now consider the case c > b + 2. Since also in this case mF ∈ [IbmY](3b−1)m ,

then α̂(Yc) ≤ 3b−1
b . Moreover, since Yb+2 ⊂ Yc, then α̂(Yb+2) ≤ α̂(Yc), and the

conclusion follows. ��

Theorem 5.10 Let X be a standard k-configuration of type (1, b, c) with c ≥ 2b+ 2.
Then

α̂(IX) = 3b − 1

b
.

Proof Let us consider the following curve F of degree (3b − 1) with multiplicities at
least b at the points in X

F = bL1 + (b − 1)L2 + M1 + · · · + Mb.

Then, for m > 0, we have mF ∈ [ImbX](3b−1)m . By Lemma 2.2 it follows that

α̂(IX) ≤ 3b − 1

b
.

To conclude the proof set Y = X − {P1, P3, . . . , P2b−1}. Then, by Lemma 5.9 and
since Y ⊆ X, we get

3b − 1

b
= α̂(IY) ≤ α̂(IX) ≤ 3b − 1

b
.

This completes the proof. ��

6 Waldschmidt constants of standard k-configurations of type
(a,b, c), with a ≥ 2.

In this section we study the Waldschmidt constant of a standard k-configuration of
type (a, b, c), with a ≥ 2. We prove that, except for the type (2, 3, 4), and for the type
(2, 3, 5) (see Theorem 6.1 and Remark 6.6), then the Waldschmidt constant is 3. For
this section we fix the following notation (see Fig. 5).
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Fig. 5 A standard
k-configuration of type (2, b, c)

Let Pi = [1 : i − 1 : 0], for 1 ≤ i ≤ c, let Qi = [1 : i − 1 : 1], for 1 ≤ i ≤ b, let
R1 = [1 : 0 : 2] and R2 = [1 : 1 : 2] be the points of X, and let

L1 be the line through P1, P2, . . . , Pc;
L2 be the line through Q1, Q2, . . . , Qb;
L3 be the line through R1, R2;
M1 be the line through P1, Q1, R1;
M2 be the line through P2, Q2, R2;
N1 be the line through P3, Q2, R1;
N2 be the line through P4, Q3, R2.

First we compute the Waldschmidt constant of a k-configuration of type (2, b, c) 
=
(2, 3, 5).

Theorem 6.1 Let X be a standard k-configuration of type (2, 3, 4). Then the Wald-
schmidt constant of X is

α̂(IX) = 17

6
.

Proof Let

C be the conic through P2, P3, Q1, Q3, R1, R2,

and let F be the following curve of degree 17, which contains each point of X with
multiplicity 6

F = 3L1 + 2L2 + 3M1 + 2M2 + 2N1 + 3N2 + C.

Hence, for m > 0,

mF ∈ [I6mX]17m .

The conclusion will follows from Lemma 2.2, if we prove that for each m > 0,

dim[I6mX]17m−1 = 0.

As usual, assume that for some m, [I6mX]17m−1 
= {0}. By Lemma 2.5, L1 is a

fixed component of multiplicity at least

⌈

24m−17m+1
3

⌉

=
⌈

7m+1
3

⌉

≥ 2m for the
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plane curves of the linear system [I6mX]17m−1. By removing 2mL1 and assuming
that the residual linear system is not empty, by Lemma 2.5, we get that L2 is a fixed

component ofmultiplicity at least

⌈

3m+1
2

⌉

, andM1,M2,N1,N2 are fixed component

of multiplicity at least

⌈

m+1
2

⌉

. Let

m̄ = min{m|[I6mX]17m−1 
= {0}}. (6.1)

Now we claim that for m = 1, 2, 3, [I6mX]17m−1 = {0}. This claim can be proved
directly, with the usual method. It follows that m̄ ≥ 4.

From the computation above, and recalling that M1, M2, N1, N2 are fixed com-

ponents of multiplicity at least

⌈

m̄+1
2

⌉

≥ 3, thenF is a fixed component for the linear

system [I6m̄X]17m̄−1, hence

dim[I6m̄X]17m̄−1 = dim[I6m̄X−F ]17m̄−1−17 = dim[I6(m̄−1)X]17(m̄−1)−1,

which is zero by (6.1), a contradiction. ��
We need the following lemma to find out the Waldschmidt constant of a standard

k-configuration of type (2, 3, 6).

Lemma 6.2 Let L1, L2 be two distinct lines, and let P1, . . . , P6 ∈ L1, and
Q1, Q2, Q3 ∈ L2 be distinct points such that L1 ∩ L2 /∈ Y, where

Y = P1 + · · · + P6 + Q1 + · · · + Q3.

Let m be a positive integer. Then the curve 2mL1 +mL2 is a fixed component for the
linear system [I3mY]9m−1.

Proof Set

M = {m′ | 2m′L1 + m′L2is a fixed component for the linear system [I3mY]9m−1}.

Since by Lemma 2.5, L1 and L2 are fixed components of multiplicity at least
⌈

18m−9m+1
5

⌉

≥ 2, and

⌈

9m−9m+1
2

⌉

= 1, respectively, then 2L1 + L2 is a fixed

component for [I3mY]9m−1, and so 1 ∈ M . Let

m̄ = maxM .

If m̄ ≥ m we are done, so assume that m̄ < m. By the definition of m̄, we have that
2m̄L1 + m̄L2 is a fixed component for the linear system [I3mY]9m−1. Hence

[I3mY]9m−1 = H · [I3mY−2m̄L1−m̄L2 ]9m−1−3m̄

= H · [I∑6
i=1 Pi (3m−2m̄)+∑3

i=1(3m−m̄)Qi
]9m−1−3m̄,
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where H is a form representing the curve 2m̄L1 + m̄L2. Now, by Lemma 2.5, we
get that, for the curve of the linear system [I3mY−2m̄L1−m̄L2 ]9m−1−3m̄ , L1 is a fixed
component of multiplicity at least

⌈

6(3m − 2m̄) − (9m − 1 − 3m̄)

5

⌉

=
⌈

9m − 9m̄ + 1

5

⌉

≥ 2,

and L2 is a fixed component of multiplicity at least

⌈

3(3m − m̄) − (9m − 1 − 3m̄)

2

⌉

= 1.

Recalling that [I3mY]9m−1 = H · [I3mY−2m̄L1−m̄L2 ]9m−1−3m̄ , it follows that 2(m̄ +
1)L1+(m̄+1)L2 is a fixed component for the curves of the linear system [I3mY]9m−1.
A contradiction, since m̄ = maxM . ��
Theorem 6.3 Let X be a standard k-configuration of type (2, 3, 6). Then

α̂(IX) = 3.

Proof Let F be the following curve of degree 9, which contains each point of X with
multiplicity 3,

F = 3L1 + 3L2 + 3L3.

Hence, for m > 0,

mF ∈ [I3mX]9m .

The conclusion will follow from Lemma 2.2, if we prove that for each m > 0,

dim[I3mX]9m−1 = 0.

Assume that for some m, [I3mX]9m−1 
= {0}. By Lemma 6.2, 2mL1 +mL2 is a fixed
component for [I3mX]9m−1, hence

dim[I3mX]9m−1 = dim[I3mX−2mL1−mL2 ]9m−1−3m

= dim[I∑6
i=1 mPi+∑3

i=1 2mQi+∑2
i=1 3mRi

]6m−1.

Now if we prove that this last dimension is zero, we get a contradiction.

Claim.

dim[I∑6
i=1 mPi+∑3

i=1 2mQi+∑2
i=1 3mRi

]6m−1 = 0, for each m ≥ 1.
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We prove the claim by induction on m. It is easy to verify that it is true for m = 1,
so assume m > 1. If this dimension is not zero, by Bezout’s Theorem, L1, L2, L3 are
fixed components, hence

dim[I∑6
i=1 mPi+∑3

i=1 2mQi+∑2
i=1 3mRi

]6m−1

= dim[I∑6
i=1(m−1)Pi+∑3

i=1(2m−1)Qi+∑2
i=1(3m−1)Ri

]6m−4.

If this dimension is still not zero, by Lemma 2.5, L2 and L3 are fixed components of

multiplicity at least

⌈

6m−3−(6m−4)
2

⌉

= 1, and

⌈

6m−2−(6m−4)
1

⌉

= 2, respectively.

Hence

dim[I∑6
i=1(m−1)Pi+∑3

i=1(2m−1)Qi+∑2
i=1(3m−1)Ri

]6m−4

= dim[I∑6
i=1(m−1)Pi+∑3

i=1 2(m−1)Qi+∑2
i=1 3(m−1)Ri

]6(m−1)−1,

and this is zero by the inductive hypothesis. ��
Theorem 6.4 Let X be a standard k-configuration of type (2, 4, 5). Then the Wald-
schmidt constant of X is

α̂(IX) = 3.

Proof Let F be the following curve of degree 6, which contains each point of X with
multiplicity 2,

F = 2L1 + 2L2 + 2L3.

Hence, for m > 0,

mF ∈ [I2mX]6m .

Now, as usual, we have to prove that for each m > 0, dim[I2mX]6m−1 = 0. It is true
for m = 1, so assume m > 1. Assume that for some m, [I2mX]6m−1 
= {0}, and let

m̄ = min{m| dim[I2m̄X]6m̄−1} 
= 0.

By Lemma 2.5,L1 is a fixed component of multiplicity at least

⌈

10m̄−6m̄+1
4

⌉

≥ m̄+1.

Hence

dim[I2m̄X]6m̄−1 = dim[I2m̄X−(m̄+1)L1]5m̄−2.

If this dimension is not zero, we get that L2 is a fixed component of multiplicity at

least

⌈

8m̄−5m̄+2
3

⌉

≥ m̄ + 1. Hence

dim[I2m̄X]6m̄−1 = dim[I2m̄X−(m̄+1)L1−(m̄+1)L2 ]4m̄−3.
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If this dimension is not zero, we get that L3 is a fixed component of multiplicity

at least

⌈

4m̄−4m̄+3
1

⌉

= 3. It follows that F is a fixed component. Hence, we get a

contradiction since

dim[I2m̄X]6m̄−1 = dim[I2m̄X−F ]6m̄−1−6 = dim[I2(m̄−1)X]6(m̄−1)−1,

which is zero by the definition of m̄. ��
Theorem 6.5 Let X be a standard k-configuration of type (2, b, c).

(i) If b = 3 and c ≥ 6, then α̂(IX) = 3;
(ii) if b ≥ 4, then α̂(IX) = 3.

Proof Let F = L1 +L2 +L3. Since mF ∈ [ImX]3m, then in both cases, α̂(IX) ≤ 3.
Now let X be a standard k-configuration of type (2, 3, c), with c ≥ 6. Then there

exists a standard k-configurationX′ of type (2, 3, 6), withX′ ⊆ X. Since, by Theorem
6.3, the Waldschmidt constant of X′ is 3, then α̂(IX) ≥ 3, and (i) is proved.

For (ii), since b ≥ 4, then there exists a standardk-configurationX′ of type (2, 4, 5),
with X

′ ⊆ X. Since, by Theorem 6.4, the Waldschmidt constant of X′ is 3, hence
α̂(IX) ≥ 3, and (ii) is proved. ��
Remark 6.6 From the previous results we know theWaldschmidt constant of any stan-
dard k-configuration of type (2, b, c), except for X of type (2, 3, 5). For the case
(2, 3, 5), we found by Macaulay 2 [19] a curve F of degree 71 with multiplicity
exactly 24 at each point of X. The components of F are lines, one irreducible conic
and an irreducible rational septic. This implies α̂(IX) ≤ 71

24 < 3. Moreover, since a
k-configuration of type (2, 3, 4) is a subset of X, this give 17

6 as a lower bound (see
Theorem 6.1). Hence 17

6 ≤ α̂(IX) ≤ 71
24 .

Finally, we deal with the k-configurations of type (a, b, c) when a ≥ 3.

Theorem 6.7 LetX be a standard k-configuration of type (a, b, c), whith a ≥ 3. Then
the Waldschmidt constant of X is

α̂(IX) = 3.

Proof It follows immediately from Corollary 4.2. ��
Remark 6.8 We recall Chudnovsky’s conjecture:

Let X be a finite set of distinct points in P
n . Then, for all m > 0,

α(I (m)
X

)

m
≥ α(IX) + n − 1

n
.

This conjecture was proved in P
2 by Chudnovsky (see, for instance [22, Proposition

3.1]). As an application, we wish to show that Chudnovsky’s conjecture is verified by
standard k-configurations in P

2 of type (a, b, c).
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Fig. 6 A standard
k-configuration of type (1, b, c)

LetX andY be standard k-configurations in P2 of type (a, b, c), and (b, c), respec-
tively. We know that α(IX) = 3, and from the proof of Lemma 4.1, recalling that
b > 1, we get that α(I (m)

Y
) = 2m. Moreover, since the scheme mX ⊃ mY, then

α(I (m)
X

) ≥ α(I (m)
Y

). It follows that, for all m > 0,

α(I (m)
X

)

m
≥ α(I (m)

Y
)

m
= 2 = 3 + 2 − 1

2
= α(IX) + n − 1

n
.

7 Appendix

We recall the notation for the proofs of theorems about standard k-configurations of
type (1, b, c), summarized in Fig. 6.

We denote by

L1 be the line through P1, P2, . . . , Pc;
L2 be the line through Q1, Q2, . . . , Qb;
M1 be the line through P1, Q1, R;
M2 be the line through P3, Q2, R;

...

Mi be the line through P2i−1, Qi , R, for i ≤ b and 2i ≤ c + 1;
N1 be the line through P2, R;
N2 be the line through P4, R;

...

Ni be the line through P2i , R, f or2i ≤ c;
Ti be the line through Qi , R, f ori ≤ b and 2i ≥ c + 2.

Proof of Theorem 5.4 Let X be a standard k-configuration of type (1, b, b + 1). If
b ≥ 4 is an even integer, we show that

α̂(IX) = 9b − 4

3b
.

Let

F = 3b − 2

2
L1 + 3b − 2

2
L2 + M1 + · · · + M b

2 +1 + N1 + · · · + N b
2

+ T b
2 +2 + · · · + Tb,
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so mF is a curve in the linear system [I 3b
2 mX

] 9b−4
2 m . Now we need to prove that, for

each m > 0, dim[I 3b
2 mX

] 9b−4
2 m−1 = 0.

By Lemma 2.5, if dim[I 3b
2 mX

] 9b−4
2 m−1 
= {0}, then L1 is a fixed component of

multiplicity at least

⌈ 3b
2 m(b + 1) − 9b−4

2 m + 1

b

⌉

=
⌈

(3b2 − 6b + 4)m + 2

2b

⌉

≥ 3b − 6

2
m, (7.1)

for the plane curves of the linear system [I 3b
2 mX

] 9b−4
2 m−1.

If we remove 3b−6
2 mL1, we get that L2 is a fixed component of multiplicity at least

⌈ 3b
2 mb − (3b + 1)m + 1

b − 1

⌉

=
⌈

(3b2 − 6b − 2)m + 2

2(b − 1)

⌉

≥ 3b − 6

2
m. (7.2)

By removing 3b−6
2 mL2, we have that L1 is a fixed component of multiplicity at least

⌈

3m(b + 1) − 3b+8
2 m + 1

b

⌉

= m +
⌈

(b − 2)m + 2

2b

⌉

. (7.3)

After removing mL1, then L2 is a fixed component of multiplicity at least

⌈

3bm − 3b+6
2 m + 1

b − 1

⌉

= m +
⌈

(b − 4)m + 2

2b − 2

⌉

. (7.4)

Remove mL2. The residual scheme is

Y = X −
(3b − 6

2
m + m

)

L1 −
(3b − 6

2
m + m

)

L2 = 3b

2
mR +

∑

i

2mPi +
∑

i

2mQi ,

and

dim[I 3b
2 mX

] 9b−4
2 m−1 = dim[IY] 3b+4

2 m−1.

Now, by Bezout’s Theorem, the lines Mi , Ni , and Ti are fixed components.
Set

m̄ = min{m | [I 3b
2 mX

] 9b−4
2 m−1 
= {0}}. (7.5)

First observe that m̄ 
= 1, in fact for m = 1, by (7.1), (7.2), (7.3), (7.4), and using also
the ceiling parts, we get that F is a curve of the linear system [I 3b

2 X
] 9b−4

2 −1, but F has

degree 9b−4
2 , a contradiction.
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So m̄ > 1. By by (7.1), (7.2), (7.3), (7.4), we get thatF is a fixed component for the
linear system

[

I 3b
2 m̄X

]

9b−4
2 m̄−1, hence, by recalling that degF = 9b−4

2 and F contains

each point of X with multiplicity 3b
2 , we get

dim
[

I 3b
2 m̄X

]

9b−4
2 m̄−1 = dim

[

I 3b
2 m̄X−F

]

9b−4
2 m̄−1− 9b−4

2
= dim

[

I 3b
2 (m̄−1)X

]

9b−4
2 (m̄−1)−1,

which is zero by (7.5), a contradiction. ��
Proof of Theorem 5.6 Let X be a standard k-configuration of type (1, b, 2b − 1). We
show that

α̂(IX) = 6b2 − 8b + 1

2b2 − 2b
.

Let

Ci be the irreducible curve of degree(b − 1)throughP2, P4, . . . , P2b−2, Q1, . . . ,
̂Qi , . . . , Qb, (b − 2)Rfor1 ≤ i ≤ b(see Lemma 2.7),

and let F be the following curve of degree 6b2 − 8b + 1 with multiplicity 2b2 − 2b
at each point of X.

F = (2b2 − 3b)L1 + (2b2 − 4b + 1)L2 + bM1 + · · · + bMb + C1 + · · · + Cb.

Hence for m > 0

mF ∈ [I(2b2−2b)mX](6b2−8b+1)m .

We should now prove that for m > 0,

[I(2b2−2b)mX](6b2−8b+1)m−1 = {0}.

Since the proof is analogous to the one of Theorem 5.5, assuming that the ideals
which we will consider are different from zero, we just show the computation that,
from Lemma 2.5, gives how many times each component of F is a fixed component
for the curves of the linear system [I(2b2−2b)mX](6b2−8b+1)m−1.

We get that L1 is fixed component of multiplicity at least

⌈

(2b − 1)(2b2 − 2b)m − (6b2 − 8b + 1)m + 1

2b − 2

⌉

≥ (2b2 − 4b + 1)m. (7.6)

By removing (2b2 − 4b + 1)mL1, we get that L2 is fixed component of multiplicity
at least

⌈

b(2b2 − 2b)m − (4b2 − 4b)m + 1

b − 1

⌉

= (2b2 − 4b)m +
⌈

1

b − 1

⌉

. (7.7)
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By removing (2b2 − 4b)mL2, we find that L1 is fixed component of multiplicity at
least

⌈

(2b − 1)2m − 2b2m + 1

2b − 2

⌉

= (b − 2)m +
⌈

(2b − 3)m + 1

2b − 2

⌉

. (7.8)

Now we remove (b − 2)mL1 and we find that each Mi is fixed component of multi-
plicity at least

⌈

(2b2 − 2b)m + 2bm + (b + 1)m − (2b2 − b + 2)m + 1

2

⌉

= (b − 1)m +
⌈

m + 1

2

⌉

.

(7.9)

So, after we remove ((2b2 − 4b + 1) + (b − 2))mL1 + (2b2 − 4b)mL2 + ∑b
i=1(b −

1)mMi , the residual scheme is

Y = (b2 − b)R +
b

∑

i=1

(b + 1)Qi +
∑

foriodd

2mPi +
∑

for i even

(b + 1)mPi ,

and the degree we have to consider is ((6b2 − 8b + 1) − (2b2 − 4b + 1) − (b − 2) −
(2b2 − 4b) − b(b − 1))m − 1 = (b2 + 2)m − 1, thus

dim[I(2b2−2b)mX](6b2−8b+1)m−1 = dim[IY](b2+2)m−1.

Now ifH is a curve of the linear system [IY](b2+2)m−1, the multiplicity of intersection
between each Ci and H is at least

|Ci · H| ≥ (b − 2)(b2 − b)m + (b + 1)(b − 1)m + (b + 1)(b − 1)m = (b3 − b2 + 2b − 2)m,

and this number is bigger than the product of the degree of Ci and H, which is

deg Ci · degH = (b − 1)((b2 + 2)m − 1) = (b3 − b2 + 2b − 2)m − (b − 1).

Hence, by Bézout’s Theorem, each curve Ci is a fixed component for the curves of
[IY](b2+2)m−1.

Now let

m̄ = min{m| [I(2b2−2b)mX](6b2−8b+1)m−1 
= {0}}. (7.10)

We have m̄ > 1, in fact for m = 1, by (7.6), (7.7), (7.8), (7.9), and using also the
ceiling parts, we get that F should be a curve in the linear system [I(2b2−2b)X]6b2−8b,
but F has degree 6b2 − 8b + 1, a contradiction.

Hence m̄ > 1.
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By the above computation, then F is a fixed component for the linear system
[I(2b2−2b)mX](6b2−8b+1)m−1. We have

dim[I(2b2−2b)m̄X](6b2−8b+1)m̄−1 = dim[I(2b2−2b)m̄X−F ](6b2−8b+1)m̄−1−(6b2−8b+1)

= dim[I(2b2−2b)(m̄−1)X](6b2−8b+1)(m̄−1)−1

which is zero by (7.10), a contradiction.

Proof of Theorem 5.7 Let X be a standard k-configuration of type (1, b, 2b). We show
that

α̂(IX) = 6b − 5

2b − 1
.

Let

C be the irreducible curve of degree b throughP2, P4, . . . , P2b, Q1, . . . , Qb, (b − 1)R

( see Lemma 2.7),

and let F be the following curve of degree (6b− 5) with multiplicity exactly (2b− 1)
at the points of X,

F = (2b − 2)L1 + (2b − 3)L2 + M1 + · · · + Mb + C.

Hence, for m > 0, mF ∈ [Im(2b−1)X]m(6b−5). Now we will show that for each m > 0
we have

[Im(2b−1)X]m(6b−5)−1 = {0},

and the conclusion will follow from Lemma 2.2.
Assume that [Im(2b−1)X]m(6b−5)−1 
= {0} for some m > 0.
Let H be a curve of the linear system [Im(2b−1)X]m(6b−5)−1. Then the multiplicity

of the intersection between C andH is at least (2b − 1)m in each of the points Pi and
Qi and at least (b − 1)(2b − 1)m in R. Since we have 2b points Pi and Qi ,

|C · H| ≥ 2b(2b − 1)m + (b − 1)(2b − 1)m,

and this number is bigger than the product of the degree of C andH, which is b(m(6b−
5) − 1). In fact

2b(2b − 1)m + (b − 1)(2b − 1)m − b(m(6b − 5) − 1) = m + b > 0.

Hence, by Bézout’s Theorem, the curve C is a fixed component for the curves of
[Im(2b−1)X]m(6b−5)−1.
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Moreover, for the curves of this linear system, by Lemma 2.5,Mi , (1 ≤ i ≤ b), is
a fixed component of multiplicity at least

⌈

3(2b − 1)m − (6b − 5)m + 1

2

⌉

=
⌈

2m + 1

2

⌉

= m + 1,

and L1 is a fixed component of multiplicity at least

⌈

2b(2b − 1)m − (6b − 5)m + 1

2b − 1

⌉

= (2b − 3)m +
⌈

2m + 1

2b − 1

⌉

.

If we remove the curve (2b − 3)mL1 we get

dim[Im(2b−1)X]m(6b−5)−1 = dim[Im(2b−1)X−(2b−3)mL1)](4b−2)m−1.

If this dimension is different from zero, by Lemma 2.5, we get that L2 is a fixed
component of multiplicity at least

⌈

(2b − 1)m · b − (4b − 2)m + 1

b − 1

⌉

= (2b − 4)m +
⌈

(b − 2)m + 1

b − 1

⌉

for the curves of [Im(2b−1)X]m(6b−5)−1.
Now let

m̄ = min{m|[Im(2b−1)X]m(6b−5)−1 
= {0}}. (7.11)

Wehave m̄ > 1, in fact form = 1, by the computation above, the curveFof degree 6b−
5 should be a fixed component for the linear system, [I(2b−1)X]6b−4, a contradiction.

Hence m̄ > 1. SinceF is afixed component for the linear system [Im(2b−1)X]m(6b−5)−1
we have

dim[Im̄(2b−1)X]m̄(6b−5)−1

= dim[Im̄(2b−1)X−F ]m̄(6b−5)−1−(6b−5)

= dim[I(m̄−1)(2b−1)X](m̄−1)(6b−5)−1,

which is zero by (7.11 ), a contradiction.

Proof of Theorem 5.8 Let X be a standard k-configuration of type (1, b, 2b + 1). We
show that

α̂(IX) = 6b2 − 2b − 3

2b2 − 1
.

Let

Ci be the irreducible curve of degree b through P2, P4, . . . , ̂P2i , . . . , P2b, P2b+1,

Q1, . . . , Qb, (b − 1)R for 1 ≤ i ≤ b,
Cb+1 be the irreducible curve of degree b through P2, P4, . . . , P2b, Q1, . . . , Qb, (b − 1)R;

123



The Waldschmidt constant of a standard...

(see Lemma 2.7 for the b + 1 curves Ci ). Note that the curve C1 + · · · + Cb+1 has
degree b(b + 1), multiplicity b + 1 at each of the points Q1, . . . , Qb, multiplicity b
at each of the points P2, P4, . . . , P2b, P2b+1, and multiplicity b2 − 1 at R. Let

F = (2b2 − b − 1)L1 + (2b2 − 2b − 2))L2 + bM1 + · · · + bMb + C1 + · · · + Cb+1.

Then F is a curve of degree (6b2 − 2b − 3) with multiplicity (2b2 − 1) at each point
of X. Hence for m > 0

mF ∈ [I(2b2−1)mX](6b2−2b−3)m .

We now have to prove that

[I(2b2−1)mX](6b2−2b−3)m−1 = 0.

Assume that for some m > 0, [I(2b2−1)mX](6b2−2b−3)m−1 
= {0}.
Analogously to the proof of Theorem 5.7, let H be a curve of the linear system

[I(2b2−1)mX](6b2−2b−3)m−1. Then the multiplicity of intersection between each Ci and
H is at least (2b2−1)m in each of the 2b points Pi and Qi and at least (b−1)(2b2−1)m
in R, so,

|Ci · H| ≥ 2b(2b2 − 1)m + (b − 1)(2b2 − 1)m,

and this number is bigger than the product of the degree of Ci andH, which is b((6b2−
2b − 3)m − 1). Hence, by Bézout’s Theorem, each curve Ci is a fixed component for
the curves of [I(2b2−1)mX](6b2−2b−3)m−1.

Moreover, for the curves of this linear system, by Lemma 2.5, each Mi is a fixed
component of multiplicity at least

⌈

3(2b2 − 1)m − (6b2 − 2b − 3)m + 1

2

⌉

= bm + 1,

L1 is a fixed component of multiplicity at least

⌈

(2b2 − 1)(2b + 1)m − (6b2 − 2b − 3)m + 1

2b

⌉

=
⌈

(4b3 − 4b2 + 2)m + 1

2b

⌉

= (2b2 − 2b)m +
⌈

2m + 1

2b

⌉

,

and, by removing (2b2 − 2b)mL1, we get that L2 is a fixed component of multiplicity
at least

⌈

(2b2 − 1)m · b − (4b2 − 3)m + 1

b − 1

⌉

= (2b2 − 2b − 3)m +
⌈

1

b − 1

⌉

.
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Now let

m̄ = min{m|[Im(2b2−1)X]m(6b2−2b−3)−1 
= {0}}. (7.12)

We have m̄ > 1, in fact for m = 1, by the computation above, the curve F ′of degree
6b2 − 3b − 1,

F ′ = (2b2 − 2b + 1)L1 + (2b2 − 2b − 2)L2 + bM1 + · · · + bMb + C1 + · · · + Cb+1,

should be a fixed component for the linear system, so

dim[I(2b2−1)X](6b2−2b−3)−1 = dim[I(2b2−1)X−F ′ ](6b2−2b−4)−(6b2−3b−1)
= dim[I(b−2)P1+···+(b−2)P2b+1 ](b−3)
= 0,

a contradiction.
Hence m̄ > 1. By the computation above F is a fixed component for

[I(2b2−1)m̄X](6b2−2b−3)m̄−1, hence we have

dim[I(2b2−1)m̄X](6b2−2b−3)m̄−1 = dim[I(2b2−1)m̄X−F ](6b2−2b−3)m̄−1−(6b2−2b−3)

= dim[I(2b2−1)(m̄−1)X](6b2−2b−3)(m̄−1)−1,

which is zero by (7.12), a contradiction. ��
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