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Abstract
Let Hom0(�,G) be the connected component of the identity of the variety of repre-
sentations of a finitely generated nilpotent group� into a connected reductive complex
affine algebraic group G. We determine the mixed Hodge structure on the represen-
tation variety Hom0(�,G) and on the character variety Hom0(�,G)//G. We obtain
explicit formulae (both closed and recursive) for the mixed Hodge polynomial of these
representation and character varieties.
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1 Introduction

Let K be a connected compact Lie group, and � be a finitely generated nilpotent
group. The topology of the space of representationsHom(�, K ) and of its conjugation
quotient space Hom(�, K )/K was considered by Ramras and Stafa in [29, 35], who
obtained explicit formulae for the Poincaré polynomials of their identity components
Hom0(�, K ) and Hom0(�, K )/K .

Let G be the complexification of K , and consider now the affine algebraic varieties
R�G := Hom(�,G) and the geometric invariant theoretic quotient by conjugation
M�G := R�G//G. In this article we determine the mixed Hodge structures on the
identity components R0

�G ⊂ R�G and M0
�G ⊂ M�G and compute their mixed

Hodge polynomials, generalizing the formulas obtained in [29] and in [19].
We now describe more precisely our main results. A finitely generated nilpotent

group � is said to have abelian rank r if the torsion free part of �Ab := �/[�,�]
has rank r . A connected reductive complex affine algebraic group G will be called a
reductive C-group, and T , W will stand, respectively, for a fixed maximal torus and
the Weyl group of G.

Recall that the mixed Hodge numbers hk,p,q(X) of a quasi-projective variety X are
the dimensions of the (p, q)-summands of the natural mixed Hodge structure (MHS)
on Hk(X ,C). We say that X is of Hodge-Tate type if hk,p,q(X) = 0 unless p = q.

Theorem 1.1 Let � be a finitely generated nilpotent group with abelian rank r ≥ 1,
and G a reductive C-group. Then, both M0

�G and R0
�G are of Hodge-Tate type.

More concretely, the MHS on M0
�G coincides with the one of T r/W, where W acts

diagonally, and the MHS of R0
�G coincides with that of (G/T ) ×W T r .

Remark 1.2 In Theorem 1.1, W acts on (G/T ) × T r via the standard action on the
homogeneous space G/T and by simultaneous conjugation on T r . The MHS on G/T
is the natural one coming from the full flag variety G/B, where B ⊂ G is a Borel
subgroup. We also note that the condition r ≥ 1 in Theorem 1.1 is not vacuous since
finite nilpotent groups have abelian rank 0. In fact, a nilpotent group N has abelian
rank r ≥ 1 if and only if |N | = ∞.
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Now, consider the mixed Hodge polynomial of the algebraic variety X , defined as:

μX (t, u, v) =
∑

k,p,q≥0

hk,p,q(X) tku pvq ∈ Z[t, u, v].

Knowing the MHS of M0
�G and R0

�G allows for the explicit computation of their
mixed Hodge polynomials, as follows. Let t denote the Lie algebra of the maximal
torus T , and recall that W acts naturally on its dual t∗, as a reflection group.

Theorem 1.3 Let � be a finitely generated nilpotent group with abelian rank r ≥ 1,
and G a reductive C-group of rank m. Then, we have:

μR0
�G

(t, u, v) = 1

|W |
m∏

i=1

(1 − (t2uv)di )
∑

g∈W

det
(
I + tuv Ag

)r

det
(
I − t2uv Ag

) (1.1)

and

μM0
�G

(t, u, v) = 1

|W |
∑

g∈W
det

(
I + tuv Ag

)r
,

where d1, . . . , dm are the characteristic degrees of W (see definition in Sect.4.1), and
Ag is the action of g ∈ W on H1(T ,C) ∼= t∗.

We now outline the proofs of these theorems. Using the main results of [9], we start
by considering Z

r , the free part of �Ab. Let K be a maximal compact subgroup of
G. Considering the deformation retractions obtained in [14] for MZr G, and in [28]
for RZr G, we are then reduced to describing the cohomology of the compact spaces
R0

Zr K := Hom0(�, K ) and Hom0(�, K )/K .
A priori, there is no reason for these compact spaces to have MHSs on their coho-

mology groups. In [3] the rational cohomology ring of R0
Zr K is shown to be the

Weyl group invariants of (K/TK ) × T r
K where TK = T ∩ K ⊂ K is a maximal

torus. (K/TK ) ×W T r
K is a desingularization ofR0

Zr K , and is homotopic to the space
(G/T )×W T r . Given the natural MHSs on G/T , T , and on the classifying space BT ,
in the context of equivariant cohomology, we conclude that both R0

Zr G and M0
Zr G

are of Hodge-Tate type.
The formula for M0

�G then follows from the one in [19]. To get the formula for
R0

�G we observe, as in [29, Section 5], that the graded cohomology ring of RZr K
is a regrading of the cohomology ring of the torus T r . Using representation theory,
analogous to what is done in [24], we determine the regrading explicitly to obtain
Formula (1.1).

The main results are proved in Sects. 4 and 5, after a brief review of relevant facts
about mixed Hodge structures and character varieties in Sect. 2. In Sect. 3, we show
that although the path-component of the identity is a union of algebraic components
and the mixed Hodge structure is determined by the torus component (irreducible by
[34]), there is in fact only one irreducible component through the identity. This follows
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by closely analyzing the main proof in [14]. Moreover, we give a description of the
singular locus of these moduli spaces M0

Zr G in the cases of classical G (expanding
on work of [34]). We also obtain interesting number-theoretic results in Sect. 5.3. In
particular, we show that M0

Zr G are “polynomial count" and compute the number of
Fq -points of these varieties where Fq is a field of order q. The last section (Sect. 6)
applies our results to examples of character and representation varieties with “exotic
components” considered in [1]; here, the group G is of the form SL(p,C)m/Zp for a
prime p.

2 Character varieties andmixed Hodge structures

2.1 Character varieties

Let G be a connected reductive complex affine algebraic group. As mentioned earlier,
we will say G is a reductive C-group in abbreviation. Let � be a finitely generated
group. The set of homomorphisms ρ : � → G has the structure of an affine algebraic
variety over C (not necessarily irreducible); the generators of � are translated into
elements of G satisfying algebraic relations determined by the relations of �. Since G
admits a faithful representation G ↪→ GL(n,C) for some n, we will sometimes refer
to ρ as a G-representation of �, or simply a representation of � when the context is
clear.

We have two naturally defined varieties: the G-representation variety of �,

R�G := Hom(�,G),

and the G-character variety of �,

M�G := Hom (�,G) //G,

which is the affine geometric invariant theoretic (GIT) quotient under the conjugation
action of G onR�G.

We endowR�G with the Euclidean topology coming from a choice of r generators
of � and the natural embeddingHom(�,G) ↪→ Gr ⊂ C

rn2 , for appropriate n. Hence,
M�G is naturally endowed with a Hausdorff topology, as the GIT quotient identi-
fies orbits whose closures intersect (see [14, Theorem 2.1] for a precise statement).
However, when speaking of irreducible components we refer to the Zariski topology.

We note thatM�G is homotopic to the non-Hausdorff (conjugation) quotient space
R�G/G by [17, Proposition 3.4], and so any homotopy invariant property of either
M�(G) or R�G/G applies to the other.

2.2 Mixed Hodge structures

In this subsection we summarize facts about mixed Hodge structures; details can be
found in [10, 11, 27, 38]. The singular cohomology of a complex variety X is endowed
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with a decreasing Hodge filtration F•:

Hk (X ,C) = F0 ⊇ · · · ⊇ Fk+1 = 0

that generalizes the same named filtration for smooth complex projective varieties. In
general, the graded pieces of this filtration do not constitute a pure Hodge structure.
However, the rational cohomology of these varieties admits an increasing Weight
filtration:

0 = W−1 ⊆ · · · ⊆ W 2k = Hk (X ,Q) ,

and the Hodge filtration induces a pure Hodge structure on the graded pieces of its
complexification, denoted W •

C
. The triple

(
Hk (X ,C) , F•,W •

C

)
constitutes a mixed

Hodge structure (MHS) over C, and we denote the graded pieces of the associated
decomposition by:

Hk,p,q (X ,C) = Gr pFGrWC

p+q H
k (X ,C) .

Their dimensions, called mixed Hodge numbers hk,p,q(X) := dimC Hk,p,q(X ,C),
are encoded in the polynomial:

μX (t, u, v) =
∑

k,p,q≥0

hk,p,q(X) tku pvq ∈ Z[t, u, v],

called the mixed Hodge polynomial of X . This polynomial reduces to the Poincaré
polynomial of X , by setting u = v = 1. These constructions can also be reproduced
for compactly supported cohomology, yielding a similar decomposition into pieces
denoted Hk,p,q

c (X ,C).
When the variety X is smooth and projective the Hodge structure on H∗(X ,C) is

pure, that is: hk,p,q �= 0 
⇒ k = p + q. We are also interested in two other types
of MHS that can be read from its Hodge numbers. We say that X is balanced (see
[26]) or ofHodge-Tate type if hk,p,q �= 0 
⇒ p = q. For those varieties that further
satisfy hk,p,q �= 0 
⇒ k = p = q we call them round (see [19]).

Recall that MHSs satisfy the Künneth theorem, so that, for the cartesian product
X × Y of varieties, we have:

μX×Y = μX μY . (2.1)

Also important for this paper is the behavior of these structures under an algebraic
action of a finite group. If F is a finite group acting algebraically on a complex variety
X , the induced action on the cohomology respects the mixed Hodge decomposition.
Moreover, one can recover the mixed Hodge structure on the quotient by:

Hk,p,q(X/F,C) ∼= Hk,p,q(X ,C)F . (2.2)
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Then, the types ofmixedHodge structures on the quotient X/F have similar properties
to that of X . In particular, if X is pure, balanced or round, respectively, so is X/F .
The situation is even easier when G is an algebraic group and F is a finite subgroup
acting by left translation.

Lemma 2.1 Let G be an algebraic group and F a finite subgroup. Then the MHS on
G and on G/F coincide.

Proof This follows from the fact that the F-action on theMHS ofG is trivial, as shown
in [12, Section 6] (see also [26]). Intuitively, the idea is that the action of F extends
to the action of a connected group. ��
Another important invariant related to theMHS of X is the E-polynomial, obtained by
specializing μX to t = −1: EX (u, v) := μX (−1, u, v). Then the Euler characteristic
of X is obtained as χ(X) = μX (−1, 1, 1). We will also consider the compactly
supported version of EX , also called the Serre polynomial:

Ec
X (u, v) :=

∑

k,p,q≥0

(−1)k hk,p,qc (X) u pvq ∈ Z[t, u, v],

where hk,p,qc (X) = dim Hk,p,q
c (X ,C).

Let K (VarC) be theGrothendieck ring of varieties overC. Additively, this is a ring
generated by isomorphism classes of algebraic varieties modulo the excision relation:
if Y ↪→ X is a closed subvariety, then in K (VarC) we identify:

[X ] = [Y ] + [X\Y ] .

The product in K (VarC) is given by cartesian product: [X ] · [Y ] := [X × Y ]. The
Serre polynomial and the Euler characteristic are examples of motivic measures, that
is, maps from the objects of VarC to a ring that factors through the Grothendieck ring
of varieties.

3 Irreducible components

For many groups �, R�G is not irreducible and/or not path-connected, and so the
same happens with M�G. Recall that path-connected algebraic varieties need not
be irreducible, and that irreducible algebraic varieties (over C) are necessarily path-
connected.

Path-components of R�G are sometimes related to path-components of R�K for
a maximal compact subgroup K ⊂ G. For example, for a finitely generated free group
Fr , RFr G ∼= Gr and RFr K ∼= Kr and so there is a π0-bijection by the (topological)
polar decomposition: G ∼= K ×R

n , for n = dimR K . Much more non-trivially, there
is a strong deformation retraction from R�G to R�K for � finitely generated and
nilpotent by [5]; see [28] for the abelian case. And thus, there is a bijection between
path-components in these cases as well.
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Example 3.1 Let � = Z
2 and K = SO(3). Suppose ρ ∈ Hom(�, K ) is given by

the pair of commuting matrices diag(1,−1,−1) and diag(−1,−1, 1). Then, these
matrices cannot be simultaneously conjugated, within K , to the same maximal torus
of SO(3). This implies that Hom(�, K ) is not path-connected, since the collection
of pairs that can be simultaneously conjugated into a given maximal torus forms a
disjoint path-component. Thus, by the discussion above, Hom(Z2,PGL(2,C)) is also
not connected, as PGL(2,C) ∼= SO(3,C) is the complexification of SO(3).

Let us denote by

R0
�G := Hom0(�,G),

and by

M0
�G := Hom0 (�,G) //G,

the path-connected components of the identity representation in R�G and in M�G,
respectively. In some cases, R0

�G and M0
�G are irreducible varieties; but they are

always a finite union of irreducible varieties.

3.1 The torus component

An interesting case is that of a finitely presentable group � whose abelianization is
free, that is

�Ab := �/[�,�] ∼= Z
r ,

for some r ∈ N. Examples in this class of groups include “exponent canceling groups”
(see [25]) which are those that admit presentations such that in all relations the expo-
nents of each generator add up to zero; such as right angled Artin groups (abbreviated
RAAGs), and fundamental groups of closed orientable surfaces.

For these groups, since� → �Ab ∼= Z
r is surjective, we can consider the following

sequence:

T r ∼= Hom(Zr , T ) ↪→ Hom(�Ab,G) ↪→ Hom(�,G) � M�G.

Let us denote by MT
�G ⊂ M�G the image of the composition above and call it the

torus component. It follows that MT
�G is an irreducible subvariety of M�G, being

the image of the irreducible variety T r under a morphism. In the case when � = Z
r ,

MT
�G is an irreducible component ofM�G by [34, Theorem 2.1].
Obviously, the identity representation (ρ(γ ) = e for all γ ∈ �, e ∈ G being

the identity) belongs to MT
�G since it comes from the identity representation in

Hom(�, T ). Since MT
�G is path-connected (being irreducible over C), we conclude

thatMT
�G ⊂ M0

�G. We observe that there are pairs (�,G)where the varietiesMT
�G

and M0
�G agree, and others where they do not.
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Example 3.2 WhenG is abelian (we always assumeconnected), it is clear thatMT
�G =

M0
�G. For an example where they disagree, let � = �∠ be the “angle RAAG”

associated with a path graph with 3 vertices, considered in [16]. Then, even for a
low dimensional group such as G = SL(2,C) we have that M0

�G has 3 irreducible
components, one beingMT

�G and 2 extra ones. Moreover, for the case G = SL(3,C)

there are components in M0
�G which have higher dimension than the dimension of

MT
�G.

Remark 3.3 One can also ask if the identity representation is contained in a single
irreducible component of M0

�G. This also fails for M0
�∠(SL(2,C)), as shown in

[16].

3.2 The free Abelian case

As seen in Examples 3.1, 3.2 and Remark 3.3, the comparison between the varieties
M�G, M0

�G and MT
�G for general � and G is far from being trivial.

We now show that M0
�G = MT

�G when � is free abelian, for all G. In this
situation, we are dealing with representations defined by elements of G that pairwise
commute. The following theorem generalizes Remark 2.4 in [34], and completely
answers a question raised in [14, Problem 5.7].

Theorem 3.4 For every r ∈ N and reductive C-group G,MT
Zr G = M0

Zr G.

Proof Let K be a fixed maximal compact subgroup of G, and let TK = T ∩ K . Then
TK ⊂ K is a maximal torus in K . Tom Baird [3] considered the compact character
variety

NZr K := Hom(Zr , K )/K ,

and showed that:

(1) The (path) connected component of the identity N 0
Zr K ⊂ NZr K coincides with

the space of conjugation classes of representations

HomTK (Zr , K )/K ,

where HomTK (Zr , K ) denotes the representations ρ whose r evaluations ρ(γi )

can be simultaneously conjugated into the maximal torus TK .
(2) N 0

Zr K is homeomorphic to the quotient T r
K /W , where W = NK (TK )/TK is the

Weyl group associated to TK .

By [14, Theorem 1.1], there is a strong deformation retraction fromMZr G toNZr K
which (by continuity) restricts to one from M0

Zr G to N 0
Zr K .

Let [ρ] ∈ M0
Zr G. Then there exists a commuting tuple (g1, . . . , gr ) in Gr such

that [ρ] = [(g1, ..., gr )]. By [14, Proposition 3.1] we can assume that each element
gi ∈ G is semisimple. The strong deformation retraction (SDR), which isG-conjugate
equivariant, provides a path ρt from this tuple to a commuting tuple in Gr

K where
GK = {gkg−1 | g ∈ G, k ∈ K }. With respect to an embedding G ↪→ SL(n,C),
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which preserves semisimplicity, this SDR is given by the eigenvalue retraction defined
by deforming �eiθ to eiθ by sending � to 1. By [14, Lemma 3.4], there exists a single
element g0 in G that will conjugate the resulting r -tuple in Gr

K to be in Kr . And by
Baird’s result, and the fact that we remain in the identity component by continuity, we
know there is a single element k0 in K thatwe can conjugate the resulting tuple in Kr so
it is in T r

K . Let h0 := k0g0, and consider the conjugated reverse pathψt := h0ρ1−t h
−1
0 .

This path begins in T r
K (by definition) and ends in T r since eigenvalue retraction

deforms T to TK and hence the reverse path takes elements in TK and maps them to
T . Since ψ1 = h0ρ0h

−1
0 = (h0g1h

−1
0 , . . . , h0grh

−1
0 ), we conclude that

[ρ] = [(g1, ..., gr )] = [(h0g1h−1
0 , . . . , h0grh

−1
0 )] = [ψ1]

is in T r/W , as required. ��

4 Mixed Hodge structure on Hom0(0,G)

Here we prove the statements in Theorems 1.1 and 1.3 that concern the connected
component R0

�G of the trivial representation in the representation variety R�G =
Hom(�,G).

Let us first describe the situation for � ∼= Z
r . Consider, as in the proof of Theorem

3.4, the compact character variety

NZr K = Hom(Zr , K )/K ,

where K is a fixed maximal compact subgroup of G. Recall our convention that
TK = T ∩K where T is a maximal torus in G. Baird [3] showed that the isomorphism
N 0

Zr K ∼= T r
K /W , is part of a natural K -equivariant commutative diagram:

(K/TK ) ×W T r
K

πK

ϕK
Hom0(Zr , K )

πK

T r
K /W

∼= N 0
Zr K ,

where ϕK is a desingularization of Hom0(Zr , K ) which induces an isomorphism in
cohomology, and the vertical maps are the quotient maps by K -conjugation.

Passing to the complexification, there is an analogous G-equivariant commutative
diagram:

(G/T ) ×W T r

πG

ϕG
Hom0(Zr ,G)

πG

T r/W
χ M0

Zr G.
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There are some notable differences from the compact case:

(1) χ is bijective, birational, and a normalization map (Corollary 5.1),
(2) χ is not generally known to be an isomorphism, although it is whenG is of classical

type (Corollary 5.2),
(3) ϕG is not even surjective, hence not a desingularization morphism (we will say

more about this below),
(4) πG is the GIT quotient map (with respect to the G-conjugation action).

Despite these differences, we will show that the mixed Hodge structures of T r/W and
M0

Zr G coincide, as do those of (G/T ) ×W T r and Hom0(Zr ,G).

4.1 Mixed Hodge structures on a smoothmodel ofR0
ZrG

The above discussion suggests to consider the smooth irreducible algebraic variety:

SrG := (G/T ) ×W T r ,

whose MHS we now determine. The natural MHS on G/T is the one of the full
flag variety G/B, where B is a Borel subgroup, which has well-known cohomology.
Indeed, it is a classical fact that there is an identification K/TK ∼= G/B. On the other
hand, K/TK ↪→ G/T is a strong deformation retraction (see for example [6, Theorem
10]), which provides isomorphisms of cohomology spaces:

H∗(G/B) ∼= H∗(K/TK ) ∼= H∗(G/T ).

Since T is contained in a certain Borel subgroup, there is a surjective algebraic map
ϕ : G/T → G/B which upgrades the above isomorphism to an isomorphism of
MHSs, H∗(G/B) ∼= H∗(G/T ), since the restriction of ϕ to K/TK is the map that
induces the isomorphism K/TK ∼= G/B.

Recall that the Weyl group W acts on t∗, the dual of the Lie algebra of T . By the
Shephard-Todd theorem [33], the ring of W -invariants C[t∗]W is a polynomial ring
generated by homogeneous generators of degrees d1, . . . , dm called the characteristic
degrees of W (m = dim t). These are well-known for all Weyl groups of simple G
(isomorphic to the Weyl groups of simple K ), and can be consulted in [29, Table 1]
or in [24, Page 7].

Theorem 4.1 Let m be the rank of G and d1, . . . , dm be the characteristic degrees of
W. The variety SrG is of Hodge-Tate type and its mixed Hodge polynomial is given
by:

μSrG (t, u, v) = 1

|W |
m∏

i=1

(1 − (t2uv)di )
∑

g∈W

det
(
I + tuv Ag

)r

det
(
I − t2uv Ag

) .
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Proof Since mixed Hodge structures respect the Künneth formula, from H∗(G/B) ∼=
H∗(G/T ), we get an isomorphism:

H∗(SrG) ∼= [H∗(G/T ) ⊗ H∗(T r )]W ∼= [H∗(G/B) ⊗ H∗(T r )]W ,

of mixed Hodge structures, where the superscript means that we are considering the
W -invariant subspace. Since the full flag variety G/B is smooth and projective, its
cohomology has a pure Hodge structure. Moreover, there is an isomorphism

H∗(G/B) ∼= H∗(BT )W

where BT ∼= (BS1)m is the classifying space of T , and H∗(BT )W is the algebra of
co-invariants under the W -action on H∗(BT ). Also, H∗(BT ) is a polynomial ring
C[x1, . . . , xm] where each xi has triple grading (2, 1, 1), since BT can be identified
with (CP∞)m (in particular, it has pure cohomology). By a classical theorem of Borel
(see [30] for a modern treatment), there is an isomorphism:

H∗(BT )W ∼= C[x1, . . . , xm]/(σ1, . . . , σm),

where the σi are the homogeneous generators of the ring of W -invariants H∗(BT )W ,
with degrees (2di , di , di ).

From the above, and the fact that σ1, . . . , σm are W -invariants, we obtain:

H∗(SrG) ∼= [H∗(G/B) ⊗ H∗(T r )]W ∼= [H∗(BT ) ⊗ H∗(T r )]W /(σ1, . . . , σm).

Now, the mixed Hodge polynomial μX (t, u, v) of a variety X is the Hilbert series of
its cohomology H∗(X) with the triple grading given by its mixed Hodge structure.
Denote by H(A) the Hilbert series of a graded algebra A, in the variable x . It is a
standard result that, if a ∈ A is not a zero divisor, then

H(A/(a)) = H(A) (1 − xd),

where d is the degree of a. Applied to our case, and since σ1, . . . , σm form a regular
sequence (see [24]), we get the equality of Hilbert series in the three variables t, u, v:

H(H∗(SrG)) = H([H∗(BT ) ⊗ H∗(T r )]W )

m∏

i=1

(1 − (t2uv)di ).

The result thus follows from:

H([H∗(BT ) ⊗ H∗(T r )]W ) = 1

|W |
∑

g∈W

det
(
I + tuv Ag

)r

det
(
I − t2uv Ag

) . (4.1)

Formula (4.1) is obtained by applying Corollary 4.3 belowwith V0 = H2,1,1(BT ) and
V1 = · · · = Vr = H1,1,1(T ), since H∗(BT ) = S•V0 and T r has round cohomology
generated in degrees (1, 1, 1): H∗(T r ) = ∧•H1,1,1(T r ) ∼= (∧•H1,1,1(T ))⊗r . ��
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Recall some definitions and facts from the theory of representations of finite groups.
If V = ⊕k≥0V k is a graded C-vector space (possibly infinite dimensional, but with
finite dimensional summands), and g : V → V is a linear map that preserves the
grading, define the graded-character of g by:

χg(V ) :=
∑

k≥0

tr(g|V k ) xk ∈ C[[x]].

It is additive and multiplicative, under direct sums and tensor products, respectively:

χg(V1 ⊕ V2) = χg(V1) + χg(V2), χg(V1 ⊗ V2) = χg(V1)χg(V2).

A linear map g : V → V induces linear maps on the direct sums of all symmetric
powers S•V := ⊕ j≥0S j V , and of all exterior powers∧•V := ⊕dim V

j≥0 ∧ j V . Note that

S•V is graded, with elements of S j V and ∧ j V having degree jδ, when V is pure of
degree δ. We need to consider two important cases, whose proofs are standard (see,
for instance, [31, page 69]).

Lemma 4.2 Let V be a vector space, whose elements are all of degree δ, and g : V →
V a linear map. Then, we have:

χg(S
•V ) = 1

det(I − xδg)
, χg(∧•V ) = det(I + xδg).

Now, suppose that a finite group F acts on V preserving the grading. Recall that
the Hilbert-Poincaré series of the graded vector space V F , of F-invariants in V , can
be computed as:

H(V F ) = 1

|F |
∑

g∈F
χg(V ). (4.2)

Since all the above constructions are valid for triply graded vector spaces, and
characters are multiplicative under tensor products, the following is an immediate
consequence of Lemma 4.2.

Corollary 4.3 If Vi , i = 0, . . . , r are finite dimensional representations of a finite
group F, then the triply graded Hilbert-Poincaré series in t, u, v is:

H([S•V0 ⊗ ∧•V1 ⊗ · · · ⊗ ∧•Vr ]F ) = 1

|F |
∑

g∈F

∏r
i=1 det(I + tai ubi vci g)

det(I − ta0ub0vc0g)
,

where each Vi has pure triple degree (ai , bi , ci ), i = 0, . . . , r .
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4.2 Mixed Hodge structure onR0
0G for Nilpotent 0

The lower central series of a group � is defined inductively by �1 := �, and �i+1 :=
[�,�i ] for i > 1. A group � is nilpotent if the lower central series terminates to the
trivial group.

Let � be a finitely generated nilpotent group. It is a general theorem that all finitely
generated nilpotent groups are finitely presentable (and residually finite); see [23].

Recall that the abelianization of �:

�Ab := �/[�,�],

can be written as Ab(�) � Z
r ⊕ F where r ∈ N≥0 is the abelian rank of �, and F

is a finite abelian group. We now generalize some of the previous results to nilpotent
groups.

Theorem 4.4 Let � be a finitely generated nilpotent group with abelian rank r ≥ 1.
Then, the algebraic varietyR0

�G = Hom0(�,G)has dimensiondimG+(r−1) dim T
and its MHS coincides with the MHS on (G/T ) ×W T r .

Proof By [9], we have Hom0(�Ab, K ) ∼= Hom0(�, K ) and consequently, from [5],
Hom0(�Ab,G) is homotopic to Hom0(�,G). From [3], we know that

ϕK : (K/TK ) ×W T r
K → Hom0(�Ab, K )

is a birational surjection (in fact, a desingularization) that induces an isomorphism in
cohomology. This map is defined by [(gT , t1, ..., tr )]W �→ (gt1g−1, ..., gtr g−1), and
we can likewise define ϕG in the complex situation.

These maps come together to form the following commutative diagram:

(G/T ) ×W T r ϕG
Hom0(�Ab,G) Hom0(�,G)

(K/TK ) ×W T r
K

ϕK
Hom0(�Ab, K )

∼= Hom0(�, K ).

(4.3)

Since the bottom row induces isomorphisms in cohomology, by commutativity, all
maps induce isomorphisms in cohomology. Since the upper row is formed by alge-
braic maps, these induce isomorphisms of mixed Hodge structures of the respective
cohomologies. The dimension formula is clear since dimG/T = dimG − dim T . ��
Remark 4.5 Let �Ab ∼= Z

r with free abelian generators γ1, ..., γr . We note some
properties of the map ϕG : (G/T ) ×W T r → Hom0(Zr ,G). Let Gss be the set
of semisimple elements of G (elements in G with closed conjugation orbits), and
Hom0(Zr ,Gss) := {ρ ∈ Hom0(Zr ,G) | ρ(γi ) ∈ Gss, 1 ≤ i ≤ r}. It is shown
in [14] that Hom0(Zr ,Gss) is exactly the set of representations with closed conju-
gation orbits. In the identity component, these are exactly the representations whose
image can be conjugated to a fixed maximal torus. Hence, the image of ϕG is exactly
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the set Hom0(Zr ,Gss). So we see that ϕG is not surjective and Hom0(Zr ,Gss) is a
constructible set (not obvious a priori). Now from [28] we know that Hom0(Zr ,G)

is homotopic to Hom0(Zr ,Gss), and since Gss is dense in G we deduce that
Hom0(Zr ,Gss) is dense in Hom0(Zr ,G). Thus, ϕG is dominant, homotopically sur-
jective, and induces a cohomological isomorphism (from Diagram (4.3)). Since W
acts freely, (G/T ) ×W T r is smooth although Hom0(Zr ,G) is generally singular.
By Remark 5.6 below, the Zariski dense representations in Hom0(Zr ,G) are smooth
points. It is easy to see that ϕ−1

G (ρ) is a point if ρ is Zariski dense (a generic condi-
tion). Hence, ϕG is birational, although, unlike its compact analogue ϕK , it is not a
desingularization.

Corollary 4.6 Let G be a reductive C-group of rank m, whose Weyl group has char-
acteristic degrees d1, . . . , dm. Let � be a finitely generated nilpotent group of abelian
rank r ≥ 1. The varietyR0

�G is of Hodge-Tate type and its mixed Hodge polynomial
is given by:

μR0
�G

(t, u, v) = 1

|W |
m∏

i=1

(1 − (t2uv)di )
∑

g∈W

det
(
I + tuv Ag

)r

det
(
I − t2uv Ag

) . (4.4)

Proof This follows immediately from Theorems 4.1 and 4.4. ��

Corollaries 4.6 and 5.10 together establish Theorem 1.3 from the Introduction.

Corollary 4.7 For every finitely generated nilpotent group �, and reductive C-group
G, the Poincaré polynomial and E-polynomial of R0

�G are given, respectively, by:

Pt
(
R0

�G
)

= 1

|W |
m∏

i=1

(1 − t2di )
∑

g∈W

det
(
I + t Ag

)r

det
(
I − t2 Ag

)

ER0
�G

(u, v) = 1

|W |
m∏

i=1

(1 − (uv)di )
∑

g∈W
det

(
I − uv Ag

)r−1

and the Euler characteristic of R0
�G vanishes. If the abelian rank of � is 2 and G

is simply-connected, then the E-polynomial simplifies to ER0
�G

(u, v) = ∏m
i=1(1 −

(uv)di ).

Proof This follows by evaluating Formula (4.4) at u = v = 1 for the Poincaré
polynomial, and at t = −1 for the E-polynomial. Then, the Euler characteristic is
obtained as χ(R0

�G) = ER0
�G

(1, 1) = 0, as r ≥ 1.

Finally, when r = 2 the term (1/|W |)∑
g∈W det(I − uvAg) is equal to

μM0
Z
G(−1, u, v) by Theorem 5.8 below. On the other hand, since G is simply-

connected, M0
Z
G ∼= T /W ∼= C

dim T , by a result of Steinberg in [37]. Being affine
space, its E-polynomial equals 1 (see [19, Example 2.6]), as wanted. ��
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4.3 Some computations for classical groups

For certain classes of groups, such as G = SL(n,C) and G = GL(n,C), the above
formulas can be made more explicit. These cases have Weyl group Sn , the symmetric
group on n letters. In the GL(n,C) case, the action of a permutation σ ∈ Sn on
the dual of the Cartan subalgebra of gln can be identified with the action on C

n by
permuting the canonical basis vectors. Therefore, det(I − λAσ ) = ∏n

j=1(1 − λ j )σ j ,
where σ ∈ Sn is a permutation with exactly σ j ≥ 0 cycles of size j ∈ {1, . . . , n} (see,
for example, [19, Thm. 5.13]). The collection (σ1, σ2 . . . , σn) defines a partition of n,
one with exactly σ j parts of length j , and the number of permutations σ ∈ Sn with
this cycle pattern is (see [36, 1.3.2]):

mσ = n! (∏n
j=1 σ j ! jσ j )−1.

Since the characteristic degrees of theWeyl group of GL(n,C) are exactly 1, 2, . . . , n,
this leads to the following explicit formula:

μR0
�GL(n,C) (t, u, v) =

m∏

i=1

(1 − (t2uv)i )
∑

π�n

n∏

j=1

(1 − (−tuv) j )π j r

π j ! jπ j (1 − (t2uv) j )π j
,

where π � n denotes a partition of n with π j parts of size j .
Moreover, in the GL(n,C) case, we can also derive a recursion relation, which

completely avoids the determination of partitions or permutations. Since μR0
�GL(n,C)

depends only on tuv and t2uv, we use the substitutions x = tuv, andw = t x = t2uv.

Proposition 4.8 Let G = GL(n,C) and writeμr
n(x, w) := μR0

�G
(t, u, v) for a nilpo-

tent group �, of abelian rank r ≥ 1. Then, we have the recursion relation:

μr
n(x, w) = 1

n

n∑

k=1

f ((−x)k, wk) ck(w)μr
n−k(x, w), (4.5)

with f (x, w) := (1−x)r

1−w
and ck(w) := ∏k−1

i=0 (1 − wn−i ).

Proof For fixed r ∈ N, let φn(z, w) be the rational function in variables z, w, defined
by:

φn(z, w) := 1

n!
∑

g∈Sn

det
(
I − z Ag

)r

det
(
I − w Ag

) ,

with φ0(z, w) ≡ 1. By [13, Thm 3.1], the generating series for φn(z, w) is a so-called
plethystic exponential:

1 +
∑

n≥1

φn(z, w) yn = PE( f (z, w) y) := exp

⎛

⎝
∑

k≥1

f (zk, wk)
yk

k

⎞

⎠
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with f (z, w) = (1−z)r

1−w
. Differentiating the above identity with respect to y we get:

∑

n≥1

nφn(z, w) yn−1 =
⎛

⎝1 +
∑

m≥1

φm(z, w) ym

⎞

⎠

⎛

⎝
∑

k≥1

f (zk, wk) yk−1

⎞

⎠ ,

which, by picking the coefficient of yn , leads to the recurrence:

φn(z, w) = 1

n

n∑

k=1

f (zk, wk) φn−k(z, w). (4.6)

To apply this to μr
n(x, w) we use Eq. (4.4) in the form:

φn(−x, w) = μr
n(x, w)∏n

i=1(1 − wi )
,

so the wanted recurrence follows by replacing z = −x in Eq. (4.6). ��

In the SL(n,C) case, also with Weyl group Sn , the action is the same permutation
action, but restricted to the vector subspace of Cn whose coordinates add up to zero.
Hence, the formula for det(I − λAπ ) acting on dual of sln is now:

det(I − λAπ ) := 1

1 − λ

n∏

j=1

(1 − λ j )π j , (4.7)

for a permutation σ ∈ Sn with σ j cycles of size j . Recalling that SL(n,C) is a group
of rank n − 1 whose Weyl group has characteristic degrees 2, 3, . . . , n, we derive the
following formula, reflecting the fact that the R0

�GL(n,C) and R0
�SL(n,C) cases

only differ by a torus.

Corollary 4.9 Let G = SL(n,C) and � be a finitely generated nilpotent group of
abelian rank r ≥ 1. Then:

μR0
�SL(n,C) (x, w) = 1

(1 + x)r
μR0

�GL(n,C) (x, w) . (4.8)

Remark 4.10 The recursion formulae in (4.5) and (4.8) have been implemented in a
Mathematica notebook available on [18].

Example 4.11 From (4.5) and (4.8) we can quickly write down the first few cases for
SL(n,C). To obtain μR0

�SL(n,C)(t, u, v) one just needs to substitute x = tuv and
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w = t2uv.

μR0
�SL(2,C) = 1

2

(
(1 + w)(1 + x)r + (1 − w)(1 − x)r

)
.

μR0
�SL(3,C) = 1

6 (1 + 2w + 2w2 + w3)(1 + x)2r + 1
2 (1 − w3)(1 − x2)r

+ 1
3 (1 − w − w2 + w3)(1 − x + x2)r .

μR0
�SL(4,C) = 1

24 (1 + w)(1 + w + w2)(1 + w + w2 + w3)(1 + x)3r

+ 1
4 (1 + w + w2)(1 − w4)(1 + x)r (1 − x2)r

+ 1
8 (1 − w3)(1 − w + w2 − w3)(1 − x)r (1 − x2)2r

+ 1
3 (1 − w2)(1 − w4)(1 + x3)r

+ 1
4 (1 − w)(1 − w2)(1 − w3)(1 + x + x2 + x3)r .

Putting x = t and w = t2 we recover the expressions for the Poincaré polynomial
in [3] and [29].1 Note that with x = −1, w = 1 we confirm the vanishing of the
Euler characteristic. With w = −x we get formulas for the E-polynomial, and with
x = w = 1 (that is, t = u = v = 1) we get:

μR0
�SL(n,C) (1, 1, 1) = 2(n−1)r ,

the dimension of the total cohomology of T r , confirming that H∗(R0
�SL(n,C)) is a

regrading of H∗(T r ).

Example 4.12 Consider now the group G = Sp(2n,C) which has rank n and dimen-
sion n(2n + 1). Its Weyl group is the so-called hyperoctahedral group: the group
of symmetries of the hypercube of dimension n, denoted Cn , of order |Cn| =
2nn!. It can be described as the subgroup of permutations of the set S±n :=
{−n, . . . ,−1, 1, . . . , n} satisfying:

σ ∈ Cn ⊂ S±n ⇐⇒ σ(−i) = −σ(i) ∀1 ≤ i ≤ n.

The action of g ∈ Cn on the dual of the Lie algebra sp2n ∼= C
n is the following natural

action. If we denote by e1, . . . , en the standard basis of Cn , and let e−i := −ei , then
g · ei = eσ(i), for all 1 ≤ i ≤ n, where g ∈ Cn corresponds to the permutation
σ ∈ S±n .

Given that Sp(2,C) ∼= SL(2,C), we consider the next case: n = 2. Sp(4,C) has
complex dimension 10, and its Weyl group is C2, which is known to be isomorphic to
the dihedral group of order 8 (the symmetries of the square):

C2 = {e, a, a2, a3, ba, ba2, ba3},

where a acts by counter-clockwise rotation of π
2 (that is e1 �→ e2 �→ −e1 �→ −e2 �→

e1) and b is the reflection along the first coordinate axis (e1 �→ e1 and e2 �→ −e2).

1 Note that our first term for n = 3 corrects the corresponding term in [3, pg. 749].
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Then, we have:

a =
(
0 −1
1 0

)
, b =

(
1 0
0 −1

)

and simple computations give the following table, with pg(λ) = det(I − λAg).

g ∈ C2 pg(λ)

e (1 − λ)2

a, a3 1 + λ2

a2 (1 + λ)2

b, ba, ba2, ba3 1 − λ2

From this, since the characteristic degrees of C2 are 2, 4, we compute, using again
x = tuv and w = t2uv:

μR0
�Sp(4,C) = 1

222! (1 − w2)(1 − w4)
∑

g∈C2

pg(−x)r

pg(w)

= 1
8 (1 − w2)(1 − w4)

(
(1+x)2r

(1−w)2
+ 2 (1+x2)r

1+w2 + (1−x)2r

(1+w)2
+ 4 (1−x2)r

1−w2

)

= 1
8 (1 + w)(1 + w + w2 + w3)(1 + x)2r + 1

4 (1 − w2)2(1 + x2)r

+ 1
8 (1 − w)(1 − w + w2 − w3)(1 − x)2r + 1

2 (1 − w4)(1 − x2)r .

Again, we note that with x = t andw = t2 we obtain the Poincaré polynomial. Setting
w = x = 1 we obtain 22r , and settingw = 1 = −x we get zero, both as expected. The
above formula gives a new result even for RZ2Sp(4,C), the 12 dimensional variety
of pairs of commuting Sp(4,C) matrices. Indeed, we obtain the following Poincaré
polynomial

PR
Z2Sp(4,C)(t) = 1 + t2 + t4 + 2(t3 + t5 + t6 + t7 + t9) + 3t10,

and E-polynomial ER
Z2Sp(4,C)(u, v) = (1 − (uv)2)(1 − (uv)4), as expected from

Corollary 4.7

4.4 G-equivariant cohomology ofR0
0(G)

For a Lie groupG, denoteG-equivariant cohomology (overC) by HG .We now resume
our main setup: G is a reductive C-group, K is a maximal compact subgroup of G, T
is a maximal torus in G and TK is a compatible maximal torus in K (so TK = T ∩K ).
Again, let � be a finitely generated nilpotent group of abelian rank r ≥ 1, so the
torsion free part of its abelianization is Zr .
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Since G and K are homotopic, as areR0
�(G) andR0

�(K ), we conclude there is an
isomorphism in equivariant cohomology:

H∗
G(R0

�(G)) ∼= H∗
K (R0

�(K )).

Then, from Baird’s thesis [2], precisely pages 39 and 55, and Corollary 7.4.4, the
G-equivariant and K -equivariant maps in Diagram (4.3) imply we have the following
isomorphisms:

H∗
K (R0

�(K )) ∼= H∗
K (R0

Zr (K ))

∼= H∗
K ((K/TK ) × T r

K )W

∼= H∗
TK (T r

K )W

∼= [H∗(T r
K ) ⊗ H∗(BTK )]W

∼= [H∗(T r ) ⊗ H∗(BT )]W .

We have already computed the Hilbert series of this latter ring in Eq. (4.1). Thus
we conclude:

Corollary 4.13 There is a MHS on the G-equivariant cohomology of R0
�(G) and the

G-equivariant mixed Hodge series is:

μG
R0

�(G)
= 1

|W |
∑

g∈W

det
(
I + tuv Ag

)r

det
(
I − t2uv Ag

) .

5 Mixed Hodge structure on Hom0(0,G)//G

Now we prove the statements in Theorems 1.1 and 1.3 on the connected component
M0

�G of the trivial representation of the character varietyM�G = Hom(�,G)//G.
We start with the free abelian case, � ∼= Z

r , noting a number of corollaries to
Theorem 3.4.

Corollary 5.1 M0
Zr G is irreducible, and there exists a birational bijective morphism

χ : T r/W → M0
Zr G

which is the normalization map. In particular, we have equality of Grothendieck
classes: [T r/W ] = [M0

Zr G].
Proof As noted earlier, MT

Zr G is irreducible, and we have shown that M0
Zr G =

MT
Zr G.We also know from [34] that there is a bijective birationalmorphism T r/W →

MT
Zr G. The first sentence follows since T r/W is normal (since the GIT quotient of a

normal variety is normal). Since χ is a bijective map, the statement on Grothendieck
classes follows from [4, Page 115] (see also [20]). ��
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We will say that a reductive C-group G is of classical type if its derived subgroup
DG admits a central isogeny by a product of groups of type SL(n,C), Sp(2n,C), or
SO(n,C) for varying n (not necessarily all the same n within the product).

Corollary 5.2 If G is of classical type, thenM0
Zr G is normal andχ : T r/W → M0

Zr G
is an isomorphism.

Proof Given M0
Zr G = MT

Zr G this follows from [19]. Here is a sketch of the result
in [19]. Sikora showed the result for SL(n,C), Sp(2n,C), or SO(n,C) in [34]. It
is trivially true for tori. In general, M0

Zr (G × H) ∼= M0
Zr G × M0

Zr H and also
M0

Zr (G/F) ∼= (M0
Zr G)/Fr , for finite central subgroups F . The result then follows

from the central isogeny theorem for reductive C-groups and the facts that GIT quo-
tients of normal varieties are normal, and cartesian products of normal varieties are
normal. ��
Since M0

Zr G = MT
Zr G we know for any [ρ] ∈ M0

Zr G its image is contained in
some maximal torus which we may assume is T . We will say such a representation is
Zariski dense if its image is Zariski dense in T . We note that every representation in
the identity component is reducible; that is, its image is contained in a proper parabolic
subgroup of G. For many choices of �, reducible representations are singular points;
see for example [15, 21]. The next corollary is in contrast to this.

Corollary 5.3 Assume r ≥ 2, and that [ρ] ∈ M0
Zr G is Zariski dense. Then

(1) [ρ] is a smooth point, and
(2) the map χ : T r/W → M0

Zr G is étale at [ρ].
Proof Since M0

Zr G = MT
Zr G, and [34, Theorem 4.1] shows that if [ρ] ∈ MT

Zr G
and is Zariski dense then (1) holds onMT

Zr G, (1) is also true forM0
Zr G. For (2), [34,

Theorem 4.1] shows that the map induces an isomorphism of tangent spaces on the
torus component when ρ is Zariski dense; this implies the map is étale at [ρ] by (1). ��
Remark 5.4 If r = 1, then we have G//G ∼= T /W and is smooth if DG is simply-
connected by [37] and [7, Proposition 3.1]. The converse is not true however, since
PSL(2,C)//PSL(2,C) ∼= C is smooth.

The map χ : T r/W → M0
Zr G is the normalization map in general and it is an

open question whether or not it is an isomorphism in general [34]. We note that χ is
an isomorphism if and only if χ is étale and that holds if and only ifM0

Zr G is normal.

Corollary 5.5 Let G beof classical type. Then the singular locus ofM0
Zr G is of orbifold

type; that is, consists only of finite quotient singularities.

Proof In the case that G is of classical type we know that χ is an isomorphism since
M0

Zr G is normal. Thus, the singular locus of M0
Zr G is exactly the singular locus of

T r/W . Since T r/W is the finite quotient of a manifold, the result follows. ��
Remark 5.6 From this point-of-view, we can see easily why the Zariski dense rep-
resentations are smooth. The Zariski dense representations are tuples (t1, ..., tr ) that
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generate a Zariski dense subgroup of T (most ti ’s do this by themselves). If w ·ρ = ρ

then w · ρ(γ ) = ρ(γ ) for all γ . Since ρ is Zariski dense we conclude that w · t = t
for all t ∈ T . We conclude w = 1 and so W acts freely on the set of Zariski dense
representations. This shows they are smooth points and the singular locus is contained
in the non-Zariski dense representations.

Remark 5.7 Assume r ≥ 2. If ρ is not Zariski dense, then the identity component
of A := ρ(Zr ) is, up to conjugation, a proper subtorus of T . It seems reasonable to
suppose that A is contained in the fixed locus of a non-trivial w ∈ W . The fixed loci
(T r )w for w �= 1 are of codimension greater than 1 since r ≥ 2 and (Tw)0 is a proper
subtorus. So, in light of the Shephard-Todd Theorem [33], it appears likely that the
non-Zariski dense representations are exactly the singular locus (for r ≥ 2).

5.1 TheMHS onM0
0G

Given an isomorphism of groups ϕ : �1 → �2 there exists a (contravariant) bireg-
ular morphism ϕ∗ : M�2G → M�1G given by ϕ∗([ρ]) = [ρ ◦ ϕ] with inverse
(ϕ−1)∗. Consequently, the topology of M�G and its mixed Hodge structure (MHS)
are independent of the presentation of �. Hence, the same holds forM0

�G, for any �.
Let us start with the free abelian case, � ∼= Z

r , where we know that M0
Zr G =

MT
Zr G.

Theorem 5.8 Let G be a reductive C-group, T a maximal torus, and W the Weyl
group. Then, the MHS ofM0

Zr G coincides with the one of T r/W and its mixed Hodge
polynomial is given by:

μM0
Zr G

(t, u, v) = 1

|W |
∑

g∈W

[
det

(
I + tuv Ag

)]r
, (4.1)

where Ag is the automorphism induced on H1(T ,C) by g ∈ W, and I is the identity
automorphism.

Proof We have the following commutative diagram with vertical arrows being strong
deformation retractions from [14]:

T r
K /W

∼= N 0
Zr K

T r/W
χ M0

Zr G.

Thus, χ induces isomorphisms in cohomology and since it is an algebraic map, these
isomorphisms preserve mixed Hodge structures. Thus, the MHS on T r/W and on
M0

Zr G coincide. The formula then follows immediately from [19]. ��
Theorem 5.9 Let � be a finitely generated nilpotent group of abelian rank r ≥ 1. The
MHS on M0

�G coincides with the MHS on T r/W.
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Proof This follows from [9, Corollary 1.4], where they prove isomorphisms in coho-
mology given by algebraic maps. ��
Corollary 5.10 Let � be a finitely generated nilpotent group of abelian rank r ≥ 1.
Then, for all reductive C-groups G we have:

μM0
�G

(t, u, v) = 1

|W |
∑

g∈W

[
det

(
I + tuv Ag

)]r
.

Proof This follows directly from Theorems 5.8 and 5.9. ��
Note that the G-equivariant cohomology of the moduli space M0

�(G) is the usual
cohomology since the G-action is trivial on M0

�(G).

Corollary 5.11 The compactly supported mixed Hodge polynomial ofM0
Zr (G) is:

μc
M0

Zr (G)
(t, u, v) = tr dim T

|W |
∑

g∈W

[
det(tuv I + Ag)

]r
.

Proof If a variety X of (complex) dimension d satisfies Poincaré duality, then μX

and μc
X are related by: μc

X (t, u, v) = (t2uv)dμX (t−1, u−1, v−1); see [19, Remark
3.10(1)]. FromTheorem 5.8, themixedHodge structures and polynomials ofM0

Zr (G)

and T r/W coincide. Since T r/W is an orbifold, it satisfies Poincaré duality for MHSs
(see [19, Section 4.2]). Hence, using d = dim T , we have:

μc
T r /W (t, u, v) = (t2uv)rdμT r /W (t−1, u−1, v−1)

= (t2uv)rd
1

|W |
∑

g∈W

[
det

(
I + 1

tuv
Ag

)]r

= trd

|W |
∑

g∈W

[
(tuv)d det

(
I + 1

tuv
Ag

)]r

as claimed, since Ag are automorphisms of the Lie algebra of T . ��

5.2 Examples for classical groups

As in the case of representation varieties, the character varieties for GL(n,C) and
SL(n,C) also allow closed expressions in terms of partitions π of n. In [19, Thm
5.13], it was shown thatMZrGL(n,C) has round cohomology, so that x = tuv is the
only relevant variable, and that:

μMZrGL(n,C) (x) = μMZr SL(n,C) (x) (1 + x)r .

From the present analysis, the same formulas work also for the identity components
of the character varieties of any nilpotent group � with abelianization Z

r . Moreover,
we can also obtain a recurrence relation as follows.
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Proposition 5.12 Let G = GL(n,C) and write νrn(x) := μM0
�G

(t, u, v) for a nilpo-
tent group �, of abelian rank r . Then, with h(x) := (1 − x)r , we have:

νrn(x) = 1

n

n∑

k=1

h((−x)k) νrn−k(x). (4.2)

Proof As in Proposition 4.8, define ψn(z) to be the rational function of z:

ψn(z) := 1

n!
∑

g∈Sn
det

(
I − z Ag

)r = νrn (−z) ,

with ψ0(z) ≡ 1. By [13, Thm 3.1], the generating series for the ψn(z) is now the
plethystic exponential 1 + ∑

n≥1 ψn(z) yn = PE(h(z) y) with h(z) = (1 − z)r . As
before, the derivative with respect to y now gives:

∑

n≥1

nψn(z) y
n−1 =

⎛

⎝1 +
∑

m≥1

ψm(z) ym

⎞

⎠

⎛

⎝
∑

k≥1

h(zk) yk−1

⎞

⎠ ,

which, by picking the coefficient of yn , leads to the recurrence:

ψn(z) = 1

n

n∑

k=1

h(zk) ψn−k(z), (4.3)

so the proposition follows by replacing z = −x in Eq. (4.3). ��

5.3 Point count over finite fields and compactly supported E-polynomials

In this subsection, we show that our formulae for mixed Hodge polynomials also
compute the number of points of the identity component of character varieties of free
abelian groups over finite fields.

Let X be a separated scheme of finite type over Z. We say that X is polynomial
count, with counting polynomial PX (x) ∈ Z[x] if for all but finitely many primes p,
and finite fieldsFq with q = pk , its number ofFq -points is given by #X(Fq) = P X (q).
By extension of scalars, we can consider the varieties X(C) and X(Fq), respectively,
over C and over the algebraic closure Fq .

Next, consider the k-th compactly supported l-adic cohomology of X(Fq), denoted
Hk
c (X(Fq),Ql) for a prime l with gcd(l, q) = 1, and the Frobenius morphism

F : X(Fq) → X(Fq),

whose fixed points are precisely the Fq points of X .
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Following Dimca-Lehrer, we say that X is minimally pure if X is irreducible of
dimension n, and F acts on Hk

c (X(Fq),Ql) with all eigenvalues equal to qk−n (see
[12, Definition 5.1]) (This notion is the analogue of round, for X smooth over C).

Now consider the Z-scheme X = Spec(Z[xi , yi ]/(xi yi − 1)), with 2n variables xi
and yi , whose complex variety is a torus XC = (C∗)n . According to [12, Thm. 5.4],
X is minimally pure.

Theorem 5.13 Fix r ∈ N, and a prime power q, and let TZ be a Z-scheme such that
TC is a maximal torus of a reductive C-group with Weyl group W. Then, the quotient
of T r

Z
by the diagonal action of W, denoted T r

Z
/W, is polynomial count and we have:

#(T r
Z
/W )(Fq) = 1

|W |
∑

g∈W

[
det

(
q I − Ag

)]r
.

Proof Weapply the following general result. If H is a finite group acting on aZ-scheme
Y , we have:

Hk
c ((Y/H)(Fq),Ql)

∼= Hk
c (Y (Fq),Ql)

H ,

as in [12, proof of Prop. 5.5]. Now let Y = T r
Z
and H = W . Since T r

Z
is minimally

pure, the Frobenius morphism acts on V k
q := Hk

c (T r
Z
(Fq),Ql)

W with all eigenvalues
equal to qk−d , d = dim T r

Z
.

Since (T r
Z
/W )(Fq) consists precisely of the Frobenius fixed points of (T r

Z
/W )(Fq),

we apply Grothendieck’s fixed point formula (see for example [12, Equation (5.3.1)]),
to obtain:

#(T r
Z
/W )(Fq) =

2d∑

k=0

(−1)kTr(F, V k
q ).

This is a polynomial in q since Tr(F, V k
q ), the trace of F on V k

q , is a sum of powers
of q. Hence, by Katz’s theorem [22] and [32], the compactly supported E-polynomial
of (T r

Z
/W )C = T r

C
/W coincides with the counting polynomial, with q = uv. The

required formula then comes from the compactly supported mixed Hodge polynomial
in Corollary 5.11, setting t = −1 and q = uv. ��
Corollary 5.14 The counting polynomial of M0

Zr (G) is

PM0
Zr (G)(x) = 1

|W |
∑

g∈W

[
det(x I − Ag)

]r
.

Proof By Corollary 5.1, M0
Zr (G) is bijective to T r/W via the normalization map

χ . Moreover, χ is induced by the inclusion T r ↪→ R0
Zr (G) and so is defined over

the ring of integers (with the possible inversion of a finite number of primes). Thus
the counting functions of these two varieties are equal and so the result follows from
Theorem 5.13. ��
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Remark 5.15 The smoothmodel forR0
Zr (G), namely (G/T )×WT r , is also polynomial

count sinceW acts freely on (G/T )×T r , the product of polynomial count varieties is
polynomial count, and T r andG/T are polynomial count by [8].However, this does not
showR0

Zr (G) is polynomial count since the map relatingR0
Zr (G) and (G/T )×W T r ,

although a cohomological isomorphism, is neither injective nor surjective.

6 Exotic components

In this last section we describe the MHS on the full character varieties of Zr (not only
the identity component) in special cases described in [1]. Let p be a prime integer, and
Zp be the cyclic group or order p. We will use the same notation for center of SU(p)
which is realized as the subgroup of scalar matrices with values p-th roots of unity. Let
�(p) be the diagonal of Zp in (Zp)

m = Z(SU(p)m). Let Km,p := SU(p)m/�(p).
For example, K1,p = PU(p), the projective unitary group.

In [1], all the components in Hom(Zr , Km,p) and MZr Km,p are described. In
particular, MZr Km,p consists of the identity component

M0
Zr Km,p ∼= (S1)(p−1)rm/(Sp)

m

where Sp is the symmetric group on p letters, and

N (p,m) := p(m−1)(r−2)(pr − 1)(pr−1 − 1)

p2 − 1

discrete points.
There is a one-to-one correspondence between the isolated points in MZr Km,p

and non-identity path-components in Hom(Zr , Km,p). Each such path-component is
isomorphic to the homogeneous space SU(p)m/(Zm−1

p × Ep) where Ep ⊂ SU(p)
is isomorphic to the quaternion group Q8 if p is even and the group of triangular
3 × 3 matrices over the Zp, with 1’s on the diagonal when p is odd (either way it is
“extra-special” of order p3).

Corollary 6.1 Let Gm,p be the complexification of Km,p: Gm,p ∼= SL(p,C)m/�(p).
Then: μRZr Gm,p (t, u, v) =

=
⎛

⎝ 1

p!
p∏

i=2

(1 − (t2uv)i )
∑

g∈Sp

det(I + tuv Ag)
r

det(I − t2uv Ag)

⎞

⎠
m

+ N (p,m)

p∏

j=2

(
1 + t2 j−1u jv j

)m
.

Proof The Weyl group W of Gm,p is a direct product of m copies of Sp: the Weyl
group of SL(p,C), and its action on the (dual of the) Lie algebra of maximal torus,
is the product action. Therefore, using again x = tuv and w = t2uv, for the identity
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component R0
Zr Gm,p we have:

μR0
Zr Gm,p

(t, u, v)

=
(

1

p!
p∏

i=2

(1 − wi )

)m ∑

(g1,··· ,gm )∈W

det(Ip + x Ag1)
r · · · det(Ip + x Agm )r

det(Ip − w Ag1) · · · det(I − w Agm )

=
(

1

p!
p∏

i=2

(1 − wi )

)m
⎛

⎝
∑

g∈Sp

det(I + x Ag)
r

det(I − w Ag)

⎞

⎠
m

.

Now, since the MHS on SL(p,C)m/(Zm−1
p × Ep) coincides with that of SL(p,C)m

by Lemma 2.1, each of the N (p,m) components, other than R0
Zr Gm,p, contributes

μ(SL(p,C)m) = μ(SL(p,C))m = ∏p
j=2

(
1 + t2 j−1u jv j

)m
. ��

For the character variety, from the fact that each isolated point adds a constant 1, we
have the following corollary:

Corollary 6.2 The mixed Hodge polynomial of MZr Gm,p is:

μMZr Gm,p (t, u, v) =
⎛

⎝ 1

p!
∑

g∈Sp
det

(
I + tuv Ag

)r
⎞

⎠
m

+ N (p,m).

Proof The same argument of Corollary 6.1, implies that the identity component veri-
fies: μM0

Zr Gm,p
= (μMZr SL(p,C))

m , so the formula is clear. ��

Remark 6.3 Given two reductive groups G and H , both the (G × H)-representation
varieties and the (G × H)-character varieties are cartesian products of the G and H
varieties:

R�(G × H) = R�G × R�H , M�(G × H) = M�G × M�H .

FromCorollaries 6.1 and 6.2, the mixed Hodge polynomial of the identity components
of theseGm,p-character varieties behaves multiplicatively, even thoughR0

Zr Gm,p and
M0

Zr Gm,p are not cartesian products.

Remark 6.4 Since G is connected, R0
Zr G = RZr G if and only if M0

Zr G = MZr G.
And by [14], M0

Zr G = MZr G if and only if (a) r = 1, or (b) r = 2 and G is
simply-connected, or (c) r ≥ 3 and G is a product of SL(n,C)’s and Sp(n,C)’s.
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