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Abstract
Given two holomorphic functions f and g defined in two respective germs of complex
analytic manifolds (X , x) and (Y , y), we know thanks to M. Saito that, as long as one
of them is Euler homogeneous, the reduced (ormicrolocal) Bernstein-Sato polynomial
of the Thom-Sebastiani sum f + g can be expressed in terms of those of f and g.
In this note we give a purely algebraic proof of a similar relation between the whole
functional equations that can be applied to any setting (not necessarily analytic) in
which Bernstein-Sato polynomials can be defined.

Keywords Bernstein-Sato polynomial · Functional equation · Thom-Sebastiani
singularity · V-filtration.

Mathematics Subject Classification 14F10 · 32C38

1 Introduction

Let (X , x) and (Y , y) be two germs of complex analytic manifolds of respective
dimensions n and m. We will consider two nonzero holomorphic functions f ∈ OX ,x

and g ∈ OY ,y , not necessarily reduced, and their Thom-Sebastiani sum h := f + g ∈
OX×Y ,(x,y).
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Let s be a dummy variable. The Bernstein module of f is the DX ,x [s]-module
B f = OX ,x [s, f −1]· f s , with the usual action ofDX ,x . TheBernstein-Sato polynomial
of f is then the monic generator of the ideal of polynomials b(s) ∈ C[s] verifying
that

P(s) f · f s = b(s) · f s

inB f , for some P(s) ∈ DX ,x [s], or equivalently, the minimal polynomial of the action
of s on the quotient moduleDX ,x [s] · f s/DX ,x [s]〈 f 〉 · f s . We will denote it by b f (s).

As long as f is not invertible, it is well known that s + 1 divides b f (s), so we can
define the reduced Bernstein-Sato polynomial of f as b̃ f (s) := b f (s)/(s + 1), which
is also the minimal polynomial of the action of s on the DX ,x [s]-module M f :=
DX ,x [s] · f s/DX ,x [s]J f · f s (see, for instance, [3, Lemma 1.1] and the commentary
thereafter), where J f is the “true” Jacobian ideal of f ; in local coordinates x1, . . . , xn ,
we have J f := 〈 f , f ′

x1 , . . . , f ′
xn 〉 ⊆ OX ,x . In that sense, we have a new functional

equation of the form

P(s) · f s = b̃ f (s) · f s

in B f , where now P(s) belongs to DX ,x [s]J f .
The polynomial b̃ f (s) is also calledmicrolocal Bernstein-Sato polynomial, and we

will see the reason later on in Sect. 2.
Everything in the paragraphs above can be analogously defined for g and h, and

thus we may wonder about the relation between b̃ f , b̃g and b̃h . Before continuing, let
us state some notation and define an important notion.

Given a polynomial p(s) ∈ C[s], we will denote by Rp ⊆ C the set of the opposites
of its roots. For any given α ∈ Rp, we will call mα(p) its multiplicity as root of p.

Definition 1.1 Let a(s), b(s) ∈ C[s] be two nonzero polynomials. Let (a ∗ b)(s) =
a(s) ∗ b(s) ∈ C[s] be the monic polynomial with roots Ra∗b = Ra + Rb and multi-
plicities

mγ (a ∗ b) = max{mα(a) + mβ(b) − 1 : α + β = γ },

for every γ ∈ Ra∗b. We will call a ∗ b the star operation of a and b.

We will use the convention that adding the empty set to any other one gives the
empty set. Therefore, if, for example, f defines a smooth divisor, in such a way that
b̃ f = 1, then b̃ f ∗ b̃g = 1 = b̃h as well.

In [9], M. Saito studied the existing relation between the reduced Bernstein-Sato
polynomial of h and those of f and g and proved the following ([loc. cit., Proposition
0.7, Theorem 0.8]):

Theorem 1.2 Under the same conditions as above,

• Rb̃ f
+ Rb̃g

⊆ Rb̃h
+ Z≤0 and Rb̃h

⊆ Rb̃ f
+ Rb̃g

+ Z≥0.

123



On the reduced Bernstein-Sato...

• In addition, if there exists a germ of vector field χ ∈ �Y ,y such that χ(g) = g,
then (b̃ f ∗ b̃g)(s) = b̃h(s).

Remark 1.3 The condition on g given in the second point is usually referred to as
being Euler-homogeneous at y, χ being an Euler field for g. Two easy consequences
of that fact are that the Jacobian ideal Jh ⊂ OX×Y ,(x,y) is just the sum of the extended
Jacobian ideals J ef + J eg , and that t · gt = χ · gt in OY ,y[t, g−1] · gt .

Saito’s proof of the theorem uses the power of the Kashiwara-Malgrange filtration
on DX ,x [t, ∂t ]. This note is the result of our efforts to find a purely algebraic proof of
such result, that can be extended to a more general context. What is new, to the best
of our knowledge, is an explicit expression for the functional equation for the reduced
Bernstein-Sato polynomial of the sum h = f + g in terms of those for f and g:

Theorem 1.4 Let (X , x) and (Y , y) be two germs of complex analytic manifolds of
respective dimensions n andm. Let f ∈ OX ,x and g ∈ OY ,y two nonzero holomorphic
functions, and let h := f + g ∈ OX×Y ,(x,y). Assume moreover that χ ∈ �Y ,y is an
Euler vector field for g, i.e. χ(g) = g, and that we have functional equations:

P(s) · f s = b̃ f (s) · f s in OX ,x [s, f −1] · f s, with P(s) ∈ DX ,x [s]J f ,
Q · gt = b̃g(t) · gt in OY ,y[t, g−1] · gt , with Q ∈ DY ,y Jg.

Then, we have the functional equation

R(u) · hu = (b̃ f ∗ b̃g)(u) · hu

in OX×Y ,(x,y)[u, h−1] · hu, where R(u) = P(u − χ)A(u, χ) + B(u, χ)Q ∈
DX×Y ,(x,y) Jh. There, A(s, t) and B(s, t) are certain polynomials in C[s, t] that can
be obtained from b̃ f and b̃g, whose meaning will be explained at the end of Sect. 2.1.

In particular, b̃h divides b̃ f ∗ b̃g.

Note that in the functional equation for g the operator Q does not depend on t . This
is because g being Euler-homogeneous implies that t · gt = χ · gt .

Again, notice that we do not just prove that one polynomial divides the other, but
provide a concrete functional equation for b̃ f ∗b̃g . The statement on just the divisibility
was first proved by Yano in [10, Theorem 3.15] in the particular case that g is quasi-
homogeneous and has an isolated singularity at y (note that b̃ f ∗ b̃g is hidden in the
statement due to the simple expression of b̃g).

In fact, even though the statements of Theorems 1.2 and 1.4 above relate holo-
morphic functions on germs of complex manifolds, the functional equation and thus
the relation between the reduced Bernstein-Sato polynomials in the case g is Euler-
homogeneous can be easily generalized to the global algebraic and formal cases. The
latter is just a consequence of the extensionOX ,x → C[[x1, . . . , xn]] being faithfully
flat for a choice of local parameters x1, . . . , xn at x .

Let us consider with a little more detail the first case, so assume f and g are nonzero
polynomials. Then, denoting by V(p) ⊆ Ar

C the vanishing locus of a polynomial p ∈
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C[x1, . . . , xr ], we know that their associated (algebraic) Bernstein-Sato polynomials
are just the least commonmultiples of their local versions at each point of V( f ) ⊆ An

C

and V(g) ⊆ Am
C, respectively (see, for instance, [5, Proposition 4.2.1]). In fact we

could consider only the respective singular points, for the reduced Bernstein-Sato
polynomials are 1 otherwise. In that case, let us write b̃h,(x,y)(s) to denote the local
polynomial at the point (x, y) ∈ An

C × Am
C. Therefore, b̃h(s) = lcm{b̃h,(x,y)(s) :

(x, y) ∈ SingV(h) ⊆ An
C × Am

C}. The variety SingV(h) is given by the equations

h = 0, h′
xi = 0, h′

y j = 0, (1)

for i = 1, . . . , n, j = 1, . . . ,m. Since h′
xi = f ′

xi and h′
y j = g′

y j and g is Euler-
homogeneous, the vanishing of the g′

y j implies that of g, so the Eq. (1) define the same

set as SingV( f ) × SingV(g). In conclusion, the functional equation for b̃ f ∗ b̃g at
each point of An

C × Am
C implies the same relation for its global versions.

In fact, the proof of Theorem 1.4 can be extended almost literally to any context
in which we have a properly working formal functional equation, like differentially
admissible algebras (see [7, Definition 1.2.3.6, Theorem 3.2.2.1] and [8, Hypothesis
2.3, Proposition 3.10]), nonregular algebras or direct summands ([1, Proposition 2.18,
Theorem 3.24]).

Regarding Bernstein-Sato polynomials of ideals (see [2]), we know thanks to
[6, Theorem 1.1] that the Bernstein-Sato polynomial of a nonzero ideal a =
〈 f1(x), . . . , fr (x)〉 ⊆ C[x1, . . . , xn] is exactly the reducedBernstein-Sato polynomial
of z1 f1(x) + . . . + zr fr (x) ∈ C[x, z]. Therefore, since such a polynomial is always
Euler homogeneous at the origin ofAn

C × Ar
C (assuming 0 ∈ V( f1, . . . , fr ) ⊆ An

C),
the Bernstein-Sato polynomial of the sum of two ideals a ⊆ C[x1, . . . , xn] and
b ⊆ C[y1, . . . , ym] always divides ba ∗ bb.

On the other hand, we believe it would be worthwhile to find a proof for the
remaining divisibility b̃ f ∗ b̃g|b̃h that is as formal or algebraic as possible, following
the spirit of the proof of the theorem above. However, up to now we have not been
able to do it.

The rest of this note is organised as follows: in Sect. 2, we provide an alternativeway
to obtain the star operation of two polynomials and we give a proof that relates directly
the definition of b̃ f given here and M. Saito’s one using a microlocal construction.
Finally, in Sect. 3 we prove Theorem 1.4.

2 Alternative definitions

In this section we will give a couple of equivalent definitions for both the star oper-
ation of two polynomials and the reduced Bernstein-Sato polynomial. Their actual
equivalence might be folklore, but we have not been able to find it in the existing
literature.
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2.1 Two operations with polynomials

Let us recallDefinition 1.1: the star operation of twopolynomialsa, b ∈ C[s] is another
polynomial (a ∗ b)(s) ∈ C[s], such that Ra∗b = Ra + Rb and, for any γ ∈ Ra∗b,
its multiplicity is given by the highest value of mα(a) + mβ(b) − 1, where α ∈ Ra ,
β ∈ Rb and α + β = γ .

We will use another approach to work with such operation:

Proposition 2.1 Let a, b ∈ C[s] be two nonzero polynomials and let us denote by
(a • b)(s) ∈ C[s] the monic polynomial that verifies that 〈a(s), b(t)〉 ∩ C[s + t] =
〈(a • b)(s + t)〉. Then, a • b = a ∗ b.

Note that, in the statement of the proposition, we can take (a • b)(s) to be the
generator of the ideal 〈a(s − t), b(t)〉 ∩ C[s], just by a simple change of variables.
This definition will be useful later on.

Proof The proof is elementary but a bit long. If any of a or b is constant there is
nothing to show. Therefore, let us prove first the proposition when a(s) = (s − α)d

and b(s) = (s−β)e, for some α, β ∈ C and d, e ≥ 1. In that case, clearly (a∗b)(u) =
(u − α − β)d+e−1. Let us consider then the ideal I = 〈(s − α)d , (t − β)e〉 ∩C[s + t].
Expanding (s + t − α − β)d+e−1 = ((s − α) + (t − β))d+e−1 makes clear that
(a ∗ b)(s + t) belongs to I and is a multiple of (a • b)(s + t).

To see the converse, we can assume, up to a simple change of variables, that α =
β = 0 for the sake of simplicity. Consider any p(s + t) = ∑N

i=0 pi (s + t)i ∈ I .
If N ≥ d + e − 1, reasoning as above we can claim that p ∈ I if and only if
p̃ := ∑d+e−2

i=0 pi (s + t)i lies within I too, but that implies that pi = 0 for each
i = 0, . . . , d + e−2. Indeed, modulo sd and te, the only nonvanishing term of degree
d + e − 2 is pd+e−2

(d+e−2
d−1

)
, that must be zero if p̃ ∈ I . We can continue the same

argument with the remaining coefficients. Therefore, p̃ = 0 and I = 〈(a ∗ b)(s + t)〉,
that is, a • b = a ∗ b.

Let us prove now that, if a(s), b(s), q(s) ∈ C[s], then

lcm(a, b)�q = lcm(a�q, b�q), (2)

where � = ∗, •. Since both operations are commutative in C[s], that suffices to finish
the proof. We will write c(s) := lcm(a(s), b(s)) for the sake of brevity.

First, let us take � = ∗. On one hand, Rc = Ra ∪ Rb, so Rc + Rq = (Ra + Rq) ∪
(Rb ∪ Rq). Since mα(c) = max{mα(a),mα(b)} for every α ∈ Rc, we have that for
any γ ∈ Rc + Rq ,

mγ (c ∗ q) = max{mα(c) + mβ(q) − 1 : α + β = γ }
= max

{
max{mα(a) + mβ(q) − 1 : α + β = γ },max{mα(b)

+ mβ(q) − 1 : α + β = γ }}.
(3)

On the other hand, the opposites of the roots of lcm(a ∗ q, b ∗ q) are Ra∗q ∪ Rb∗q =
(Ra + Rq) ∪ (Rb + Rq) and their multiplicities are exactly the second line of formula
(3), so formula (2) holds.
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Let � be • now, and let us show that I := 〈c(s), q(t)〉 = J := 〈a(s), q(t)〉 ∩
〈b(s), q(t)〉 ⊆ C[s, t]. It is clear that I ⊆ J ; let us show the reverse inclusion. To do
so, let us also write d(s) := gcd(a(s), b(s)), so that we have a Bézout identity of the
form d = αa + βb in C[s]. Then, if we have a polynomial p(s, t) = m(s, t)a(s) +
n(s, t)q(t) = m′(s, t)b(s) + n′(s, t)q(t) ∈ J , we can also write dp = αap + βbp
and use both representations of p as an element of J , such that

p = α
a

d
p + β

b

d
p = αm′ ab

d
+ α

a

d
n′q + βm

ab

d
+ β

b

d
nq ∈ I ,

since c = ab/d.
In order to finish, just note that the generator of I ∩ C[s + t] is lcm(a, b) • q,

whereas the generator of J ∩ C[s + t] is lcm(a • q, b • q). ��
Now we can explain all actors involved in the statement of Theorem 1.4. Namely,

since we know that (b̃ f ∗ b̃g)(s) is the generator of the ideal 〈b̃ f (s − t), b̃g(t)〉∩C[s],
there must exist A(s, t), B(s, t) ∈ C[s, t] such that (b̃ f ∗ b̃g)(s) = A(s, t)b̃ f (s− t)+
B(s, t)b̃g(t). Those are the polynomials we use to build up the functional equation for
b̃ f ∗ b̃g .

2.2 Reduced Bernstein-Sato polynomial

There are at least three known objects called the reduced Bernstein-Sato polynomial
b̃ f (s): the quotient of the usual polynomial by s + 1, the obtained by the Jacobian
approach noted in the introduction, that we will call “Jacobian Bernstein-Sato poly-
nomial”, and the microlocal Bernstein-Sato polynomial of M. Saito (see [9, § 1]).
Although it is well known that these last two ones provide the same object, we
will include here a direct proof of the fact without showing that both of them are
b f (s)/(s + 1). Before that, let us comment on more about the microlocal setting,
following [loc. cit.].

Let us call B̃ f = OX ,x [∂t , ∂−1
t ] · δ(t − f ), where δ(t − f ) is a symbol representing

the delta function supported on the graph { f = t} on which DX ,x , t and the integer
powers of ∂t act in the usual way. Therefore, B̃ f can be endowed with the structure
of D̃t -module, where by D̃t we mean the ring DX ,x [t, ∂t , ∂−1

t ] (called R̃ in Saito’s
construction).

We can define a V -filtration on D̃t by setting V 0D̃t = DX ,x [t∂t , ∂−1
t ] and V pD̃t =

∂
−p
t V 0D̃t = V 0D̃t∂

−p
t . This filtration induces another one on B̃ f just by taking

GpB̃ f = V pD̃t · B̃ f . With all this in mind, the microlocal Bernstein-Sato polynomial
b̃ f ,m(s) is defined as the minimal polynomial of the action of s := −∂t t on Gr0G B̃ f .

Proposition 2.2 Let f ∈ OX ,x be a nonzero holomorphic function, and let b̃ f ,m(s) be
its microlocal Bernstein-Sato polynomial and b̃ f ,J (s) be its Jacobian Bernstein-Sato
polynomial. Then, b̃ f ,m = b̃ f ,J .

Proof Aswehave said above, recall that b̃ f ,m(s) and b̃ f ,J (s) are, respectively, themin-
imal polynomials of the actions of s onGr0G B̃ f andonM f = DX ,x [s] f s/DX ,x [s]J f f s ,
acting on the first object as −∂t t .
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Following thewell-known construction of [4, § 4],we can consider the isomorphism
B̃ f → M̃ := DX ,x [t, ∂t , ∂−1

t ]/〈t − f , ∂i + f ′
i ∂t 〉 sending δ(t − f ) to the generator 1̄

of M̃. As a consequence, we know that G0B̃ f = V 0D̃t · 1̄ = DX ,x [∂t t, ∂−1
t ] · 1̄ and

G1B̃ f = V 1D̃t · 1̄ = ∂−1
t DX ,x [∂t t, ∂−1

t ] · 1̄.
Moreover, ∂−1

t ∂i = − f ′
i in M̃, so we obtain that

Gr0G B̃ f ∼= DX ,x [∂t t] + OX ,x [∂−1
t ]>0

DX ,x [∂t t]J f + OX ,x [∂−1
t ]>0

· 1̄,

where OX ,x [∂−1
t ]>0 represents the polynomials in ∂−1

t with coefficients in OX ,x and
no term of degree zero.

Now note that, as OX ,x -modules,

DX ,x [∂t t] + OX ,x [∂−1
t ]>0

DX ,x [∂t t]J f + OX ,x [∂−1
t ]>0

∼= DX ,x [∂t t]
DX ,x [∂t t]J f

thanks to the second isomorphism theorem. Consequently,

Gr0G B̃ f ∼= DX ,x [∂t t]
DX ,x [∂t t]J f · 1̄.

Finally, recall that there is an isomorphism DX ,x [∂t t] · 1̄ ∼= M f induced by the
isomorphism of DX ,x -modules DX ,x [∂t t]δ(t − f ) → DX ,x [s] · f s that sends ∂t t to
−s. Using this last correspondence, we see that the minimal polynomial of s on M f

and of −∂t t on B̃ f are the same. ��

3 Proof of themain result

We provide in this section an elementary proof of Theorem 1.4.

Theorem 3.1 Let (X , x) and (Y , y) be two nonzero germs of complex analytic mani-
folds of respective dimensions n and m. Let f ∈ OX ,x and g ∈ OY ,y two holomorphic
functions, and let h := f + g ∈ OX×Y ,(x,y). Assume moreover that χ ∈ �Y ,y is an
Euler vector field for g, i.e. χ(g) = g, and that we have functional equations:

b(s) · f s = P(s) · f s in OX ,x [s, f −1] · f s with P(s) =
∑

j

Pj s
j , Pj ∈ DX ,x J f ,

c(t) · gt = Q · gt in OY ,y[t, g−1] · gt with Q ∈ DY ,y Jg = DY ,y〈g′
y1, . . . , g

′
ym 〉,

and let A(s, t), B(s, t) ∈ C[s, t] be such that (b∗c)(s) = A(s, t)b(s−t)+B(s, t)c(t).
Then, we have a functional equation:

(b ∗ c)(s) · hs = R(s) · hs in OX×Y ,(x,y)[s, h−1] · hs with
R(s) = P(s − χ)A(s, χ) + B(s, χ)Q,
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where P(s − χ) = ∑
j Pj (s − χ) j = ∑

j (s − χ) j Pj . Moreover, R(s) ∈
DX×Y ,(x,y)[s]Jh. In particular, b̃h divides b̃ f ∗ b̃g.

Proof For any integer k ≥ 1, we obtain by expanding hk and R(k) that

R(k)
(
hk

) = R(k)

(
k∑


=0

(
k




)

f k−
g


)

=
k∑


=0

(
k




) (
P(k − χ)

(
A(k, χ)

(
f k−
g


)) + B(k, χ)
(
Q

(
f k−
g


)))
.

(4)

In the first summands we have

P(k − χ)
(
A(k, χ)

(
f k−
g


)) = P(k − χ)
(
f k−
A(k, χ)

(
g


))

= P(k − χ)
(
f k−
A(k, 
)g


)

= P(k − 
)
(
f k−
A(k, 
)g


)

= P(k − 
)
(
f k−


)
A(k, 
)g


= b(k − 
) f k−
A(k, 
)g
,

(5)

just by elementary commuting relations and the fact that χ(g
) = 
g
. Regarding the
second summands in formula (4),

B(k, χ)
(
Q

(
f k−
g


)) = B(k, χ)
(
f k−
Q

(
g


)) = B(k, χ)
(
f k−
c(
)g


)

= B(k, 
) f k−
c(
)g

(6)

by the same arguments as above. Putting together formulas (4), (5) and (6) and using
the functional equations for f and g and the expression of (b ∗ c)(s), we finally obtain
that

R(k)
(
hk

) =
k∑


=0

(
k




)

(A(k, 
)b(k − 
) + B(k, 
)c(
)) f k−
g
 = (b ∗ c)(k)hk,

hence R(s) · hs = (b ∗ c)(s) · hs .
Now, we know from our hypotheses that Pj = Pj0 f + ∑n

r=1 Pjr f ′
xr , with Pjr ∈

DX ,x and Q = ∑m
t=1 Qtg′

yt , with Qt ∈ DY ,y . Therefore,

R(s) = P(s − χ)A(s, χ) + B(s, χ)Q = A(s, χ)P(s − χ) + B(s, χ)Q

=
∑

j

A(s, χ)(s − χ) j Pj + B(s, χ)Q,
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that belongs to DX×Y ,(x,y)[s]〈 f , f ′
x1 , . . . , f ′

xn , g
′
y1, . . . , g

′
ym 〉. However, since g =

χ(g) ∈ OY ,y〈g′
y1, . . . g

′
ym 〉, we can affirm that 〈 f , f ′

x1 , . . . , f ′
xn , g

′
y1, . . . g

′
ym 〉 = 〈 f +

g, f ′
x1, . . . , f ′

xn , g
′
y1, . . . g

′
ym 〉 = Jh .

The last claim is just an easy consequence of taking b(s) = b̃ f (s) and c(s) = b̃g(s).
��
Examples 3.2 Let X = A1

x , Y = A1
y , and let us consider the well-known example

of the cusp h = x2 + y3, that is, the sum of f = x2 and g = y3. As an example
of our main result, we can obtain not just a multiple of the reduced Bernstein-Sato
polynomial of h (in fact, the actual polynomial), but also a functional equation. Note
in this case that both f and g are evidently Euler-homogeneous. Let us choose g as
such, so that χ ∈ DY ,y will be 1

3 y∂y .
On one hand, we have that b̃ f (s) = (s + 1/2) and b̃g(t) = (t + 1/3)(t + 2/3). In

this case, (b̃ f ∗ b̃g)(s) = (s + 5/6)(s + 7/6) = b̃h(s). On the other hand, following
the notation of Theorem 3.1, we can take P(s) = 1

2∂x x = 1
2 (x∂x +1), Q = 1

9∂
2
y y

2 =
1
9 (y

2∂2y + 4y∂y + 2), A(s, t) = s + t + 3/2 and B(s, t) = 1.

Summing up, we have R(s) · hs = (b̃ f ∗ b̃g)(s) · hs , where

R(s) = A(s, χ)P(s − χ) + B(s, χ)Q

=
(

s + 1

3
y∂y + 3

2

)
1

2
(x∂x + 1) + 1

9
(y2∂2y + 4y∂y + 2)

= 1

2
(x∂x + 1)s + 1

6
xy∂x∂y + 1

9
y2∂2y + 3

4
x∂x + 11

18
y∂y + 35

36
.

The example above can obviously be extended to the case of any suspension of the
form h(x1, . . . , xn, z) = zr + f (x1, . . . , xn), for any f ∈ OAn and r ≥ 2. In that case
we can take g(z) = zr , for which we know that χ = 1

r z∂z , Q = 1
rr−1 ∂

r−1
z zr−1 and

b̃g(t) = ∏r−1
i=1 (t + i/r). If we have a reduced Bernstein-Sato functional equation of

the form P(s) · f s = b̃ f (s) · f s , we could write

R(s) · hs = (b̃ f ∗ b̃g)(s) · h(s),

where

R(s) = A

(

s,
1

r
z∂z

)

P

(

s − 1

r
z∂z

)

+ B

(

s,
1

r
z∂z

) r−1∏

i=1

(t + i/r),

A(s, t), B(s, t) ∈ C[s, t] being such that (b̃ f ∗ b̃g)(s) = A(s, t)b̃ f (s − t) +
B(s, t)b̃g(t). Note that, for instance, if no pair of roots of b̃ f differ by any j/r ,
with j = 1, . . . , r , then (b̃ f ∗ b̃g)(s) = ∏r−1

i=1 b̃ f (s + i/r).

Funding Funding for open access publishing: Universidad de Sevilla/CBUA. The authors are partially
supported by Ministerio de Ciencia e Innovación under grant number PID2020-114613GB-I00 and Junta

123



A. Castaño Domínguez, L. Narváez Macarro

de Andalucía under grant number P20_01056. The first author is also partially supported by the University
of Seville under program VI PPIT US-2018-II.5.

Declarations

Conflict of interest The authors have no further relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Àlvarez Montaner, J., Hernández, D.J., Jeffries, J., Núñez Betancourt, L., Teixeira, P., Witt, E.E.:
Bernstein-sato functional equations, V-filtrations, and multiplier ideals of direct summands. Commun.
Contemp. Math. 24, 1–47 (2021)
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