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Abstract

We prove that under the log-Holder continuity condition of the variable exponent
p(-), anew type of maximal operators, U, s is bounded from the variable martingale
Hardy—Lorentz space Hp(.),4 t0 L () 4, whenever0 < p_ < py < 00,0 < g < o0,
0<vy,s <ooand 1/p_ — 1/py < y + 5. Moreover, the operator U, ; generates
equivalent quasi-norms on the Hardy—Lorentz spaces Hp(.) 4.
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1 Introduction

A measurable function p(-) : [0, 1) — (0, oo] is called a variable exponent. In this
paper we suppose that

0< p_:=ess inf p(x)<py:=ess sup px) < oo.
x€[0,1) x€[0,1)

Variable Lebesgue spaces L () are investigated very intensively in the literature nowa-
days (see e.g. Cruz-Uribe and Fiorenza [5], Diening et al. [6], Kokilashvili et al. [15,
16], Nakai and Sawano [19, 25], Kempka and Vybiral [14], Jiao et al. [11-13], Yan
et al. [36], Liu et al. [17, 18]). Interest in the variable Lebesgue spaces has increased
since the 1990 s because of their use in a variety of applications (see the references in
Jiao et al. [11]).
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As usual in this theory, we also suppose that p(-) satisfy the log-Holder continuity
condition, namely p(-) € C'°2. One of the most important results states that the
classical Hardy-Littlewood maximal operator is bounded on the variable L .y spaces
under this condition (see for example Cruz-Uribe et al. [2], Nekvinda [20], Cruz-Uribe
and Fiorenza [5] and Diening et al. [6]).

Nakai and Sawano [19] first introduced the variable Hardy spaces H),(.)(R). Inde-
pendently, Cruz-Uribe and Wang [4] also investigated the spaces H ,(.)(R). Cruz-Uribe
et al. [3] proved the boundedness of fractional and singular integral operators on
weighted and variable Hardy spaces. Sawano [25] improved the results in [19]. Ho
[10] studied weighted Hardy spaces with variable exponents. Yan et al. [36] intro-
duced the variable weak Hardy space H) () o0 (IR) and characterized these spaces via
radial maximal functions. The Hardy—Lorentz spaces Hp(.) 4(R) were investigated
by Jiao et al. in [13]. Similar results for the anisotropic Hardy spaces Hp.)(R) and
Hp(y,q(R) can be found in Liu et al. [17, 18]. Martingale Musielak—Orlicz Hardy
spaces were investigated in Xie et al. [33-35]. Recently, we [11] generalized these
results for martingale Hardy spaces with variable exponent.

In this paper, we investigate the so called Vilenkin martingales defined as follows.
Let (p,,n € N) be a bounded sequence of natural numbers with entries at least 2.
Introduce the notations Py = 1 and

n
Pyyy = H pr (meN).
k=0

We denote the set of natural numbers {0, 1, ..., } by N. By a Vilenkin interval, we
mean one of the form [kPn_l, (k + l)Pn_l) forsome k,n e N,0 <k < P,,k € N.
Let F, be the o-algebra

Fon=0{lkP;, (k+ DP Y :0<k < P,k e N} (1)

generated by the Vilenkin intervals. Martingales with respect to (F,,, n € N) are called
Vilenkin martingales. Vilenkin martingales were studied in a great number of papers,
such as Gat and Goginava [7-9], Persson and Tephnadze [21-24] and Simon [26, 27].

For a fixed x € [0,1) and n € N, let us denote the unique Vilenkin interval
[k Pn’l, k+1) Pn’l) which contains x by I, (x). Then the Doob maximal operator for
Vilenkin martingales f = (f;, n € N) can be rewritten as

1
MDY = sup 0

.
I (x)

The boundedness of the Doob martingale maximal operator on the L ., spaces was
proved in Jiao et al. [11, 12]:

Theorem 1 Suppose that p(-) € C'°2 and f € Ly If1 < p_ < py < o0, then
IM O pey S NFpe- (2)
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If1 < p_ < py < o0, then

sup [ x> pi iy < 11l - 3)
p>0

Later we extended this result to py = oo in [30]. In this paper the constants C are
absolute constants and the constants C),(.) are depending only on p(-) and may denote
different constants in different contexts. For two positive numbers A and B, we use
also the notation A < B, which means that there exists a constant C suchthat A < CB.

In[11, 29, 31, 32], we generalized the Doob maximal operator and introduced the
operator U, ; for Vilenkin martingales, where y and s are two positive constants.
These operators were the key point in the proof of the boundedness of the maximal
Fejér operator of the Walsh- and Vilenkin-Fourier series from the variable Hardy space
Hpy to Ly (see [11, 31]). Recall the definition of U, 5. For a Vilenkin interval /
with length Pn_l, i,j,neN[=0,..., p; —1,let us use the notation

Ljd . 73 -1\ -1
1M = 140, PP

for the translation lo_f I, where + d@notes the Vilenkin addition (see Sect. 3). Parallel,
we denote 1, (x)"7 := (I,(x))"/-!. For a Vilenkin martingale f = (f,,n € N) and

0<y,s <o0,let
/ fndk‘ .
Li(x)b i

“

s pj—1

n m P y m P; s 1
e = 32 (2) 3(7) L s

NEN =0 j=0 =0

We will see later that M (f) < U, ;(f) forall 0 < y,s < oo. So the next theorem
proved in [31, 32], generalizes (2).

Theorem2 Let p(:) e C°%, 1 < p_ < py <00and0 < y,s < co. If

1 1
— - — <y s, 5)

then

” Uy,s(f) ”p(-) 5 ||f||p(~) (f € Lp(~))-

Obviously, inequality (5) and Theorem 2 hold if p_ > max(1/(y + s), 1). We
proved in [31] that condition (5) is also necessary, the results are not true without this
condition.

In [29, 32], we generalized Theorem 2 and, under the same conditions, we obtained
also the boundedness of U, s from the martingale Hardy space H)( to L, for
0 < p— < py < oo. In this paper, we generalize these results to variable Lorentz
and Hardy-Lorentz spaces. We will prove that U,  is bounded from the martingale
Hardy—Lorentz space Hp (.4 10 Lp(.),4, Where 0 < g < 0o. More exactly, we have
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Theorem3 Let p(-) € C°%,0 < p_ < py <00,0 < g <ooand0 < y,s < co. If
(5) holds, then

”Uy,s(f)||p(~),q 5 ”f”H

r().q

(f € Hp(y,¢)-

As a corollary, we get U, s is bounded from the Lorentz space L ()4 to Ly 4
and we generalize (3).

Corollary 1 Let p(-) € C'°2 satisfy (5),0 < y,s < 00. If 1 < p_ < py < o,
0<g=<ooand f € Ly()q, then

” Uy,s(f) ”p(-),q S ”f”p(-),q-
Ifl1<p_<py<ooand f € Ly, then

sup loxw,.n=eill o) S 1 1pe-

Moreover, we obtain an equivalent characterization of the martingale Hardy—
Lorentz space Hp(,)4, namely, we show that Uy, s(f)lL is equivalent to

1 ey

pC)q

Corollary2 Let p(-) € C'%,0 < p_ < py <00,0 < g <ocoand0 < y,s < oo. If
(5) holds and f € Hp(,) 4, then

1 ety < 1Uys (D lperg < CoollF L -

Finally, we note again that condition (5) is also necessary.
I would like to thank the referees for reading the paper carefully and for their useful
comments and suggestions.

2 Variable Lebesgue and Lorentz spaces

Let A denote the Lebesgue measure on the unit interval [0, 1). For a constant p, the
L, space is equipped with the quasi-norm

1 1/p
I fllp = (/0 [ f ()P dl(X)) 0 < p <00),

with the usual modification for p = oo.
To introduce the variable Lebesgue spaces let

1
p(f) = /O |f ()P Dda(x),
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where p(-) : [0, 1) — (0, o] is a variable exponent. The variable Lebesgue space
L (. is the collection of all measurable functions f for which there exists v > 0 such
that

p(f/v) < oo.
We equip L (. with the quasi-norm
1 £ pey:=infv > 0: p(f/v) < 1).

If p(-) = p is a constant, then we get back the definition of the usual L, spaces.
For any f € L), we have p(f) < 1 if and only if || f|/,) < 1. It is known that

v fllpey = Il Nl p) and
1Py = 17y

where s € (0, 00) and v € C. Details can be found in the monographs Cruz-Uribe
and Fiorenza [5] and Diening et al. [6]. Moreover, for

0<b <min{p_, 1} =: P,
we have
L +glb < 115+ glh)- (6)

The variable exponent p’(-) is defined pointwise by

1 1

0 T Tm T

1, xe[0,1).

The next lemma is well known, see Cruz-Uribe and Fiorenza [5] or Diening et al. [6].

Lemmal Let1 < p_ < py <oo Forall f € Lyyand g € Ly ),
1
f Fgl dh < Cpy £ 1L gl vy
0
Moreover,

1
/ fgdxr
0

where ~ denotes the equivalence of the numbers.

I fllpey ~  sup
”ng’(,)Sl
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The variable Lorentz spaces were introduced and investigated by Kempka and
Vybiral [14]. L ()4 is defined to be the space of all measurable functions f such that

00 q d,O 1/q )
(/ p7 | xeceron: 1ri=o —> L if0 < ¢ < oo
”f”p(-),q = 0 o .
sup || xpreto.n: 1= oy - ifg = oo
pe(0,00)

is finite. If p(-) is a constant, we get back the classical Lorentz spaces (see Bergh and
Lofstrom [1]). In contrary to the spaces with constant p(-), the variable Lorentz spaces
L (.,4 do not include the variable Lebesgue spaces L .y as a special cases.

3 Maximal operators

We always suppose that the sequence (p,) of natural numbers is bounded. Let

D :=sup p, < o0. @)
neN

The conditional expectation operators relative to F,, are denoted by E,,, where F, was
defined in (1). An integrable sequence f = (fy), <y 1S said to be a Vilenkin martingale
if f, is F,-measurable for all » € N and E, f,, = f, in case n < m. It is easy to
show (see e.g. Weisz [28]) that the sequence (F,, n € N) is regular, i.e., there exist
a constant R > O such that f, < R - f,,_ for all non-negative Vilenkin martingales.
We can see easily that R > P, where D is defined in (7).

For a Vilenkin martingale f = (f,,),,cn, the Doob maximal function is defined by

M(f) :=sup|ful.
neN

If f € L, then we can replace f,, by f in the integral.

In the literature the log-Ho6lder continuity condition is usually supposed. Under this
condition, the Hardy-Littlewood maximal operator is bounded on L () if 1 < p_ <
p+. We denote by C'°¢ the set of all variable exponents p(-) satisfying the so-called
log-Holder continuous condition, namely, there exists a positive constant Clog (p) such
that, for any x, y € [0, 1),

Clog(p)
+1/lx =y

lp(x) = P = (@)
log(e

In[31, 32], we generalized the Doob martingale maximal operator as follows. Every
point x € [0, 1) can be written in the following way:

Xk

O < xk < pr, xr € N).

M

Pry1

»-
Il

0
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If there are two different forms, choose the one for which limy_, o xx = 0. The so
called Vilenkin addition is defined by

o0
Xty = Z—k, where z := x; + yx mod py, (k € N).

P
k= * K+l

We defined the maximal operator U, s in (4), where 0 < y,s < oo. Of course,
if f € Ly, then we can write in the definition f instead of f,. Let us define Ix , :=
[kPn_l, (k + 1)Pn_1), where 0 < k < P,, n € N. The definition of U, ;(f) can be
rewritten to

Py—1 P, sp!
o= S S5 () S () E sty
=0

m=0 j=0

where I;’ ! T = (I )"+ Now we point out four special cases of this operator.
Ifj= 1 = n = m, we obtain the first spacial case,
[
In (x)l,n.n

JndA|,

pn—1

(D
UpslDE) = o ,2(; *(y (x)’"">

Pn
=sup ———
neN AL (x))

I (x)

which is basically M (f). Note that L) =L,(x)(neN,1=0,..., pp—1).

If] =1 —m,WehaVe
/ }nd“‘
In(x)l,m,m

fndk‘ .

V4 Pm—

U@’)(f)(x)—sup ( ) e
Z P, gw (x)l )

m 0
n
Pm)y Pm
= sup — ) —
neNn; ( Py Al (x))

Here I,(x)"-™™ = [, (x)+[0, Pnjl)+lP_11 = x+[0, P, 'y = I,,(x). It is easy to see
that

I (x)

M(f) <UD =URH) < CMf)

forall 0 < y, s < oo and so Theorem 1 holds also for these two operators.

If m =nandi = n, we get that
/ fndk‘ .
INEORE
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+

Note that 7, (x)"/" = I,(x)+0, P, )FH Pl = L)+ P
If m = n, we obtain the last special case,

n

o) N A YA S
Uys(H)x) = j‘ggﬁz‘)(?ﬂ) Z(ﬁ) 2 AT, ()17
J=

i=j =0

/ fndk‘ .
Li(x)h i
4)

The maximal operators U. ;32 (f)and U, 5(f)as wellas U, s ( f) cannot be estimated by

M ( f) from above pointwise. In [31], we investigated the operators Uﬂ and U 1543 . Their
boundedness on L .y was the key point in the proof of boundedness and convergence
results for the Fejér means of the Vilenkin-Fourier series (see [31]).

It is easy to see that, forall 0 < y, s < oo,

M) <UR) U, (f)  (GG=1,....4). ©)

4 Martingale Hardy-Lorentz spaces

Now we introduce the variable martingale Hardy—Lorentz spaces by

Hytr = [£ = G 1y, = 1M < 0]

JION AN

These spaces have several equivalent characterizations, for example an equivalent
quasi-norm can be defined by the quadratic variation and by the conditional quadratic
variation (see [11]). In this paper, we will give more equivalent characterizations of
these Hardy—Lorentz spaces using the above maximal functions.

The atomic decomposition is a useful characterization of the Hardy—Lorentz spaces.
First, we introduce the concept of stopping times (see e.g. [28]). Amap 7 : [0, 1) —
N U {oo} is called a stopping time relative to (F,, n € N) if

{xel0,1):t(x) =n} =:{t =n} € F,.
It is well known that the last condition is equivalent to the conditions
{t <n}eF, (n eN)
and
{t =n}e F (n € N).

This implies that the sequence (f,/, n € N) defined by

L= Xieem) (e = fio1)

k=0
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is again a martingale, called stopped martingale, whenever ( f,, n € N) is amartingale.
This fact is used in the proof of Theorem 4.

A measurable function a is called a p(-)-atom if there exists a stopping time t such
that

(1) Ey(a)(-) =0foralln < t(.),
i) 1M @lse < [ xir<ot |1

This form of the atoms was used first in [28] for a constant p. The atomic decom-
position of the spaces H),(.) , were proved in Jiao et al. [11]. The classical case can be
found in [28].

Theorem4 Let p(-) € C'°%, 0 < p_ < py < occand 0 < q < oo. Then the
martingale [ = (fu)peny € Hp(),q if and only if there exists a sequence (@®)ez of
p(-)-atoms such that for everyn € N,

fn = Z,ukEnak almost everywhere,
keZ

where p = 3 -2k || Xz <c0) || p0) and T is the stopping time associated with the

p(-)-atom ak. Moreover,

1/q
£, ~ inf (Z 2 | Xz <o) II;i(.)) ;

keZ

respectively, where the infimum is taken over all decompositions of f as above.

5 Proofs

Proof of Theorem 3 According to Theorem 4, we can write f as

f=)Y md = fi+ p,

keZ
where kg € Z,
ko—1 00
fi= Z weak,  fr = Z e, =32 [ Xtz <00} ”pt)
k=—o00 k=ko

and 7y, is the stopping time associated with the p(-)-atom a*. Moreover,

1/q
(Z 2kq || X{tx <00} ”l[];()) 5 ”f”Hp(%q .

keZ
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Since

ys(f)<2n:Z< )Z( )mZufnoo (10)

m=0 j=0 i=j
< Z Zz“ " 22“ Ppilflloe S 1 lloe. (1)
m=0 j=0

U, s is bounded on L. This implies that

ol = 3% o] = 8wl

ko—1

k=—o00

Thus

ki ki
2 0”X{Uy,s(f)>6-2k0}”P(') <2 0||X{UV.S(_}"2)>3-2"0}”[7(')’
so we have to consider
o0 o
Uys(f2) < Z Mk Uy,s(ak)X{rk<oo} + Z Mk Uy,s(ak)X{rk:oo} =: A1 + As.
k=ko k=ko
(12)
Obviously,
o0
{4y >3- 20"y c{A; > 0} ¢ | {m < 0.
k=kq

Suppose that 0 < g < oo and let us choose 0 < ¢ < min(p,g) and 0 < § < 1.
Applying (6), we have

00 00 l7e
H X{A,>3.2k0—1} o0 = Z X{rp <o} = Z ” X{ze<oo} ”;(.)
k=ko p()  \k=ho
0 1/e
— Z 27k652k55 ||X{rk<oo} ”;(.)
k=ko
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Using Holder’s inequality for qq;s + f; =1, we get
—kde L ks q
HX{A1>342"0—'}H =22 2 2% Ptrm<oatl
P
k=ko k=ko
. /9
S 27k Z 2% | x5 <o0) “;19(.)
k=ko

Consequently,

00 q > e
>, 2 ”X{Al>3'2k0_]}”p(') S 20 2002 et
ko=—00

ko=—00 &
> k
3 2 g[8, D 2000
k= ko=—00
o0
S Z 2k ||X{Tk<oo} ||(;(_)
k=—00
q
SUfI,,

Next, let us estimate the term A,. For a fixed k € Z, the sets {ty = K} are disjoint
and there exist disjoint Vilenkin intervals Iy x , € Fg such that

fu=Kl=Jhky (KeN),

where the union in w is finite and A(Jx x ,) = Plgl. Thus

o < oo = |J (JIxow

KeN n

where the Vilenkin intervals I g, are disjoint for a fixed k € Z. Then

= Z Z akXIk,K.)L'

KeN n
The operator U,, ¢ can be written as
-1

m s Pj
Uy,s (@) () = supsupZZ( ) Z( ) > Wl—,)
=j =0

neNerm =0 j=0

/ akdk‘ ,
Il,j,i
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where I € F,, is a Vilenkin interval. Since f Tk a® dx = 0, we have

/ a“dr =0
L

if i < K. Thus we can suppose thati > K,andson >m > K. If x ¢ Iy g, x € ]
and j > K, then [/ NIy, g, = Y. Therefore we can suppose that j < K. Similarly,
if

x € Ik wHIP A+ DPID N ek uH P,

then 1571 N Ik, = ¥, so we may assume that x € Ik,K,M—i—lell1 = Ik:k’ u
Therefore, for x ¢ Iy k u,

S|
—

n K-1 vy oM ;
U}’A(a XIkK;L)(x)< Sup X (x) Z Z( ) Z ( .

m=K+1 j=0 i=K+1
pj—l1

Y
= A(L5T0T)

/ a d)\’X[le(x).
L.

kK,

It is easy to see that
m m m
2 = 2 () = 2 ) =e(5)
> (7)) = — L Yoy () <o ().
i .o D - —K = L
i=K+1<P’ i—K+1 Pk pk -+~ pi-1 Kl Pg?2! Px

Hence

Uy.s(@* X1, (%)

P = (P&
< ot sorl oy 0 7060 3 Z(?) )3 ( ) zx,l,m)
i=K+1

m=K+1 j=0

y+s Pi—

< Ixw<oall, ()supm K)( )Z(PK) Zx,z,z«(x)

K—1 P y+3 pj
S sl s - 120 5 (1) g0

Since the function x +— x27Y* is bounded, we obtain that

Uy,s @ X1, )@ S |xtm=oot ) 2 (P—Q Z X ().

j=0

@ Springer



Equivalent characterizations of martingale...

From this it follows that, for x € {7y = o0},

X K=l p \v+sPi”!
Uy,s(ak)(x) ,S ” X{tr <00} ” [_,(.) Z Z Z (P—]> Xd;(l;(x) (13)
=0 o

KeN n j=0 V' K

Letus choose 0 < 8 < 1land 0 < € < p. By (13),

107 @ = |

p()/e
_pe K-1 P; (y+s)Be Pi~1
Sl | ST (5) Z e
KeN u j=0 > K =0 e

Choose max(1, Bp+) < r < oo. By Lemma 1, there exists a function g € L(m),

with ||g||(&), < 1 such that

H |Uy.s (@)1P€ Xgi=o0) H | xta<cc ”ii)

p()/e
1 K-1 Pj ()’+S)ﬁepj71
[ ETE(m) L
0 K kK,
KeN 1 j=0 1=0
K-1 P; (y+s5)Be Pi~1
33D 35 31 ¢ D ofl PV I P
KeN pn  j=0 =0 Be (ﬂe)
K-1 Pj (y+s)Be
< P
SYYY(4)
KeN p j=0
P/'_I/I | o e
X]k,K,u(x) W/ R |g| Be’ d dx.
1=0 /0 AR Tk,

We use Holder’s inequality to obtain

H|Uy,s(ak)|ﬂ€)({fk=00} ” ” X{ze<oo} ”ﬁi)

p()/e
K-1pj~1 P; \ OB/ G+ G ))
Pk

DRI 3

KeN 1 j=0 1=0
/(5
(% / L el dx) dx
MRS T,
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1 K=1Pi=l / p \ (r+s)Be Ve
J
o (X (1)
0 keN j=0 =0 'K
K=1pPi7l / p \ (r+s)Be | L H(ge)
Y2 () sl e e) e
j=0 1=0 \°K Mk ) Ik

1 oy /()
3) (3¢) Be
s/ S5t (Uyﬁmﬂé (|g| e )) dx

N\ 1/(52)
©) (5e) Be
= Z Z Xk k. ‘(Uyﬂe,sﬂe (|g| B )) -
KeN n p()/€ (p()/€)
Inequality (5) is equivalent to
Pr—€ _P-—°¢ _ (y + s)e.
P+ p-
We can choose 8 near to 1 such that
Pr=€ _P=7C _ () +5)Be
P+ p-
Next we can choose r so large that
! 1 r/(r — pe) r/(r —Be)

(PO [(r[B))—  (p()/e)[(r/B)) s py/(pr—€)  p—/(p——€)

< (y +5)Be.

Since (r/Be) < (p(-)/€)’, we can apply Theorem 2 and conclude

H |Uy.s (ak) |ﬁ€X{rk:oo} H “ X{tp <00} ||/15;E)

p()/€
Ty |1/ /Be)
3 (g¢)
N ||X{Tk<°°} ”p(-)/e Uyﬁmﬁe (Igl g ) O/
(r/Be)
r |1/ (r/Be)
(ge)
5 ||X{‘Ek<00} || p()/e |g| B (p()/e)
(r/Be)

S Itz <co) Hp(-)/e :

From this it follows that

30 ko HE Uy 5 (@)1 X (e =o0)
3B2Bko—1)

140!
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00 1/e
S 2Pk Z M£€|Uy,s(ak)|ﬁé)({rk:oo}
k=ko P/
oo 1/e
< 9—Bko <l @)1y H
~ :ZO My | y,s( )| X{tx=00} p())e
o 1/€
—Bk k
S27k Z 27 | Xt <o0) ”p(~)/€
k=ko
o 1/e
=R DI il P . a4
{me<oo} |l py
k=kg
where 8 < § < 1. Let us again use Holder’s inequality with qq;g + 3 =1:
00 . qf;‘; 00 Vq
Bk k(B—8)e - ks q
HX{A2>3-2k0-‘}” saflol Y 2t > 2% | xtm<oat
Pe) k=k =k
=ko =ko
o 1/q
—kod ké q
S27 Z 25 || X <o0) “p(~)
k=ko

By changing the order of the sums, we obtain

o0
ki
> 29 xpapssate

q o o0
ko(1-5) ks q
pQ) S k():z—oo2 0 ! Z 2 ! HX{Tk<OO} ”P()

k0=—OO k:kO
[} k
= Y ok | Xtze<oot 9, 3 ghli-
k=—o00 ko=—00
0
S 220 2 xm<oal,
k=—o00
S IIfII%p(_)_q-

This finishes the proof of Theorem 3 when 0 < g < oo. The proof is very similar for
q = 00, SO we omit it. O

Remark 1 Inequality (5) obviously holds if 1/(y +5) < p_ < py <oo. If p_ <
1/(y + s), then (5) is equivalent to
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Proof of Corollary 1 Jiaoetal.[11]proved that H) ., , isequivalentto L (., 4, whenever
1 < p- < py <ooand 0 < g < oo. Then the first inequality follows from
Theorem 3. By Theorem 3 and (3),

;S;li% ||,0X{Uy.s(f)>p} Hp(.) = ” Uy,s(f) Hp(-),oo S ”f”Hp(~>.oc
= 1M peyc0 S NNy -

which proves the second inequality. O

Finally, besides Corollary 2, we give equivalent characterizations of the Hardy—
Lorentz spaces with the help of the maximal operators defined above.

Corollary3 Let p(-) € C'°2,0 < p_ < py <00,0 < g <oocand0 < y,s < oo. If
(5) holds, f € Hp(yqand j =1,...,4, then

1L e, = MO0 < 1T DN p0ra < 1055 llporg < CoollF Il

Proof The inequalities follow from (9) and Theorem 3. O
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