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Abstract
An algebraic domain is a closed topological subsurface of a real affine plane whose
boundary consists of disjoint smooth connected components of real algebraic plane
curves. We study the geometric shape of an algebraic domain by collapsing all ver-
tical segments contained in it: this yields a Poincaré–Reeb graph, which is naturally
transversal to the foliation by vertical lines. We show that any transversal graph whose
vertices have only valencies 1 and 3 and are situated on distinct vertical lines can be
realized as a Poincaré–Reeb graph.

Keywords Combinatorial type · Morse theory · Poincaré–Reeb graph · Real
algebraic curve · Real polynomial functions
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1 Introduction

An algebraic domain D is a closed subset of an affine plane, homeomorphic to a
surface with boundary, whose boundary C is a union of disjoint smooth connected
components of real algebraic plane curves. This paper is dedicated to the study of the
geometric shape of algebraic domains.
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Context and previous work
In [20, 22], the third author studied the non-convexity of the disks D bounded

by the connected components C of the levels of a real polynomial function f (x, y)

contained in sufficiently small neighborhoods of strict local minima. The principle
was to collapse to points the maximal vertical segments contained inside D. This
yielded a special type of tree embedded in a topological space homeomorphic to R

2.
It was called the Poincaré–Reeb tree associated to C and to the projection (x, y) �→ x ,
and it measured the non-convexity of D. Conversely, given a tree T of a special kind
embedded in a plane, [20, Theorem 3.34] presented a construction of a polynomial
function f (x, y)with a strict local minimum at (0, 0), whose Poincaré–Reeb tree near
(0, 0) is T .

The terminology “Poincaré–Reeb” introduced in [20, Definition 2.24] was inspired
by a similar construction used in Morse theory, namely by the classical graph intro-
duced by Poincaré in his study of 3-manifolds [15, 1904, Fifth supplement, p. 221], and
rediscovered by Reeb [16] in arbitrary dimension. Reeb graphs encode the topology of
level sets of real-valued functions on manifolds. Reeb graphs appear as useful tools in
the study of singularity theory of differentiable maps; see [14, 18]. For a survey with a
view towards applications in computational topology and data visualization, we refer
the reader to [17] and references therein. Studies of more general Reeb spaces have
been done in several recent works such as [2, 4–6]. Some very recent work in this area
are, for instance, [10, 11]. Applications of Reeb graphs in nonparametric statistics and
data analysis are presented for instance in [12].

Poincaré–Reeb graphs of real algebraic domains
In this paper we extend the previous method of study of non-convexity to algebraic
domains D in R

2. When D is compact, the collapsing of maximal vertical segments
contained in it yields a finite planar graph which is not necessarily a tree, called the
Poincaré–Reeb graph ofD relative to the vertical direction. See Fig. 1 for a first idea of
the definition. In it is represented also a section of the collapsing map above this graph,
called aPoincaré–Reeb graph in the source. It iswell-defined up to isotopies stabilizing
each vertical line. Such a section exists whenever the projection x : R

2 → R is in
addition generic relative to the boundary C ofD, that is, C has no vertical bitangencies,
no vertical inflectional tangencies and no vertical asymptotes.

WhenD is non-compact but the projection x : R
2 → R is still proper in restriction

to it, one gets an analogous graph, which has this time at least one unbounded edge.
When the properness assumption on the projection is dropped but one assumes instead

C
D

Fig. 1 A Poincaré–Reeb graph: a curve C bounding a real algebraic domain D (left); a Poincaré–Reeb
graph in the source (center); the Poincaré–Reeb graph (right)
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Poincaré–Reeb graphs of real algebraic domains 475

its genericity relative to C, then one may still define a Poincaré–Reeb graph in the
source, again well-defined up to isotopies stabilizing the vertical lines. Notice that the
Poincaré–Reeb graph does not live in the same space as D even if the quotient space
is homeomorphic to R

2; we will work in the context of vertical planes (see Definition
2.3) which is adapted for both the original plane and its quotient.

Finite type domains in vertical planes
In order to be able to use our construction of Poincaré–Reeb graphs for the study

of more general subsets of affine planes than algebraic domains, for instance to topo-
logical surfaces bounded by semi-algebraic, piecewise smooth or even less regular
curves, we give a purely topological description of the setting in which it may be
applied. Namely, we define the notion of domain of finite type D inside a vertical
plane (P, π): here π : P → R is a locally trivial fibration of an oriented topological
surface P homeomorphic to R

2 and D is a closed topological subsurface of P , such
that the restriction π|D is proper and the restriction π|C to the boundary C of D has a
finite number of topological critical points.

Main theorem
Our main result is an answer in the generic case to the following question: given

a transversal graph in a vertical plane (P, π), is it possible to find an algebraic
domain whose Poincaré–Reeb graph is isomorphic to it? Namely, we show that each
transversal graph whose vertices have valencies 1 or 3 and are situated on distinct
levels of π arises up to isomorphism from an algebraic domain in R

2 such that
the function x : R

2 → R is generic relative to it. Our strategy of proof is to first
realize the graph via a smooth function. Thenwe recall aWeierstrass-type theorem that
approximates any smooth function by a polynomial function and we adapt its use in
order to control vertical tangencies. In this way we realize any given generic compact
transversal graph as the Poincaré–Reeb graph of a compact algebraic domain. Finally,
we explain how to construct non-compact algebraic domains realizing some of the
non-compact transversal graphs. Roughly speaking, we do this by adding branches to
a compact curve.

Structure of the paper
Section 2 is devoted to the definitions and several general properties of the notions
vertical plane, finite type domain, Poincaré–Reeb graph, real algebraic domain and
transversal graph in the compact setting. Section3 is dedicated to the case where the
real algebraic domainD is compact and connected. In it we present the main result of
our paper, namely the algebraic realization of compact, connected, generic transversal
graphs as Poincaré–Reeb graphs of connected algebraic domains (see Theorem 3.5).
Section4 presents the case where D is non-compact and C is connected. Finally, in
Section5 we focus on the general situation, where D may be both non-compact and
disconnected.
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476 A. Bodin et al.

Fig. 2 The algebraic domain D
bounded by C1 and C2

2 Poincaré–Reeb graphs of domains of finite type in vertical planes

2.1 Algebraic domains

An affine plane P is a principal homogeneous space under the action of a real vector
space of dimension 2. It has a natural structure of real affine surface (the term “affine”
being taken now in the sense of algebraic geometry) and also a canonical compactifica-
tion into a real projective plane. Therefore, one may speak of real-valued polynomial
functions f : P → R as well as of algebraic curves in P of given degree. We are
interested in the following types of surfaces embedded in affine planes:

Definition 2.1 An algebraic domain is a closed subset D of an affine plane, homeo-
morphic to a surface with boundary, whose boundary C is a disjoint union of finitely
many smooth connected components of real algebraic plane curves.

Example 2.2 (See Fig. 2) Consider the algebraic curve C1 of equation ( f1(x, y) = 0)
with f1(x, y) = y2 − (x − 1)(x − 2)(x − 3) and C2 of equation ( f2(x, y) = 0)
with f2(x, y) = y2 − x(x − 4)(x − 5). Each of these curves has two connected
components, a compact one (an oval denoted by Ci ) and a non-compact one. LetD be
the ring surface bounded by C1 and C2. By definition, it is an algebraic domain.

2.2 Domains of finite type in vertical planes

Assume that D is an algebraic domain in R
2. We will study its non-convexity by

collapsing to points the maximal vertical segments contained insideD (see Definition
2.11below).The imageofR2 by such a collapsingmapcannot be identified canonically
to R

2, and it has not even a canonical structure of affine plane. But in many cases
it is homeomorphic to R

2, it inherits from the starting affine plane R
2 a canonical

orientation and the function x : R
2 → R descends to it as a locally trivial topological

fibration. This fact motivates the next definition:
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Poincaré–Reeb graphs of real algebraic domains 477

P1

C

P2

C

Q

C

Fig. 3 Two topological critical points P1 and P2 (which are critical points in the differential setting). The
inflection point Q is not a topological critical point but is a critical point in the differential setting

Definition 2.3 A vertical plane is a pair (P, π) such that P is a topological space
homeomorphic toR

2, endowed with an orientation, and π : P → R is a locally trivial
topological fibration. The map π is called the projection of the vertical plane and its
fibers are called the vertical lines of the vertical plane. A vertical plane (P, π) is called
affine if P is an affine plane and π is affine, that is, a polynomial function of degree
one. The canonical affine vertical plane is (R2, x : R

2 → R).

Let (P, π)be avertical plane.As the projectionπ is locally trivial over a contractible
base, it is globally trivializable. This implies that P is homeomorphic to the Cartesian
product R × V , where V denotes any vertical line of (P, π). The assumption that P
is homeomorphic to R

2 implies that the vertical lines are homeomorphic to R. We
will say that a subset of a vertical line of (P, π) which is homeomorphic to a usual
segment of R is a vertical segment.

Given a curve in a vertical plane, we may distinguish special points of it:

Definition 2.4 Let (P, π) be a vertical plane and C a curve in it, that is, a closed
subset of it which is a topological submanifold of dimension one. The topological
critical set �top(C) of C consists of the topological critical points of the restriction
π|C , which are those points p ∈ C in whose neighborhoods the restriction π|C is not a
local homeomorhism onto its image.

Remark 2.5 If C is an algebraic curve contained in an affine vertical plane, the topolog-
ical critical set �top(C) is contained in the usual critical set �diff(C) of π|C , but is not
necessarily equal to it. For instance, any inflection point of C with vertical tangency
and at which C crosses its tangent line belongs to �diff(C)\�top(C) (see Fig. 3).

The topological critical set �top(C) is a closed subset of C. In the neighborhood of
an isolated topological critical point, the curve has a simple behavior:

Lemma 2.6 Let (P, π) be a vertical plane and C a curve in it. Let p ∈ C be an
isolated topological critical point. Then C lies locally on one side of the vertical line
passing through p. Moreover, there exists a neighborhood of p in C, homeomorphic
to a compact segment of R, and such that the restrictions of π to both subsegments of
it bounded by p are homeomorphisms onto their images.

Proof Consider a compact arc I of C whose interior is disjoint from �top(C). Identify
it homeomorphically to a bounded interval [a, b] of R. The projection π becomes a
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C
D

C
D

C

D

Fig. 4 One example of a domain of finite type (left). Two examples of domains that are not of finite type
(center and right)

function [a, b] → R devoid of topological critical points in (a, b), that is, a strictly
monotonic function. Consider now two such arcs I1 and I2 on both sides of p in C.
The relative interior of their union I1∪ I2 is a neighborhood with the stated properties.
Moreover, I1∪ I2 lies on only one side of the vertical line passing through p: otherwise
π would map I1 homeomorphically to [α, x0] and I2 homeomorphically to [x0, β],
where x0 = π(p) is a critical value and as I1 and I2 are on both sides of the vertical line
at p we would have for instance α < x0 < β; this implies that π : I1 ∪ I2 → [α, β] is
a homeomorphism, in contradiction with p being a topological critical point of π|C . ��

As explained above, in this paper we are interested in the geometric shape of
algebraic domains relative to a given “vertical” direction. But theway of studying them
through the collapse of vertical segments may be extended to other kinds of subsets
of real affine planes, for instance to topological surfaces bounded by semi-algebraic,
piecewise-smooth or even less regular curves, provided they satisfy supplementary
properties relative to the chosen projection. Definition 2.7 below describes the most
general contextwe could find inwhich the collapsing construction yields a newvertical
plane and a finite graph in it, possibly unbounded. It is purely topological, involving
no differentiability assumptions.

Definition 2.7 Let (P, π) be a vertical plane. Let D ⊂ P be a closed subset home-
omorphic to a surface with non-empty boundary. Denote by C its boundary. We say
that D is a domain of finite type in (P, π) if:

(1) the restriction π|D : D → R is proper;
(2) the topological critical set �top(C) is finite.

Example 2.8 Condition (1) implies that the restriction π|C : C → R is also proper,
which means that C has no connected components which are vertical lines or which
have vertical asymptotes. For instance, consider an algebraic domain contained in
the positive quadrant of the canonical vertical plane R

2, limited by two distinct level
curves of the function xy (see the middle drawing of Fig. 4). It satisfies condition (2)
as it has no topological critical points, but as C has a vertical asymptote (the y-axis),
it does not satisfy condition (1), therefore it is not a domain of finite type. Note that
condition (1) is stronger than the properness of π|C . For instance, the upper half-plane
in (R2, x) does not satisfy condition (1), but x|C is proper for it (see the right drawing
of Fig. 4).

We distinguish two types of topological critical points on the boundaries of domains
of finite type:
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Fig. 5 Example of an exterior
topological critical point P and
an interior topological critical
point Q of D

P

Q

C

D

Definition 2.9 Let (P, π) be a vertical plane and D ⊂ P a domain of finite type,
whose boundary is denoted by C. A topological critical point of C is called:

– an interior topological critical point of D if the vertical line passing through it
lies locally inside D;

– an exterior topological critical point of D if the vertical line passing through it
lies locally outside D (Fig. 5).

One has the following consequence of Definition 2.7:

Proposition 2.10 Let (P, π) be a vertical plane and D ⊂ P a domain of finite type.
Denote by C its boundary. Then:

(1) Each topological critical point of π|C is either interior or exterior in the sense of
Definition 2.9;

(2) The fibers of the restriction π|D : D → R are homeomorphic to finite disjoint
unions of compact segments of R;

(3) The curve C has a finite number of connected components.

Proof

(1) This follows directly from Lemma 2.6 and Definition 2.9.
(2) Let us consider a point x0 ∈ R. By Definition 2.7 (1), since the set {x0} is compact,

we obtain that the fiber π−1
|D (x0) is compact. Let now p be a point of this fiber. By

looking successively at the cases where p ∈ D\C, p ∈ C\�top(C), p is an interior
and p is an exterior topological critical point, we see that there exists a compact
vertical segment K p, neighborhood of p in the vertical line π−1(x0), such that
π−1

|D (x0) ∩ K p is a compact vertical segment (Fig. 6).

As π−1
|D (x0) is compact, it may be covered by a finite collection of such segments

K p. This implies that π−1
|D (x0) is a finite union of vertical segments (some of which

may be points).

(3) Let �top(C) ⊂ R be the topological critical image of π |C , that is, the image
π(�top(C)) of the topological critical set. As by Definition 2.7, �top(C) is finite,
�top(C) is also finite. Therefore, its complement R\�top(C) is a finite union of
open intervals Ii . As π|D is proper, this is also the case of π|C . Therefore, for every
such interval Ii the preimage π−1

|C (Ii ) is a finite union of arcs. This implies that C
is a finite union of arcs and points, therefore it has a finite number of connected
components. ��
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Fig. 6 Different types of point p
in π−1(x0) ∩ D

p1

p2

p3

CD

x0

Fig. 7 The points P and Q are
vertically equivalent relative to
D: P ∼D Q. However, P and
Q are not equivalent to R

P
Q

R

D

x0

2.3 Collapsing vertical planes relative to domains of finite type

Next definition formalizes the idea of collapsing the maximal vertical segments con-
tained in a domain of finite type, mentioned at the beginning of Sect. 2.2.

Definition 2.11 Consider a vertical plane (P, π) and let D ⊂ P be a domain of finite
type. We say that two points P and Q of P are vertically equivalent relative to D,
denoted P ∼D Q, if the following two conditions hold:

– P and Q are on the same fiber of π , that is π(P) = π(Q) =: x0 ∈ R;
– either the points P and Q are on the same connected component of π−1(x0) ∩ D,
or P = Q /∈ D.

Denote by P̃ the quotient P/∼D of P by the vertical equivalence relation relative to
D. We call it theD-collapse of P . The associated quotient map ρD : P → P̃ is called
the collapsing map relative to D (Fig. 7).
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Poincaré–Reeb graphs of real algebraic domains 481

Next proposition shows that the D-collapse of P is naturally a new vertical plane,
which is the reason why we introduced this notion in Definition 2.3.

Proposition 2.12 Let (P, π) be a vertical plane and D be a domain of finite type in it.
Consider the collapsing map ρD : P → P̃ relative to D. Then:

– P̃ is homeomorphic to R
2;

– the projection π descends to a function π̃ : P̃ → R;
– ρD is a homeomorphism from P \ D onto its image;
– if one endows P̃ with the orientation induced from that of P by the previous

homeomorphism, then (P̃, π̃) is again a vertical plane, and the following diagram
is commutative:

P P̃

R

π

ρD

π̃

The proof of Proposition 2.12 is similar to that of [22, Proposition 4.3].

2.4 The Poincaré–Reeb graph of a domain of finite type

We introduce now the notion of Poincaré–Reeb set associated to a domain of finite
type D in a vertical plane (P, π). Whenever P is an affine plane and π is an affine
function, its role is to measure the non-convexity of D in the direction of the fibers
of π .

Definition 2.13 Let (P, π) be a vertical plane and D ⊂ P be a domain of finite type.
The Poincaré–Reeb set of D is the quotient D̃ := D/∼D, seen as a subset of the
D-collapse P̃ of P in the sense of Definition 2.11.

The Poincaré–Reeb set from Definition 2.13 has a canonical structure of graph
embedded in the vertical plane (P̃, π̃), a fact which may be proved similarly to [22,
Theorem 4.6]. Let us explain first how to get the vertices and the edges of D̃.

Definition 2.14 Let D be a domain of finite type in a vertical plane (P, π), and let C
be its boundary. A vertex of the Poincaré–Reeb set D̃ is an element of ρD

(
�top(C)

)
.

A critical segment ofD is a connected component of a fiber of π|D containing at least
one element of�top(C). The bands ofD are the closures of the connected components
of the complement in D of the union of critical segments. An edge of D̃ is the image
ρD(R) of a band R of D (see Fig. 8).

Each critical segment is either an exterior topological critical point in the sense of
Definition2.9 or a non-trivial segment containing afinite number of interior topological
critical points in its interior (see Fig. 9 for an example with two such points).

Next definition, motivated by Proposition 2.16 below, introduces a special type of
subgraphs of vertical planes:

Definition 2.15 Let (P, π) be a vertical plane. A transversal graph in (P, π) is a
closed subset G of P partitioned into finitely many points called vertices and subsets
homeomorphic to open segments of R called open edges, such that:
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482 A. Bodin et al.

Fig. 8 Construction of a
Poincaré–Reeb set. There are
three bands, delimited by four
critical segments (three of them
are reduced to points). The
interior of each edge of the
graph is drawn in the same color
as the corresponding band

Fig. 9 A critical segment
containing two interior
topological critical points

(1) each edge, that is, the closure E of an open edge E , is homeomorphic to a closed
segment of R and E\E consists of 0, 1 or 2 vertices;

(2) the edges are topologically transversal to the vertical lines, that is, the restriction
of π to each edge is a homeomorphism onto its image in R;

(3) the restriction π|G : G → R is proper.

A transversal graph is called generic if its vertices are of valency 1 or 3 and if distinct
vertices lie on distinct vertical lines.

Any transversal graph is homeomorphic to the complement of a subset of the set
of vertices of valency 1 inside a usual finite (compact) graph. This is due to the fact
that some of its edges may be unbounded, in either one or both directions. Condition
(3) from Definition 2.15 avoids G having unbounded edges which are asymptotic to
a vertical line of π . Note that we allow G to be disconnected and the set of vertices to
be empty. In this last case, G is a finite union of pairwise disjoint open edges, each of
them being sent by π homeomorphically onto R.

Here is the announced description of the canonical graph structure of the Poincaré–
Reeb sets of domains of finite type in vertical planes:

Proposition 2.16 Let D be a domain of finite type in a vertical plane (P, π). Then
each edge of the Poincaré–Reeb set D̃ in the sense of Definition 2.14 is homeomorphic
to a closed segment of R. Endowed with its vertices and edges, D̃ is a transversal
graph in (P̃, π̃), without vertices of valency 2.
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Poincaré–Reeb graphs of real algebraic domains 483

The proof is straightforward using Proposition 2.10. For an example, see the graph
of Fig. 8.

Proposition 2.16 allows to give the following definition:

Definition 2.17 Let D be a domain of finite type in a vertical plane (P, π). Its
Poincaré–Reeb graph is the Poincaré–Reeb set D̃ seen as a transversal graph in the
D-collapse (P̃, π̃) of P in the sense of Definition 2.11, when one endows it with
vertices and edges in the sense of Definition 2.14.

The next result explains in which case the Poincaré–Reeb graph of a domain of
finite type is generic in the sense of Definition 2.15:

Proposition 2.18 Let D be a domain of finite type in a vertical plane (P, π). Denote
by C its boundary. Then the Poincaré–Reeb graph D̃ is a generic transversal graph
in (P̃, π̃) if and only if no two topological critical points of C lie on the same vertical
line.

Proof This follows from Definitions 2.15, 2.9 and Proposition 2.10 (3). Vertices of
valency1of thePoincaré–Reebgraph correspond to exterior topological critical points,
whereas vertices of valency 3 correspond to interior topological critical points. ��

This proposition motivates:

Definition 2.19 A domain of finite type in a vertical plane is called generic if no two
topological critical points of its boundary lie on the same vertical line.

Below we will define a related notion of generic direction with respect to an alge-
braic domain (see Definition 2.21). For algebraic domains of finite type, up to a small
rotation the vertical direction is generic, see Remark 2.22 below. In other words, for
all but a finite number of directions the projection is generic.

2.5 Algebraic domains of finite type

Let us consider algebraic domains in the canonical affine vertical plane (R2, x) (see
Definitions 2.1 and 2.3). Not all of them are domains of finite type. For instance, the
closed half-planes or the surface bounded by the hyperbolas (xy = 1) and (xy = −1)
are not of finite type, because the restriction of the projection x to the domain is
not proper. Next proposition shows that this properness characterizes the algebraic
domains which are of finite type, and that it may be checked simply:

Proposition 2.20 Let (P, π) be an affine vertical plane and let D be an algebraic
domain in it. Then the following conditions are equivalent:

(1) D is a domain of finite type.
(2) The restriction π|D : D → R is proper.
(3) One fiber of π|D : D → R is compact and the boundary C of D does not contain

vertical lines and does not possess vertical asymptotes.
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Proof Let us prove first the implication (2) ⇒ (1). It is enough to show that �top(C)

is a finite set. The properness of π|D shows that C contains no vertical line. The set of
topological critical points being included in the set �diff(C) of differentiable critical
points of π |C , it is enough to prove that this last set is finite. Consider a connected
component Ci of C and its Zariski closure Ci inP . LetPπ (Ci ) be its polar curve relative
to π (see [20, Definition 2.43]). It is again an algebraic curve in P , of degree smaller
than the irreducible algebraic curve Ci . Therefore, the set Ci ∩ Pπ (Ci ) is finite, by
Bézout’s theorem. But this set contains Ci ∩ �diff(C), which shows that π |C has a
finite number of differentiable critical points on each connected component Ci . As C
has a finite number of such components, we get that �diff(C) is indeed finite.

Let us prove now that (1) ⇒ (3). Since C ⊂ D, we have by the properness condition
of Definition 2.7 (1) that C does not contain vertical lines. Moreover, if the boundary
C of D possessed a vertical asymptote, then we would obtain a contradiction with
Definition 2.7 (1). Finally, since π|D is proper, each of its fibers is compact.

Finally we prove that (3) ⇒ (2). Since the boundary C ofD does not contain vertical
lines and does not possess vertical asymptotes, the restriction π |C is proper. Moreover,
it has a finite number of differentiable critical points, as the above proof of this fact
used only the absence of vertical lines among the connected components of C. We
argue now similarly to our proof of Proposition 2.10 (3), by subdividing R using the
points of the topological critical image �top(C). This set is finite, therefore R gets
subdivided into finitely many closed intervals. Above each one of them, C consists of
finitely many transversal arcs. If one fiber of π|D above such an interval I j is compact,
it means that π−1

|D (I j ) is a finite union of bands bounded by pairs of such transversal
arcs and compact vertical segments, therefore π|D is proper above I j . In particular, its
fibers above the extremities of I j are also compact. In this waywe show by progressive
propagation from each interval with a compact fiber to its neighbors, that π|D is proper
above each interval of the subdivision of R using�top(C). This implies the properness
of π|D . ��

Let us explain now a notion of genericity of an affine function on an affine plane
relative to an algebraic domain:

Definition 2.21 Let D be an algebraic domain in an affine vertical plane (P, π), and
let C be its boundary. The projection π is called generic with respect to D if C does not
contain vertical lines and does not possess vertical asymptotes, vertical inflectional
tangent lines and vertical multitangent lines (that is, vertical lines tangent to C at least
at two points, or to a point of multiplicity greater than two).

Remark 2.22 Let D be an algebraic domain in an affine plane P . Except for a finite
number of directions of their fibers, all affine projections are generic with respect to
D (see [23, Theorem 2.13]). Note that the affine projection π is generic with respect
to D if and only if the restriction of π to C is a proper excellent Morse function, i.e.
all the critical points of π|C are of Morse type and are situated on different level sets
of π|C . Note also that if the algebraic domain D is moreover of finite type and π is
generic with respect to it in the sense of Definition 2.21, thenD is generic in the sense
of Definition 2.19.
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Proposition 2.23 LetD be an algebraic domain of finite type in an affine vertical plane
(P, π). Assume that π is generic with respect to D in the sense of Definition 2.21.
Then its Poincaré–Reeb graph is generic in the sense of Definition 2.15.

Proof This is a consequence of Proposition 2.18 and Remark 2.22, since by Definition
2.4, the topological critical points of C are among the differential critical points of the
vertical projection π |C . ��

2.6 The invariance of the Euler characteristic

In this section we consider only compact domains of finite type. This implies that their
boundaries are also compact (see Fig. 1 for an example). Next result implies that the
Betti numbers of the domain and of its Poincaré–Reeb graph are the same:

Proposition 2.24 Let D be a compact domain of finite type in a vertical plane. Then
D and its Poincaré–Reeb graph D̃ are homotopically equivalent. In particular they
have the same number of connected components and the same Euler characteristic.

Proof Connected components. The collapsing map ρD of Definition 2.11 being con-
tinuous, each connected component of D is sent by ρD to a connected subset of D̃.
Those subsets are compact, as images of compact sets by a continuous map. They
are moreover pairwise disjoint, by Definition 2.11 of the vertical equivalence relation
relative to D. Therefore, they are precisely the connected components of D̃, which
shows that ρD establishes a bijection between the connected components ofD and D̃.

Homotopy equivalence. We now may assume the D is connected. By definition,
for any p ∈ D̃, ρ−1

D (p) is an interval, then the Vietoris–Begle theorem, as stated by

Smale in [19], proves that ρD : D → D̃ induces an isomorphism for the correspond-
ing homotopy groups. By the Whitehead theorem (see [9, Theorem 4.5]), we get a
homotopy equivalence between D and D̃. ��

Note that in Sect. 5 we will focus on the topology of the boundary curve C of D,
in terms of Betti numbers (see Proposition 5.1). The case where D is a disk was
considered by the third author in her study of asymptotic shapes of level curves of
polynomial functions f (x, y) ∈ R[x, y] near a local extremum (see [20, 22]).

A direct consequence of Proposition 2.24 is:

Proposition 2.25 If D ⊂ (P, π) is (homeomorphic to) a disk, then the Poincaré–Reeb
graph D̃ of D is a tree.

Proof Proposition 2.24 implies that D̃ is connected and that χ(D̃) = 1. But these two
facts characterize the trees among the finite graphs. ��

If the diskD ⊂ (P, π) is an algebraic domain in a vertical affine plane and the pro-
jection π is generic with respect toD in the sense of Definition 2.21, then Proposition
2.23 implies that the Poincaré–Reeb graph D̃ is a complete binary tree: each vertex is
either of valency 3 (we call it then interior) or of valency 1 (we call it then exterior)
(Fig. 10).
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Fig. 10 The Poincaré–Reeb
graph of a disk relative to a
generic projection is a complete
binary tree

Fig. 11 Decomposition in bands
and choices of paths

P Q

2.7 Poincaré–Reeb graphs in the source

Definition 2.17 of the Poincaré–Reeb graph D̃ of a finite type domain D in a vertical
plane (P, π) is canonical. However, it yields a graph embedded in a new vertical plane
P̃ , which cannot be identified canonically to the starting one.When the Poincaré–Reeb
graph is generic in the sense of Definition 2.15, it is possible to lift it to the starting
plane.

Proposition 2.26 Let D be a finite type domain in a vertical plane (P, π). If the
Poincaré–Reeb graph D̃ is generic, then the map (ρD)|D : D → D̃ admits a section,
which is well defined up to isotopies stabilizing each vertical line.

Proof The genericity assumption means that above each vertex of D̃ there is a unique
topological critical point of C. This determines the section of (ρD)|D unambiguously
on the vertex set of D̃. The preimage of an edge E of D̃ is a band (see Definition 2.14),
which is a trivializable fibration with compact segments as fibers over the interior of E .
Therefore, one may extend continuously the section from its boundary to the interior
of E in a canonical way up to isotopies stabilizing each vertical line (see Fig. 11). ��

Note that without the genericity assumption, the conclusion of Proposition 2.26 is
not necessarily true, as may be checked on Fig. 9.

Definition 2.27 LetD be a domain of finite type in a vertical plane (P, π)with generic
Poincaré–Reeb graph D̃. Then any section of (ρD)|D : D → D̃ is called a Poincaré–
Reeb graph in the source of D. By contrast, the graph D̃ is called the Poincaré–Reeb
graph in the target.

Using the notion of vertical equivalence defined in Sect. 2.8 below, one may show
that any Poincaré–Reeb graph ˜̃D in the source and the Poincaré–Reeb graph D̃ in the
target are vertically isomorphic: D̃ ≈v

˜̃D. As explained above, an advantage of the
latter construction is that the Poincaré–Reeb graph in the source lives inside the same
plane as the generic finite type domain D.
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Another advantage is that one may define Poincaré–Reeb graphs in the source even
for algebraic domains which are not of finite type, but for which the affine projection π

is assumed to be generic in the sense of Definition 2.21. In those cases theD-collapse
of the starting affine plane P is not any more homeomorphic to R

2.

2.8 Vertical equivalence

The following definition of vertical equivalence is intended to capture the underlying
combinatorial structure of subsets of vertical planes. That is, we consider that two
vertically equivalent such subsets have the same combinatorial type.

Definition 2.28 Let X and X ′ be subsets of the vertical planes (P, π) and (P ′, π ′)
respectively. We say that X and X ′ are vertically equivalent, denoted by X ≈v X ′, if
there exist orientation preserving homeomorphisms 	 : P → P ′ and ψ : R → R

such that 	(X) = X ′ and the following diagram is commutative:

P P ′

R R

π

	

π ′

ψ

In the sequel we will apply the previous definition to situations when X and X ′ are
either domains of finite type in the sense of Definition 2.7 or transversal graphs in the
sense of Definition 2.15.

Proposition 2.29 LetD andD′ be compact connected domains of finite type in vertical
planes, with Poincaré–Reeb graphs G and G ′. Assume that both are generic in the
sense of Definition 2.19. Then:

D ≈v D′ ⇐⇒ G ≈v G ′.

Before giving the proof of Proposition 2.29, let us make some remarks:

– Denote C = ∂D and C′ = ∂D′. We have 	(C) = C′.
– 	 sends the topological critical points {Pi }ofC bijectively to the topological critical
points {P ′

i } of C′. In fact, such a critical point may be geometrically characterized
by the local behavior of D relative to the vertical line through this point. A point
P is a topological critical point of π|C , if and only if the intersection ofD with the
vertical line � through P is a point in a neighborhood of P , or a segment such that
P is in the interior of the segment. The homeomorphism 	 sends the vertical line
� to a vertical line �′ andD toD′, hence P ′ = 	(P) is a topological critical point
of π|C′ .

– The equivalence preserves the π -order of the critical points: ifD ≈v D′, and if Pi ,
Pj are critical points of π|C with π(Pi ) < π(Pj ) then the corresponding critical
points of π|C′ , P ′

i := 	(Pi ), P ′
j := 	(Pj ) verify π ′(P ′

i ) < π ′(P ′
j ). This comes

from the assumption that the homeomorphisms 	 and ψ involved in Definition
2.28 are orientation preserving.
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Fig. 12 Two non-vertically equivalent real algebraic domains with the same permutation

Example 2.30 Consider the canonical affine vertical plane (R2, x) in the sense of
Definition 2.3. Then the vertical equivalence preserves the x-order, that is to say,
if x(Pi ) < x(Pj ) then x(P ′

i ) < x(P ′
j ). Notice that the y-order of the critical points

may not be preserved. However 	 preserves the orientation on each vertical line, i.e.
y �→ 	(x0, y) is a strictly increasing function.

Example 2.31 Consider again the canonical affine vertical plane (R2, x) and a generic
algebraic domainD in it, homeomorphic to a disc.DenoteC = ∂D. It is homeomorphic
to a circle. Then the set of critical points of π |C (which are the same as the topological
critical points, by the genericity assumption) yields a permutation. To explain that,
we will define two total orders on the set of critical points. The first order enumerates
{Pi } in a circular manner following C, obtained by following the curve, starting with
the point with the smallest x coordinate, the curve being oriented as the boundary of
D. The second order is obtained by ordering the abscissas x(Pi ) using the standard
order relation on R. Now, as explained by Knuth (see [8, page 17], [23, Definition
4.21], [21, Sect. 1]), two total order relations on a finite set give rise to a permutation
σ : in our case, σ(i) is the rank of x(Pi ) in the ordered list of all abscissa. The vertical
equivalence preserves the permutation: ifD ≈v D′ then σ = σ ′. However, the reverse
implication could be false, as shown in the Fig. 12 which shows two generic real
algebraic domains homeomorphic to discs with the same permutation

(
1 2 3 4 5 6
1 5 3 6 2 4

)
, but

which are not vertically equivalent, as may be seen by considering their Poincaré-Reeb
trees.

Example 2.31 shows that the permutations are not complete invariants of generic
domains of finite type homeomorphic to disks, under vertical equivalence. However,
by Proposition 2.29, the Poincaré–Reeb graphs is a complete invariant for the vertical
equivalence.

Proof of Proposition 2.29

– ⇒. Suppose D ≈v D′ and let 	 : P → P ′ be a homeomorphism realizing this
equivalence through a commutative diagram

P P ′

R R

π

	

π ′

ψ
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Fig. 13 Thickening in the neighborhood of an exterior vertex (left) and of an interior vertex (right)

By definition, 	 preserves the vertical foliations, hence is compatible with the
vertical equivalence relations∼D and∼D′ of Definition 2.11. Therefore it induces
a homeomorphism 	̃ : P̃ → P̃ ′ from theD-collapse ofP to theD′-collapse ofP ′,
sending G = D/∼ to G ′ = D′/∼. This homeomorphism gets naturally included
in a commutative diagram

P̃ P̃ ′

R R

π̃

	̃

π̃ ′

ψ

Therefore, by Definition 2.28, G ≈v G ′.
– ⇐. The keypoint is to reconstruct the topology of a generic domain of finite
type D homeomorphic to a disk (and of its boundary C) from its Poincaré–Reeb
graph G. To this end, one may construct a kind of tubular neighborhood D of
G, obtained by thickening it using vertical segments (see Fig. 13). Then D is
vertically equivalent to D. Now suppose that G ≈v G ′ and let 	̃ : P̃ → P̃ ′ be a
homeomorphism inducing this equivalence. This homeomorphism induces also a
vertical equivalence of convenient such thickenings, hence yields the equivalence
D ≈v D′.

��
The combinatorial types of generic transversal graphs can be realized by special

types of graphswith smooth edges in the canonical affine vertical plane (R2, x : R
2 →

R):

Proposition 2.32 Any generic transversal graph in a vertical plane is vertically equiv-
alent to a graph in the canonical affine vertical plane, whose edges are moreover
smooth and smoothly transversal to the vertical lines.

We leave the proof of this proposition to the reader.

Remark 2.33 We said at the beginning of this subsection that we introduced vertical
equivalence as a way to capture the combinatorial aspects of subsets of vertical planes.
It is easy to construct a combinatorial object (that is, a structure on a finite set) which
encodes the combinatorial type of a generic transversal graph. For instance, given such
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Fig. 14 The two kinds of interior vertices (on the left) and of exterior vertices (on the right)

a graph G, one may number its vertices from 1 to n in the order of the values of the
vertical projection π . Then, for each edge α of G, one may remember both its end
points a < b and, for each number c ∈ {a + 1, . . . , b − 1}, whether α passes below
or above the vertex numbered c.

3 Algebraic realization in the compact connected case

In this section we give the main result of the paper, Theorem 3.5: given a compact
connected generic transversal graph G in a vertical plane (see Definition 2.15), we
prove that there exists a compact algebraic domain in the canonical affine vertical plane
whose Poincaré–Reeb graph is vertically equivalent to G. We will prove a variant of
Theorem 3.5 for non-compact graphs in the next section (Theorem 4.6).

Using the canonical orientation of the target R of the vertical projection, one may
distinguish two kinds of interior and exterior vertices of the graph G (see Fig. 14).

Our strategy of proof of Theorem 3.5 is as follows:

– we realize the generic transversal graph G as a Poincaré–Reeb graph of a finite
type domain defined by a smooth function;

– we present a Weierstrass-type theorem that approximates any smooth function by
a polynomial function;

– we adapt this Weierstrass-type theorem in order to control vertical tangents, and
we realize G as the Poincaré–Reeb graph of a generic finite type algebraic domain.

3.1 Smooth realization

First, we construct a smooth function f that realizes a given generic transversal graph.

Proposition 3.1 Let G be a compact connected generic transversal graph. There exists
a C∞ function f : R

2 → R such that the curve C = ( f = 0) does not contain critical
points of f and is the boundary of a domain of finite type whose Poincaré–Reeb graph
in the canonical vertical plane (R2, x) is vertically equivalent to G.

Proof The idea is to construct first the curve C, then the function f . We construct C
by interpolating between local constructions in the neighborhoods of the vertices of
G (see Fig. 15). Let us be more explicit. We may assume, up to performing a vertical
equivalence, that G is a graph with smooth compact edges in the canonical affine

123



Poincaré–Reeb graphs of real algebraic domains 491

Fig. 15 A generic compact transversal graph (left) and a local smooth realization (right)

vertical plane (R2, x), whose edges are moreover smoothly transversal to the verticals
(see Proposition 2.32). Let ε > 0 be fixed. Then, one may construct C verifying the
following properties:

– C is compact;
– C ⊂ N (G, ε): the curve is contained in the ε-neighborhood of G;
– C has only one vertical tangent associated to each vertex of G;
– all these tangents are ordered in the same way as the vertices of G.

Note that this last condition is automatic once ε is chosen less than half the minimal
absolute value |x(Pi ) − x(Pj )|, where Pi and Pj are distinct vertices of G.

Once C is fixed, one may construct f by following the steps:

– Bicolor the complement R
2 \ C of C using the numbers ±1, such that neighboring

connected components have distinct associated numbers. Denote by σ : R
2 \C →

R the resulting function.
– Choose pairwise distinct annular neighborhoods Ni of the connected components
Ci of C, and diffeomorphisms φi : Ni � Ci × (−1, 1) such that p2 ◦ φi (the
composition of the second projection p2 : Ci × (−1, 1) → (−1, 1) and of φi ) has
on the complement of Ci the same sign as σ .

– For each connected component S j ofR2\C, consider the open setU j ⊂ S j obtained
as the complement of the union of annuli of the form φ−1

i (Ci ×[−1/2, 1/2]). Then
consider the restriction σ j : U j → R of σ to U j .

– Fix a smooth partition of unity onR subordinate to the locally finite open covering
consisting of the annuli Ni and the setsU j . Then glue the smooth functions p2◦φi :
Ni → R and σ j : U j → R using it.

– The resulting function f satisfies the desired properties.

��

3.2 AWeierstrass-type approximation theorem

Let us first recall the following classical result:

Theorem 3.2 (Stone–Weierstrass theorem, [24]). Let X be a compact Hausdorff space.
Let C(X) be the Banach R-algebra of continuous functions from X to R endowed with
the norm ‖ · ‖∞. Let A ⊂ C(X) be such that:
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– A is a sub-algebra of C(X),
– A separates points (that is, for each x, y ∈ X with x �= y there exists f ∈ A such

that f (x) �= f (y)),
– for each x ∈ X, there exists f ∈ A such that f (x) �= 0.

Then A is dense in C(X) relative to the norm ‖ · ‖∞.

We will only use the previous theorem through the following corollary:

Corollary 3.3 Let f : R
2 → R be a continuous map and a, b ∈ R, a < b. For each

ε > 0, there exists a polynomial p ∈ R[x, y] such that:

∀(x, y) ∈ [a, b] × [a, b] ∣∣ f (x, y) − p(x, y)
∣∣ < ε

Proof We apply Theorem 3.2 with X = [a, b] × [a, b], A = R[x, y]. This set A
satisfies the three conditions of Theorem 3.2 (the last one because 1X ∈ A), therefore
A is dense in C(X), which implies that f can indeed be uniformly arbitrarily well
approximated on X by polynomials. ��

Is Corollary 3.3 sufficient to answer the realization question? No! Indeed, even if
it provides a polynomial p(x, y) such that (p(x, y) = 0) lies in a close neighborhood
of ( f (x, y) = 0), we have no control on the vertical tangents of the algebraic curve
(p = 0), whose Poincaré–Reeb graph can therefore be more complicated than the
Poincaré–Reeb graph of ( f = 0). In the sequel we construct a polynomial p by
keeping at the same time a control on the vertical tangents of a suitable level curve of
it.

3.3 Algebraic realization

Proposition 3.4 Let f : R
2 → R be a C3 function such that C = ( f = 0) is a curve

which does not contain critical points of f , which has only simple vertical tangents,
and is included in the interior of a compact subset K of R

2. For each δ > 0, there
exists a polynomial p ∈ R[x, y] such that (see Fig.16):

– (p = 0) ∩ K ⊂ N ( f = 0, δ),
– for each point P0 ∈ ( f = 0) where ( f = 0) has a vertical tangent, there exists

a unique Q0 ∈ (p = 0) in the disc N (P0, δ) centered at P0 and of radius δ such
that (p = 0) has also a vertical tangency at Q0,

– (p = 0) ∩ K has no vertical tangent except at the former points.

We prove this proposition in Sect. 3.4 below.
By taking the numbers ε > 0 and δ > 0 appearing in Propositions 3.1 and 3.4

sufficiently small, we get:

Theorem 3.5 Any compact connected generic transversal graph can be realized as
the Poincaré–Reeb graph of a connected algebraic domain of finite type.

Proof of the theorem Starting with a compact connected transversal generic graph G,
it can be realized by a smooth function f (Proposition 3.1), which in turn can be
replaced by a polynomial map p (Proposition 3.4).
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P0 Q0

(f = 0)
(p = 0)

N(f = 0, δ)

Fig. 16 Algebraic realization

The referees ask:

Question Is it possible to estimate the degree of a polynomial defining the algebraic
domain in term of the combinatorics of the graph G?

A referee suggested to use a degree effective version of the Ck Weierstrass polynomial
approximation theorem, as in [1, Theorem 2]. Furthermore, in [13], the authors con-
struct an algebraic hypersurface that approximates a smooth compact hypersurface
with a control of its minimal degree in terms of geometric data of the hypersurface.

3.4 Proof of Proposition 3.4

3.4.1 Compact support

Let M > 0 such that ( f = 0) ⊂ [−(M − 1), M − 1]2 (remember that ( f = 0) is
assumed to be included in a compact set). We replace the function f by a function g
with compact support. More precisely, let g : R

2 → R be a function such that:

– g is C3,
– f = g on [−(M − 1), M − 1]2,
– g = 0 outside (−M, M)2,
– g does not vanish in the intermediate zone hatched area of Fig. 17.

Such a function may be constructed using an adequate partition of unity.

3.4.2 Polynomial approximation of g and f

We need a polynomial p approximating g, but also that some partial derivatives of
p approximate the corresponding partial derivatives of g. This can be done by a Ck

Weierstrass polynomial approximation. More precisely, one can use the density of
polynomials in the Ck topology, as stated in [3, Proposition 1.3.7.]. Nevertheless, we
state such a result and emphasise which partial derivatives we need to approximate.

Lemma 3.6 Let us fix ε > 0. There exists a polynomial p ∈ R[x, y] such that, for all
(x, y) ∈ [−M, M]2:

|p(x, y) − g(x, y)| ≤ (2M)3ε,
∣
∣∂y p(x, y) − ∂y g(x, y)

∣
∣ ≤ (2M)2ε,

|∂x p(x, y) − ∂x g(x, y)| ≤ (2M)2ε,
∣∣∂y2 p(x, y) − ∂y2g(x, y)

∣∣ ≤ 2Mε.
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Fig. 17 Compact support of g

x

y

(f = 0)

M − 1
M

In order to be self-contained we give a short proof, inspired by [7].

Proof By Corollary 3.3 applied to the function ∂x∂y∂y g and to (a, b) = (−M, M),
there exists a polynomial p0 ∈ R[x, y] such that: ∀(x, y) ∈ [−M, M]2 ∣∣p0(x, y) −
∂x∂y∂y g(x, y)

∣
∣ < ε. Now our polynomial p ∈ R[x, y] is defined by a triple integra-

tion:

p(x, y) =
∫ x

−M

∫ y

−M

∫ y

−M
p0(u, v) dv dv du.

We start by proving the last inequality. By Fubini theorem: ∂y2 p(x, y)= ∫ x
−M

p0(u, y) du. Therefore:

∣
∣∂y2 p(x, y) − ∂y2 g(x, y)

∣
∣ =

∣∣
∣∣

∫ x

−M

(
p0(u, y) − ∂x∂y2 g(u, y)

)
du

∣∣
∣∣ ≤

∣∣
∣∣

∫ x

−M
ε du

∣∣
∣∣ ≤ 2Mε.

The first equality is a consequence of the fact that:
∫ x
−M ∂x∂y2g(u, y) du =

∂y2g(x, y) − c(y) where c(y) = ∂y2g(−M, y). As g vanishes outside (−M, M)2,
for those points we have ∂y2g(x, y) = 0 so that c(y) = 0. The inequality following it
results from the definition of the polynomial p0. By successive integrations we prove
the other inequalities. ��

Inside the square [−M, M]2 the curve (p = 0) defined for a sufficiently small ε is
in a neighborhood of ( f = 0). However, remark that (p = 0) can also vanish outside
the square [−M, M]2.

3.4.3 The curve (p = 0) inside the square

Let us explain the structure of the curve (p = 0) around a point P0 ∈ ( f = 0) where
the tangent is not vertical (recall that f = g inside the square [−(M − 1), M − 1]2)
see Fig. 18.
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Fig. 18 Existence of the curve
(p = 0)

B(P0, δ)

P0

Q1

Q2

Q0(p = 0)

(f = 0)

– Fix δ > 0. Let B(P0, δ) be a neighborhood of P0. On this neighborhood f takes
positive and negative values.

– Let η > 0 and Q1, Q2 ∈ B(P0, δ) such that f (Q1) > η and f (Q2) < −η.
– We choose the ε of Lemma 3.6 such that (2M)3ε < η/2.
– p(Q1) > f (Q1) − (2M)3ε > η/2 > 0; a similar computation gives p(Q2) < 0,
hence p vanishes at a point Q0 ∈ [Q1Q2] ⊂ B(P0, δ).

– Because we supposed ∂y f �= 0 in B(P0, δ), we also have ∂y p �= 0. Hence (p = 0)
is a smooth simple curve in B(P0, δ) with no vertical tangent.

Notice that the construction of (p = 0) in B(P0, δ) depends on ε, whose choice
depends on the point P0. To get a common choice of ε, we first cover the compact
curve ( f = 0) by a finite number of balls B(P0, δ) and take the minimum of the ε

above.

3.4.4 Vertical tangency

– Let P0 = (x0, y0) be a point with a simple vertical tangent of ( f = 0), see Fig.
19 that is to say:

∂y f (x0, y0) = 0 ∂x f (x0, y0) �= 0 ∂y2 f (x0, y0) �= 0

– For similar reasons as before, (p = 0) is a non-empty smooth curve passing near
P0.

– In the following we may suppose that the curve ( f = 0) is locally at the left of its
vertical tangent, that is to say:

∂x f (x0, y0) × ∂y2 f (x0, y0) > 0

An example of this behavior is given by f (x, y) := x + y2 at (0, 0).
– Fix δ > 0. Let B(P0, δ) be a neighborhood of P0.
– ∂y p ∼ ∂y f . As ∂y f vanishes at the point P0 of ( f = 0), then ∂y f takes positive
and negative values near this point. Let η > 0, and Q1 ∈ ( f = 0) such that
∂y f (Q1) > η. For a sufficiently small ε, there exists R1 ∈ (p = 0) such that
∂y f (R1) > 2

3η. Therefore ∂y p(R1) > 1
3η > 0. For a similar reason there exists

R2 ∈ (p = 0) such that ∂y p(R2) < 0. Then there exists Q0 ∈ (p = 0)∩ B(P0, δ)

such that ∂y p(Q0) = 0.
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Fig. 19 Vertical tangent

B(P0, δ)

P0
Q0

(f = 0)
(p = 0)

– ∂x p ∼ ∂x f . As ∂x f (P0) �= 0, one has also ∂x p(Q0) �= 0, thus p has a vertical
tangent at Q0.

– ∂y2 p ∼ ∂y2 f and they do not vanish near P0 and Q0, therefore the vertical tangent
at Q0 for (p = 0) is simple and has the same type as the vertical tangent at P0 for
( f = 0).

– Moreover as ∂y2 p �= 0 on (p = 0)∩ B(P0, δ), thus ∂y p vanishes only once, hence
there is only one vertical tangent in this neighborhood.

4 Algebraic realization in the non-compact and connected case

4.1 Domains of weakly finite type in vertical planes

We consider an algebraic domainD ⊆ R
2 in the sense of Definition 2.1, whose bound-

ary C := ∂D is a connected but non-compact curve. This curve C is homeomorphic
to a line and has two branches at infinity (the germs at infinity of the two connected
components of C \ K , where K ⊂ C is a non-empty compact arc). Let us suppose
that these branches are in generic position w.r.t. the vertical direction: none of them
has a vertical asymptote. This leads us to Definition 4.1 below, which represents a
generalization of the notion of domain of finite type (see Definition 2.7), since we
only ask π|C : C → R to be proper, allowing π|D : D → R not to be so. In turn, the
genericity notion is an analog of that introduced in Definition 2.19.

Definition 4.1 Let (P, π) be a vertical plane. Let D ⊂ P be a closed subset home-
omorphic to a surface with non-empty boundary. Denote by C its boundary. We say
that D is a domain of weakly finite type in (P, π) if:

(1) the restriction π|C : C → R is proper;
(2) the topological critical set �top(C) is finite.

Such a domain is called generic if no two topological critical points of C lie on the
same vertical line. A Poincaré–Reeb graph of a generic domain of weakly finite type
is one of its Poincaré–Reeb graphs in the source in the sense of Sect. 2.7.

For instance, the closed upper half-planeH in (R2, x) is a generic domain of weakly
finite type (for which �top(C) = ∅). Its Poincaré-Reeb graphs are the sections of the
restriction x : H → R of the vertical projection.
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Fig. 20 Case A

G̊

Fig. 21 Case B

G̊

4.2 The combinatorics of non-compact Poincaré–Reeb graphs

Let D be a domain of weakly finite type in a vertical plane (P, π). When C is home-
omorphic to a line, we distinguish three cases, depending on the position of D and of
the branches of C. We enrich the Poincaré–Reeb graph, by adding arrowhead vertices
representing directions of escape towards infinity. Moreover, the unbounded edges
are decorated with feathers oriented upward or downward, to indicate the unbounded
vertical intervals contained in the domain (Figs 20, 21, 22).

Case A: One arrow
In case A, the two branches of C are going in the same direction (to the right or to

the left, as defined by the orientations of P and the target line R of π ), D being in
between. Then we get a Poincaré–Reeb graph with one arrow (and no feathers).

Case B: Two arrows
In case B, the two branches have opposite directions. Then we have a Poincaré–

Reeb graph with two arrows, each arrow-headed edge being decorated with feathers
(above or below), indicating the non-compact vertical intervals of type [0,+∞[ or
] − ∞, 0] contained in the domain bounded by that edge.

Case C: Three arrows
In case C, where the two branches are going to the same direction but D is in the

“exterior”, we have a graph with three arrows: two arrows with simple feathers (for
the vertical intervals of type [0,+∞[ or ]−∞, 0]) and one arrowwith double feathers
(for the vertical intervals of type ] − ∞,+∞[).
Remark 4.2 – We can avoid the contraction of non-compact vertical intervals in the

construction of the Poincaré–Reeb graph in case B and case C, in order to still
have a graph G naturally embedded in an affine plane. We first define a subset
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Fig. 22 Case C

G̊

H ⊂ R
2 that contains C, whose boundary ∂H = H+ ∪ H− is the union of two

curves homeomorphic to R, transverse to the vertical foliation (one above C, one
below C).

C

D ∩ H

H−

H+

We change Definition 2.11, by contracting vertical intervals of D ∩ H (instead of
vertical intervals of D): P ∼D Q if π(P) = π(Q) := x0 and P and Q are on the
same connected component of D ∩ H ∩ π−1(x0).

– The feather decoration on non-arrowheaded edges can be recovered from feathers
at the other arrows and are omitted.

– The cases A and C are complementary (or dual of each other). We can pass from
one to the other by considering C as the boundary of D or of R

2 \ D.
– From this point of view, case B is its own complementary case. More on such
complementarities will be said later (see Sect. 5).

Proposition 4.3 Let D be a simply connected generic domain of weakly finite type in
a vertical plane. Then its Poincaré–Reeb graph is a generic transversal binary tree.

Proof After applying a vertical equivalence in the sense of Definition 2.28, we may
assume that D is embedded in the canonical vertical plane (R2, x).

Denote C := ∂D. The idea is to intersect C (andD) with a sufficiently big compact
convex topological disk K , to apply our previous construction for D ∩ K , then to add

123



Poincaré–Reeb graphs of real algebraic domains 499

Fig. 23 CasesA,B,C (from left to right). The filled region is the compact domain of finite typeD′ := D∩K .
A Poincaré–Reeb graph in the source is also displayed. The Poincaré–Reeb graph of D is obtained by
replacing each circled vertex by an arrow

suitable arrows. In the Fig. 23, such a disk is represented as a Euclidean one, but one
has to keep in mind that its shape may be different, for instance a rectangle, in order
to achieve topological transversality between its boundary and the curve C. ��

First, notice that the case where C is compact is already known (see Propositions
2.18 and 2.25). Assume therefore that C is a non-compact curve. Then π|C has a
finite number of topological critical points. We consider a sufficiently large convex
compact topological disk K that contains all these critical points. Let D′ := D ∩ K
and C′ := ∂D′. We are then in the compact situation studied before. By Proposition
2.25, the Poincaré–Reeb graph of D′ is a tree. We add arrows at each circled dot of
Fig. 23.

We extend now the notion of vertical equivalence of transversal graphs from Def-
inition 2.28 to enriched non-compact transversal graphs, requiring that arrowhead
vertices are sent to arrowhead vertices. Then we have the following generalization of
Theorem 2.29, whose proof is similar:

Proposition 4.4 Let D, D′ be generic simply connected domains of weakly finite type.
Then:

D ≈v D′ ⇐⇒ G ≈v G ′.

4.3 Algebraic realization

We extend our realization theorem (Theorem 3.5) of generic transversal graphs as
Poincaré–Reeb graphs of algebraic domains to the simply connected but non-compact
case. The idea is to use the realization from the compact setting and consider the union
with a line (or a parabola); finally, we take a neighboring curve.

Example 4.5 Here is an example, see Fig. 24: starting from an ellipse ( f = 0), we
consider the union with a line (g = 0), then the unbounded component of ( f g = ε)

is a non-compact curve with two branches that have the shape of the ellipse on a large
arc, if the sign of ε is conveniently chosen.
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(f = 0) (f = 0)

(g = 0)

(fg = ε)

(fg = −ε)

Fig. 24 Adding two branches to an ellipse

G G′

Fig. 25 An example of a tree G (left) and its corresponding compact tree G′ (right) after the edges ended
with arrows have been replaced by long enough edges having circle vertices

Theorem 4.6 Let G be a connected, non-compact, generic transversal tree in a vertical
plane, with at most three unbounded edges, not all on the same side (left or right),
enriched with compatible arrows and feathers (like in cases A, B or C of Sect.4.2).
Let G ′ be the compact tree obtained from G, by replacing each arrow by a sufficiently
long edge with a circle vertex at the extremity (see Fig. 25). If G ′ can be realized by a
connected real algebraic curve, then G can be realized as the Poincaré–Reeb graph
of a simply connected, non-compact algebraic domain in (R2, x).

Remark 4.7 Note that in this section we work under the additional hypothesis that the
realization from the compact setting is done by a connected real algebraic curve and
not by a connected component of a real algebraic curve as it was done in Theorem 3.5.
We impose this hypothesis, in order not to have difficulties when taking neighboring
curves (see Remark 4.10).

Proof By hypothesis, there exists a connected real algebraic curve C : ( f = 0),
f ∈ R[x, y] such that C realizes the newly obtained tree G ′. In this proof we consider
Poincaré–Reeb graphs in the source in the sense of Sect. 2.7, so that the graph is
situated in the same plane as the connected real algebraic curve C : ( f = 0).

The key idea of the proof is to choose appropriately a non-compact algebraic curve
C′ : (g = 0), g ∈ R[x, y] such that when we take a neighboring level of the product of
the two polynomials, say ( f g = ε) for a sufficiently small ε > 0, we obtain the desired
shape at infinity described by Case A, B or C. Note that the vertices of the Poincaré–
Reeb graph are, by definition, transversal intersection points between the polar curve
and the level curve. So a small deformation of the level curve will not change this
property. Moreover, the neighboring curve must preserve the total preorder between
the vertices of the tree. Since there are finitely many such vertices, we can choose ε

small enough to ensure this condition holds.
Let us give more details depending on the cases A, B or C.
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G′

(f = 0)

(g = 0)
(fg = ε)

Fig. 26 Zoom on the construction for case A

Fig. 27 Graph G to be realized

G′

(g = 0)
(fg = ε)

Fig. 28 Case A: adding two new branches in the same direction

Case A. Our goal is to realize the tree from Case A. Namely, we want to add two
new non-compact branches that are unbounded in the same direction (see Fig. 26). In
order to achieve this, we shall consider the graph (g = 0) of a parabola that is tangent
to the curve ( f = 0) in the rightmost vertex of G ′. Next, consider the real bivariate
function f g : R

2 → R. The level curve ( f g = 0) is the union of C and C′. Finally, a
neighboring curve ( f g = ε) realizes the tree G, for ε �= 0 sufficiently small.

Example 4.8 Here are the pictures of a graph G ′ (Fig. 27) and its realization (Fig. 28).

CaseB. In CaseB, the goal is to add two newnon-compact branches, on opposite sides.
First, note that in the presence of two such unbounded branches, the edges decorated by
feathers (that is, those edges corresponding to the contraction of unbounded segments)
forma linear graph L . The extremities of this linear subgraph are the arrowheadvertices
of G which we replace by two circular vertices to define G ′.

As before, by hypothesis we can consider a connected real algebraic plane curve C :
( f = 0) that realizes the graphG ′. Consider a curve (g = 0), algebraic, homeomorphic
to a line and situated just below the graph G ′. More precisely (g = 0) is situated in
between the linear graph L of G ′ and the lower part of ( f = 0) (see Figs. 29). The
connected component of the neighboring curve ( f g = ε) for a sufficiently small ε �= 0
will be the boundary of an algebraic domain that realizes the given tree G.

Example 4.9 Here are the pictures of a graph G ′ (Fig. 30) and its realization (Fig. 31).
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G′

(f = 0)

(g = 0)

(fg = ε)

Fig. 29 Zoom on the construction for case B

Fig. 30 Graph G to be realized

G′

(g = 0)

(fg = ε)

Fig. 31 Case B: adding two new opposite branches

Note that in the above construction there exist other connected components of
( f g = ε), for instance in between the curves ( f = 0) and (g = 0), but this is allowed
by Definition 2.1: we considered the algebraic domain D given by ∂D = C, where
C � ( f g = ε).

Case C. The domain considered in Case C is the complement of the algebraic domain,
sayDA, that we constructed in CaseA.Namely, the graph G fromCase C is realized by
the domain DC , that is the closure of R

2\DA. Note that in this case the two domains
have the same boundary: ∂DC = ∂DA = ( f g = ε) and they are semialgebraic
domains. ��

Remark 4.10 Our construction for Theorem 4.6 needs the graph G ′ to be realized
by a connected real algebraic curve. Theorem 3.5 only realizes G ′ as one connected
component C1 of a real algebraic plane curve C defined by ( f = 0); this is not sufficient
for our construction. For instance the oval C1 may be nested inside an oval C2 ⊂ C;
the curve ( f g = ε) of the proof of Theorem 4.6 would no longer satisfy the requested
conclusion (Fig. 32).
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G′

C1

C2
(g = 0)

(fg = ε)

Fig. 32 Construction that does not satisfy the desired conclusion

5 General domains of weakly finite type

Weconsider the case ofD being any real algebraic domain. Each connected component
of C = ∂D is either an oval (a component homeomorphic to a circle) or a line (in
fact a component homeomorphic to an affine line). An essential question in plane real
algebraic geometry is to study the relative position of these components.

5.1 Combinatorics

Let (P, π) be a vertical plane and a generic domainD ⊂ P of weakly finite type. The
next result shows that the Poincaré–Reeb graph of D allows to recover the numbers
of lines and ovals of C = ∂D.

Proposition 5.1

• The number of lines in C is:

#{arrows without feathers} + 1

2
#{arrows with simple feathers}.

• The number of ovals in C is:

b0(G) + b1(G) − c

where b0(G) is the number of connected components of G, b1(G) is the number
of independent cycles in G and c is the number of connected components of G
having an arrowhead vertex.

Example 5.2 Let us consider Fig. 33. One arrowhead without feathers and (half of)
two arrowheads with simple feathers, give a number of two lines. As b0(G) = 3,
b1(G) = 2 and c = 2, we see that b0(G) + b1(G) − c = 3 is indeed the number of
ovals in C.

Proof For the first point we just notice that each line contributes to either an arrow
without feathers or to two arrows with simple feathers.

For the second point, the proof is by induction on the number of ovals. If there are
no ovals, then b0(G) = c, and b1(G) = 0, therefore the formula is valid. Now start
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Fig. 33 Ovals and lines and their Poincaré–Reeb graph

Fig. 34 Interior and exterior graphs of a domain of weakly finite type

with a configuration C = ∂D and add an oval that does not contain any other ovals.
Let C′ be the new curve and G ′ its graph. Either the interior of the new oval is inD, in
which case b0(G ′) = b0(G) and b1(G ′) = b1(G) + 1, or the interior of the new oval
is in P \ D, in which case b0(G ′) = b0(G) + 1 and b1(G ′) = b1(G). In both cases
c(G ′) = c(G). Conclusion: b0(G ′) + b1(G ′) − c = (b0(G) + b1(G) − c) + 1. ��

5.2 Interior and exterior graphs of domains of weakly finite type

Let D be a generic domain of weakly finite type in a vertical plane (P, π). Then the
closure Dc of P \ D in P is again a domain of weakly finite type, as ∂D = ∂Dc.
We say that the Poincaré–Reeb graph G of D is the interior graph of D and that the
Poincaré–Reeb graph Gc of Dc is the exterior graph of D (Fig. 34).

In the next proposition, Poincaré-Reeb graphs are to be considered in the sense of
Definition 4.1, that is, as Poincaré-Reeb graphs in the source:

Proposition 5.3 The interior graph G of a domain D of weakly finite type determines
its exterior graph Gc.
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Fig. 35 The trident rule

Fig. 36 The trident rule applied
at some vertices (here three
vertices are completed)

Fig. 37 Completed exterior graph

Proof The two graphs share the same non-arrowhead vertices. The local situation
around a non-arrowhead vertex is in accordance to the trident rule, where an exterior
vertex is replaced by an interior vertex and vice-versa (see Fig. 35). We also extend
this rule to arrowhead vertices. ��

Now we derive Gc from G in two steps.
First step: make a local construction of the beginning of the edges of Gc according

to the trident rule (see Fig. 36).
Second step: complete each edge. It can be done in only one way up to vertical

isotopies (see for instance Fig. 37).
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23. Sorea, M.Ş.: Permutations encoding the local shape of level curves of real polynomials via generic
projections. Ann. Inst. Fourier (Grenoble) 72(4), 1661–1703 (2022)

24. Stone M.H.: The generalized Weierstrass approximation theorem. Math. Mag. 21(167–184), 237–254
(1948)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Poincaré–Reeb graphs of real algebraic domains
	Abstract
	1 Introduction
	2 Poincaré–Reeb graphs of domains of finite type in vertical planes
	2.1 Algebraic domains
	2.2 Domains of finite type in vertical planes
	2.3 Collapsing vertical planes relative to domains of finite type
	2.4 The Poincaré–Reeb graph of a domain of finite type
	2.5 Algebraic domains of finite type
	2.6 The invariance of the Euler characteristic
	2.7 Poincaré–Reeb graphs in the source
	2.8 Vertical equivalence

	3 Algebraic realization in the compact connected case
	3.1 Smooth realization
	3.2 A Weierstrass-type approximation theorem
	3.3 Algebraic realization
	3.4 Proof of Proposition 3.4
	3.4.1 Compact support
	3.4.2 Polynomial approximation of g and f
	3.4.3 The curve (p=0) inside the square
	3.4.4 Vertical tangency


	4 Algebraic realization in the non-compact and connected case
	4.1 Domains of weakly finite type in vertical planes
	4.2 The combinatorics of non-compact Poincaré–Reeb graphs
	4.3 Algebraic realization

	5 General domains of weakly finite type
	5.1 Combinatorics
	5.2 Interior and exterior graphs of domains of weakly finite type

	Acknowledgements
	References




