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Abstract
In this paper, we consider the first Steklov–Dirichlet eigenvalue of the Laplace operator
in annular domains with a spherical hole. We prove a monotonicity result with respect
to the hole, when the outer region is centrally symmetric.
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1 Introduction andmain result

In recent years, the study of eigenvalue problems in holed domains has been the object
of much interest. These kind of problems are usually defined in annular domains with
the outer region and the hole satisfying suitable assumptions. Specifically, different
boundary conditions can be imposed on the outer and inner boundary and hence several
optimization problems can be studied (e.g. Robin-Neumann [18], Neumann-Robin [7],
Dirichlet-Neumann [2, 3], Steklov–Dirichlet [11, 14, 17], Steklov-Robin [12]). At the
mean time, the optimal placement of an obstacle has been studied, so as tomaximize or
minimize a prescribed functional (e.g. the Dirichlet heat content [15], the first Steklov
eigenvalue [10]).

In this paper, we consider an eigenvalue problem for the Laplace operator in a
suitable annular domain with outer Steklov and inner Dirichlet boundary conditions.
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More precisely, let �0 ⊂ R
n , n ≥ 2, be an open bounded set with Lipschitz

boundary and Br (y) be the ball of radius r > 0, centered at y, such that Br (y) ⊂ 8�0.
We study the following Steklov–Dirichlet eigenvalue problem

σ(�) = min
v∈H1

∂Br (y)(�)

v �≡0

{∫
�

|Dv|2 dx, ‖v‖L2(∂�0)
= 1

}
, (1.1)

where H1
∂Br (y)

(�) denotes the set of Sobolev functions which vanish on the boundary

of Br (y) (see Sect. 2 for the precise definition). If u ∈ H1
∂Br (y)

(�) is a minimizer of
(1.1), then it satisfies:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�u = 0 in �

∂u

∂ν
= σ u on ∂�0

u = 0 on ∂Br (y),

(1.2)

where � is the annular domain � = �0\Br (y), σ ∈ R and ν is the outer unit normal
to ∂�0.

In [17] (see also [8, 14]), the authors prove that the minimum in (1.1) is achieved by
a function u ∈ H1

∂Br (y)
(�), which is a weak solution to problem (1.2) with constant

sign in �, and that σ(�) is simple. Furthermore, the authors prove that, keeping the
measure of � and the radius of the inner ball r fixed, σ(�) is maximized, among
quasi-spherical sets, when � is a spherical shell, that is when �0 is a ball with the
same center of the hole. On the other hand, in [11] the authors extend this result to a
class of annular sets with a suitable convex outer domain �0.

More properties are known when � is an eccentric spherical shell, that is, when the
outer domain �0 is a ball not necessarly centered at the same point of the spherical
hole. In [22], the authors study the optimal placement of the hole in eccentric spherical
shell� so that σ(�) is maximized when the outer ball and the inner radius are fixed. If
n ≥ 3, they prove that σ(�) achieves the maximumwhen the two balls are concentric.
Subsequently, this result has been also proved for any dimension n ≥ 2 in [10], by
using different proofs (see also [19] for an analogous result in two-points homogeneous
spaces).

Moreover, by performing numerical experiments, the authors in [14] exhibit that
σ(�) is monotone decreasing with respect to the distance between the centers of the
two disks. Our aim is to prove that this monotonicity property holds in any dimension
and in a more general setting.

Through this paper, we assume that the outer domain �0 verifies the following
hypotheses.

Definition 1.1 Let �0 ⊂ R
n , n ≥ 2, be an open, bounded set with Lipschitz boundary

and centrally symmetric with respect to x0 ∈ 8�0, that is there exists x ′ ∈ �0 such that
1
2

(
x + x ′) = x0 for any x ∈ �0.
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Let r > 0 be fixed, our first question is

(Q1) Where we have to place the center of the spherical hole with fixed radius r in
order to maximize σ(�)?

To give an answer, let w ∈ R
n be a unit vector and let us consider the holes Br (t) with

the centers on the w-direction:

Br (t) = {x(t) = x + tw, x ∈ Br (x0)} 0 ≤ t < ρw(x0, r) − r , (1.3)

where

ρw = ρw(x0, r) = sup{t > 0 : Br (x0 + tw) ⊂ 8�}. (1.4)

We stress that ρw is the distance between x0 and the center of the farthest ball from x0,
well contained in�0, in the directionw passing at x0. Then we consider the following
type of annular domains

�(t) = �0 \ Br (t), (1.5)

where �0 verifies the assumption of Definition 1.1. We stress that when �0 is a
ball, then the sets �(t) are eccentric spherical shells. Furthermore, for any 0 ≤ t <

ρw(x0, r)−r , we denote byσ(t) the first Steklov–Dirichlet eigenvalue of theLaplacian
in �(t), that is

σ(t) = min
v∈H1

∂Br (t)(�(t))
v �≡0

{∫
�(t)

|Dv|2 dx, ‖v‖L2(∂�0)
= 1

}
. (1.6)

Our second questions is

(Q2) Is σ(t) decreasing with respect to t?

Our main result gives an answer to both questions (Q1) and (Q2).

Theorem 1.2 Let �0 be as in Definition 1.1, w ∈ R
n be a unit vector, Br (t), ρw, �(t)

and σ(t) be defined as in (1.3), (1.4), (1.5) and (1.6), respectively. Then, σ(t) is strictly
monotone decreasing with respect to t ∈ [0, ρw − r).

As an immediate consequence of our main result, we obtain that, in order to maximize
σ(t), the hole has to be centered at the symmetry point of �0, when the inner radius
is fixed.

To proveTheorem1.2,we use a shape derivative approach. In particularwe compute
the first and the second domain derivatives of the first Steklov–Dirichlet eigenvalue.
We emphasize that our result implies that the monotonicity property holds also for
eccentric spherical shell in any dimension and in particular in two dimensions, as
suggested by the numerical computation contained in [14].

Finally, we describe the outline of the paper. In Sect. 2, we summarize some results
about the first Steklov–Dirichlet eigenvalue problems. In Sect. 3, we compute the first
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shape derivative of σ(t), observing that a stationary set occurs when the center of the
hole coincides with the center of symmetry of the outer region. Finally, in Sect. 4, we
compute the second shape derivative of σ(t) and prove the main result.

2 The Steklov–Dirichlet Laplacian eigenvalue problem

In this Section, we study the Steklov–Dirichlet Laplacian eigenvalue problem both on
fixed domain � and on a parameter-dependent domain �(t), respectively.

2.1 Foundation of the problem

Let�0 ⊂ R
n be an open, bounded set with Lipschitz boundary and such that Br (y) ⊂

8�0, where Br (y) is the ball of radius r > 0 centered at y. Let us consider the annular
domain � := �0\Br (y). In what follows we denote the set of Sobolev functions on
� vanishing on ∂Br (y) by H1

∂Br (y)
(�), that is (see [9]) the closure in H1(�) of the

following set

C∞
∂Br (y)(�) := {u|� | u ∈ C∞

0 (Rn), spt(u) ∩ ∂Br (y) = ∅}.

It is known (see for instance [1, 8, 16]) that the spectrum of the Steklov–Dirichlet
eigenvalue problem (1.2) for the Laplace operator in� is discrete and that the sequence
of eigenvalues can be ordered as follows

0 < σ(�) ≤ σ2(�) ≤ σ3(�) ≤ . . . ↗ +∞.

In particular, the first eigenvalue σ(�) has the variational characterization (1.1), see for
instance [8, 14, 17]. Moreover in [17] (see also [14]), the authors prove the following
result.

Proposition 2.1 There exists a function u ∈ H1
∂Br (y)

(�) which achieves the minimum
in (1.1) and is a weak solution to the problem (1.2). Moreover σ(�) is simple and the
first eigenfunctions have constant sign in �.

In order to prove our main result, we need to compute the first and the second shape
derivative of σ(�) and, to study these derivatives, we need to consider a family of
domains approaching to �. In our case, we get the desired monotonicity result by
studying the behavior of the involved quantities on the family of domains obtained by
moving the hole in a fixed direction.

In what follows we fix notation and recall some preliminary results. Let �0 be as
in Definition 1.1. For the reader convenience, from now on, we assume that x0 = 0.
In the sequel, we denote by Br the ball centered at the origin with radius r and we set
� = �0 \ Br (see the figure below)
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Ω0

Ω Ω0 Br

r

Br

In order to study the Steklov–Dirichlet eigenvalue problem on the annular domain
�(t) defined in (1.5), we define a suitable smooth vector field which move the hole
Br in a given direction w keeping the boundary of �0 and the inner radius r fixed.
Hence, the perturbed holes have the form described in (1.3).We consider the following
variational field in Rn :

V (x) = wϕ(x), (2.1)

where ϕ ∈ C∞
0 (�0) is a cut-off function such that ϕ(x) = 1 on Br . Consequently, the

perturbed annular domains �(t), defined in (1.5), can be seen as

�(t) = {x(t) = x + tV (x), x ∈ �} t ∈ [0, ρw − r),

where ρw is defined in (1.4). Let us observe that ∂�(t) = ∂�0 ∪∂Br (t) and that�(t)
is centrally symmetric if and only if t = 0 and the center of symmetry is the origin.
Also refer to the figure below.

tw

Ω0

w

Br t

Ω t Ω0 Br t

For any t ∈ [0, ρw−r), let σ(t) be the first Steklov–Dirichlet eigenvalue (1.6) of the
Laplacian in�(t) and ut be the corresponding normalized and positive eigenfunction.
The first eigenvalue admit the variational characterization (1.6) and the eigenfunction
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ut ∈ H1
∂Br (t)

(�(t)) is a solution to the following eigenvalue problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�ut = 0 in �(t)

∂ut

∂ν
= σ(t)ut on ∂�0

ut = 0 on ∂Br (t).

(2.2)

By a little abuse of notation, we also indicate by ν the outer unit normal to the boundary
of the annular domain ∂�(t). Then, the variational characterization assures that ut ∈
H1

∂Br (t)
is a positive function such that

σ(t) =
∫

�t

|∇ut |2 dx,

and that verifies the following equality

∫
∂�0

(ut )2 dHn−1 = 1. (2.3)

2.2 Differentiability of�(t)

Standard arguments on shape derivatives assure that ut and σ(t) are differentiable with
respect to t . For the sake of completeness, we sketchily give the proof, that follows
exactly the same arguments contained in [13]. The main tool is a general version of the
implicit function theorem (see [13, 20] and also [6, Lem.2.1]) applied to the equation
transferred onto the fixed domain �0 (for the details, we refer to [13] and also to [6,
Lem. 2.7] and [14, Th.1]).

Proposition 2.2 Let �0 be as in Definition 1.1, w ∈ R
n be a unit vector, Br (t), ρw,

�(t) and σ(t) be defined as in (1.3), (1.4), (1.5) and (1.6), respectively. Let ut be the
first normalized eigenfunction of σ(t), then the functions

t ∈ [0, ρw − r) → σ(t), t ∈ [0, ρw − r) → ut

are differentiable for any direction w ∈ S
n−1 and for any t ∈ [0, ρw − r).

Proof Let us fix t ∈ [0, ρw − r) and let s > 0 be such that t + s < ρw − r . Therefore,
we are able to consider σ(t + s) and ut+s and the following weak formulation for
problem (1.6) holds:

∫
�0

∇ut+s ∇ϕ dx = σ(t + s)
∫

∂�0

ut+sϕ dHn−1 ∀ϕ ∈ H1
∂Br (t+s)(�). (2.4)

Let V be as in (2.1) and let us define the following map

	 : (s, x) ∈ (−ρw + r − t, ρw − r − t) × �0 → x + sV (x) ∈ R
n .
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It is easily seen that, for any s, 	(s,�0) = �0, ut+s(	(s, ·)) ∈ H1
∂Br (t)

(�) and
D	(0, ·) = I , where D	 denotes the Jacobian matrix of 	 and I the identity matrix
of order n. Therefore, there exists a neighborhoodU of 0 such that 	(s, ·) is a diffeo-
morphism of �0 and hence, by making a change of variables, (2.4) becomes

∫
�0

∇(ut+s (	(s, ·))) (D	(s, ·))−1)(∇(ϕ (	(s, ·))) (D	(s, ·))−1)|D	(s, ·)| dx

= σ(t + s)
∫

∂�0

(ut+s (	(s, ·))) (ϕ (	(s, ·))) dHn−1 ∀ϕ ∈ H1
∂Br (t+s)(�),

and the normalization becomes

∫
∂�0

(ut+s (	(s, ·)))2 dHn−1 = 1.

Now, let us denote by (H1
∂Br (t)

(�))′ the dual space of H1
∂Br (t)

(�) and let us define

f : (s, v, σ ) ∈ R × H1
∂Br (t)(�) × R → ( f1, f2) ∈ (H1

∂Br (t)(�))′ × R,

where

⎧⎪⎨
⎪⎩

〈 f1(s, v, σ ),
〉 = ∫
�0

((∇v)(D	(s, ·))−1)((∇
)(D	(s, ·))−1)|D
(s, ·)|dx
−σ

∫
�0

v
dHn−1

〈 f2(s, v, σ ),
〉 = ∫
∂�0

v2dHn−1,

for any 
 ∈ H1
∂Br (t)

(�0). If we consider the function

g : s ∈ U → (
ut+s(	(s, ·), σ (t + s)

) ∈ H1
∂Br (t)(�) × R,

then f (s, g(s)) = 0 for any s ∈ U and g(0) = (
ut , σ (t)

)
. In order to obtain the claim,

we have to prove that g is differentiable in s = 0, that follows by applying the implicit
function Theorem. To do this, we have to prove that

∂ f

∂(v, σ )

∣∣∣
0,ut ,σ (t)

: H1
∂Br (t)(�) × R → (H1

∂Br (t)(�))′ × R

is an isomorphism. This can be proved following line by line the same arguments of
[6, Lem 2.7] and [14, Th. 1] (see also chapter 5 in [13]). ��

Remark 2.3 We observe that being ut harmonic for any t ∈ [0, ρw − r), then ut ∈
C∞

(
�(t)

)
. Then by the general theory of the shape derivatives (see Chapter 5 of

[13]), follows that ut is C∞ in a neighborhood of t .
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Since, to reach our aims, we need to consider the total and partial derivative of ut

with respect to the parameter t , we observe that, by (1.3), we have

d

dt
[ut (t, x(t))] = (ut )′ + 〈∇ut , w〉, (2.5)

where (ut )′ = ∂ut

∂t
and 〈·, ·〉 denotes the usual scalar product inRn . Recalling that the

perturbed hole Br (t) is the zero-level set of the function ut , then (2.5) implies that

(ut )′ = −∂ut

∂ν
〈ν,w〉, on ∂Br (t), (2.6)

for any t ∈ [0, ρw − r). Moreover, we observe that it holds

ν = − ∇ut

|∇ut | on ∂Br (t) (2.7)

and

(n − 1)H = div

( ∇ut

|∇ut |
)

on ∂Br (t).

Therefore, we have

(n − 1)

r
= (n − 1)H = − 1

|∇ut |2 〈∇ (|∇ut |) ,∇ut 〉

= − 1

|∇ut |3 〈∇ut · D2(ut ),∇ut 〉 on ∂Br (t), (2.8)

where D2(ut ) denotes the Hessian matrix of ut . Furthermore, by using (2.6) and the
fact that ut is a solution to (2.2), we get that (ut )′ is a weak solution to the following
problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�(ut )′ = 0 in �(t)

∂(ut )′

∂ν
= σ ′(t)ut + σ(t)(ut )′ on ∂�0

(ut )′ = −∂ut

∂ν
〈ν,w〉 on ∂Br (t).

(2.9)

We observe that, if we derive the normalized condition (2.3), we get

∫
∂�0

(ut )′ ut dHn−1 = 0. (2.10)

123



Amonotonicity result for the first Steklov–Dirichlet... 517

Finally, for every t ∈ [0, ρw − r), it will be useful for the sequel to consider the
harmonic extension H(|∇ut |〈ν,w〉) of the function with the same boundary value of
(2.9) on ∂Br (t); that is

�H(|∇ut |〈ν,w〉) = 0 in Br (t), H(|∇ut |〈ν,w〉) = |∇ut |〈ν,w〉 on ∂Br (t).

(2.11)

3 The first order shape derivative of �(t)

In this Section, we compute the first oder derivative of the eigenvalue σ(t) on �(t).
Before doing this, we recall an Hadamard’s formula in the framework of the domain
derivative (see for instance [5, 13, 21]).

Let E ⊂ R
n be an open bounded set with Lipschitz boundary and let V (x) a vector

field such that V ∈ W 1,∞(Rn;Rn). For any t > 0, let E(t) = {x(t) = x+ tV (x), x ∈
E}, and f (t, x(t)) be such that f (t, ·) ∈ W 1,1(Rn) and differentiable at t . Then it
holds:

d

dt

∫
E(t)

f (t, x) dHn−1 =
∫
E(t)

∂

∂t
f (t, x) dHn−1+

+
∫

+∂E(t)
f (t, x)〈ν, V (x)〉 dHn−1,

(3.1)

where ν is the outer unit normal to the boundary of E(t) and Hn−1 denotes the
Hausdorff measure (see for instance the Chapter 5 of [13]). We use formula (3.1) to
prove the following.

Theorem 3.1 Let �0 be as in Definition 1.1, w ∈ R
n be a unit vector, Br (t), ρw,

�(t) and σ(t) be defined as in (1.3), (1.4), (1.5) and (1.6), respectively. Then, for any
t ∈ [0, ρw − r), it holds

d

dt
σ(t) = −

∫
∂Br (t)

|∇ut |2〈w, ν〉 dHn−1,

where ut the is the normalized, positive eigenfunction corresponding to σ(t).

Proof By using theHadamard’s formula (3.1), by observing that the unit outer normals
ν(x) to ∂Br and ν(x(t)) to ∂Br (t) coincide and by the fact that ut is a solution of
(2.2), we get
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d

dt
σ(t) = d

dt

(∫
�(t)

|∇ut |2 dx
)

= 2
∫

�(t)
〈∇ut ,∇(ut )′〉 dx +

∫
∂Br (t)

|∇ut |2〈w, ν〉 dHn−1

= 2

(∫
∂�0

(ut )′ ∂u

∂ν
dHn−1 +

∫
∂Br (t)

(ut )′ ∂ut

∂ν
dHn−1

)
+

+
∫

∂Br (t)
|∇ut |2〈w, ν〉 dHn−1

= 2

(
σ(t)

∫
∂�0

(ut )′ u dHn−1 −
∫

∂Br (t)

(
∂ut

∂ν

)2

〈w, ν〉dHn−1

)
+

+
∫

∂Br (t)
|∇ut |2〈w, ν〉 dHn−1.

By taking into account the relation (2.10), we get the conclusion. ��
In order to obtain our main result, we study the behavior of the first order derivative
of σ(t) for t = 0. We stress that the symmetry of �0 has a key role in the proofs of
these results.

Corollary 3.2 Let �0 be as in Definition 1.1, w ∈ R
n be a unit vector, Br (t), ρw, �(t)

and σ(t) be defined as in (1.3), (1.4), (1.5) and (1.6), respectively. Then it holds

d

dt
[σ(t)]t=0 = 0.

Proof Let ut be the normalized, positive eigenfunctions corresponding to σ(0) =
σ(�). We observe that, since �0 is centrally symmetric with respect the origin (see
Definition 1.1), then

ut (x) = ut (−x) x ∈ ∂Br . (3.2)

If we denote by x ′ the symmetric point of x , then (3.2) immediately follows by taking
v(x) = ut (x ′) as test function in (1.1).

Finally, by Theorem 3.1 and being ν = − x

r
, we have

d

dt
[σ(t)]t=0 = −

∫
∂Br

|∇ut |2〈ν,w〉 dHn−1 = 0.

��

4 The second order shape derivative of �(t)

To prove the main result (Theorem 1.2), we need a stationary property of the first order
derivative (analyzed in the previous Section) and a sign of the second order derivative.
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We compute the second order domain derivative of σ(t), by using the same notations
of the previous Section and by recalling some useful definitions from [4].

For any bounded domain E ∈ C2,α and for any f ∈ C1(∂E), the tangential
derivative of v is given by

∇τ f = ∇ f − 〈∇ f , ν〉ν on ∂E, (4.1)

where ν is the unit outer normal. Furthermore, for any smooth vector field
 : E �→ R,
the tangential divergence is defined as

div∂E (
) = div(
) − 〈ν, D(
)ν〉 on ∂E, (4.2)

where D(
) is the Jacobian matrix of
. Then, the Gauss theorem on surfaces holds:

∫
∂E

f div∂E 
dHn−1 = −
∫

∂E
〈
,∇τ f 〉 dHn−1 + (n − 1)

∫
∂E

f H 〈
, ν〉 dHn−1

(4.3)

The following Theorem gives the expression of the second order domain derivative of
σ(t).

Theorem 4.1 Let �0 be as in Definition 1.1, w ∈ R
n be a unit vector, Br (t), ρw,

�(t) and σ(t) be defined as in (1.3), (1.4), (1.5) and (1.6), respectively. Then, for any
t ∈ [0, ρw − r), it holds

d2

dt2
σ(t) − 2(n − 1)

r

d

dt
σ(t) = −2

∫
Br (t)

|∇H
(|∇ut |〈w, ν〉) |2dx

− 1

r

∫
∂Br (t)

|∇ut |2dHn−1 − n − 2

r

∫
∂Br (t)

|∇ut |2 (〈w, ν〉)2 dHn−1,

where ut the is the normalized positive eigenfunction corresponding to σ(t) and
H(|∇ut |〈w, ν〉) is the harmonic extension of |∇ut |〈w, ν〉 in Br (t), defined in (2.11).

Proof In order to compute the second order derivative, we first observe that

∫
∂Br (t)

|∇ut |2〈w, ν〉 dHn−1 =
∫

∂�(t)
|∇ut |2〈V , ν〉 dHn−1,

where V is defined in (2.1). Therefore, by using the divergence Theorem, we have

σ ′(t) = −
∫

�(t)
div(|∇ut |2V ) dx .
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By using the Hadamard’s formula (3.1) in the right-hand side, we compute the
second order derivative of σ(t):

σ ′′(t) = − d

dt

∫
�(t)

div(|∇ut |2V ) dx = −
∫

�(t)
div

(
∂

∂t
|∇ut |2V

)
dx

−
∫

∂�(t)
div(|∇ut |2V ) 〈V , ν〉 dHn−1.

(4.4)

Let us consider the second term in (4.4), by using the tangential divergence (4.2), we
have

−
∫

∂�(t)
div(|∇ut |2V )〈V , ν〉 dHn−1 = −

∫
∂Br (t)

div(|∇ut |2w)〈w, ν〉 dHn−1

= −
∫

∂Br (t)
div∂Br (t)(|∇ut |2w)〈w, ν〉 dHn−1 −

∫
∂Br (t)

〈ν, D(|∇ut |2w)ν〉 dHn−1.

(4.5)

Hence, by inserting (4.5) in (4.4), we have

σ ′′(t) = −
∫

�(t)
div

(
∂

∂t
|∇ut |2V

)
dx −

∫
∂Br (t)

div∂Br (t)(|∇ut |2w)〈w, ν〉 dHn−1

−
∫

∂Br (t)
〈ν, D(|∇ut |2w)ν〉 dHn−1 := I + I I + I I I . (4.6)

For reader’s convenience, we separately study the terms I , I I and I I I in (4.6). Let
us focus on I ; by using the divergence Theorem, we have

I = −
∫

�(t)
div

(
∂

∂t
|∇ut |2V

)
dx = −2

∫
�(t)

div
(〈∇ut ,∇(ut )′〉V )

dx

= −2
∫

∂�(t)
〈∇ut ,∇(ut )′〉 〈V , ν〉 dHn−1

= −2
∫

∂Br (t)
〈∇ut ,∇(ut )′〉 〈w, ν〉 dHn−1

= −2
∫

∂Br (t)

∂(ut )′

∂ν
(ut )′dHn−1

= −2
∫
Br (t)

|∇H
(|∇ut |〈w, ν〉) |2dx . (4.7)

Let us remark that ν is also the inner unit normal to ∂Br (t).
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Now let us consider II; by using the Gauss Theorem (4.3), we have

I I = −
∫

∂Br (t)
div∂Br (t)(|∇ut |2w)〈w, ν〉 dHn−1

=
∫

∂Br (t)
〈|∇ut |2w,∇τ (〈w, ν〉)〉 dHn−1 − n − 1

r

∫
∂Br (t)

|∇ut |2(〈w, ν〉)2 dHn−1

=
∫

∂Br (t)
〈|∇ut |2w,∇(〈w, ν〉) − 〈∇(〈w, ν〉), ν〉ν〉 dHn−1

−n − 1

r

∫
∂Br (t)

|∇ut |2(〈w, ν〉)2 dHn−1

=
∫

∂Br (t)

〈
|∇ut |2w,−w

r
+

〈w
r

, ν
〉
ν
〉
dHn−1

−n − 1

r

∫
∂Br (t)

|∇ut |2(〈w, ν〉)2 dHn−1

= −1

r

∫
∂Br (t)

|∇ut |2dHn−1 + 1

r

∫
∂Br (t)

|∇ut |2(〈w, ν〉)2 dHn−1

−n − 1

r

∫
∂Br (t)

|∇ut |2(〈w, ν〉)2 dHn−1

= −1

r

∫
∂Br (t)

|∇ut |2dHn−1 − n − 2

r

∫
∂Br (t)

|∇ut |2(〈w, ν〉)2 dHn−1, (4.8)

where in the third line we have used the tangential gradient (4.1).
Let us focus on I I I ; we have

I I I = −
∫

∂Br (t)
〈ν, D(|∇ut |2w)ν〉 dHn−1

= −2
∫

∂Br (t)
〈ν, D2(ut )∇ut 〉 〈w, ν〉 dHn−1

= 2
∫

∂Br (t)

1

|∇ut |3 〈∇ut , D2(ut )∇ut 〉|∇ut |2〈w, ν〉 dHn−1

= −2(n − 1)

r

∫
∂Br (t)

|∇ut |2〈w, ν〉 dHn−1, (4.9)

where we have used the relations (2.7) and (2.8). The conclusion follows by using
(4.7), (4.8) and (4.9) in (4.6). ��

Finally, the proof of the main Theorem is a direct consequence of the computed
expressions of the first and second order shape derivative of the first Steklov–Dirichlet
eigenvalue.

Proof of the Theorem 1.2 Since n ≥ 2, the claim is a direct consequence of the Theo-
rems 3.1, Corollary 3.2 and Theorem 4.1 ��
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Remark 4.2 An immediate consequence of Theorem 1.2 is that σ(t) is maximumwhen
the hole is centered at the symmetry point of �0, when t = 0.

Remark 4.3 We stress that, when �0 = BR , the authors in [14] prove the following
estimate in two dimensions for R > r :

lim inf
t→(R−r)−

σ(t) ≥ r

2R(R − r)
, (4.10)

where σ(t) = σ(�(t)) and �(t) = BR \ Br (t). By Theorem 1.2, the estimate (4.10)
can be written as the following lower bound

1

R log( Rr )
= σ(BR \ Br ) ≥ σ(t) ≥ r

2R(R − r)
, ∀t ∈ [0, ρw − r). (4.11)

Finally, we observe that the inequality (4.11) gives an upper and lower bound for σ(t)
in terms of the two radius of the eccentric annulus.
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