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Abstract
In this paper, using the tools from the lineability theory, we distinguish certain subsets
of p-adic differentiable functions. Specifically, we show that the following sets of
functions are large enough to contain an infinite dimensional algebraic structure: (i)
continuously differentiable but not strictly differentiable functions, (ii) strictly differ-
entiable functions of order r but not strictly differentiable of order r + 1, (iii) strictly
differentiable functions with zero derivative that are not Lipschitzian of any order
α > 1, (iv) differentiable functions with unbounded derivative, and (v) continuous
functions that are differentiable on a full set with respect to the Haar measure but not
differentiable on its complement having cardinality the continuum.
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1 Introduction and terminology

In the non-Archimedean setting, at least two notions of differentiability have been
defined: classical and strict derivative. Classical derivative has some unpleasant and
strange behaviors, but it has been long known that the strict differentiability in the
sense of Bourbaki is the hypothesis most useful to geometric applications, such as
inverse theorem. Let us recall definitions.

Let K be a valued field containing Qp such that K is complete (as a metric space),
and X be a nonempty subset of K without isolated points. Let f : X → K and r be a
natural number. Set

∇r X :=
{
X if r = 1,{
(x1, x2, . . . , xr ) ∈ Xr : xi �= x j if i �= j

}
if r ≥ 2.

The r -th difference quotient �r f : ∇r+1X → K of f , with r ≥ 0, is recursively
given by �0 f = f and, for r ≥ 1, (x1, x2, . . . , xr+1) ∈ ∇r+1X by

�r f (x1, x2, . . . , xr+1) = �r−1 f (x1, x3, . . . , xr+1) − �r−1 f (x2, x3, . . . , xr+1)

x1 − x2
.

Then a function f : X → K at a point a ∈ X is said to be:

• differentiable if limx→a f (x) − f (a)/(x − a) exists ( f (x) − f (a));
• strictly differentiable of order r if�r f can be extended to a continuous function

�r f : Xr+1 → K. We then set Dr f (a) = �r f (a, a, . . . , a).

Our aim in this work is to study these notions through a recently coined approach–
the lineability theory. Searching for large algebraic structures in the sets of objects with
a special property, we, in this approach, can get deeper understanding of the behavior
of the objects under discussion. In [33, 34] authors studied lineability notions in the
p-adic analysis; see also [23, 24, 35]. The study of lineability can be traced back to
Levine andMilman [36] in 1940, andGurariy [29] in 1966.Theseworks, amongothers,
motivated the introduction of the notion of lineability in 2005 [3] (notion coined by
Gurariy). Since then it has been a rapidly developing trend in mathematical analysis.
There are extensive works on the classical lineability theory, see e.g. [2–5, 10, 14, 17],
whereas some recent topics can be found in [1, 12, 13, 16, 18, 20–22, 39, 40]. It is
interesting to note that Mahler in [38] stated that:

“On the other hand, the behavior of continuous functions of a p-adic variable is
quite distinct from that of real continuous functions, and many basic theorems
of real analysis have no p-adic analogues.
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. . . there exist infinitely many linearly independent non-constant functions the
derivative of which vanishes identically . . .”.

Before further going, let us recall three essential notions. Let κ be a cardinal number.
We say that a subset A of a vector space V over a field K is

• κ-lineable in V if there exists a vector space M of dimension κ and M \ {0} ⊆ A;

and following [4, 9], if V is contained in a (not necessarily unital) linear algebra, then
A is called

• κ-algebrable in V if there exists an algebra M such that M \ {0} ⊆ A and M is a
κ-dimensional vector space;

• strongly κ-algebrable in V if there exists a κ-generated free algebra M such that
M \ {0} ⊆ A.

Note that if V is also contained in a commutative algebra, then a set B ⊂ V is a
generating set of a free algebra contained in A if and only if for any n ∈ N with n ≤
card(B) (where card(B) denotes the cardinality of B), any nonzero polynomial P in n
variables with coefficients inK andwithout free term, and any distinct b1, . . . , bn ∈ B,
we have P(b1, . . . , bn) �= 0.

Nowwe can give an outline of our work. In Sect. 2we recall some standard concepts
and notations concerning non-Archimedean analysis. Then, in the section of Main
results, we show, among other things, that: (i) the set of functions Qp → Qp with
continuous derivative that are not strictly differentiable is c-lineable (c denotes the
cardinality of the continuum), (ii) the set of strictly differentiable functionsQp → Qp

of order r but not strictly differentiable of order r + 1 is c-lineable, (iii) the set of all
strictly differentiable functions Zp → Kwith zero derivative that are not Lipschitzian
of any orderα > 1 is c-lineable and 1-algebrable, (iv) the set of differentiable functions
Qp → Qp which derivative is unbounded is strongly c-algebrable, (v) the set of
continuous functions Zp → Qp that are differentiable with bounded derivative on a
full set for any positive real-valued Haar measure on Zp but not differentiable on its
complement having cardinality c is c-lineable.

2 Preliminaries for p-adic analysis

We summarize some basic definitions of p-adic analysis (for a more profound treat-
ment of this topic we refer the interested reader to [28, 32, 42, 44]).

We shall use standard set-theoretical notation. As usual, N,N0,Z,Q, R and P

denote the sets of all natural, natural numbers including zero, integer, rational, real,
and prime numbers, respectively. The restriction of a function f to a set A and the
characteristic function of a set A will be denoted by f � A and 1A, respectively.

Frequently, we use a theorem due to Fichtenholz–Kantorovich–Hausdorff [25, 30]:
For any set X of infinite cardinality there exists a family B ⊆ P(X) of cardinality
2card(X) such that for any finite sequences B1, . . . , Bn ∈ B and ε1, . . . , εn ∈ {0, 1} we
have Bε1

1 ∩ . . . ∩ Bεn
n �= ∅, where B1 = B and B0 = X \ B. A family of subsets of

X that satisfy the latter condition is called a family of independent subsets of X . Here
P(X) denotes the power set of X . In what follows we fixN ,N0 and P for families of
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394 J. Fernández-Sánchez et al.

independent subsets of N, N0 and P, respectively, such that card(N ) = card(N0) =
card(P) = c.

Now let us recall that given a field K, an absolute value on K is a function

| · | : K → [0,+∞)

such that:

• |x | = 0 if and only if x = 0,
• |xy| = |x ||y|, and
• |x + y| ≤ |x | + |y|,

for all x, y ∈ K. The last condition is the so-called triangle inequality. Furthermore, if
(K, | · |) satisfies the condition |x+ y| ≤ max{|x |, |y|} (the strong triangle inequality),
then (K, | · |) is called a non-Archimedean field. Note that (K, | · |) is a normed space
since K is a vector space in itself. For simplicity, we will denote for the rest of the
paper (K, | · |) by K. Clearly, |1| = | − 1| = 1 and, if K is a non-Archimedean field,
then |1 + · · · + 1|︸ ︷︷ ︸

n times

≤ 1 for all n ∈ N. An immediate consequence of the strong triangle

inequality is that |x | �= |y| implies |x + y| = max{|x |, |y|}. Notice that ifK is a finite
field, then the only possible absolute value that can be defined on K is the trivial
absolute value, that is, |x | = 0 if x = 0, and |x | = 1 otherwise. Furthemore, given
any field K, the topology endowed by the trivial absolute value on K is the discrete
topology.

Let us fix a prime number p throughout this work. For any non-zero integer n �=
0, let ordp(n) be the highest power of p which divides n. Then we define |n|p =
p−ordp(n), |0|p = 0 and | nm |p = p−ordp(n)+ordp(m), the p-adic absolute value. The
completion of the field of rationals, Q, with respect to the p-adic absolute value is
called the field of p-adic numbers Qp. An important property of p-adic numbers is
that each nonzero x ∈ Qp can be represented as

x =
∞∑

n=m

an p
n,

where m ∈ Z, an ∈ Fp (the finite field of p elements) and am �= 0. If x = 0, then
an = 0 for all n ∈ Z. The p-adic absolute value satisfies the strong triangle inequality.
Ostrowski’s Theorem states that every nontrivial absolute value on Q is equivalent
(i.e., defines the same topology) to an absolute value | · |p, where p is a prime number,
or the usual absolute value (see [28]).

Let a ∈ Qp and r be a positive number. The set Br (a) = {x ∈ Qp : |x − a|p < r}
is called the open ball of radius r with center a, Br (a) = {x ∈ Qp : |x − a|p ≤ r} the
closed ball of radius r with center a, and Sr (a) = {x ∈ Qp : |x − a|p = r} the sphere
of radius r and center a. It is important to mention that Br (a), Br (a) and Sr (a) are
clopen sets in Qp. The closed unit ball

Zp = {x ∈ Qp : |x |p ≤ 1}
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=
{
x ∈ Qp : x =

∞∑
i=k

ai p
i , ai ∈ {0, 1, . . . , p − 1}, k ∈ N0

}

is called the ring of p-adic integers inQp. We know that Zp is a compact set and N is
dense in Zp ([28]).

Throughout this article we shall consider all vector spaces and algebras taken over
the field Qp (unless stated otherwise).

3 Main results

We are ready to present our results. For the rest of this work, X will denote a nonempty
subset of K without isolated points. Let us fix two notations:

C1(X ,K) = { f : X → K : f has continuous (classical) derivative on X},
Sr (X ,K) = { f : X → K : f is strictly differentiable of order r on X}.

Our first result shows that, unlike the classical case, strict differentiability is a
stronger condition than simply having continuous derivative. An analogue to part (ii)
of the result for the classical case can be found in [5].

Theorem 3.1 (i) The set C1(Qp,Qp) \ S1(Qp,Qp) is c-lineable.
(ii) The set S1(Qp,Qp) \ S2(Qp,Qp) is c-lineable. In general,

Sr (Qp,Qp) \ Sr+1(Qp,Qp)

is c-lineable for any r ≥ 1.

Proof (i). Notice that Bp−2n (pn) ⊂ Sp−n (0) for every n ∈ N, therefore Bn ∩ Bm = ∅
if, and only if, n �= m. Also, let us define fN : Qp → Qp for every N ∈ N as follows:

fN (x) =
{
p2n if x ∈ Bp−2n (pn) with n ∈ N ,

0 otherwise.

First, notice that fN is locally constant outside 0 and, thus, fN is differentiable every-
where except maybe at 0 with f ′

N (x) = 0 for every x ∈ Qp \ {0}. Moreover, we
have

∣∣∣∣ fN (x) − fN (0)

x

∣∣∣∣
p

=
∣∣∣∣ fN (x)

x

∣∣∣∣
p

=
{
p−n if x ∈ Bp−2n (pn) with n ∈ N ,

0 otherwise,

i.e.,
∣∣∣ fN (x)− fN (0)

x

∣∣∣
p

→ 0 as x → 0. Hence, f ′
N (0) = 0. Therefore, f ′

N exists every-

where and is continuous since f ′
N ≡ 0, that is, fN ∈ C1(Qp,Qp).
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It is enough to show that the family of functions V = { fN : N ∈ N } is linearly
independent over Qp and the vector space generated by V , denoted by span(V ),
satisfies span(V ) \ {0} ⊂ C1(Qp,Qp) \ S1(Qp,Qp). Take f = ∑m

i=1 αi fNi , where
α1, . . . , αm ∈ Qp, N1, . . . , Nm ∈ N are distinct and m ∈ N. Assume that f ≡ 0
then, by taking x = pn with n ∈ N 1

1 ∩ N 0
2 ∩ · · · ∩ N 0

m , we have that 0 = f (x) =
α1 fN1(x) = α1 p2n , i.e., α1 = 0. Therefore, applying similar arguments, we arrive at
αi = 0 for every i ∈ {1, . . . ,m}. Assume now that αi �= 0 for every i ∈ {1, . . . ,m}.
Since C1(Qp,Qp) forms a vector space, we have that f ∈ C1(Qp,Qp). Moreover,
by construction we have f ′ ≡ 0. It remains to prove that f /∈ S1(Qp,Qp). To do so,
take the sequences

(xn)n∈N1
1∩N0

2∩···∩N0
m

= (pn)n∈N1
1∩N0

2∩···∩N0
m

and

(yn)n∈N1
1∩N0

2∩···∩N0
m

= (pn − p2n)n∈N1
1∩N0

2∩···∩N0
m
.

Notice that both sequences converge to 0, and f (xn) = α1 p2n and f (yn) = 0 for each
n ∈ N 1

1 ∩ N 0
2 ∩ · · · ∩ N 0

m . Hence,

f (xn) − f (yn)

xn − yn
= α1,

for every n ∈ N 1
1 ∩ N 0

2 ∩ · · · ∩ N 0
m . Since α1 �= 0, we have the desired result.

(ii).Wewill prove the casewhen r = 1 since the general case can be easily deduced.
For every nonempty subset N of N, let us define gN : Qp → Qp as follows: for every
x = ∑∞

n=m an pn ∈ Qp, take

gN (x) =
∞∑
n=0

bn p
2n,

where

bn =
{
an if n ∈ N ,

0 otherwise,

for every n ∈ N0. For any x, y ∈ Qp, notice that

|gN (x) − gN (y)|p ≤ |x − y|2p.

Hence,

∣∣∣∣gN (x) − gN (z)

x − z

∣∣∣∣
p

≤ |x − z|p → 0
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as x → z for any z ∈ Qp, that is, gN is differentiable and g′
N ≡ 0. Moreover,

∣∣∣∣gN (x) − gN (y)

x − y

∣∣∣∣
p

≤ |x − y|p → 0,

When (x, y) → (z, z) for any z ∈ Qp, and where (x, y) ∈ ∇2
Qp. Thus,

gN ∈ S1(Qp,Qp).
We will prove that the family of functions W = {gN : N ∈ N } is linearly inde-

pendent over Qp and span(W ) \ {0} ⊂ S1(Qp,Qp) \ S2(Qp,Qp). It is easy to see
that any linear combination of the functions in W belongs to S1(Qp,Qp). Take now
g = ∑k

i=1 βi gNi , where β1, . . . , βk ∈ Qp, N1, . . . , Nk ∈ N are distinct and k ∈ N.
Assume that g ≡ 0 then, by taking x = pn , with n ∈ N 1

1 ∩ N 0
2 ∩ · · · ∩ N 0

k fixed,
we have that 0 = g(x) = β1 p2n , i.e., β1 = 0. By applying similar arguments we
see that βi = 0 for every i ∈ {1, . . . , k}. Therefore, assume that βi �= 0 for every
i ∈ {1, . . . , k}. For every n ∈ N 1

1 ∩ N 0
2 ∩ · · · ∩ N 0

k , denote

n+ = min{l ∈ N 1
1 ∩ N 0

2 ∩ · · · ∩ N 0
k : l > n}.

Now consider the sequences x = (xn)N1
1∩N0

2∩···∩N0
k
, y = (yn)N1

1∩N0
2∩···∩N0

k
and z =

(zn)n∈N1
1∩N0

2∩···∩N0
k
defined as xn = pn , yn = 0 and zn = pn + pn+ for every

n ∈ N 1
1 ∩ N 0

2 ∩ · · · ∩ N 0
k . (Notice that the sequences x , y and z converge to 0.) Then,

∣∣∣(yn − zn)
−1
∣∣∣
p

∣∣∣∣g(xn) − g(yn)

xn − yn
− g(xn) − g(zn)

xn − zn

∣∣∣∣
p

=
∣∣∣(pn + pn+)−1

∣∣∣
p

∣∣∣∣β1 p2n

pn
− β1 p2n − β1 p2n − β1 p2n+

pn − pn − pn+

∣∣∣∣
p

= |β1|p
∣∣∣∣ pn − pn+

pn + pn+

∣∣∣∣
p

= |β1|p �= 0,

for every n ∈ N 1
1 ∩ N 0

2 ∩ · · · ∩ N 0
k . However, g

′′ ≡ 0. This finishes the proof. ��
Let K be a non-Archimedean field with absolute value | · | that contains Qp. For

any α > 0, the space of Lipschitz functions from X to K of order α is defined as

Lipα(X ,K) = { f : X → K : ∃M > 0(| f (x) − f (y)| ≤ M |x − y|α),∀x, y ∈ X}.

Let

N 1(X ,K) = { f ∈ S1(X ,K) : f ′ ≡ 0}.

In view of [[42]Exercise 63.C] we have

N 1(Zp,K) \
⋃
α>1

Lipα(Zp,K) �= ∅.
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To prove the next theorem, we need a characterization of the spaces N 1(Zp,K)

and Lipα(Zp,K) from [42]. For this we will denote by (en)n∈N0 the van der Put
base of C(Zp,K), which is given by e0 ≡ 1 and en is the characteristic function of
{x ∈ Zp : |x − n|p < 1/n} for every n ∈ N.

Proposition 3.2 (i) Let f = ∑∞
n=0 anen ∈ C(Zp,K). Then f ∈ N 1(Zp,K) if and

only if (|an|n)n∈N0 converges to 0 (see [42, Theorem 63.3]).
(ii) Let f = ∑∞

n=0 anen ∈ C(Zp,K) and α > 0. Then f ∈ Lipα(Zp,K) if and only
if

sup{|an|nα : n ∈ N0} < ∞

(see [42, Exercise 63.B]).

The next result shows that there is a vector space of maximum dimension of strictly
differentiable functions with zero derivative that are not Lipschitzian. Our next three
results can be compared with some results obtained in [6, 11, 31] for the classical
case.

Theorem 3.3 The set N 1(Zp,K) \ ⋃
α>1 Lipα(Zp,K) is c-lineable (as a K-vector

space).

Proof Fix n1 ∈ N and take B1 = {x ∈ Zp : |x − n1|p < 1/n1}. Since Zp and B1 are
clopen sets, we have that Zp \ B1 is open and also nonempty. Therefore there exists an
open ball D1 ⊂ Zp \ B1. Furthermore, as N is dense in Zp, there exists n2 ∈ N \ {n1}
such that B2 = {x ∈ Zp : |x − n2|p < 1/n2} ⊂ D1. By recurrence, we can construct
a set M = {nk : k ∈ N} ⊂ N such that the balls Bk = {x ∈ Zp : |x − nk |p < 1/nk}
are pairwise disjoint.

Let σ : N0 → M be the increasing bijective function and let (mn)n∈N ⊂ N be an
increasing sequence such that p−mnn → 0 and p−mnnα → ∞ for every α > 1 when
n → ∞. (This can be done for instance by taking mn = �ln(n ln(n))/ ln(p)�.) For
every N ∈ N0, define fN : Zp → K as

fN =
∞∑
n=0

1N (n)pmσ(n)eσ(n).

Since every N ∈ N0 is infinite, we have that |1N (n)|p−mσ(n)σ (n) → 0 when n → ∞
and

{|1N (n)|p−mσ(n)σ (n)α : n ∈ N0}

is unbounded for every α > 1. Hence, by Theorem 3.2, we have fN ∈ N 1(Zp,K) \⋃
α>1 Lipα(Zp,K) for every N ∈ N0.
We will prove now that the functions in V = { fN : N ∈ N0} are linearly

independent over K and such that any nonzero linear combination of V over K

is contained in N 1(Zp,K) \ ⋃
α>1 Lipα(Zp,K). Take f = ∑r

i=1 ai fNi , where
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a1, . . . , ar ∈ K, N1, . . . , Nr ∈ N0 are distinct and r ∈ N. Assume that f ≡ 0.
Fix n ∈ N 1

1 ∩ N 0
2 ∩ · · · ∩ N 0

r and take x ∈ Zp such that x ∈ Bσ(n), then 0 = f (x) =
a1 pmσ(n) , i.e., a1 = 0. By applying similar arguments we have ai = 0 for every i ∈
{1, . . . , r}. Assume for the rest of the proof that ai �= 0 for every i ∈ {1, . . . , r}. Notice
that f = ∑∞

n=0

(∑r
i=1 ai1Ni

)
(n)pmσ(n)eσ(n), where

∣∣(∑r
i=1 ai1Ni

)
(n)pmσ(n)

∣∣ ≤
|pmσ(n) |max{|ai | : i ∈ {1, . . . , r}} = p−mσ(n) max{|ai | : i ∈ {1, . . . , r}}. Therefore∣∣(∑r

i=1 ai1Ni

)
(n)pmσ(n)

∣∣ σ(n) → 0 when n → ∞. Finally, as N 1
1 ∩ N 0

2 ∩ · · · ∩ N 0
r

is infinite, we have that

{∣∣∣∣∣
(

r∑
i=1

ai1Ni

)
(n)pmσ(n)

∣∣∣∣∣ σ(n)α : n ∈ N 1
1 ∩ N 0

2 ∩ · · · ∩ N 0
r

}

= {|a1|p−mσ(n)σ (n)α : n ∈ N 1
1 ∩ N 0

2 ∩ · · · ∩ N 0
r }

is unbounded for every α > 1. ��
The next lineability result can be considered as a non-Archimedean counterpart of

[[27] Theorem 6.1]. To prove it we will make use of the following lemma. (For more
information on the usage of the lemma see [23, Lemma 5.2].) In order to understand
it, let us consider the functions x �→ (1 + x)α where x ∈ pZp and α ∈ Zp. It is well
known that (1 + x)α is defined analytically by (1 + x)α = ∑∞

i=0

(
α
i

)
xi . Moreover

x �→ (1+ x)α is well defined (see [42, Theorem 47.8]), differentiable with derivative
α(1 + x)α−1, and x �→ (1 + x)α takes values in Zp (in particular (1 + x)α = 1 + y
for some y ∈ pZp, see [42, Theorem 47.10]).

Lemma 3.4 If α1, . . . , αn ∈ Zp \ {0} are distinct, with n ∈ N, then every linear
combination

∑n
i=1 γi (1 + x)αi , with γi ∈ Qp \ {0} for every 1 ≤ i ≤ n, is not

constant.

Theorem 3.5 The set of everywhere differentiable functionsQp → Qp which deriva-
tive is unbounded is strongly c-algebrable.

Proof LetH be aHamel basis ofQp overQ contained in pZp , and for eachβ ∈ Zp\{0}
define fβ : Qp → Qp by

fβ(x) =

⎧⎪⎨
⎪⎩
p−n(1 + y)β if x = ∑0

k=−n ak p
k + y,

where a−n �= 0, n ∈ N0 and y ∈ pZp,

0 otherwise.

The function fβ is differentiable everywhere for any β ∈ Zp. Indeed, firstly we have
that fβ is locally constant on pZp as fβ � pZp ≡ 0. Lastly it remains to prove that
fβ is differentiable at x0 = ∑0

k=−n ak p
k + y0, i.e., the limit

lim
x→x0

p−m(1 + y)β − p−n(1 + y0)β

x − x0
(3.1)
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exists, where the values x are of the form x = ∑0
k=−m bk pk + y. Moreover, as x

approaches x0 in the limit (3.1), we can assume that x = ∑0
k=−n ak p

k + y. Hence,
the limit in (3.1) can be simplified to

lim
x→x0

p−m(1 + y)β − p−n(1 + y0)β

x − x0
= lim

x→x0

p−n(1 + y)β − p−n(1 + y0)β

x − x0

= p−n lim
y→y0

(1 + y)β − (1 + y0)β

y − y0
= p−nβ(1 + y0)

β−1.

In particular the derivative of fβ is given by

f ′
β(x) =

⎧⎪⎨
⎪⎩
p−nβ(1 + y)β−1 if x = ∑0

k=−n ak p
k + y,

where a−n �= 0, n ∈ N0, y ∈ pZp,

0 otherwise,

and it is unbounded since

lim
n→∞ |p−nβ(1 + y)β−1|p = lim

n→∞ pn|β(1 + y)β−1|p = |β|p lim
n→∞ pn = ∞,

where we have used the fact that β �= 0.
Let h1, . . . , hm ∈ H be distinct and take P a polynomial in m variables

with coefficients in Qp \ {0} and without free term, that is, P(x1, . . . , xm) =∑d
r=1 αr x

kr ,1
1 · · · xkr ,mm , where d ∈ N, αr ∈ Qp \ {0} for every 1 ≤ r ≤ d, kr ,i ∈ N0

for every 1 ≤ r ≤ d and 1 ≤ i ≤ m with kr := ∑m
i=1 kr ,i ≥ 1, and the m-

tuples (kr ,1, . . . , kr ,m) are pairwise distinct. Assume also without loss of generality
that k1 ≥ · · · ≥ kd . We will prove first that P( fh1 , . . . , fhm ) �≡ 0, i.e., the functions
in { fh : h ∈ H} are algebraically independent. Notice that P( fh1 , . . . , fhm ) is of the
form

⎧⎪⎨
⎪⎩
∑d

r=1 p
−nkr αr (1 + y)βr if x = ∑0

k=−n ak p
k + y,

with a−n �= 0, n ∈ N0, y ∈ pZp,

0 otherwise,

where the exponents βr := ∑m
i=1 kr ,i hi belong to pZp \ {0} and are pairwise distinct

becauseH is a Hamel basis ofQp overQ contained in pZp, kr ,i ∈ N0, kr �= 0 and the
numbers h1, . . . , hm as well as them-tuples (kr ,1, . . . , kr ,m) are pairwise distinct. Fix

n ∈ N0. Since p−nkr αr �= 0 for every 1 ≤ r ≤ d, by Lemma 3.1, there is y ∈ pZp

such that
∑d

r=1 p
−nkr αr (1 + y)βr �= 0. Hence, by taking x = p−n + y, we have

P( fh1 , . . . , fhm )(x) �= 0.
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Finally, let us prove that P( fh1 , . . . , fhm )′ exists and it is unbounded. Clearly
P( fh1 , . . . , fhm ) is differentiable and the derivative is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d∑
r=1

p−nkr αrβr (1 + y)βr−1 if x =
0∑

k=−n

ak p
k + y,

with a−n �= 0, n ∈ N0, y ∈ pZp,

0 otherwise.

(3.2)

Notice that βr �= 1 for every 1 ≤ r ≤ d since βr ∈ pZp. We will now rewrite
formula (3.2) in order to simplify the proof. Notice that if some of the exponents kr
are equal, i.e., for instance ki = · · · = k j for some 1 ≤ i < j ≤ d, then p−nki is a

common factor in each summand p−nki αiβi (1+ y)βi−1, . . . , p−nk j α jβ j (1+ y)β j−1.
Therefore, P( fh1 , . . . , fhm )′(x) can also be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d̃∑
q=1

p−nk̃q

mq∑
s=1

αq,sβq,s(1 + y)βq,s−1 if x =
0∑

k=−n

ak p
k + y,

where a−n �= 0, n ∈ N0

and y ∈ pZp,

0 otherwise,

(3.3)

where d̃ ∈ N, the k̃q ’s represent the common exponents of p−nki with k̃1 > · · · > k̃d̃ ,
and αq,s and βq,s are the corresponding terms αr and βr , respectively. Now, since
α1,sβ1,s �= 0 and the exponents β1,s − 1 are pairwise distinct and not equal to 0 for
every 1 ≤ s ≤ m1, by Lemma 3.1, there exists y1 ∈ pZp such that

∑m1
s=1 α1,sβ1,s(1+

y1)β1,s−1 �= 0. Take the sequence (xn)∞n=1 defined by xn = p−n + y1. Since k̃1 >

· · · > k̃d̃ , there exists n0 ∈ N such that

|P( fh1 , . . . , fhm )′(xn)|p =
∣∣∣∣∣∣

d̃∑
q=1

p−nk̃q

mq∑
s=1

αq,sβq,s(1 + y1)
βq,s−1

∣∣∣∣∣∣
p

=
∣∣∣∣∣p−nk̃1

m1∑
s=1

α1,sβ1,s(1 + y1)
β1,s−1+

+
d̃∑

q=2

p−nk̃r

mq∑
s=1

αq,sβq,s(1 + y1)
βq,s−1

∣∣∣∣∣∣
p

=
∣∣∣∣∣p−nk̃1

m1∑
s=1

α1,sβ1,s(1 + y1)
β1,s−1

∣∣∣∣∣
p

= pnk̃1

∣∣∣∣∣
m1∑
s=1

α1,sβ1,s(1 + y1)
β1,s−1

∣∣∣∣∣
p

,
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for every n ≥ n0. Hence, limn→∞ |P( fh1 , . . . , fhm )′(xn)|p = ∞. ��

The reader may have noticed that the functions in the proof of Theorem 3.5 have
unbounded derivative but the derivative is bounded on each ball ofQp. The following
result (which proof is a modification of the one in Theorem 3.5) shows that we can
obtain a similar optimal result when the derivative is unbounded on each ball centered
at a fixed point a ∈ Qp. The functions will not be differentiable at a.

Corollary 3.6 Let a ∈ Qp. The set of continuous functions Qp → Qp that are dif-
ferentiable except at a and which derivative is unbounded on Qp \ (a + Zp) and on
(a + Zp) \ {a} is strongly c-algebrable.

Proof Fix a ∈ Qp. LetH be a Hamel basis ofQp overQ contained in pZp. For every
β ∈ Zp \ {0} take the function fβ defined in the proof of Theorem 3.5 and also define
gβ : Qp → Qp by

gβ(x) =
{
pn[p−n2(x − a)]β if x ∈ B

p−(n2+1) (a + pn
2
) for some n ∈ N,

0 otherwise.

Notice that by applying the change of variable y = x −a we can assume, without loss
of generality, that a = 0. Since for any x ∈ B

p−(n2+1) (p
n2)with n ∈ N, x is of the form

pn
2 + ∑∞

k=n2+1 ak p
k with ak ∈ {0, 1, . . . , p − 1} for every integer k ≥ n2 + 1, we

have that p−n2x = 1+∑∞
k=n2+1 ak p

k−n2 ∈ 1+ pZp. Thus gβ is well defined. Now,
for every β ∈ Zp \ {0}, let Fβ := fβ + gβ . It is easy to see that Fβ is differentiable at
every x ∈ Qp \ {0} and, in particular, continuous on Qp \ {0}. Let us prove now that

Fβ is continuous at 0. Fix ε > 0 and take n ∈ N such that p−n < ε. If |x |p < p1−n2 ,
then

|Fβ(x)| =
{

|pn(p−n2x)β |p if x ∈ B
p−(n2+1) (p

n2),

0 otherwise,

=
{
p−n if x ∈ B

p−(n2+1) (p
n2),

0 otherwise.

In any case, |Fβ(x)| < ε. Hence Fβ is continuous.Moreover, Fβ is not differentiable at

0. Indeed, by considering the sequence (xn)∞n=1 = (pn
2 + pn

2+1)∞n=1 which converges
to 0 when n → ∞ we have

lim
n→∞

|Fβ(xn) − Fβ(0)|p
|xn|p = lim

n→∞
|pn[p−n2(pn

2 + pn
2+1)]β |p

|pn2 + pn2+1|p
= lim

n→∞
p−n|(1 + p)β |p

p−n2
= lim

n→∞ pn
2−n = ∞.
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In particular, by the chain rule, the derivative of Fβ on Qp \ {0} is as follows

F ′
β(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p−nβ(1 + y)β−1 if x =
0∑

k=n

ak p
k + y,

with an �= 0, n ∈ Z \ N, y ∈ pZp,

pn−n2β(p−n2x)β−1 if x ∈ B
p−(n2+1) (p

n2) for some n ∈ N,

0 otherwise.

By the proof of Theorem 3.5 the functions in the set V = {Fh : h ∈ H} are
algebraically independent, and every function in the algebra A generated by V over
Qp that is not the 0 function is continuous, differentiable onQp\{0} andhas unbounded
derivative on Qp \ Zp. It remains to prove that any nonzero algebraic combination in
V has unbounded derivative on Zp \ {0}. To do so, let h1, . . . , hm ∈ H be distinct
and take P a polynomial in m variables with coefficients inQp \ {0} and without free
term. Then, by the chain rule, P( fh1 , . . . , fhm )′ on B

p−(n2+1) (p
n2) is of the form

p−n2
d∑

q=1

pnkq
mq∑
s=1

αq,sβq,s(p
−n2x)βq,s−1,

see the proof of Theorem 3.5. Assume without loss of generality that k1 < · · · < kd .
Since α1,sβ1,s �= 0 and the exponents β1,s − 1 are pairwise distinct and not
0 for every 1 ≤ s ≤ m1, by Lemma 3.4, there exists y1 ∈ pZp such that∑m1

s=1 α1,sβ1,s(1 + y1)β1,s−1 �= 0. For every n ∈ N, take xn = pn
2
(1 + y1). Then,

notice that there exists n0 ∈ N such that

|P(Fh1, . . . , Fhm )′(xn)|p =
∣∣∣∣∣∣p−n2

d∑
q=1

pnkq
mq∑
s=1

αq,sβq,s(p
−n2xn)

βq,s−1

∣∣∣∣∣∣
p

= pn
2

∣∣∣∣∣∣
d∑

q=1

pnkq
mq∑
s=1

αq,sβq,s(1 + y1)
βq,s−1

∣∣∣∣∣∣
p

= pn
2

∣∣∣∣∣pnk1
m1∑
s=1

α1,sβ1,s(1 + y1)
β1,s−1+

+
d∑

q=2

pnkr
mq∑
s=1

αq,sβq,s(1 + y1)
βq,s−1

∣∣∣∣∣∣
p

= pn
2

∣∣∣∣∣pnk1
m1∑
s=1

α1,sβ1,s(1 + y1)
β1,s−1

∣∣∣∣∣
p
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= pn
2−nk1

∣∣∣∣∣
m1∑
s=1

α1,sβ1,s(1 + y1)
β1,s−1

∣∣∣∣∣
p

,

for every n ≥ n0. Therefore limn→∞ |P(Fh1, . . . , Fhm )′(xn)|p = ∞. ��
In Corollary 3.6 we can replace unbounded derivative with being not Lipschitzian

although the conclusion is weaker in terms of lineability as it is shown in the following
proposition.

Proposition 3.7 The set of continuous functions Qp → Qp which are differentiable
except at 0, with bounded derivative on Qp \ {0} and not Lipschitzian of order α > 0
is c-lineable and 1-algebrable.

Proof Let us prove first the lineability part. For any N ∈ N , let fN : Qp → Qp be:

fN (x) =
{
pn if x ∈ S

p−n2 (0) and n ∈ N ,

0 otherwise.

For every x ∈ Qp \ {0}, it is clear that there exists a neighborhood of x such that fN
is constant since the spheres are open sets. Thus, fN is locally constant on Qp \ {0}
which implies that fN is continuous, differentiable on Qp \ {0} and f ′

N (x) = 0 for
every x ∈ Qp \ {0}. Moreover, it is easy to see that fN is continuous at 0. However,

fN is not differentiable at 0. Indeed, take xn = pn
2
for every n ∈ N . It is clear that

the sequence (xn)n∈N converges to 0 and also, for every α > 0,

| fN (xn)|p
|xn|αp

= p(−1+αn)n → ∞,

when n ∈ N tends to infinity. Therefore fN is not differentiable at 0. Furthermore,
notice that for any M > 0 there are infinitely many x ∈ Zp such that | fN (x)|p >

M |x |αp. Hence fN is not Lipschitzian of order α > 0.
It remains to prove that the functions inV = { fN : N ∈ N } are linearly independent

over Qp and such that the functions in span(V ) \ {0} are differentiable except at
0, with bounded derivative on Qp \ {0} and not Lipschitzian of order α > 0. Let
f = ∑m

i=1 αi fNi , where α1, . . . , αm ∈ Qp, N1, . . . , Nm ∈ N are distinct andm ∈ N.

Assume that f ≡ 0 and take n ∈ N 1
1 ∩ N 0

2 ∩ · · · ∩ N 0
m . Then 0 = f (pn

2
) = α1 pn

which implies that α1 = 0. Applying similar arguments we have that αi = 0 for
every i ∈ {1, . . . ,m}. Finally, assume that αi �= 0 for every i ∈ {1, . . . ,m}. It is clear
that f is continuous on Qp and differentiable on Qp \ {0} with f ′

N (x) = 0 for every

x ∈ Qp \ {0}. Let xn = pn
2
for every n ∈ N 1

1 ∩ N 0
2 ∩ · · · ∩ N 0

m and notice that
(xn)n∈N1

1∩N0
2∩···∩N0

m
converges to 0. Moreover, for every α > 0,

| f (xn)|p
|xn|αp

= |α1|p p(−1+αn)n → ∞,
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when n ∈ N 1
1 ∩N 0

2 ∩· · ·∩N 0
m tends to infinity. Hence, f is not differentiable at 0, and

also for every M > 0 there are infinitely many x ∈ Zp such that | f (x)|p > M |x |αp.
For the algebrability part, let g : Qp → Qp be defined as:

g(x) =
{
pn if x ∈ S

p−n2 (0) for some n ∈ N,

0 otherwise.

By applying similar arguments used in the first part of the proof, we have that g is
continuous, differentiable on Qp \ {0} with g′(x) = 0 for every x ∈ Qp \ {0} and not
Lipschitzian of order α > 0. To finish the proof, let G = βgk where β ∈ Qp \ {0} and
k ∈ N. It is obvious that G is continuous, differentiable onQp \ {0} and G ′(x) = 0 for

every x ∈ Qp \ {0}. Now, let xn = pn
2
for every n ∈ N. It is easy to see that (xn)n∈N

converges to 0 and

|G(xn)|p
|xn|αp

= |β|p p(−k+αn)n → ∞,

when n → ∞. ��
Let B be the σ -algebra of all Borel subsets of Zp and μ be any non-negative real-

valuedHaarmeasure on themeasurable space (Zp,B). In particular, ifμ is normalized,
then μ

(
x + pnZp

) = p−n for any x ∈ Zp and n ∈ N. For the rest of the paper μ will
denote a non-negative real-valued Haar measure on (Zp,B). As usual, a Borel subset
B of Zp is called a null set for μ provided that μ(B) = 0. We also say that a Borel
subset of Zp is a full set for μ if Zp \ B is a null set. (See [26, Section 2.2] for more
details on the Haar measure.)

It is easy to see that the singletons of Zp are null sets for any Haar measure μ on
(Zp,B). Therefore Proposition 3.7 states in particular that, for any Haar measure μ

on (Zp,B), the set of continuous functions Zp → Qp that are differentiable except
on a null set for μ of cardinality 1, with bounded derivative elsewhere, is c-lineable.
The following result shows that a similar version can be obtained when we consider
null sets of cardinality c for any Haar measure μ on (Zp,B). In order to prove it, we
recall the following definition and result from probability theory.

Definition 3.8 Let (	,F , P) be a probability space and Y be ameasurable real-valued
function on 	. We say that Y is a random variable.

Theorem 3.9 (Strong law of large numbers, see [19, Theorem22.1]). Let (Yn)n∈N0 be a
sequence of independent and identically distributed random variables on a probability
space (	,F , P) such that, for each n ∈ N0, E[Yn] = m for some m ∈ R (where E
denotes the expected value). Then

P

({
x ∈ 	 : ∃ lim

n→∞

∑n−1
k=0 Yk(x)

n
= m

})
= 1.
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Theorem 3.10 Let μ be a Haar measure on (Zp,B). The set of continuous functions
Zp → Qp which are differentiable on a full set for μ with bounded derivative but not
differentiable on the complement having cardinality c is c-lineable.

Proof Wewill prove the result forμ the normalizedHaarmeasure on (Zp,B) since any
null set for the normalized Haar measure is also a null set for any other non-negative
real-valued Haar measure on (Zp,B). This is an immediate consequence of Haar’s
Theorem which states that Haar measures are unique up to a positive multiplicative
constant (see [26, Theorem 2.20]).

Let f : Zp → Zp be defined as follows: for every x = ∑∞
i=0 xi p

i ∈ Zp, we have

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x if (x2i , x2i+1) �= (0, 0) for all i ∈ N0,
2n+1∑
i=0

xi p
i if (x2i , x2i+1) �= (0, 0) for all i ≤ n

with n ∈ N0 and (x2n+2, x2n+3) = (0, 0),

0 if (x0, x1) = (0, 0).

(3.4)

The function f is continuous. Indeed, let x = ∑∞
i=0 xi p

i ∈ Zp and fix ε > 0. Take any
m ∈ N0 such that p−(2m+1) < ε. Then for any y ∈ Zp such that |x − y|p < p−(2m+1)

we have that y is of the form
∑2m+1

i=0 xi pi +∑∞
i=2m+2 yi p

i . Hence, notice that in any
possible case of x given in (3.4), we have that | f (x) − f (y)|p < p−(2m+1) < ε.

Let us define, for every i ∈ N0, the random variables Yi : Zp → {0, 1} in the
following way: for any x = ∑∞

i=0 xi p
i ∈ Zp,

Yi (x) =
{
1 if (x2i , x2i+1) = (0, 0),

0 if (x2i , x2i+1) �= (0, 0).

Notice that the random variables (Yi )i∈N0 are independent and identically distributed
with E[Yi ] = 1

p2
for every i ∈ N0. Thus, by the strong law of large numbers, the set

D =
{
x =

∞∑
i=0

xi p
i ∈ Zp : lim

n→∞

∑n−1
i=0 Yi (x)

n
= 1

p2

}

has measure 1. Now, since for every i ∈ N0, Yi (x) = 0 for all
x = ∑∞

j=0 x j p
j that satisfy (x2 j , x2 j+1) �= (0, 0) for each j ∈ N0, we have that

limn→∞∑n−1
i=0 Yi (x)

n = 0 for all such x . Hence, it is clear that
E : = {∑∞

i=0 xi p
i ∈ Zp : (x2i , x2i+1) �= (0, 0) for all i ∈ N0

} ⊂ Zp \ D. Moreover,
by construction card(E) = c. Notice that it is not obvious that E is a Borel set since
any Haar measure μ on (Zp,B) is not complete. However, as Zp \ D is a null set, we
have that if E were a Borel set, then E would be a null set. Let us prove that E is a
Borel set. Consider the finite field of p elements Fp endowed with an absolute value
| · |T –the trivial absolute value. Then Fp is a discrete topological space, which implies
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that the product space F2
p := Fp ×Fp has the discrete topology. (Recall that the finite

product of discrete topological spaces has the discrete topology.) For every n ∈ N0, let
πn : Zp → F

2
p be defined as πn(x) = (x2n, x2n+1) for every x = ∑∞

i=0 xi p
i ∈ Zp.

Let n ∈ N0, x ∈ Zp and fix ε > 0. Take an integerm > n. Then for every y ∈ Zp such
that |x−y|p < p−(2m+1) wehave thatπn(x) = πn(y), i.e., |πn(x)−πn(y)|T = 0 < ε.
Hence πn is continuous. Note that E = ⋂∞

n=0 π−1
n ({(x, y) ∈ F

2
p : (x, y) �= (0, 0)}),

where π−1
n ({(x, y) ∈ F

2
p : (x, y) �= (0, 0)}) is closed since πn is continuous and

{(x, y) ∈ F
2
p : (x, y) �= (0, 0)} is closed in F

2
p. Hence, E is closed since it is the

countable intersection of closed sets and, therefore, a Borel set.
Let us analyze now the differentiability of f . On the one hand, if for x =∑∞
i=0 xi p

i ∈ Zp there exists i0 ∈ N0 such that (x2i0 , x2i0+1) = (0, 0), then it
is clear that f is constant on some neighborhood of x , and hence differentiable at
x . On the other hand, if f were differentiable at x = ∑∞

i=0 xi p
i ∈ Zp satisfy-

ing (x2i , x2i+1) �= (0, 0) for all i ∈ N0, then we would have f ′(x) = 1. Assume,
by means of contradiction, that f is differentiable at x . For every n ∈ N0, take
xn := ∑2n+1

i=0 xi pi + ∑∞
i=2n+4 yi p

i with y2n+4 �= 0, then

f (x) − f (xn)

x − xn
=

∑∞
i=0 xi p

i − ∑2n+1
i=0 xi pi∑∞

i=2n+2 xi p
i − ∑∞

i=2n+4 yi p
i

=
∑∞

i=2n+2 xi p
i∑∞

i=2n+2 xi p
i − ∑∞

i=2n+4 yi p
i

=
∑∞

i=2n+2 xi p
i − ∑∞

i=2n+4 yi p
i + ∑∞

i=2n+4 yi p
i∑∞

i=2n+2 xi p
i − ∑∞

i=2n+4 yi p
i

= 1 +
∑∞

i=2n+4 yi p
i∑∞

i=2n+2 xi p
i − ∑∞

i=2n+4 yi p
i
.

Now, as y2n+4 �= 0, we have

∣∣∣∣∣
∑∞

i=2n+4 yi p
i∑∞

i=2n+2 xi p
i − ∑∞

i=2n+4 yi p
i

∣∣∣∣∣
p

=
{
p−2 if x2n+2 �= 0,

p−1 if x2n+3 �= 0.

Thus we have limn→∞ |x − xn|p = 0 and limn→∞
∣∣∣ f (x)− f (xn)

x−xn
− 1

∣∣∣
p

≥ p−2 �= 0, a

contradiction.
Let us define the function g : Zp → Qp by:

g(x) =
{
pn f (x ′) if x = pn + pn+1x ′ with n ∈ N and x ′ ∈ Zp,

0 otherwise.

Notice that g is well defined since the sets Bn := pn + pn+1
Zp are pairwise disjoint.

(The sets Bn are the closed balls B p−(n+1) (pn).) If x ∈ Zp \ ({0} ∪ ⋃∞
n=1 Bn

)
, then

there exists an open neighborhoodUx of x such that g is identically zero onUx , i.e., g
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is differentiable at x . Now, as g(pn + pn+1x) = pn f (x) for every n ∈ N and x ∈ Zp,
and since f is continuous, it is obvious that g is continuous on

⋃∞
n=1 Bn . Moreover,

g is also continuous at 0. To prove it fix ε > 0 and take n ∈ N such that p−n < ε. If
x ∈ Zp is such that |x |p = p−n , then x = xn pn + pn+1x ′ with xn �= 0. Furthermore,

|g(0) − g(x)|p =
{

|pn f (x ′)|p if xn = 1,

0 otherwise,
=
{
p−n| f (x ′)|p if xn = 1,

0 otherwise.

Hence, |g(0) − g(x)|p ≤ p−n < ε. Therefore we have proven that g is continuous on
Zp. Moreover, g is differentiable also on

⋃∞
n=1(Bn \ En) (with bounded derivative)

as f is differentiable on
⋃∞

n=1(Bn \ En), where En := pn + pn+1E ; and g is not
differentiable on

⋃∞
n=1 En since f is not differentiable on

⋃∞
n=1 En . Notice that once

again card(En) = c for every n ∈ N0.
Let us prove that En is a Borel set with μ(En) = 0 for every n ∈ N. To do so, let us

consider the restrictedmeasureμn = pn+1μ on themeasurable space (Bn,Bn), where
Bn is the σ -algebra of all Borel subsets of Bn . Notice that Bn = {B ∩ Bn : B ∈ B} and
(Bn,Bn, μn) is a probability space. Define now for every i ∈ N0 the random variables
Yn,i : Bn → {0, 1} as follows: for x = pn + pn+1∑∞

i=0 xi p
i ∈ Bn , we have

Yn,i (x) =
{
1 if (x2i , x2i+1) = (0, 0),

0 if (x2i , x2i+1) �= (0, 0).

Once again the randomvariables (Yn,i )i∈N0 are independent and identically distributed
with E[Yn,i ] = 1

p2
for every i ∈ N0. Thus, the set{

x = pn + pn+1
∞∑
i=0

xi p
i ∈ Bn : lim

m→∞

∑m−1
i=0 Yn,i (x)

m
= 1

p

}
=

= pn + pn+1D =: Dn

is a full set for μn . By considering for each k ∈ N0 the function πn,k : Bn → F
2
p

given by πn,k(x) = (x2k, x2k+1) for every x = pn + pn+1∑∞
i=0 xi p

i ∈ Bn

and applying similar arguments as above, we have that πn,k is continuous. Hence
En = ⋂∞

k=0 πn,k({(x, y) ∈ F
2
p : (x, y) �= (0, 0)}) is once again a Borel set.

Furthermore, since En ⊂ Bn \ Dn we have that En is a null set for μn . Thus
μ(En) = p−(n+1)μn(En) = 0 for every n ∈ N.

Finally let us prove that g is not differentiable at 0. Since every neighborhood
containing 0 on Zp contains points x such that g(x) = 0, if g were differentiable
at 0 then g′(0) = 0. Assume that g is differentiable at 0. As pn + pn+1∑∞

i=0 p
i =

pn
∑∞

i=0 p
i ∈ Bn for every n ∈ N, we have that

∣∣∣∣∣g
(
pn + pn+1∑∞

i=0 p
i
) − g(0)

pn + pn+1
∑∞

i=0 p
i

∣∣∣∣∣
p

=
∣∣∣∣∣ p

n f
(∑∞

i=0 p
i
)

pn
∑∞

i=0 p
i

∣∣∣∣∣
p

=
∣∣∣∣∣ p

n ∑∞
i=0 p

i

pn
∑∞

i=0 p
i

∣∣∣∣∣
p

= 1,

where limn→∞
∣∣pn + pn+1∑∞

i=0 p
i
∣∣
p = limn→∞ p−n = 0, a contradiction.
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For every N ∈ N , let us define fN : Zp → Qp by:

fN (x) = g(x)
∑
n∈N

1Bn (x).

Since Bn ∩ Bm = ∅ for every distinct n,m ∈ N, the function fN is well defined.
Furthermore, since each N ∈ N is infinite, we can apply the above arguments to prove
that fN is continuous and differentiable on a full set for μ with bounded derivative
but not differentiable on the complement having cardinality c.

It remains to prove that the functions inV = { fN : N ∈ N } are linearly independent
over Qp and any nonzero linear combination over Qp of the functions in V satisfies
the necessary properties. Let F := ∑k

i=1 ai fNi , where k ∈ N, a1, . . . , ak ∈ Qp, and
N1, . . . , Nk ∈ N are distinct. We begin by showing the linear independence. Assume
that F ≡ 0. Fix n ∈ N 1

1 ∩ N 0
2 ∩ · · · ∩ N 0

k and take x = pn + pn+1∑∞
i=0 p

i ∈ Bn .
Then, 0 = F(x) = a1 fN1(x) = a1

∑∞
i=0 p

i if and only if a1 = 0. By repeating the
same argument, it is easy to see that ai = 0 for every i ∈ {1, . . . , k}. Assume now that
ai �= 0 for every i ∈ {1, . . . , k}. Then F is continuous but also differentiable on

� := Zp \
⎛
⎜⎝{0} ∪

⎛
⎜⎝ ⋃

n∈⋃k
i=1 Ni

En

⎞
⎟⎠
⎞
⎟⎠

(with bounded derivative). Applying similar arguments as above, we have that F is not
differentiable at 0. Let x ∈ En with n ∈ ⋃k

i=1 Ni . We will analyze the differentiability
of F at x depending on the values that F takes on Bn . We have two possible cases.

Case 1: If F is identically 0 on Bn , then F is differentiable at x .
Case 2: If F is not identically 0 on Bn , then there exists a ∈ Qp \ {0} such that

F = ag. Hence F is not differentiable at x since g is not differentiable at x . Notice
that Case 2 is always satisfied.

To finish the proof, it is enough to show that � is a full set for μ, but this is an

immediate consequence of the fact that {0}∪
(⋃

n∈⋃k
i=1 Ni

En

)
is the countable union

of null sets for μ since it implies that

μ

⎛
⎜⎝{0} ∪

⎛
⎜⎝ ⋃

n∈⋃k
i=1 Ni

En

⎞
⎟⎠
⎞
⎟⎠ = 0.

��
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