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Abstract
In this paper, we investigate the existence of multiple solutions to the nonlinear p-
Laplacian equation

−�pu + h(x)|u|p−2u = f (x, u) + g(x)

on the locally finite graph G, where �p is the discrete p-Laplacian on graphs, p ≥ 2.
Under more general conditions, we prove that the p-Laplacian equation admits at
least two nontrivial different solutions by using the variational methods and the new
analytical techniques. Our results extend some related works.

Keywords p-Laplacian equation · Locally finite graph · Multiple solutions ·
Variational methods
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1 Introduction

Recently, differential equations on discrete graphs has attracted much attention from
many researchers, due to its strong application background, such as neural network
[1], image processing [2] and so on. In this paper, we study the existence of multiple
solutions to the following p-Laplacian equation

−�pu + h(x)|u|p−2u = f (x, u) + g(x) (Sp)

Supported by the NSFC (12101355).

B Mengqiu Shao
shaomqmath@163.com

1 School of Mathematical Sciences, Qufu Normal University, Shandong 273165, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13163-022-00452-z&domain=pdf
http://orcid.org/0000-0002-4153-6069


186 M. Shao

on the locally finite graph G = (V , E), where p ≥ 2, �p is the discrete p-Laplacian
on graphs. In Euclidean space, the p-Laplacian�pu = div(|∇u|p−2∇u) arises in non-
Newtonian fluids, flow through porous media, nonlinear elasticity, and other physical
phenomena. Problems like (Sp) has been extensively studied in the Euclidean space;
see for examples Alves and Figueiredo [3], Cao and Zhou [4], Ding and Ni [5].
Especially, Jeanjean [6] studied the existence of two positive solutions for the equation

−�u + u = f (x, u) + g(x), x ∈ R
n,

where the perturbation term g ∈ H−1(Rn), g �≡ 0 and f satisfies some growth
conditions. For more interesting results, we refer the reader to [7–10].

When p = 2 in (Sp), for any 0 < ε < ε0, Grigor’yan, Lin and Yang [11] proved
that the perturbed equation

− �u + hu = f (x, u) + εg(x) (1)

has two distinct strictly positive solutions on a locally finite graph, where g satisfies
the following condition:
(g1) g ∈ H−1, g ≥ 0 and g �≡ 0,whereH−1 is the dual space ofH := {u ∈ W 1,2(V ) :∫
V hu2dμ < ∞}.
In particular, when g ≡ 0, they [11] also established existence of positive solutions of
(1) on locally finite graphs.

The discrete p-Laplacian ongraphswas introduced in [12] and has beenwell studied
ever since, mostly in the context of nonlinear potential and spectral theory, cf. [13, 14]
for historical overviews. The problem (Sp) can be regarded as a perturbation problem
of the following problem

− �pu + h(x)|u|p−2u = f (x, u), x ∈ V . (2)

In [15], Grigor’yan, Lin and Yang studied the existence of nontrivial solutions to the
equation (2) on a finite graph. In addition, there were many interesting and important
papers of p-Laplacian equations on graphs. For example, Ge [16] studied a p-th
Kazdan-Warner equation on a finite graph. Han and Shao [17] studied the convergence
of ground state solutions to a p-Laplacian equation on a locally finite graph. For other
related works, we refer the reader to [18–21] and the references therein.

However, the multiple solutions of p-Laplacian equations on graphs have been
investigated less extensively. Moreover, most of the current research to perturbation
problems on graphs were in the case of p = 2 and without considering the case of
p > 2.

Motivated by [6, 11, 15], we focus on the p-Laplacian equation (Sp) with pertur-
bation term g on the locally finite G. Specifically, we obtain the existence of positive
energy and negative energy solutions to the equation (Sp) respectively. Throughout
this paper, we assume that G, h and f satisfy the following assumptions.

(G1) G is a locally finite and connected graph and its measure μ(x) ≥ μmin > 0 for
all x ∈ V .
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Existence and multiplicity of solutions... 187

(G2) For any xy ∈ E , the weight satisfies

ωxy = ωyx > 0 and M := sup
x∈V

degx
μ(x)

< +∞,

where degx := ∑

y∈V
ωxy .

(h1) There exists a constant h0 > 0 such that h(x) ≥ h0 for all x ∈ V .

(h2)
1
h ∈ L

1
p−1 (V ).

( f1) For any x ∈ V , f (x, s) is continuous in s ∈ R and there exist some q > p ≥ 2
and C > 0 such that | f (x, s)| ≤ C(1 + |s|q−1) uniformly in x ∈ V .

( f2) There exists some α > p such that for any s ∈ R \ {0} there holds

0 < αF(x, s) ≤ s f (x, s)

for all x ∈ V , where F(x, s) := ∫ s
0 f (x, t)dt .

( f3) f (x, s) = o(|s|p−1) as s → 0 uniformly in x ∈ V .

Our main result is the following theorem:

Theorem 1.1 Assume that (G1), (G2), (h1), (h2), ( f1)− ( f3) hold and g ∈ L
p

p−1 (V ),
g �≡ 0. Then there exists a constant δ > 0 such that the equation (Sp) admits at least
two nontrivial different solutions, provided that ‖g‖

L
p

p−1 (V )
≤ δ.

Example 1.1 For any q > p ≥ 2 the function |u|q−2u is a typical example of f which
satisfies ( f1) − ( f3).

Remark 1.1 The condition M := sup
x∈V

( 1
μ(x)

∑

y∈V
ωxy) < +∞ in (G2) is an essential

assumption,which ensures the reflexivity of the Sobolev spaceW 1,p(V ) (seeCorollary
5.8 in [17]).

Remark 1.2 Our argument is based on variational method and critical point theory.
Though this idea has been used in the Euclidean space case, the Sobolev space and
Sobolev embedding in our setting are quite different from those cases. If g ≡ 0 in
(Sp), thenwe have the same conclusion asGrigor’yan-Lin-Yang in [15] and our results
extend their work from finite graphs to locally finite graphs. The method in [11] is not

applicable to this paper, because g ∈ L
p

p−1 (V ) in the present paper does not satisfy
(g1) in [11] when p = 2. Moreover, we generalized their results in [11] for p = 2 to
any p > 1 and enrich the existing results.

This paper is organized as follows. In Sect. 2, we introduce several preliminaries
and functional settings on graphs. In Sect. 3, we prove that the equation (Sp) admits
at least two nontrivial different solutions.
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188 M. Shao

2 Preliminaries and functional settings

In this section, we introduce some preliminaries and basic functional settings. First
we give some definitions and notations on graphs.

Let G = (V , E) be a graph, where V denotes the set of vertices and E denotes the
set of edges, ωxy : V × V → R

+ be an edge weight function and μ : V → R
+ be

a positive measure on G = (V , E). y ∼ x stands for any vertex y connected with x
by an edge xy ∈ E . The distance d(x, y) of two vertices x, y ∈ V is defined by the
minimal number of edges which connect these two vertices.

For any function u : V → R, the μ-Laplacian of u is defined as

�u(x) := 1

μ(x)

∑

y∼x

ωxy(u(y) − u(x)).

The associated gradient form is defined by

�(u, v)(x) := 1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x)).

The length of �(u) at x ∈ V is denoted by

|∇u|(x) := √
�(u)(x).

With respect to the vertex weight μ, the integral of u over V is defined by

∫

V
udμ =

∑

x∈V
μ(x)u(x).

The p-Laplacian of u is defined by

�pu(x) := 1

2μ(x)

∑

y∼x

(|∇u|p−2(y) + |∇u|p−2(x))ωxy(u(y) − u(x)).

Let C(V ) be the set of real functions on V . For any 1 ≤ s < ∞, we denote by

Ls(V ) =
{

u ∈ C(V ) :
∫

V
|u|sdμ =

∑

x∈V
μ(x)|u(x)|s < ∞

}

the set of integrable functions on V with the respect to the measure μ. For s = ∞, let

L∞(V ) =
{

u ∈ C(V ) : sup
x∈V

|u(x)| < ∞
}

.
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Existence and multiplicity of solutions... 189

Define

W 1,p(V ) := {u : V → R :
∫

V
(|∇u|p + |u|p)dμ < +∞}, p ≥ 2, (3)

where

‖u‖W 1,p(V ) =
(∫

V
(|∇u|p + |u|p)dμ

) 1
p

.

Let Cc(V ) be a set of all functions with finite support, then W 1,p(V ) is the com-
pletion of Cc(V ) under the norm ‖ · ‖W 1,p(V ) (see Proposition 5.7 in [17]). We define
a subspace of W 1,p(V ), which is also a reflexive Banach space, namely

X := {u ∈ W 1,p(V ) :
∫

V
h(x)|u|pdμ < +∞}

with the norm

‖u‖X =
(∫

V
(|∇u|p + h(x)|u|p)dμ

) 1
p

.

Clearly, X is a Banach space and also a reflexive space.
The functional related to (Sp) is

J (u) = �(u) − 	(u), u ∈ X , (4)

where

�(u) = 1

p

∫

V
(|∇u|p + h(x)|u|p)dμ (5)

and

	(u) =
∫

V
F(x, u)dμ +

∫

V
g(x)udμ.

A weak solution to (Sp) is a function u ∈ X satisfying

∫

V
(|∇u|p−2�(u, φ) + h|u|p−2uφ)dμ =

∫

V
f (x, u)φdμ +

∫

V
g(x)φdμ,

for anyφ ∈ X , and corresponds to a critical point of the energy functional J .Obviously,
J ∈ C1(X ,R) and

(J ′(u), v) = (�′(u), v) − (	 ′(u), v), ∀v ∈ X , (6)
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190 M. Shao

where

(�′(u), v) =
∫

V
(|∇u|p−2�(u, v) + h(x)|u|p−2uv)dμ

and

(	 ′(u), v) =
∫

V
f (x, u)vdμ +

∫

V
g(x)vdμ.

Now, we present an important property of the space Ls(V ), which will be used later
in Lemma 3.10.

Lemma 2.1 Cc(V ) is dense in Ls(V ), s ∈ [1,+∞), where Cc(V ) be a set of all
functions with finite support.

Proof We only need to prove that for any u ∈ Ls(V ), there exist uk ∈ Cc(V ) such
that ‖uk − u‖s → 0 as k → ∞. Fix a base point x0 ∈ V and define ηk : V → R as

ηk(x) =
⎧
⎨

⎩

1, dx ≤ k,
(2k − dx )/k, k < dx < 2k,
0, dx ≥ 2k,

where dx := d(x, x0). Obviously, {ηk} is a nondecreasing sequence of finitely sup-
ported functions which satisfies 0 ≤ ηk ≤ 1 and lim

k→∞ηk = 1.

Let uk = uηk ∈ Cc(V ). It suffices to show that ‖uk − u‖ss = ∫
V |uk − u|sdμ →

0 as k → ∞. Since
∫
V |u|sdμ < +∞ and | k−dx

k | < 1, we have

∫

V
|uk − u|sdμ =

∑

x∈V ,dx≤k

|uk − u|s(x)μ(x) +
∑

x∈V ,k<dx<2k

|uk − u|s(x)μ(x)

+
∑

x∈V ,dx≥2k

|uk − u|s(x)μ(x)

=
∑

x∈V ,k<dx<2k

|u(x)|s
∣
∣
∣
∣
k − dx

k

∣
∣
∣
∣

s

μ(x) +
∑

x∈V ,dx≥2k

|u(x)|sμ(x)

≤
∑

x∈V ,k<dx<2k

|u(x)|sμ(x) +
∑

x∈V ,dx≥2k

|u(x)|sμ(x)

=
∑

x∈V ,dx>k

|u(x)|sμ(x)

→ 0 as k → ∞.

��
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Lemma 2.2 ( [17, Lemma 2.1]). Assume that u ∈ W 1,p(V ). Then for any v ∈ Cc(V )

we have

∫

V
|∇u|p−2�(u, v)dμ = −

∫

V
(�pu)vdμ.

Lemma 2.3 Assume that h(x) satisfies (h1) and (h2). Then X is continuously embed-
ded into Ls(V ) for any s ∈ [1,+∞]. Namely there exists a constant ξ depending on
s, p, μmin, h0 and ||h−1|| 1

p−1
such that for any u ∈ X, ||u||s ≤ ξ ||u||X . Moreover, for

any bounded sequence {uk} ⊂ X, there exists u ∈ X such that, up to subsequence,

⎧
⎪⎨

⎪⎩

uk⇀u in X ,

uk(x) → u(x) ∀x ∈ V ,

uk → u in Ls(V ),∀s ∈ [1,+∞].

Proof The proof is similar to Lemma 2.6 in [17] and we include it here for complete-
ness. Suppose u ∈ X . At any vertex x0 ∈ V , we have

||u||pE ≥ μminh0|u(x0)|p,

which gives

u(x0) ≤
(

1

μminh0

) 1
p ||u||X . (7)

Therefore, X ↪→ L∞(V ) continuously. Thus X ↪→ Ls(V ) continuously for any
p ≤ s ≤ ∞. In fact, for any u ∈ X , we have u ∈ L p(V ). Then for any p ≤ s,

∫

V
|u|sdμ =

∫

V
|u|p|u|s−pdμ

≤ (μminh0)
p−s
p ||u||s−p

X

∫

V
|u|pdμ

≤ (μminh0)
p−s
p ||u||s−p

X

∫

V

h

h0
|u|pdμ

≤ (μminh0)
p−s
p

1

h0
||u||s−p

X

∫

V
h|u|pdμ

≤ (μmin)
p−s
p h

− s
p

0 ||u||sX < +∞,

which implies that u ∈ Ls(V ) and for any p ≤ s,

‖u‖s =
(∫

V
|u|sdμ

) 1
s ≤ (μmin)

p−s
ps h

− 1
p

0 ||u||X . (8)
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192 M. Shao

Next, we prove that E ↪→ Ls(V ) continuously for any 1 ≤ s < p. Indeed, (h2)
implies that

h−1 ∈ L
1

p−1 (V ). (9)

Then for any u ∈ X ,

∫

V
|u|dμ =

∫

V
h− 1

p h
1
p |u|dμ

≤
(∫

V
h− 1

p · p
p−1 dμ

) p−1
p

(∫

V
h|u|pdμ

) 1
p

= ||h−1||
1
p
1

p−1

(∫

V
h|u|pdμ

) 1
p

≤ ||h−1||
1
p
1

p−1
||u||X < +∞, (10)

which implies that u ∈ L1(V ). And it follows from

||u||L∞(V ) ≤ 1

μmin

∫

V
|u|dμ

that

∫

V
|u|sdμ =

∫

V
|u|s−1|u|dμ ≤ 1

μmin
s−1

(∫

V
|u|dμ

)s

≤ 1

μmin
s−1 ||h−1||

s
p
1

p−1
||u||sX .

(11)

Therefore, for any 1 ≤ s < p, X ↪→ Ls(V ) continuously and

‖u‖s =
(∫

V
|u|sdμ

) 1
s ≤ (μmin)

1−s
s ||h−1||

1
p
1

p−1
||u||X . (12)

By (8) and (12), we can obtain that there exists a constant ξ depending on
s, p, μmin, h0 and ||h−1|| 1

p−1
such that for any u ∈ X ,

||u||s ≤ ξ ||u||X .

Let p∗ be the exponent conjugate to p. Each element v ∈ L p∗
(V ) defines a linear

functional φv on L p(V ) via

φv(u) =
∫

V
uvdμ, u ∈ L p(V ).
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Existence and multiplicity of solutions... 193

Noting that X is reflexive, for {uk} bounded in X , we have that, up to a subsequence,
uk⇀u in X . on the other hand, {uk} ⊂ X is also bounded in L p(V ) and we have
uk⇀u in L p(V ), which tell us that,

lim
n→∞φv(un − u) = lim

k→∞

∫

V
(uk − u)vdμ = lim

k→∞
∑

x∈V
μ(x)(uk(x) − u(x))v(x) = 0, ∀v ∈ L p∗

(V ).

(13)

Take any x0 ∈ V and let

v0(x) =
{
1 x = x0,

0 x �= x0.

Obviously it belongs to L p∗
(V ). By substituting v0 into (13) we have

lim
k→∞μ(x0)(uk(x0) − u(x0)) = 0, (14)

which implies that lim
k→∞uk(x) = u(x) for any x ∈ V .

We now prove uk → u in Ls(V ) for all 1 ≤ s ≤ +∞. Since {uk} bounded in X
and u ∈ X , there exists some constant C1 such that

∫

V
h|uk − u|pdμ ≤ C1.

Let x0 ∈ V be fixed. For any ε > 0, in view of (9), there exists some R > 0 such that

∫

d(x,x0)>R
h− 1

p−1 dμ < ε p.

Hence by the Hölder inequality,

∫

d(x,x0)>R
|uk − u|dμ =

∫

d(x,x0)>R
h− 1

p h
1
p |uk − u|dμ

≤
(∫

d(x,x0)>R
h− 1

p−1 dμ

) p−1
p

(∫

d(x,x0)>R
h|uk − u|pdμ

) 1
p

≤ C
1
p
1 ε p−1. (15)

Moreover, we have that up to a subsequence,

lim
k→+∞

∫

d(x,x0)≤R
|uk − u|dμ = 0. (16)
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Combining (15) and (16), we conclude

lim inf
k→+∞

∫

V
|uk − u|dμ = 0.

In particular, there holds up to a subsequence, uk → u in L1(V ). Since

||uk − u||L∞(V ) ≤ 1

μmin

∫

V
|uk − u|dμ,

there holds for any 1 < s < +∞,

∫

V
|uk − u|sdμ ≤ 1

μs−1
min

(

∫

V
|uk − u|dμ)s .

Therefore, up to a subsequence, uk → u in Ls(V ) for all 1 ≤ s ≤ +∞. ��

3 Proof of Theorem 1.1

In this section, by using the Ekeland variational principle and the Mountain Pass theo-
rem, we prove that the equation (Sp) admits at least two nontrivial different solutions.

Lemma 3.1 ([22, Mountain Pass theorem]). Let (Y , || · ||) be a Banach space and
I ∈ C1(Y ,R) be a functional satisfying the (PS)c condition. If there exist e ∈ Y and
r > 0 satisfying ||e|| > r such that

b := inf||u||=r
I (u) > I (0) ≥ I (e),

then c is a critical value of I , where

c := inf
γ∈�

max
t∈[0,1] I (γ (t))

and

� := {γ ∈ C([0, 1],Y ) : γ (0) = 0, γ (1) = e}.

Lemma 3.2 ([23, Ekeland variational principle]). Let (Y , d) be a complete metric
space and I : Y → R

⋃ +∞ be a lower-semicontinuous function which is bounded
from below. Suppose ε > 0 and v are such that

I (v) ≤ inf
Y
I + ε.

Then given any λ > 0, there exists uλ ∈ Y such that

I (uλ) ≤ I (v), d(uλ, v) ≤ λ,
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and

I (uλ) < I (u) + ε

λ
d(uλ, u), ∀u �= uλ.

Lemma 3.3 If u ∈ X is a weak solution of (Sp), then u is also a point-wise solution
of (Sp).

Proof If u ∈ X is a weak solution of (Sp), by Lemma 2.2, for any test function
φ ∈ Cc(V ), we have

∫

V
(−�puφ + h|u|p−2uφ)dμ =

∫

V
f (x, u)φdμ −

∫

V
g(x)φdμ. (17)

For any fixed x0 ∈ V , taking a test function φ : V → R in (17) with

φ(x) =
{
1, x = x0,

0, x �= x0,

and φ ∈ X , then we have

−�pu(x0) + h|u(x0)|p−2u(x0) − f (x0, u(x0)) − g(x0) = 0.

Since x0 is arbitrary, we conclude that u is a point-wise solution of (Sp). ��
Lemma 3.4 Let (G1) − (G2), (h1) − (h2), ( f1) and ( f3) hold and suppose that g ∈
L

p
p−1 (V ), where p ≥ 2. Then J is weakly lower semi-continuous.

Proof Note that

J (u) = �(u) − 	(u), u ∈ X ,

where

�(u) = 1

p

∫

V
(|∇u|p + h(x)|u|p)dμ and 	(u) =

∫

V
F(x, u)dμ +

∫

V
g(x)udμ.

It is easy to see that � is weakly lower semi-continuous in X . Next, we prove that 	
is weakly continuous in X . Let un⇀u in X as n → ∞. Consider the Banach space
L p(V ) ∩ Lq(V ) endowed with the norm ||u||L p(V )∩Lq (V ) := ||u||p + ||u||q . Then
by Lemma 2.3, we have that un → u in L p(V ) ∩ Lq(V ) and un(x) → u(x) for all
x ∈ V . If ( f1) and ( f3) hold, then for any ε > 0, there exists Cε > 0 such that

| f (x, u)| ≤ ε|u|p−1 + Cε|u|q−1, ∀u ∈ R, x ∈ V (18)

and

|F(x, u)| ≤ ε

p
|u|p + Cε

q
|u|q , ∀u ∈ R, x ∈ V . (19)
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Then, by (19) and Lemma 5.10 in [17], there exists a function Q(x) ∈ L1(V )

such that |F(x, un)| ≤ Q(x) and F(x, un(x)) → F(x, u(x)) as n → +∞ for
any x ∈ V . Hence, by the Lebesgue dominated convergence theorem, we have
lim
n→∞

∫
V F(x, un)dμ = ∫

V F(x, u)dμ. Furthermore, by the Hölder’s inequality, we

get

∫

V
g(x)(un − u)dμ ≤ ‖g‖ p

p−1
‖un − u‖p → 0 as n → ∞.

Thus, 	 is weakly continuous in X . Therefore J is weakly lower semi-continuous in
X . ��
Lemma 3.5 Assume ( f1) − ( f3) hold. Then there exist positive constants ρ, σ, δ such

that J (u) ≥ σ for all functions u with ||u||X = ρ and all g ∈ L
p

p−1 (V )with ‖g‖ p
p−1

≤
δ.

Proof By (19) and the Hölder’s inequality, we have

J (u) = 1

p

∫

V
(|∇u|p + h|u|p)dμ −

∫

V
F(x, u)dμ −

∫

V
g(x)udμ

≥ 1

p
‖u‖p

X − ε

p
‖u‖p

p − Cε

q
‖u‖qq − ‖g‖ p

p−1
‖u‖p

≥ 1

p
‖u‖p

X − ε

p
ξ1‖u‖p

X − Cε

q
ξ2‖u‖qX − ξ3‖g‖ p

p−1
‖u‖X

= ‖u‖X
[(

1

p
− ε

p
ξ1

)

‖u‖p−1
X − Cε

q
ξ2‖u‖q−1

X − ξ3‖g‖ p
p−1

]

.

Taking ε = 1
2ξ1

and setting

η(t) = 1

2p
t p−1 − Cε

q
ξ2t

q−1, ∀t ∈ [0,+∞),

we see that there exists ρ > 0 such that max
t∈[0,+∞)

η(t) = η(ρ), since q > p ≥ 2.

Taking δ = η(ρ)
2ξ3

, we obtain that J (u) ≥ σ := η(ρ)ρ
2 > 0 for all u in X with ‖u‖X = ρ

and for all g ∈ L
p

p−1 (V ) with ‖g‖ p
p−1

≤ δ. ��

Lemma 3.6 Assume ( f1) − ( f3) holds. Then there exists some non-negative function
u ∈ X such that J (tu) → −∞ as t → +∞.

Proof We obtain from ( f2) and ( f3) that there exist positive constants C1 and C2 such
that

F(x, s) ≥ C1|s|α − C2|s|p, ∀(x, s) ∈ V × R, (20)
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where α > p ≥ 2. Let x0 be fixed. Take a function

u(x) =
{
1 x = x0;
0 x �= x0.

Note that F(x, 0) = 0, then we have

J (tu) = t p

p

∫

V
(|∇u|p + h|u|p)dμ −

∫

V
F(x, tu)dμ −

∫

V
g(x)tudμ

= t p

p

∑

x∈V
|∇u|p(x)μ(x) + t p

p

∑

x∈V
h(x)|u(x)|pμ(x)

−
∑

x∈V
μ(x)F(x, tu(x)) −

∑

x∈V
μ(x)g(x)tu(x)

= t p

p

∑

x∈V
|∇u|p(x)μ(x) + t p

p
h(x0)|u(x0)|pμ(x0)

−μ(x0)F(x0, tu(x0)) − μ(x0)g(x0)tu(x0)

= t p

p

∑

x∈V
|∇u|p(x)μ(x) + t p

p
h(x0)μ(x0)

−μ(x0)F(x0, t) − μ(x0)g(x0)t

≤ t p

p

∑

x∈V
|∇u|p(x)μ(x) + t p

p
h(x0)μ(x0) − μ(x0)C1t

α

+μ(x0)C2t
p − μ(x0)g(x0)t .

By the definition of u(x), the nonzero terms of
∑

x∈V
|∇u|p(x)μ(x) are finite, since

G = (V , E) is locally finite graph. Then
∑

x∈V
|∇u|p(x)μ(x) is bounded. Therefore,

J (tu) ≤ t p

p

∑

x∈V
|∇u|p(x)μ(x) + t p

p
h(x0)μ(x0) − μ(x0)C1t

α + μ(x0)C2t
p

−μ(x0)g(x0)t → −∞

as t → +∞, since α > p ≥ 2. ��
Next, we prove that J satisfies (PS)c condition. And first we need the following

two lemmas.

Lemma 3.7 For any u, v ∈ X, it holds that

(�′(u) − �′(v), u − v) ≥ (||u||p−1
X − ||v||p−1

X )(||u||X − ||v||X ). (21)
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Proof We follow the idea of the proof of Lemma 3.1 in [24]. By direct computations,
we have

(�′(u) − �′(v), u − v) = (�′(u), u − v) − (�′(v), u − v)

=
∫

V
(|∇u|p−2�(u, u − v) + h|u|p−2u(u − v))dμ

−
∫

V
(|∇v|p−2�(v, u − v) + h|v|p−2v(u − v))dμ

=
∫

V
(|∇u|p−2�(u, u) − |∇u|p−2�(u, v)

+ h|u|p−2(u2 − uv))dμ

−
∫

V
(|∇v|p−2�(v, u) − |∇v|p−2�(v, v)

+ h|v|p−2(vu − v2))dμ

=
∫

V
(|∇u|p + |∇v|p − |∇u|p−2�(u, v)

− |∇v|p−2�(v, u))dμ

+
∫

V
h(|u|p + |v|p − |u|p−2uv − |v|p−2vu)dμ

= ||u||pX + ||v||pX −
∫

V
(|∇u|p−2�(u, v) + h|u|p−2uv)dμ

−
∫

V
(|∇v|p−2�(v, u) + h|v|p−2vu)dμ.

Applying Hölder’s inequality,

∫

V
(|∇u|p−2�(u, v) + h|u|p−2uv)dμ

=
∫

V
(|∇u|p−2 1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x)) + h|u|p−2uv)dμ

=
∫

V
(|∇u|p−2 1

2μ(x)

∑

y∼x

ω
1
2
xy(u(y) − u(x))ω

1
2
xy(v(y) − v(x)) + h|u|p−2uv)dμ

≤
∫

V
(|∇u|p−2(�(u))

1
2 (�(v))

1
2 + h|u|p−2uv)dμ

=
∫

V
(|∇u|p−2|∇u||∇v| + h|u|p−2uv)dμ

≤
(∫

V
|∇u|pdμ

) p−1
p

(∫

V
|∇v|pdμ

) 1
p +

(∫

V
h|u|pdμ

) p−1
p

(∫

V
h|v|pdμ

) 1
p

.
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Using the following inequality

(a + b)β(c + d)1−β ≥ aβc1−β + bβd1−β, (22)

which holds for any β ∈ (0, 1) and for any a, b, c, d ≥ 0. Set β = p−1
p and

a =
∫

V
|∇u|pdμ, b =

∫

V
h|u|pdμ, c =

∫

V
|∇v|pdμ, d =

∫

V
h|v|pdμ,

(23)

we can get that

∫

V
(|∇u|p−2�(u, v) + h|u|p−2uv)dμ

≤
(∫

V
(|∇u|p + h|u|p)dμ

) p−1
p

(∫

V
(|∇v|p + h|v|p)dμ

) 1
p

= ||u||p−1
X ||v||X . (24)

Similarly, we can obtain

∫

V
(|∇v|p−2�(v, u) + h|v|p−2vu)dμ ≤ ||v||p−1

X ||u||X .

Therefore, we have

(�′(u) − �′(v), u − v) ≥ ||u||pX + ||v||pX − ||u||p−1
X ||v||X − ||v||p−1

X ||u||X
= (||u||p−1

X − ||v||p−1
X )(||u||X − ||v||X ).

��
Lemma 3.8 If un⇀u in X and (�′(un), un − u) → 0, then un → u in X.

Proof Since X is a reflexive Banach space, weak convergence and norm convergence
imply strong convergence. Therefore we only need to show that ||un||X → ||u||X .

Note that

lim
n→∞(�′(un) − �′(u), un − u) = lim

n→∞(�′(un), un − u) − (�′(u), un − u) = 0.

By Lemma 3.7 we have,

(�′(un) − �′(u), un − u) ≥ (||un||p−1
X − ||u||p−1

X )(||un||X − ||u||X ).

Hence ||un||X → ||u||X as n → ∞ and the assertion follows. ��
Now, we prove that J satisfies (PS)c condition.
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Lemma 3.9 Assume (h1), (h2) and ( f1) − ( f3) holds. Then J satisfies the (PS)c
condition for any c ∈ R.

Proof Note that J (uk) → c and J ′(uk) → 0 as k → +∞ are equivalent to

1

p
||uk ||pX −

∫

V
F(x, uk)dμ −

∫

V
g(x)ukdμ = c + ok(1), (25)

and

(�′(uk), v) − (	 ′(uk), v) = ok(1)||v||X , ∀v ∈ X . (26)

Here, ok(1) → 0 as k → +∞. Taking v = uk in (26), we have

||uk ||pX =
∫

V
f (x, uk)ukdμ +

∫

V
g(x)ukdμ + ok(1)||uk ||X . (27)

In view of ( f2), we have by combining (25) and (27) that

||uk ||pX ≤ p

α

[∫

V
f (x, uk)ukdμ +

∫

V
g(x)ukdμ

]

+
(
p − p

α

) ∫

V
g(x)ukdμ + pc + ok(1)

≤ p

α
||uk ||pX +

(
p − p

α

)
‖g‖ p

p−1
‖uk‖p + ok(1)||uk ||X + pc + ok(1)

≤ p

α
||uk ||pX +

(
p − p

α

)
ξ‖g‖ p

p−1
‖u‖X + ok(1)||uk ||X + pc + ok(1).

Then
(
1 − p

α

)
||uk ||pX ≤

(
p − p

α

)
ξ‖g‖ p

p−1
‖u‖X + ok(1)||uk ||X + pc + ok(1),

which implies that {uk} is bounded in X , since α > p ≥ 2. Then Lemma 2.3 implies
that up to a subsequence, there exists u ∈ X such that uk⇀u in X and uk → u in
Ls(V ), 1 ≤ s ≤ +∞.

It follows from (18) that

∣
∣
∣
∣

∫

V
f (x, uk)(uk − u)dμ

∣
∣
∣
∣ ≤

∫

V
| f (x, uk)||uk − u|dμ

≤
∫

V
(ε|uk |p−1 + Cε|uk |q−1)|uk − u|dμ

≤ ε‖uk‖p−1
p ‖uk − u‖p + Cε‖uk‖q−1

q ‖uk − u‖q
≤ εξ1‖uk‖p−1

X ‖uk − u‖p + Cεξ2‖uk‖q−1
X ‖uk − u‖q

= ok(1).
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Note that
∫
V g(x)(uk − u)dμ ≤ ‖g‖ p

p−1
‖uk − u‖p = ok(1). Replacing ϕ by uk − u

in (26), we have

(�′(uk), uk − u) =
∫

V
(|∇uk |p−2�(uk , uk − u) + h|uk |p−2uk(uk − u))dμ

=
∫

V
f (x, uk)(uk − u)dμ +

∫

V
g(x)(uk − u)dμ + ok(1)||uk − u||X

= ok(1),

thus (�′(uk), uk − u) → 0 as k → ∞. Then, by Lemma 3.8 we have uk → u in X
as k → ∞. ��

We have the following conclusion about the perturbation term g.

Lemma 3.10 Suppose that g ∈ L
p

p−1 (V ) and g �≡ 0. Then there exists a function
ϕ ∈ X such that

∫
V g(x)ϕ(x)dμ > 0.

Proof By Lemma 2.1, we know that Cc(V ) is dense in L p(V ). Since |g| p
p−1−2g ∈

L p(V ), there exists a sequence {gn} in Cc(V ) such that gn → |g| p
p−1−2g in L p(V ).

Hence, there exists n0 > 0 such that

‖gn0 − |g| p
p−1−2g‖p ≤ 1

2
‖g‖

1
p−1
p

p−1
.

Obviously, gn0 ∈ X and taking ϕ = gn0 , we have

∫

V
g(x)ϕ(x)dμ =

∫

V
gn0(x)g(x)dμ

≥ −
∫

V

∣
∣
∣gn0(x) − |g(x)| p

p−1−2g(x)
∣
∣
∣ |g(x)|dμ +

∫

V
|g(x)| p

p−1 dμ

≥ −‖gn0 − |g| p
p−1−2g‖p‖g‖ p

p−1
+ ‖g‖

p
p−1
p

p−1

≥ −1

2
‖g‖

1
p−1
p

p−1
‖g‖ p

p−1
+ ‖g‖

p
p−1
p

p−1

= 1

2
‖g‖

p
p−1
p

p−1
> 0.

��
Proof of Theorem 1.1 The proof of this theorem is divided into two steps.

Step 1. In this step we prove that there exists a function u0 ∈ X such that J ′(u0) = 0
and J (u0) < 0. In fact, by Lemma 3.10 and (20), there exists ϕ ∈ X such that

J (tϕ) ≤ t p

p
‖ϕ‖p

X − tαC1‖ϕ‖α
α + t pC2‖ϕ‖p

p − t
∫

V
g(x)ϕdμ < 0,
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for t ∈ (0, 1) small enough and ‖ϕ‖X ≤ ρ, where ρ > 0 is given in Lemma 3.5.
Thus we get c0 = inf{J (u) : u ∈ Bρ} < 0, where Bρ = {u ∈ X : ‖u‖X < ρ}. By
the Ekeland variational principle, Lemma 3.4 and Lemma 3.5, there exists a sequence
{un} ⊂ Bρ such that c0 ≤ J (un) ≤ c0 + 1

n and J (v) ≥ J (un) − 1
n ‖v − un‖X for all

v ∈ Bρ . Then a standard procedure gives that {un} is a bounded (PS) sequence of J .
Therefore, Lemma 3.9 imply that there exists a function u0 ∈ Bρ such that J ′(u0) = 0
and J (u0) = c0 < 0.

Step 2. In this step we prove that there exists a function u1 ∈ E such that
J ′(u1) = 0 and J (u1) > 0. By Lemma 3.5, Lemma 3.6 and Lemma 3.9, J
satisfies all the assumptions of the Mountain Pass theorem. Thus we obtain that
c1 = infγ∈� maxt∈[0,1] J (γ (t)) is the critical value of J , where � := {γ ∈
C([0, 1], X) : γ (0) = 0, γ (1) = e}. In particular, there exists some u1 ∈ X such
that J (u) = c1. By Lemma 3.5, J (u1) = c1 ≥ σ > 0. Thus, 0 �= u1 �= u0.
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