
Revista Matemática Complutense (2023) 36:333–360
https://doi.org/10.1007/s13163-022-00449-8

Evaluating recent methods to overcome spatial
confounding

Arantxa Urdangarin1,2 · Tomás Goicoa1,2,3 ·María Dolores Ugarte1,2,3

Received: 5 October 2022 / Accepted: 28 November 2022 / Published online: 25 December 2022
© The Author(s) 2022

Abstract
The concept of spatial confounding is closely connected to spatial regression, although
no general definition has been established. A generally accepted idea of spatial con-
founding in spatial regression models is the change in fixed effects estimates that
may occur when spatially correlated random effects collinear with the covariate are
included in the model. Different methods have been proposed to alleviate spatial con-
founding in spatial linear regression models, but it is not clear if they provide correct
fixed effects estimates. In this article, we consider some of those proposals to alleviate
spatial confounding such as restricted regression, the spatial+ model, and transformed
Gaussian Markov random fields. The objective is to determine which one provides the
best estimates of the fixed effects. Dowry death data in Uttar Pradesh in 2001, stomach
cancer incidence data in Slovenia in the period 1995–2001 and lip cancer incidence
data in Scotland between the years 1975–1980 are analyzed. Several simulation stud-
ies are conducted to evaluate the performance of the methods in different scenarios of
spatial confounding. Results reflect that the spatial+ method seems to provide fixed
effects estimates closest to the true value although standard errors could be inflated.
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1 Introduction

Research in spatial and spatio-temporal disease mapping has mainly focused on mod-
els for smoothing risks in space and time. The models include spatially and temporally
correlated random effects as proxies of spatially and temporally structured unobserved
covariates with the goal of discovering spatial patterns and their evolution in time. This
information is very valuable in epidemiology and public health to highlight regions
with high risk and as a first step to discover potential risk factors that may be related
to the response of interest. However, this information is somehow preliminar and cur-
rently there is an increasing interest in finding associations between hypothetical risk
factors and the phenomenon under study. Including potential risk factors (covariates)
in a spatial model allows making inference on the strength of the relationship between
the response and the covariate. This is usually known as ecological regression.

Spatial regression models including covariates seem a simpler and intuitive mech-
anism to account for the variability that can be explained by the covariates and the
spatially structured variability that remains unexplained, but they present important
challenges that continue unsolved (or at least partially unsolved). The most important
one is the so called “spatial confounding”. This concept has been commonly used to
explain the difference between the fixed effect estimates in spatial models and sim-
pler models like ordinary regression that do not consider spatial correlation (see for
example [15, 25]). However, there is neither a unique general definition of spatial con-
founding nor a definitive solution. This might be the reason why it has been ignored
in practice despite its important implications.

Clayton et al. [5] comment that when “the pattern of variation of the covariate is
similar to the disease risk, the location may act as a confounder”. Consequently, we
would not be stunned if changes in the fixed effects estimates are observed when a
spatial term is included in the regression. This might be one of the first references
to spatial confounding. Later, Zadnik and Reich [35] conjecture that the change in
fixed effects estimates can be due to collinearity between the fixed effects and the
conditional autoregressive (CAR) spatial random effects. This collinearity between
the fixed effects and the spatial random effects is probably the definition of spatial
confounding in spatial linear models in general, and in disease mapping in particular
(see for example [1, 14–16, 22, 25]).

Recently, Gilbert et al. [11] state that spatial confounding is seldom defined explic-
itly and they point to four phenomena related to this concept. Namely, 1) bias in the
fixed effect estimates due to unobserved variables with spatial pattern; 2) change in
fixed effect estimates due to collinearity between fixed and random effects; 3) bias in
the fixed effect estimates due to the use of functions to control for spatial dependence
such as Markov Gaussian random fields or splines; 4) the challenge of assessing the
effect of a covariate with a smooth spatial distribution. Although they appear different
ideas at first sight, they are closely connected. It is widely accepted that spatial ran-
dom effects (spatial functions) are introduced in the model to adjust for unobserved
covariates and hence improve model fitting. However, they may also compete with the
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observed covariates and then change the fixed effect estimates as an effect of collinear-
ity. Probably, the main difference between these four ideas may be the area of statistics
where they appear. For example the first notion is compatible with the definition of
confounding in causal inference and there are some examples in the literature (see for
example [23, 28]) where spatial confounding is understood as the presence of unmea-
sured variables with a spatial structure that influence both, an observed covariate and
the outcome of interest. In this paper, and to avoid misleading interpretations, we do
not pursue the estimation of causal effects, but a rather modest goal: estimating linear
associations between a covariate (potential risk factor) and the response of interest in
different (spatial) Poisson regression models. We implicitly assume that spatial ran-
dom effects are included in the model as an approximation to the overall effect of the
unobserved covariates [6, 19], and this provokes changes in the fixed effect estimates.
Then, we investigate which model provides the estimate of fixed effects closest to the
true value.

Research on spatial confounding has been focused on existing spatial models to
clarify in which conditions they give valid fixed effects estimates [21]. Probably,
the most extended method for dealing with spatial confounding is restricted spatial
regression (RSR) proposed by Reich et al. [25]. RSR is intended to remove collinear-
ity between the covariate of interest and the spatial random effects by restricting the
latter to the orthogonal complement of the space spanned by the fixed effects. Hence,
the method preserves the fixed effect estimates obtained in a simple regression model
without spatial random effects (henceforth null model). Reich et al. [25] and Hodges
and Reich [15] analyse the association between stomach cancer incidence in Slovenia
and a socioeconomic indicator (covariate) and justify the RSR because they observe a
big change in the fixed effect estimate when a spatial random effect is included in the
model. They also explain how the variance of the fixed effect estimator is inflated in
the spatial model with respect to the null model. The variance obtained with the RSR is
between the variance of the nullmodel and that of the spatialmodel. However, RSRhas
been recently criticised. Khan and Calder [17] show that in linear spatial models with
normal responses the variance of the RSR fixed effect estimator is always less than or
equal to the variance of the null model and hence RSR leads to too liberal inference.
For count data they show through simulations that, in certain scenarios, the null model
andRSRperformworse than the spatialmodel if there is spatial variation not explained
by observed covariates. Additionally, Gilbert et al. [11] affirm that RSR presumes no
confounding bias. This can be understood because RSR assigns all the variability in
the fixed effects direction to the observed convariate assuming that the rest of variabil-
ity is orthogonal to the observed covariate. Consequently, RSR does not consider the
possibility of unobserved overlapping covariates with the observed one and hence the
fixed effect estimate should be equal to the null model. Moreover, for these authors,
collinearity between fixed and random effects should not be a problem as we would
expect a change in fixed effect estimates if we presume there are unobserved covari-
ates. Consequently, the spatial model would account for confounding bias. However,
Hodges and Reich [15] show that even if the unobserved covariates are orthogonal to
the observed ones, the random effects still provoke changes in the fixed effects.

In the literature there are other methods to alleviate spatial confounding. For exam-
ple, Thaden and Kneib [29] propose a geoadditive structural equation model (gSEM)
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based on structural equation techniques to account for spatial dependence in both the
response and the covariate. This method is introduced for Gaussian responses and it
is not clear how to extend it to non-normal cases because there are two likelihood
functions that are modeled together, one for the covariate and one for the response.
Additionally, it requires more than one observation per area, precluding its use in
disease mapping. Recently, Dupont et al. [9] propose a method called spatial+ which
is a modification of the spatial model. Spatial+ removes spatial dependence from the
covariates by fitting spatial spline models to them. The residuals of these fits are then
used as explanatory covariates in the spatial regression model for the outcome. The
method seems a promising and simple technique to obtain correct fixed effects esti-
mates.Adifferent approach, based on transformedGaussianMarkov randomfields and
Gaussian copulas, has been proposed by Prates et al. [24]. The advantage of themethod
is that the spatial dependence does not interfere with the fixed effects avoiding spatial
confounding. All these methods are not free from inconveniences and the main diffi-
culty is to showwhen and inwhat circumstances they alleviate confounding effectively.

The main goal of this work is to assess how well recent methods designed to alle-
viate spatial confounding estimate the fixed effects when there are additional spatially
structured variability unexplained by the observed covariates. In particular, we focus
on areal count data. For this aim, we simulate several scenarios using different data
generating mechanisms that include one observed covariate and additional variabil-
ity, and fit the different models to compare the fixed effect estimates. We also use
the different approaches to revisit real data. Model fitting and inference are carried
out from a full Bayes approach using two main techniques: integrated nested Laplace
approximations (INLA) and Markov chain Monte Carlo (MCMC) methods.

The rest of the paper is organized as follows. Section 2 briefly introduces the meth-
ods used in this work to alleviate spatial confounding. Section 3 illustrates themethods
analysing dowry deaths in Uttar Pradesh registered in 2001 [32], the Slovenian stom-
ach cancer data in the period 1995-2001 [35] and the well known Scottish lip cancer
data during the years 1975-1980 (see for example [4]). Section 4 is devoted to a vast
simulation study. Finally, the paper closes with a discussion.

2 Methods to alleviate spatial confounding

Throughout this section we assume a large domain (e.g. a country) divided into n
small areas (i.e. provinces or districts) labelled as i = 1, 2, . . . , n. Denote by Yi the
number of deaths (or incident cases) in the i th small area. Then, conditional on the
relative risk ri , Yi is assumed to be Poisson distributed with mean μi = eiri , where
ei represents the number of expected cases for area i . That is

Yi |ri ∼ Poisson(μi = eiri ), and logμi = log ei + log ri .

In the following, we review some models for log ri that have been proposed in the
literature to deal with confounding.
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2.1 Spatial model

Spatial regression models include spatial effects to account for the similarity of nearby
observations and hence induce spatial smoothness. In disease mapping, Gaussian
Markov random fields (GMRF) are used to model spatial random effects (see for
example [26]). In particular conditional autoregressive spatial random effects (CAR)
have been broadly adopted to capture the spatial dependence that remains unexplained
in the model after accounting for covariates. Here, the vector containing the log risks,
log r , is modeled as

log r = 1nα + Xβ + ξ (1)

where r = (r1, r2, . . . , rn)
′
is the vector of relative risks, 1n is a column vector of

ones of length n, α can be interpreted as an overall risk, X = (X1, . . . , X p) is an
n × p matrix whose columns X j , j = 1, . . . , p are the observed covariates, and
β = (β1, β2, . . . , βp)

′
is the vector of regression coefficients corresponding to the

p observed covariates. Finally, ξ = (ξ1, ξ2, . . . , ξn)
′ is the vector of spatial random

effects which is assumed to follow an intrinsic conditional autoregressive (ICAR) prior
[2], that is, an improper distribution with Gaussian kernel p(ξ) ∝ exp(− 1

2σ 2
ξ

ξ
′
Qξ ξ).

Here, Qξ is the neighbourhood matrix defined as Qξ(i j) = −1 if areas i and j are
neighbours and 0 otherwise, and Qξ(i i) is equal to the number of neighbours of the
i th region. Alternatively, spatial effects can be modelled using a smooth function of
the coordinates longitude and latitude, that is

log r = 1nα + Xβ + f (s1, s2), (2)

where (s1, s2) are the coordinates (longitude and latitude) of the centroid of the small
areas, and f (s1, s2) = ( f (s11, s12), f (s21, s22), . . . , f (sn1, sn2))

′
is a smooth func-

tion to be estimated using, for example, P-splineswith aB-spline basis (see for example
[13, 30, 31]).

Ignoring the spatial dependence ξ or f in (1) and (2) we obtain the null model, that
is, the model without spatial effects. In our case, a simple Poisson regression model,
i.e.

log r = 1nα + Xβ. (3)

The nullmodel implicitly assumes that all the variability in the response is explained
by the observed covariates and there is no confounding bias due to unobserved covari-
ates. Note that spatial models would lead to a change in the fixed effects estimates
in comparison to the null model due to the collinearity between the fixed and the
random effects. This alleviates confounding according to Gilbert et al. [11]. Here we
understand collinearity between the fixed and the CAR random effects as a collinear-
ity problem between the covariates with spatial structure and the eigenvector of the
CAR precision matrix corresponding to the lowest non-null eigenvalue. For a more
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explicit reformulation of the spatial model (1) highlighting the collinearity issue, see
for example Reich et al. [25] or Goicoa et al. [12].

2.2 Restricted spatial regressionmodel

Restricted spatial regression (RSR) is probably the most popular method to deal with
spatial confounding and was first proposed by Reich et al. [25] to avoid collinear-
ity between fixed and spatial random effects. These authors studied the association
between a socioeconomic indicator and stomach cancer incidence in Slovenia. At first
sight, they observed that the standardized incidence ratios (SIR), defined as the number
of observed cases in one area divided by the number of expected cases in the same area,
and the socioeconomic status exhibited strong spatial patterns. Moreover, a clear neg-
ative association between SIR and the socioeconomic status was detected. The authors
first fitted a Poisson regression model (null model) with the socioeconomic status as
a single covariate. Secondly, they fitted a spatial model adding spatial random effects
that follow the convolution prior proposed by Besag et al. [3]. They observed that the
estimate of the fixed effect in the null and the spatial model changed dramatically: the
posterior mean of the fixed effect changed from −0.137 (null) to −0.022 (spatial) and
the posterior variance changed from 0.0004 (null) to 0.0016 (spatial). In the case of
the Slovenia data, after including the spatial random effects in the model, the negative
association between the socioeconomic indicator and stomach cancer disappeared.

To solve this problem, Reich et al. [25] proposed restricted spatial regression (RSR),
a method that consists of restricting the spatial random effects to the space orthogonal
to the fixed effects. For count data, the RSR model is expressed as

log r = 1nα + Xβ + Ŵ−1/2LL
′
Ŵ1/2ξ (4)

where the columns of L are the eigenvectors having non-null eigenvalues of the projec-
tion matrix In − Ŵ1/2X∗(X

′
∗ŴX∗)−1X

′
∗Ŵ1/2, which projects onto the orthogonal

space of Ŵ1/2X∗ being X∗ = [1n, X] and W a diagonal matrix of weights with
Wii = Var(Yi | α,β, ξ) = μi . In practice, the matrix Ŵ is obtained by fitting the
spatial model (1). Note that the RSRmodel (4) removes collinearity between the fixed
and random effects as the combination of Ŵ1/2ξ in the span of Ŵ1/2X∗ is deleted.

RSR removes collinearity, but all the variability in the direction of the fixed effects
is attributed to the observed covariate, consequently it implicitly asumes that there
is no unobserved covariate that may produce confounding bias. Then, according to
Gilbert et al. [11], RSR is not a method to alleviate spatial confounding. Additionally,
Khan and Calder [17] and Zimmerman and Ver Hoef [36] have demonstrated that
in spatial models with normal responses the variances of the fixed effects estimates
obtained with RSR are less than or equal to the variances obtained with the null model.
Consequently, the credible intervals are narrower leading to small coverage rates and
an increase of Type-S error rates. The Type-S error is the Bayesian analogue to the
frequentist Type I error (see for example [14]). That is, a Type-S error occurs if a 95%
equal-tailed credible interval for the regression parameter does not contain zero when
the regression parameter is truly zero.
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2.3 Spatial+method

Very recently, Dupont et al. [9] have proposed a novel approach to reduce spatial con-
founding when the covariate of interest is spatially structured. These authors show that
the bias in the fixed effect estimate is due to spatial smoothing. The Spatial+ method is
a modification of the spatial model and reduces bias by eliminating the spatial depen-
dence of the covariate. The method consists of two steps: first, the spatial dependence
of the covariate is removed through a model that we will denote as covariate model.
Second, the spatial model is fitted replacing the covariate by the residuals obtained in
the first step. We will call this model spatial+ final model. The authors introduce the
method using thin plate splines for the spatial effects in both the covariate model and
the spatial+ final model. Here we also deal with the spatial dependence in the covari-
ate model using P-splines or including the eigenvectors of the precision matrix Qξ

corresponding to a specific number of the non-null lowest eigenvalues as covariates
in a linear model where the observed covariate is now the response. Note that these
eigenvectors (in particular the one corresponding to the lowest non-null eigenvalue)
are responsible for the collinearity between the fixed and random effects [25]. In more
detail, the spatial+ method starts from the spatial model (2),

log r = 1nα + Xβ + f

where f is a spatial term originally modeled with splines (see [9]). Given the j th
covariate X j , j = 1, . . . , p, we consider the covariate model

X̃ j = ψ̃ j + ε̃ j (5)

where X̃ j = Ŵ
1/2

X j , ψ̃ = Ŵ
1/2

ψ , ε̃ j = Ŵ
1/2

ε j , and ε j ∼ N (0, σ 2
X j

In). Here,
σX j is the standard deviation of the independent and identically distributed errors in
the j th covariate model, In is an n × n identity matrix, and W is the same diagonal
matrix of weights fromModel (4). Finally,ψ are spatial effects that can be modeled in
two ways. The first one consists of including the eigenvectors of the precision matrix
Qξ corresponding to the k lowest non-null eigenvalues as covariates, so that model
(5) is a weighted linear regression model. Here we choose k so that it is at least 5% and
at most 30% of the total number of eigenvectors. The second option uses P-splines or
thin plate splines to model the spatial dependence of the covariate.

The residuals of each covariate j are Z̃ j = X̃ j − ψ̃ j . Once the weighted residuals

are computed, they are transformed to the original scale Z j = Ŵ
−1/2

Z̃ j (see [9],
for details). The residuals Z j are standardized before including them in the spatial+
model.

Finally, the spatial+ final model is fitted replacing the matrix of covariates X in (2)
by the matrix of residuals Z as

log r = 1nα + Zβ + f . (6)
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Note that in this paper the spatial term f is modeled using ICAR random effects or
using splines.

2.4 Transformed GaussianMarkov Random Field (TGMRF) model

Transformed Gaussian Markov Random Fields (TGMRF) were introduced by Prates
et al. [24] and are based on the general Gaussian graphical model proposed by Dobra
and Lenkoski [8]. The interpretation of the fixed effects is the same as in the previous
methods and the main advantage is that the spatial dependence does not interfere with
the fixed effects.

In the previous models (spatial model, RSR, and spatial+ model), the main idea is
to connect the covariate and the spatial effects with the relative risks using a given link
function g(). In our case, g(r) = log r . Then, the dependence between the relative
risks ri is induced by the prior distribution of the spatial effects. TGMRF provides
an alternative way that specifies any positive continuous distribution for the marginal
distributions of the relative risks where the covariate effects are introduced in the
parameters of themarginal distribution and the spatial dependence structure is captured
thanks to the use of a Gaussian copula. Copulas are functions that join multivariate
distribution functions to their one-dimensional marginal distribution functions [20].
Sklar’s theorem illustrates the role that copulas play in the relationship between mul-
tivariate distribution functions and their univariate margins (see Section 2.3 of [20]).

Assuming that areal count data follow a Poisson distribution, the TGMRF model
is expressed as,

r ∼ TGMRF(F,�), (7)

where r = (r1, r2, . . . , rn)
′
is the vector of relative risks, F = (F1, F2, . . . , Fn)

′
, Fi

is the marginal distribution of ri , and � is a correlation matrix that determines the
spatial dependence structure in the Gaussian copula. Details about how the marginal
distributions for the relative risks are defined in this work, as well as the way of
specifying the spatial correlation matrix � are available in Appendix B. In short,
the TGMRF method defines the n-dimensional distribution function of the vector of
relative risks r , denoted as H , in two steps. First, a marginal distribution Fi is choosen
for each ri . Then, the multivariate distribution function of r is defined as

p(r1 ≤ a1, . . . , rn ≤ an) = H(a1, . . . , an | �, F1, . . . , Fn)

= C(F1(a1), . . . , Fn(an) | �)

where C(u1, . . . , un | �) = �n(�
−1(u1), . . . , �−1(un) | �) : [0, 1]n → [0, 1] is

a Gaussian copula, �n(·) is the cumulative distribution function of the multivariate
normal distribution N (0, �) [8], and �−1 is the cumulative distribution function of
the standard normal random variable. TGMRFs avoid spatial confounding since the
covariates are included in the parameters of the marginal distributions Fi , and as a
second step, the spatial dependence is introduced with the Gaussian copula.
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In Poisson models, the most common choice for the marginal distribution of each
ri is the Gamma distribution. If the covariates are included in the scale parameter, the
marginal distribution Fi is of the form

�(1/υ, υ exp(X i,· β))

where υ > 0 and X i,· is the ith row of the covariate matrix X . When the covariates
are included in the shape parameter, the marginal distribution Fi takes the form

�(exp(X i,· β)/υ, υ).

The TGMRF model is fitted within a full Bayesian framework using Markov chain
Monte Carlo (MCMC) algorithms to draw samples from the posterior distribution of
the parameters of interest. The authors of the method have created an R package called
TMGMRFwhich implements theTGMRFmethod usingNIMBLE [7], and it is available
at https://github.com/DouglasMesquita/TGMRF. The rest of the models are fitted
using INLA [27]. Note that INLA provides posterior distributions of the quantities of
interest, but it does not rely on MCMC algorithms, thus reducing computing time.

3 Real data analyses

In this section, three real data sets are used for illustration purposes: dowry deaths data
in Uttar Pradesh in 2001 (see [32]), stomach cancer incidence data in Slovenia over the
period 1995-2001 [35], and lip cancer incidence data in Scotland during 1975-1980
[4].

All the methods introduced in Sect. 2 are fitted to each dataset to estimate the
relationship between the relative risks and the covariate of interest. Namely, the null
model, the spatial model, the RSR, the spatial+ model and the TGMRFmodel. A CAR
prior for the spatial random effects has been considered in all models. Additionally,
the spatial dependence has been modelled using P-splines in the spatial+ method.
Regarding the spatial+ technique, twomain different approaches have been considered
in the covariate model to remove the spatial dependence. In the first one we fit a
linear model where the covariate of interest is the response and the k eigenvectors
corresponding to the k lowest non-null eigenvalues of the precision matrix Qξ are the
regressors. In the second one, we model the spatial dependence in the covariate using
P-splines or thin plate splines. The number of eigenvectors depends on the dimension
of the matrix Qξ , i.e, the size of the map. Here a minimum of 5 eigenvectors have been
chosen for all data sets whereas the maximum number ranges between 15 and 40. The
spatial dependence in the second step of the spatial+ approach has beenmodelled using
an ICAR prior or P-splines. Finally, we fit TGMRF models with gamma marginal
distributions including the covariates in both, the scale (TGMRF1) and the shape
parameter (TGMRF2). Table 1 displays the notation of the different proposals for
the spatial+ approach depending on how we deal with the spatial dependence in the
covariate model and in the spatial+ final model.
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Table 1 Different proposals for
the spatial+ approach depending
on how we deal with the spatial
dependence in the covariate
model and in the spatial+ final
model

Name Covariate model Spatial+ final

SpatPlus5 5 eigenvectors ICAR prior

SpatPlus10 10 eigenvectors ICAR prior

SpatPlus15 15 eigenvectors ICAR prior

SpatPlus20 20 eigenvectors ICAR prior

SpatPlus30 30 eigenvectors ICAR prior

SpatPlus40 40 eigenvectors ICAR prior

SpatPlusP1 P-splines ICAR prior

SpatPlusTP1 Thin plate splines ICAR prior

SpatPlusP2 P-splines P-splines

SpatPlusTP2 Thin plate splines P-splines

The column Covariate model indicates the way we remove the spatial
dependence of the covariate and the column Spatial+final indicates
how we take account of the spatial dependence in the spatial+ final
model

We fit all the models with R, version 4.0.4. For the TGMRF models, we ran three
MCMC chains for each model with 10000 iterations each discarding the first 2000 as
a burn-in period. One out of every 20 iterations was saved leading to a total of 1200
iterations. For these models we use the TGMRF package. The rest of the models were
fitted using the R-INLA package [18] version 21.02.23 (dated 2021-04-08) with the
full laplace strategy. As recommended by Gelman [10], a vague uniform prior on the
standard deviation σξ was considered in the spatial, the RSR, and the spatial+ model
with ICAR spatial random effects. A vague normal prior with mean 0 and precision
0.001 is considered for the regression coefficients.

Regarding the dimension of the spline bases in the spatial+ method, the dimension
of the thin plate spline basis is 17 for the Uttar Pradesh and the Scotland data. For the
Slovenia data, we use dimension 30 as we have more areas. For the P-splines, a total of
11 internal knots were chosen for themarginal bases (longitude and latitude) leading to
bases of dimension 13 for the Uttar Pradesh and Scotland data. For the Slovenia data,
28 internal knots are considered giving rise to bases of dimension 30. Finally, cubic
polynomials were chosen for the marginal B-spline bases and a RW2 prior distribution
on the unknown coefficients was used. The mgcv package (version 1.8-40) was used
to fit the covariate model with thin plate splines in the spatial+ approach [34]. Finally,
to compare the models in terms of goodness of fit and complexity, we compute the
Watanabe-Akaike Information Criterion, WAIC, [33].

3.1 Dowry death data in Uttar Pradesh

Very succinctly, dowry is the amount of money, properties or goods that the bride’s
family gives to the groom’s relatives before or after the marriage. The dowry was first
designed to protect women from unfair traditions, but it has evolved to an extortion
practice and female exploitation. In brief, the groom or the groom’s relatives use
physical and psychological violence against the woman as ameans to achieve a greater
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Fig. 1 Standardized sex ratio covariate in Uttar Pradesh in 2001

dowry. This violence can be extended over time ending up in the death of the woman.
This is known as a dowry death. Although any form of dowry is prohibited in India,
it is still a widespread practice in that country. For more precise details about dowry
and dowry death, the reader is referred to Vicente et al. [32].

In this section, we analyze the number of dowry deaths in 70 districts of Uttar
Pradesh in the year 2001. Uttar Pradesh is the Indian state with the highest population
and the highest rate of dowry deaths. The goal is to assess if there is a linear association
between the covariate sex ratio, defined as the number of females per 1000 males,
and the risk of dowry deaths. Figure 1 shows that the standardized sex ratio has a
clear spatial pattern, and hence a collinearity problem with the spatial random effects
may exist. Additionally, given the complexity of the dowry death problem, it is very
plausible that other unobserved covariates (potential risk factors) may be associated
with the dowry deaths and hence confounding bias may appear. Table 2 provides the
posterior means of sex ratio, their posterior standard errors, and 95% credible intervals
obtained with the different models. The last column of the table shows theWAIC. The
differences in the estimates are clear. According to the credible intervals, only two
models, the null and the RSR, point towards a significant negative linear association
between sex ratio and dowry death relative risk. Spatial and TGMRF models also
indicate a negative association, but the 95% credible intervals contain 0. The rest
of models (spatial+ models) provide posterior mean estimates of sex ratio around
zero, indicating that the variable is not significant. Regarding standard errors, the
TGMRF models lead to higher posterior standard deviations than the spatial models.
The spatial+ approach provides posterior standard deviations somewhere in between
the null and RSR, and the spatial models. According to WAIC, all the spatial models
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Table 2 Dowry death analysis in Uttar Pradesh: posterior means of the sex ratio coefficient, posterior
standard deviations and 95% credible intervals obtained with different models

Model Mean SD 95% CI WAIC

Null − 0.3000 0.0238 (−0.3470, −0.2537) 699.4357

Spatial − 0.0918 0.0689 (−0.2265, 0.0449) 463.2098

RSR − 0.2965 0.0226 (−0.3413, −0.2524) 463.1667

TGMRF1 − 0.1169 0.0703 (−0.2517, 0.0278) 461.9326

TGMRF2 − 0.1004 0.0907 (−0.3020, 0.0716) 462.3681

SpatPlus5 0.0012 0.0439 (−0.0855, 0.0875) 462.0703

SpatPlus10 − 0.0092 0.0406 (−0.0892, 0.0705) 462.0420

SpatPlus15 − 0.0160 0.0379 (−0.0908, 0.0582) 461.9874

SpatPlus20 − 0.0227 0.0367 (−0.0952, 0.0493) 461.8523

SpatPlusP1 0.0166 0.0360 (−0.0544, 0.0870) 462.5284

SpatPlusTP1 − 0.0043 0.0383 (−0.0801, 0.0706) 462.1572

SpatPlusP2 0.0401 0.0242 (−0.0074, 0.0876) 495.9132

SpatPlusTP2 0.0239 0.0268 (−0.0281, 0.0771) 498.2783

The last column shows the WAIC for each of the models

but SpatPlusP2 and SpatPlusTP2 lead to similar fits. Clearly, the null model provides
the less satisfactory fit.

3.2 Stomach cancer incidence data in Slovenia

This data set was first analysed by Zadnik and Reich [35]. The objective is to assess
the association between a socioeconomic indicator and the stomach cancer incidence
in different regions of Slovenia during the period 1995-2001. Reich et al. [25] and
Hodges and Reich [15] display the maps of the standardized incidence ratios and
the socioeconomic indicator and they observe a negative association. Table 3 shows
the posterior mean estimates of the socioeconomic indicator, their posterior standard
deviations, and 95% credible intervals as well as theWAIC obtained with the different
models. The null model, RSR and the TGMRFmethods estimate a negative regression
coefficient for socioeconomic status and the 95% credible interval does not include 0.
Otherwise, spatial and spatial+ models estimate regression coefficients very close to
0 and not significant. Similar to the dowry death data, the TGMRF models provides
standard errors similar to the spatial model. The null and RSR models lead to the
lowest posterior standard deviation, and the spatial+ methods gives posterior standard
deviation somewhere in between. Again, all the spatial models but SpatPlusP2 and
SpatPlusTP2 lead to similar fits.

3.3 Lip cancer incidence data in Scotland

Finally, lip cancer incidence data in Scotland during 1975-1980 is analyzed. A covari-
ate indicating the proportion of the population engaged in agriculture, fishing, or
forestry, hereafter named AFF, is included in the models (see for example [4]).
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Table 3 Stomach cancer incidence analysis in Slovenia: posterior means of the socioeconomic coefficient,
posterior standard deviations and 95% credible intervals obtained with different models

Model Mean SD 95% CI WAIC

Null −0.1356 0.0197 (−0.1743, −0.0968) 1146.7657

Spatial −0.0351 0.0394 (−0.1116, 0.0431) 1082.9798

RSR −0.1345 0.0200 (−0.1736, −0.0953) 1082.6928

TGRMF1 −0.1028 0.0363 (−0.1695, −0.0335) 1078.8055

TGMRF2 −0.0969 0.0377 (−0.1646, −0.0148) 1079.9230

SpatPlus5 −0.0201 0.0282 (−0.0751, 0.0356) 1082.3850

SpatPlus10 −0.0215 0.0283 (−0.0766, 0.0345) 1082.4636

SpatPlus15 −0.0184 0.0288 (−0.0746, 0.0383) 1082.1826

SpatPlus20 −0.0203 0.0285 (−0.0761, 0.0359) 1082.1264

SpatPlus30 −0.0124 0.0290 (−0.0692, 0.0448) 1082.2326

SpatPlus40 −0.0075 0.0273 (−0.0613, 0.0462) 1082.0517

SpatPlusP1 −0.0275 0.0289 (−0.0839, 0.0295) 1082.3290

SpatPlusTP1 −0.0150 0.0283 (−0.0704, 0.0408) 1082.2640

SpatPlusP2 −0.0418 0.0242 (−0.0890, 0.0058) 1144.2430

SpatPlusTP2 −0.0261 0.0236 (−0.0723, 0.0203) 1145.3580

The last column shows the WAIC for each of the models

Table 4 provides the posterior estimates of the regression coefficient of AFF with their
posterior standard deviations, 95% credible intervals and WAIC values. The methods
estimate a positive regression coefficient for AFF. However, all the spatial+ models,
except the one with 5 eigenvectors as regressors and the ones that model the spatial
dependence in the spatial+ final model with splines, provide 95% credible intervals
that include 0, hence discarding an association between AFF and lip cancer incidence
relative risks.

In summary, depending on themodel used to analyse the data, different estimates of
the fixed effects and standard errors are obtained. We note that standard errors seem to
be too high in several models. In terms of goodness of fit, the null model presents larger
WAIC values than the rest of the methods, so it is not an adequate model for smoothing
the risks. Differences among the rest of the models are minor indicating that the
procedures lead to a similar smoothing. SpatPlusP2 and SpatPlusTP2 models provide
larger values of WAIC than the others. This might probably happens because they
oversmooth the risks. Due to the observed discrepancies in the estimates, a simulation
study is performed to evaluate which model recovers best the true value of the fixed
effects in several scenarios of spatial confounding. Additionally, we also evaluate
which model provides appropriate estimates of the standard error.

4 Simulation study

In this section, we conduct a complete simulation study to evaluate how the different
models estimate the fixed effects in the presence of spatial confounding. For the sim-
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Table 4 Lip cancer incidence analysis in Scotland: regression coefficient estimates of AFF with their
standard deviations and 95% credible intervals

Model Mean SD 95% CI WAIC

Null 0.5028 0.0406 (0.4228, 0.5822) 460.9447

Spatial 0.2383 0.0881 (0.0600, 0.4066) 294.0840

RSR 0.5425 0.0447 (0.4546, 0.6299) 294.0726

TGRMF1 0.2529 0.0898 (0.0813, 0.4134) 292.8233

TGMRF2 0.1845 0.0743 (0.0438, 0.3277) 292.8233

SpatPlus5 0.1650 0.0802 (0.0037, 0.3196) 292.7422

SpatPlus10 0.0786 0.0751 (−0.0714, 0.2244) 292.4676

SpatPlus15 0.0673 0.0787 (−0.0892, 0.2203) 292.5820

SpatPlusP1 0.0944 0.0776 (−0.0613, 0.2440) 293.1708

SpatPlusTP1 0.0434 0.0780 (−0.1124, 0.1944) 293.0236

SpatPlusP2 0.1425 0.0535 (0.0358, 0.2459) 330.4622

SpatPlusTP2 0.1266 0.0546 (0.0180, 0.2325) 331.1734

The last column shows the WAIC for each of the models

ulation, we use the geographical setup of Uttar Pradesh consisting of 70 connected
districts and the standardized observed covariate sex ratio, denoted as X1. To simulate
the log risks, we use X1 and an additional covariate X2 which is generated to have
high, intermediate and low correlation with X1. The X2 variable will play the role of
an unobserved covariate.

We consider two different scenarios named Simulation study 1 and Simulation
study 2.

Simulation study 1: The goal of this simulation study is to assess how well the
different models estimate the fixed effect X1 when there is spatial confounding. To
do this, the data generating model includes both covariates X1 and X2, and additional
spatial variability is added in some scenarios. Then we fit the models without the
covariate X2. Note that X2 is treated as an unobserved covariate in the fitted models
that may produce spatial confounding. In more detail, we first generate the logarithm
of relative risks and then we simulate the counts using the Poisson distribution, that is

log r = Xβ + S (8)

Y k |r ∼ Poisson(μ = er), (9)

where k = 1, . . . , K , X = (X1, X2), e is the vector of expected cases taken from the
real case study (dowry deaths data), and β = (β1, β2)

′
. Here, β = (0.2, 0.3)

′
. Note

that the generating model includes both covariates X1 and X2 to simulated the log
risks. Finally, S is a term to introduce additional spatial variability. Three different
scenarios are considered depending on how we generate the term S.

• Scenario 1: Here we do not include additional spatial variability. That is S = 0.
• Scenario 2: The spatial variability is generated using an ICARmodel, that is S = ξ

with p(ξ) ∝ exp(− 1
2σ 2

ξ

ξ
′
Qξ ξ) and σ 2

ξ = 0.2.
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• Scenario 3: The spatial variability is a smooth surface built using P-splines. That is
S = f (s1, s2) = Bsθ defined as in Ugarte et al. [30], where s1 and s2 are vectors
containing the longitude and latitude of the centroids of the small areas, Bs is a two
dimensional B-spline basis of dimensions n×k1k2, and θ = (θ1, θ2, . . . , θk1k2)

′ is
the vector of coefficients. Here, the number of elements of the marginal B-splines
bases for longitude and latitude is set to k1 = k2 = 13, leading to 169 elements
in the spatial B-spline basis Bs . To generate a smooth surface, the following prior
is considered for the coefficients, θ ∼ N (0, P), where P = λ1 Ik1 ⊗ D′

1D1 +
λ2D′

2D2⊗ Ik2 is a precisionmatrix and D1 and D2 are differencematrices of order
2. Here, different degree of smoothing is considered for longitude and latitude (see
[30]). In particular, the hyperparameters that control the amount of smoothing in
longitude and latitude are set at λs1 = 1.22 and λs2 = 8.87.

For each one of these scenarios, three subscenarios have been generated according
to a high, medium or low correlation between the covariates X1 and X2. Namely,
subscenario 1 with cor(X1, X2) = 0.8, subscenario 2 with cor(X1, X2) = 0.5, and
subscenario 3 with cor(X1, X2) = 0.2. Figure 2 displays the spatial patterns of the
covariates, the ICAR and the smooth spatial surfaces. The first row shows the spatial
patterns of the covariates when the correlation is 0.8. The second row shows the spatial
patterns of the covariates when the correlation is 0.5, and the third row corresponds to
correlation 0.2. Note that the ICAR and the smooth spatial pattern are simulated only
once and they are the same in the three rows. The correlations between sex ratio and
the spatial effects simulatedwith an ICAR or using P-splines are cor(X1, ξ) = 0.5865
and cor(X1, f (x1, x2)) = 0.1998 respectively. In total we have 9 scenarios, and for
each one we generate K = 100 data sets. Table 5 summarizes the details of all the
scenarios in Simulation Study 1.

Simulation study 2: The goal of this simulation study is to assess Type-S error
rates to complement the information in Simulation study 1. In this simulation study
the log risks are simulated using X1 and additional spatial variability. Then, themodels
are fitted including X2 to see if any of the models tend to identify this covariate as
significant when in fact it is not part of the generating model. The generating process
is similar to the one in Simulation study 1, but now β2 = 0 to remove the covariate
X2.

All the methods introduced in Sect. 2 are fitted to the simulated data. The goal of
the study is to assess how well the different methods recover the true value of the
fixed effect coefficient and how the posterior standard deviation approximates the true
standard error of the estimator. In addition, a method with low Type-S error rates is
preferred. Regarding TGMRF approach, both TGMRF1 and TGMRF2 provide pretty
similar results, so to conserve space we only report on TGMRF1.
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Fig. 2 From left to right, spatial patterns of the covariate sex ratio (X1), the simulated covariate X2,
and spatial effects simulated with an ICAR (Scenario 2) or using P-splines (Scenario 3). In the top row
cor(X1, X2) = 0.8, in the middle row cor(X1, X2) = 0.5, and in the bottom row cor(X1, X2) = 0.2

4.1 Simulation study 1: Results

The goal of the simulation study is two-fold. On the one handwe evaluate howwell the
different methods estimate the fixed effects, something crucial to establish the linear
relationship between the response and the covariates. On the other hand, we also
investigate if the models recover the true risk surface, something relevant to identify
potential risk factors.

Table 6 provides the average over the 100 simulated data sets of the posterior means
and posterior standard deviations of the regression coefficient β1 obtained with the
different models in each simulated Scenario. The results are interesting. In Scenario
1, we observe a highly biased fixed effect estimates for the null, the spatial, the RSR
and the TGMRF methods when the correlation between the observed (X1) and the
unobserved (X2) covariates is high. In this situation, it appears that the estimated β1
captures the effect of both covariates X1 and X2. The bias reduces when the correla-
tion between the two covariates decreases. In Scenario 1, the spatial+ method with 15
eigenvectors recovers pretty well the true value of β1 if the correlation is high. With
moderate correlation, 5 or 10 eigenvectors give nearly unbiased estimates. When the
correlation is low, the null, the spatial, the RSR, and the TGMRF lead to fixed effects
estimates with the lowest bias. Additionally, we observe that the spatial model leads to
the highest posterior standard deviation of the fixed effects, whereas the null and RSR
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Table 5 Different scenarios considered in Simulation study 1 depending on the data generating model

Simulation study 1 Scenario 1 Subscenario 1

log r = Xβ cor(X1, X2) = 0.8

Subscenario 2

cor(X1, X2) = 0.5

Subscenario 3

cor(X1, X2) = 0.2

Scenario 2 Subscenario 1

log r = Xβ + ξ cor(X1, X2) = 0.8

Subscenario 2

cor(X1, X2) = 0.5

Subscenario 3

cor(X1, X2) = 0.2

Scenario 3 Subscenario 1

log r = Xβ + Bsθ cor(X1, X2) = 0.8

Subscenario 2

cor(X1, X2) = 0.5

Subscenario 3

cor(X1, X2) = 0.2

The second column indicates the data generating model in each of the scenarios. The third column specifies
the correlation between X1 and X2 in each of the subscenarios

models provide the lowest posterior standard deviation. The rest of models provide
posterior standard deviations somewhere in between. Results for Scenarios 2 and 3
are somewhat different as additional variability is included through an ICAR model
and P-splines respectively. In both scenarios, the null, the spatial, the RSR, and the
TGMRF models lead to highly biased fixed effects estimates irrespective of the corre-
lation between X1 and X2, though the bias reduces when the correlation decreases. In
Scenario 2, the spatial+ methods again recover pretty well the β1 coefficient, though
now we need to increase the number of eigenvectors in the covariate model. The num-
ber of eigenvectors needed is smaller when the correlation between the covariates is
low. In this scenario, the TGMRFmodel produces the highest posterior standard devi-
ations. Similar results are observed in Scenario 3. Here, the highest posterior standard
deviations correspond to the spatial model whereas the smallest come from the null
and the RSR. In this scenario, the posterior standard errors obtained with the TGMRF
models are pretty similar to those of the spatial model.

To inspect visually the different methods, Fig. 3 shows the boxplots of the posterior
means of β1 over the 100 simulated data sets for Scenario 1. The first row shows the
boxplots when the correlation between X1 and X2 is 0.8. The second row shows the
boxplots when correlation is 0.5 and the third row shows the boxplots for correlation
0.2. Figures A1 and A2 in the Appendix A display the same boxplots for Scenarios
2 and 3 respectively. Interestingly, the bias of the null, RSR, spatial and TGMRF
models reduces when the correlation between the covariates decreases. This reduction
is particularly remarkable in Scenario 1. Additionally, Table A1 in the Appendix A
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Table 6 Posterior means and standard deviations of β1 based on 100 simulated datasets for Simulation
study 1, Scenarios 1, 2 and 3 and cor(X1, X2) = 0.8, 0.5 and 0.2

Model True value cor 0.80 cor = 0.50 cor = 0.20

Mean SD Mean SD Mean SD

Scenario 1 Null 0.2000 0.4551 0.0160 0.3277 0.0168 0.2353 0.0175

Spatial 0.4603 0.0448 0.3240 0.0593 0.2299 0.0665

RSR 0.4569 0.0160 0.3277 0.0171 0.2343 0.0178

TGRMF1 0.4446 0.0313 0.3383 0.0449 0.2460 0.0505

SpatPlus5 0.2838 0.0377 0.1940 0.0407 0.1359 0.0429

SpatPlus10 0.2284 0.0438 0.1920 0.0398 0.1443 0.0403

SpatPlus15 0.1861 0.0410 0.1436 0.0386 0.1029 0.0383

SpatPlus20 0.1486 0.0401 0.1389 0.0361 0.1077 0.0359

SpatPlusP1 0.1177 0.0386 0.0986 0.0361 0.0763 0.0356

SpatPlusTP1 0.1579 0.0409 0.1350 0.0378 0.1054 0.0376

SpatPlusP2 0.1174 0.0206 0.0944 0.0213 0.0725 0.0218

SpatPlusTP2 0.1802 0.0261 0.1341 0.0267 0.0995 0.0281

Scenario 2 Null 0.2000 0.6612 0.0144 0.5398 0.0149 0.4564 0.0154

Spatial 0.5683 0.0834 0.4389 0.0900 0.3440 0.0949

RSR 0.6528 0.0152 0.5273 0.0160 0.4444 0.0165

TGRMF1 0.6245 0.0840 0.4875 0.0951 0.3965 0.1001

SpatPlus5 0.3468 0.0627 0.2582 0.0627 0.1954 0.0630

SpatPlus10 0.2579 0.0699 0.2429 0.0642 0.2001 0.0625

SpatPlus15 0.2257 0.0603 0.1958 0.0561 0.1546 0.0549

SpatPlus20 0.1852 0.0569 0.1824 0.0521 0.1495 0.0510

SpatPlusP1 0.1141 0.0538 0.0929 0.0506 0.0690 0.0497

SpatPlusTP1 0.1811 0.0597 0.1546 0.0552 0.1240 0.0541

SpatPlusP2 0.0751 0.0234 0.0692 0.0229 0.0469 0.0234

SpatPlusTP2 0.1423 0.0392 0.1163 0.0374 0.0775 0.0380

Scenario 3 Null 0.2000 0.5706 0.0124 0.4408 0.0131 0.3476 0.0135

Spatial 0.4866 0.0887 0.3718 0.0925 0.2769 0.0964

RSR 0.5520 0.0126 0.4232 0.0134 0.3284 0.0139

TGRMF1 0.4461 0.0792 0.3397 0.0810 0.2450 0.0840

SpatPlus5 0.3200 0.0618 0.2426 0.0613 0.1874 0.0620

SpatPlus10 0.2020 0.0715 0.1953 0.0643 0.1593 0.0629

SpatPlus15 0.1545 0.0635 0.1300 0.0591 0.0989 0.0575

SpatPlus20 0.1220 0.0566 0.1215 0.0531 0.0998 0.0525

SpatPlusP1 0.0871 0.0525 0.0579 0.0501 0.0403 0.0494

SpatPlusTP1 0.1086 0.0608 0.1107 0.0580 0.0913 0.0565

SpatPlusP2 0.0890 0.0169 0.1003 0.0179 0.0815 0.0185

SpatPlusTP2 0.1526 0.0261 0.1647 0.0281 0.1288 0.0295
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Fig. 3 Boxplots of the estimated means of β1 based on 100 simulated datasets for Simulation study 1,
Scenario 1 and cor(X1, X2) = 0.8 (top row), 0.5 (middle row), and 0.2 (bottom row)

provides mean absolute relative bias (MARB) and mean root relative mean squared
error (MRRMSE) of the fixed effect estimates to complement the information. For the
null, the spatial, the RSR and the TGMRF models both the MARB and the MRRMSE
reducewhen the correlation between the covariates decreases. This is expected because
spatial confounding is more severe if the unobserved covariate is correlated with the
observed one. For the rest of models there is not a clear pattern. In general, when
the correlation between X1 and X2 is small a spatial+ model with a small number of
eigenvectors provides the lowest MARB and MRRMSE. If the correlation is high, a
spatial+ model with a larger number of eigenvectors is better.

Table 6 (and Fig. 3, A1 and A2) gives an idea about the magnitude of the bias of the
fixed effect estimate aswe can compare the average of the posteriormeanswith the true
value of β1, but they do not give information about the posterior standard deviation.
To see if the posterior standard deviation is a good measure of the variability of the
fixed effect estimate, Table 7 compare the true simulated standard error (s.e.sim) with
the estimated standard error (s.e.est ). They are defined as follows

s.e.sim =
√
√
√
√

1

100

100
∑

k=1

(

β̂k
1 − β̂1

)2
s.e.est = 1

100

100
∑

k=1

sd(β̂k
1 )
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where β̂k
1 is the posterior mean of β1 in simulation k, β̂1 is the average of all the

posterior estimates, and sd(β̂k
1 ) is the posterior standard deviation ofβ1 in simulation k.

Then, the true simulated standard error is the sample standard deviation of the posterior
mean estimates, and the estimated standard error is the average of the posterior standard
deviations. If the estimated standard error is higher than the simulated standard error,
thenwe are overestimating the posterior standard deviation of the fixed effects. And the
other way around, if the estimated standard error is lower than the simulated standard
error we are underestimating the posterior standard deviation of the fixed effects.
According to Table 7, the null and the RSR models provides estimated standard errors
pretty similar to the simulated ones in all scenarios. On the contrary, the spatial and
the TGMRF models lead to estimated standard errors much higher than the simulated
ones in all the scenarios. All the spatial+ models tend to overestimate the posterior
standard deviation but to a lower extent than the spatial and the TGMRF model. It is
worth noting that the spatial+ models SpatPlusP2 and SpatPlusTP2 give pretty similar
values of estimated and simulated standard errors.

In addition to the posterior mean and standard deviation, and to have a complete
view on the inference about fixed effects, we are interested in credible intervals.
Table 8 displays the empirical coverage of credible intervals for β1 at 95% nominal
value. In general, the empirical coverage obtained with the null and the RSR models
is very low, in many cases 0. This is expected because of the high bias. Regarding the
spatial model, the empirical coverage is also very low. Again this is explained by the
high bias. However, in Scenario 1 and 3 when correlation is 0.2 the coverage is 100%
and in Scenario 2 and cor(X1, X2) = 0.2 the coverage is 92%, close to the nominal
value. The performance of the TGMRF is similar to the spatial model. Regarding the
spatial+ method using eigenvectors of the precision matrix, we observe in general
overcoverage. This can be explained because the method reduces the bias but over-
estimates the standard error. In some cases we observe a clear under-coverage that is
explained because the overestimation of the standard error does not compensate for
the bias. In general, the over-coverage is due to large standard errors whereas under-
coverage can be attributed to a large bias. To have a complete picture about coverages,
Table A2 in the Appendix A provides the length of the 95% credible intervals for the
parameter β1 obtained with the different methods. The most remarkable point is that
the null and RSR models give substantially shorter credible intervals than the other
models. The widest credible intervals are obtained with the spatial and the TGMRF
models, and the spatial+ models give credible intervals wider than the null and RSR
models but narrower than the spatial and the TGMRF models.

To complete this simulation study,wewould like to have a look at risk smoothing and
goodness of fit. TableA3 in theAppendixA displays averages over the 100 simulations
of WAIC values. The null model is clearly insufficient for risk smoothing and presents
larger WAIC values than the other methods. The spatial+ models SpatPlusP2 and
SpatPlusTP2 also provide larger values ofWAIC than the other models. Probably they
are oversmoothing the risks. Differences among the rest ofmodels areminor indicating
that the procedures lead to a similar smoothing. This is corroborated in Table A4 of
the Appendix A where MARB and MRRMSE of the relative risks are provided. In
general, the null model and the spatial+ models SpatPlusP2 and SpatPlusTP2 give
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Table 7 Estimated standard errors (s.e.est ) and simulated standard errors (s.e.sim ) for β1 based on 100
simulated datasets for Simulation Study 1, Scenarios 1, 2 and 3 and cor(X1, X2) = 0.8, 0.5 and 0.2

Model cor = 0.80 cor = 0.50 cor = 0.20

s.e.est s.e.sim s.e.est s.e.sim s.e.est s.e.sim

Scenario 1 Null 0.0160 0.0169 0.0168 0.0140 0.0175 0.0145

Spatial 0.0448 0.0262 0.0593 0.0252 0.0665 0.0295

RSR 0.0160 0.0169 0.0171 0.0143 0.0178 0.0146

TGRMF1 0.0313 0.0192 0.0449 0.0151 0.0505 0.0169

SpatPlus5 0.0377 0.0215 0.0407 0.0194 0.0429 0.0209

SpatPlus10 0.0438 0.0238 0.0398 0.0205 0.0403 0.0214

SpatPlus15 0.0410 0.0221 0.0386 0.0198 0.0383 0.0206

SpatPlus20 0.0401 0.0209 0.0361 0.0199 0.0359 0.0200

SplatPlusP1 0.0386 0.0209 0.0361 0.0202 0.0356 0.0206

SpatPlusTP1 0.0409 0.0204 0.0378 0.0187 0.0376 0.0191

SpatPlusP2 0.0206 0.0193 0.0213 0.0203 0.0218 0.0213

SpatPlusTP2 0.0261 0.0224 0.0267 0.0214 0.0281 0.0236

Scenario 2 Null 0.0144 0.0112 0.0149 0.0130 0.0154 0.0138

Spatial 0.0834 0.0307 0.0900 0.0264 0.0949 0.0292

RSR 0.0152 0.0129 0.0160 0.0153 0.0165 0.0164

TGRMF1 0.0840 0.0306 0.0951 0.0339 0.1001 0.0321

SpatPlus5 0.0627 0.0251 0.0627 0.0202 0.0630 0.0212

SpatPlus10 0.0699 0.0279 0.0642 0.0248 0.0625 0.0242

SpatPlus15 0.0603 0.0233 0.0561 0.0229 0.0549 0.0222

SpatPlus20 0.0569 0.0234 0.0521 0.0213 0.0510 0.0211

SpatPlusP1 0.0538 0.0251 0.0506 0.0245 0.0497 0.0247

SpatPlusTP1 0.0597 0.0218 0.0552 0.0228 0.0541 0.0227

SpatPlusP2 0.0234 0.0202 0.0229 0.0217 0.0234 0.0224

SpatPlusTP2 0.0392 0.0330 0.0374 0.0320 0.0380 0.0330

Scenario 3 Null 0.0124 0.0124 0.0131 0.0116 0.0135 0.0136

Spatial 0.0887 0.0243 0.0925 0.0227 0.0964 0.0243

RSR 0.0126 0.0138 0.0134 0.0134 0.0139 0.0155

TGRMF1 0.0792 0.0217 0.0810 0.0204 0.0840 0.0215

SpatPlus5 0.0618 0.0176 0.0613 0.0169 0.0620 0.0168

SpatPlus10 0.0715 0.0236 0.0643 0.0241 0.0629 0.0209

SpatPlus15 0.0635 0.0200 0.0591 0.0186 0.0575 0.0185

SpatPlus20 0.0566 0.0166 0.0531 0.0164 0.0525 0.0168

SpatPlusP1 0.0525 0.0186 0.0501 0.0222 0.0494 0.0218

SpatPlusTP1 0.0608 0.0200 0.0580 0.0191 0.0565 0.0196

SpatPlusP2 0.0169 0.0157 0.0179 0.0203 0.0185 0.0176

SpatPlusTP2 0.0261 0.0224 0.0281 0.0298 0.0295 0.0253

123



354 A. Urdangarin et al.

Ta
bl
e
8

E
m
pi
ri
ca
l9

5%
co
ve
ra
ge

pr
ob

ab
ili
tie

s
of

th
e
tr
ue

va
lu
e
of

β
1
ba
se
d
on

10
0
si
m
ul
at
ed

da
ta
se
ts
fo
r
Sc
en
ar
io
s
1,
2,

an
d
3
an
d
co
r(
X
1
,
X
2
)
=

0.
8,
0.
5
an
d
0.
2

M
od
el

Sc
en
ar
io

1
Sc
en
ar
io

2
Sc
en
ar
io

3

co
r
=
0.
80

co
r
=
0.
50

co
r
=
0.
20

co
r
=
0.
80

co
r
=
0.
50

co
r
=
0.
20

co
r
=
0.
80

co
r
=
0.
50

co
r
=
0.
20

N
ul
l

0
0

44
0

0
0

0
0

0

Sp
at
ia
l

0
40

10
0

0
1

92
0

70
10

0

R
SR

0
0

49
0

0
0

0
0

0

T
G
M
R
F1

0
0

10
0

0
0

44
0

71
10

0

Sp
at
Pl
us
5

33
10

0
80

18
10

0
10

0
49

10
0

10
0

Sp
at
Pl
us
10

10
0

10
0

82
10

0
10

0
10

0
10

0
10

0
10

0

Sp
at
Pl
us
15

10
0

84
23

10
0

10
0

10
0

10
0

10
0

69

Sp
at
Pl
us
20

89
73

17
10

0
10

0
10

0
99

93
62

Sp
at
Pl
us
P1

37
4

0
79

34
9

30
2

0

Sp
at
Pl
us
T
P1

95
71

20
10

0
10

0
92

90
89

59

Sp
at
Pl
us
P2

1
0

0
0

0
0

0
0

0

Sp
at
Pl
us
T
P2

92
30

4
68

31
8

54
72

33

123



Evaluating recent methods to overcome spatial confounding 355

the largest MARB and MRRMSE, indicating a worse fit. The rest of models provide
MARBs below 10%.

Finally, as suggested by one reviewer, we have simulated a Scenario 4 where
the additional term S has been generated from a multivariate normal distributions
N (0, σ 2 In) with σ 2 = 0.2. That is, the additional variability is not spatially struc-
tured. Results are rather similar to those from Scenario 3 and they are not shown to
save space. The reason why the results are similar is probably because the correlation
between the generated random effects and the covariate X1 in Scenario 4 (0.1438)
is very similar to the correlation between the spatial surface and the covariate X1 in
Scenario 3 (0.1998).

4.2 Simulation study 2: Results

To complete the study, we now pay attention to the Type-S error rate of the different
methods considered in this paper.

Table 9 displays the Type-S errors for β2 based on 100 simulated datasets for each
scenario. Type-S error rates should be around the nominal value 5%. In Scenario 1,
where there is no more variability than that introduced by the covariate X1, the Type-S
error rate is small (less than 10%) for all the methods. This agrees with the results of
Khan and Calder [17]. In Scenarios 2 and 3, where additional variability is introduced
in the generating model through an ICAR and P-splines respectively, the Type-S error
rates are very high for the null and the RSR model. This is in line with some results
in Hanks et al. [14]. Overall, the spatial+ models do not produce high Type-S error
rates. The exception is Scenario 2 and high correlation between the covariates where
the models SpatPlusP2 and SpatPlusTP2 exhibit rates over 30%. To better understand
the Type-S error rates in Table 9, Figures A3, A4, and A5 in the Appendix A display
the posterior mean estimates of the parameter β2. The bias of the null and the RSR
models in Scenarios 2 and 3 helps to understand the high Type-S error rates in some
subscenarios.

5 Discussion

Spatial confounding is a problem that still remains unsolved or at least partially
unsolved. One of the main difficulties is that there is not a unique and general defini-
tion. Traditionally, spatial confounding has been considered as a collinearity problem
between the fixed and the random effects. Or in other words, the fixed and random
effects “compete” for the same variability. Then, when random effects with a spatial
correlation structure are included in a linear or generalized linear model, the fixed
effects estimates change. The question is if we should expect a change or not.

One of themost popular methods to deal with spatial confounding, restricted spatial
regression, was proposed to avoid the change in fixed effects estimates in relation to the
model without spatial random effects. Restricted spatial regression simply restricts the
random effects to lie in the orthogonal complement of the fixed effects, consequently
the fixed effects estimates do not change. The idea underlying restricted regression is to
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assign all the variability in the direction of the covariates to the covariates themselves.
This seems a good idea if we assume that the estimates we obtain in the null model
(the one without spatial random effects) are correct. If this is not the case, and a spatial
random effect is introduced in a model to deal with the remaining spatial variability
that the observed covariates do not account for, some issues arise. The main one
is collinearity, because the spatial random effects also compete to explain the same
variability as the observed covariates. Restricted spatial regression implicitly assumes
that there are no other covariates overlapping with the observed ones, something that
might not be very realistic in practice. On the other hand, the standard errors of the
fixed effects estimates in the null model is known to be too small and they are inflated
when the spatial random effect is included in the model. The restricted regression
was supposed to provide standard errors for the fixed effects estimates somewhere in
between. However, recent research (see for example [17, 36]) shows that with normal
responses, the restricted regression provides standard errors less than or equal to those
obtained with the null model. Consequently, inference is liberal and Type-S error rates
can be high. However, with Poisson responses, no clear results have been provided
yet. In this line, and assuming that spatial random effects play the role of unobserved
covariates with spatial structure, recent research [11] suggests that a change in the
fixed effects estimates is expected and collinearity between fixed and random effects
is not a problem because this collinearity represents the overlap between observed
and unobserved covariates. These authors study spatial confounding from a causal
inference perspective, where the change in the fixed effect estimates is due to the
existence of unmeasured variables spatially structured.

Given the controversy about spatial confounding, in this paper we analyse three
data sets to illustrate how different techniques yield to different estimates and pos-
terior standard deviations and hence, produce different conclusions about the fixed
effects. Then, we run a simulation study to evaluate how some of the different existing
methods designed to alleviate spatial confounding estimate the fixed effects in differ-
ent scenarios. Namely, a simple Poisson regression model, a Poisson spatial mixed
model, restricted spatial regression, TGMRFs and spatial+ models. Spatial confound-
ing is introduced by using generating models with two covariates, X1 and X2, where
the first one plays the role of the observed covariate and the second one acts as an
unobserved covariate that is not included in the fitting process. Additional spatial vari-
ability is added in the generating process using an ICAR spatial random effect or a
spatial surface generated using P-splines. More precisely, in Scenario 1 all the vari-
ability is introduced with the covariates. In Scenario 2, additional spatial variability
is included with an ICAR random effect, and finally, in Scenario 3, we use a spatial
surface generated using P-splines to introduced additional spatial variability in the
generating process. The results of the simulation study are very informative. Overall,
the method that best recovers the true value of the fixed effects is the spatial+ model
using eigenvectors of the spatial precision matrix as regressors in the covariate model.
The number of eigenvectors depends on the correlation between the two covariates X1
and X2, and on the way we generate additional spatial variability (ICAR or P-splines).
In general, the higher the correlation between the covariates, the larger the number of
eigenvectors.When the correlation is high (0.8), 14-21%of the eigenvectors associated
to the lower eigenvalues of the spatial precision matrix are required. If the correlation
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is medium (0.5), 7-14% of the eigenvectors are needed if the generating model only
includes the covariates, whereas if the generating model includes additional variabil-
ity (ICAR or P-splines), 14-21% of the eigenvectors seem to produce good results.
Finally, when the correlation between the covariates is low (0.2), 7-14% eigenvectors
are needed in Scenarios 2 and 3. However, the spatial+ model does not provide good
results in Scenario 1 where there is no additional spatial variability other than that
included in the covariates.

In terms of standard errors, the posterior standard deviation in the null and in the
RSR models seems to be a good estimator of the true standard error, whereas the
rest of the models tend to overestimate the true standard error, notably the spatial
and the TGMRF models. Regarding coverage rates, it seems that the spatial+ method
leads to overcoverage, something expected as it also overestimates the standard error.
In addition, the Type-S error rates are very low in several scenarios. Therefore, the
spatial+ method with a suitable number of eigenvectors seems to recover the true fixed
effects quite well but could inflate standard errors. In our opinion, Scenarios 2 and
3 are the most realistic as they include additional spatial variability other than that
captured by the covariates and a number of eigenvectors between 14% and 21% of the
total could be a good choice in general.

Regarding risk estimation, the null model is clearly insufficient, whereas similar
estimates are obtained with the rest of models with the exception of the spatial+ using
splines (P-splines of thin plate splines) to smooth the risks. This agrees with the work
by Adin et al. [1], where identical risk estimates where observed with the spatial and
the restricted spatial regression models. As suggested by one reviewer, we have also
generated a Scenario 4 where the additional variability is spatially unstructured. It is
worth noting that results in this scenario are rather similar to those of Scenario 3, so
they have been omitted to save space. We remark that if researchers are interested in
risk prediction, probably the fixed effects estimates are not so important given that
all the spatial methods including ICAR random effects lead to essentially identical
risk surfaces, i.e., irrespective of the fixed effect estimated value, the risk predictions
do not change. However, if researchers are interested in identifying potential risk
factors looking at the spatial map of the unexplained variability, it is crucial to provide
unbiased estimates of the fixed effects, otherwise the map of the remaining variability
would not be correct.

To conclude this paper, we provide some guidelines to practitioners in light of our
simulation results. Our advice is to fit the null and the spatial model first. If there is no
change in the fixed effects estimates, probably spatial confounding is not an issue. If
a substantial change is observed, the spatial+ method with a number of eigenvectors
between 14%and 21%of the total could lead to nearly unbiased fixed effects estimates.
However, inference could probably be too conservative as the method seems to inflate
standard errors. This might be what we observe in the real data analyses of this paper.
In any case, caution is always recommended as our results depend on the generating
models, and different data generating mechanisms could lead to different conclusions.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s13163-022-00449-8.
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