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Abstract
In this paper we investigate the existence and multiplicity of solutions for a class of
singular anisotropic problems involving a weight and a term that may change sign.
The approach is based on sub-supersolutions and the Mountain Pass Theorem.
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1 Introduction

In this manuscript we are interested in existence and multiplicity results for the
weighted singular anisotropic problem
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where � ⊂ R
N (N ≥ 3), unless stated otherwise, is a bounded smooth domain,

α, λ, γ > 0, f : � × R → R and a : � → R are functions satisfying certain
conditions and 2 ≤ p1 ≤ ... ≤ pN < p� with p < N , where p = N/

∑N
i=1

1
pi

and

p�:= N p

N − p
.

In the last decades Partial Differential Equations involving anisotropic operators
has drawn the attention of several researchers due to their applicability in several
areas of Science and Technology. Several types of applications were considered in
the literature, among them we point out models that can describe the dynamics of
fluids with different conductivities in different directions, in the study of the spread of
an epidemic disease in heterogeneous environments and in the study of image noise
reduction. For more details see for instance [6, 8, 9, 24].

In other direction, arisen from the classical theory of the Lebesgue and Sobolev
spaces, we have the development of the anisotropic spacesW 1,−→p where−→p is a vector
with constant components −→p = (p1, p2, ..., pN ), see for instance [5, 10, 14, 19, 25,
29] and its references. Regarding the applicability of such spaces, several problems
involving anisotropic operators were considered and they were motivated from differ-
ential equations with the classical Laplacian operator, see for instance [1, 2, 20, 22].
For example, in [2] the authors studied the problem
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where h : � × R → R is a Carathedory function satisfying certain conditions.
There are few works that consider singular problems involving anisotropic oper-

ators. We cite below some articles that treat this kind of problems which were
inspirational for the present paper.

In the reference [20], the authors considered, by means of sub-supersolution tech-
nique combined with an application of the Schaefer’s Fixed Point Theorem, the
problem
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u > 0 in �,
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(P)

where γ ∈ (0, 1), β > 0 and f : �×R → R is a continuous function. In [20], it was
proved the existence of a solution depending on the values of β and of the behaviour of
f . In [27], using approximation arguments to control for the singular term, the authors
proved results of existence and regularity of solution to (Pγ ) with λ = 0 and a(x) in
suitable Lebesgue space. The same problem and techniques of [27] were considered
in [30], but with the constant γ replaced by a function γ (x).
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On other hand, singular problems for the p−Laplacian operator has drawn the
attention of several researchers in the last decades, see for instance [3, 7, 11–13, 15,
28, 31]. A related equation to (P), which was studied in [31], is the problem

⎧
⎪⎨

⎪⎩

−	pu = a(x)

uγ
+ f (x, u) in �,

u > 0 in �,
u = 0 on ∂�,

(P̃)

where 	pu:=div(|∇u|p−2∇u), p > 1 denotes the p−Laplacian operator and a :
� → R and f : �×R → R are functions satisfying some conditions. The approach is
mainly based in classical regularity results, the Vazquez’s StrongMaximum Principle,
sub-supersolutions and Variational Methods.

An important point regarding (Pγ ) is the lack of homogeneity of the anisotropic
operator, which implies in serious obstacles in the study of (Pγ ) when one intends
to consider a sub-supersolution approach. Another mathematical difficulty, and the
main one, is the fact that the regularity results used in [31] are not available for the
anisotropic setting. Due to the mentioned problems, the approach considered in [31]
is not applicable to (Pγ ). Therefore, compared to [20] and [31], the study of (Pγ )

requires new arguments and knowledge of relevant topics of nonlinear functional
analysis, particularly the theory of anisotropic spaces. Thus motivated by all these
papers, mainly by [20, 27, 30, 31], we propose the study of existence and multiplicity
of solutions for (Pγ ), which, to the best of our knowledge, was not considered previ-
ously in the literature. The approach relies on the explicit construction of appropriate
sub-supersolutions (see (3)) and Variational Methods. The first difficulty, is handled
by considering explicit constructions of sub-supersolutions. Moreover, such argument
is different from the one considered in [20]. With respect to the second one, which
is applied to obtain the multipicity of solutions, we consider truncated problems and
apply a minimax argument in convex sets and the Mountain Pass Theorem [4] to
the associated energy functionals. Since truncated problems are considered, fine esti-
mates are needed to apply the variational approach. Thus, our research are based the
sub-supersoution method and variational arguments. As mentioned before the sub-
supersolution technique, which is rare in the anisotropic setting., cannot be easily
implemented due to the presence of the anisotropic operator and such fact imply that
that such explicit construction can be of independent interest.

With respect to the contributions of this work we quote that the results of [31] can
be obtained partially in the anisotropic case. We also improve the results of [20, 27,
30] in the sense that it is possible to obtain, in the weighted anisotropic singular case,
the existence of a solution. Moreover, under some additional conditions, it is possible
to obtain multiplicity results, which was not considered in the mentioned papers and
differently from [20], here our results include the case γ > 1.

The rest of the paper is organized as follows: Sect. 2 is focused in the presentation
of the results of this manuscript. Section 3 is devoted to the needed properties of the
anisotropic spaces. In Sect. 4 we prove the results of this paper.
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2 Presentation of the results

In order to state the results of this paper some definitions are needed. Considering
that f : � × R → R is a continuous function and a(x) > 0 a.e in � we say what

u ∈ W 1,−→p
0 (�) with −→p :=(p1, ..., pN ) is a solution of (P)γ if, for all ϕ ∈ W 1,−→p

0 (�)

the following equality holds true

∫

�

N∑

i=1

∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

∂ϕ

∂xi
=

∫

�

(
αa(x)

uγ
+ λ f (x, u)

)

ϕ.

Consider the function d(x) = dist(x, ∂�), x ∈ � and the hypotheses below.

(Ha) The function a satisfies
a

dγ
∈ L∞(�).

(H ′
a) The function a satisfies (Ha) and a(x) ≥ Kd(x)τ , τ ≥ γ near the boundary,

that is, there exist K , δ̃ > 0 such that a(x) ≥ Kd(x)τ , for all x ∈ �δ̃ where
�δ̃ = {x ∈ �; d(x) < δ̃}.

(H f ) There exists δ > 0 such that f (x, t) ≥ −ca(x), for all 0 ≤ t ≤ δ, a.e in � and
for some constant c > 0.

(H ′
f ) The function f satisfies (H f ) and there exist r > 1 and a constant C > 0 such

that f (x, t) ≤ C(tr−1 + 1) a.e in � for every t ≥ 0.

Remark 1 Note that (Ha) imply that a ∈ L∞(�). In particular, (H f ) tells us that f
may change sign on [0, δ].

Our first result is as follows:

Theorem 1 Suppose that (Ha) and (H f ) hold true. The following assertions are true.

(i) There exist α0 > 0, λ0 > 0 such that (Pγ ) admits solution, for all α ≥ α0 and
λ ∈ (0, λ0).

(ii) If, in addition, (H ′
a) is also verified then given α > 0, there exists λ0

′ > 0,
depending only on α, such that (Pγ ) admits solution, for all λ ∈ (0, λ0′).

Consider the function F(x, t) =
∫ t

0
f (x, s)ds. By considering an Ambrosetti-

Rabinowitz type condition it is possible to prove a multiplicity result for (Pγ ). The
condition is given below.
(HAR) The function f satisfies (H ′

f ) with r ∈ (1, p�) and there exists t0 > 0 and
θ > pN such that 0 < θF(x, t) ≤ t f (x, t), for all t ≥ t0, a.e in �.

Theorem 2 Suppose that (Ha) and (HAR) hold and let α0, λ0 and λ0
′ as in Theorem

1. The following assertions are true.

(i) The problem (Pγ ) has two solutions, for all λ ∈ (0, λ̃0) for some 0 < λ̃0 ≤ λ0
and α ≥ α0.

(ii) If (H ′
a) is also verified, then given α > 0, there exists 0 < λ′′

0 ≤ λ′
0 depending

only on α, such that (Pγ ) admits two solutions, for all λ ∈ (0, λ0′′).
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Remark 2 The functions a(x) = d(x)γ + d(x)τ , τ ≥ γ and f (x, t) = a(x)(|t |r−1 −
βr−1) with r ∈ (pN , p�) satisfies (H ′

a) and (HAR) for β > 0 and t0 = t0(β) > 0
sufficiently large respectively.

3 Preliminaries

In this section we present some basic facts regarding anisotropic spaces and results
that will be used in this work. For more informations on anisotropic spaces we quote
[2, 18, 19, 21, 26, 33].

Let 1 < p1 ≤ p2 ≤ ... ≤ pN be real numbers and denote by −→p the vector−→p :=(p1, ..., pN ) ∈ R
N . We denote by W 1,−→p (�) the space defined by

W 1,−→p (�):=
{

u ∈ L pN (�); ∂u

∂xi
∈ L pi (�), i = 1, ..., N

}

,

which is a Banach space when endowed with the norm

‖u‖1,−→p :=‖u‖L pN +
N∑

i=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥
L pi

, (1)

where ‖ · ‖L pi denotes the usual norm of L pi (�). It will be denoted by W 1,−→p
0 (�) the

Banach space defined by the closure of C∞
0 (�) inW 1,−→p (�) with respect to the norm

‖ · ‖1,−→p .

Consider p the harmonic mean of pi , i = 1, ..., N given by p:=N/
∑N

i=1
1
pi

and

define p�:= N p

N − p
for p < N . From [19] we have that there exists an embedding

W 1,−→p
0 (�) ↪→ Lq(�) which is continuous for q ∈ [1, p�] and compact in the case

q ∈ [1, p�). Thus the norm

‖u‖:=
N∑

i=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥
L pi

, u ∈ W 1,−→p
0 (�) (2)

is equivalent to the norm given in (1).
The next result can be found in [16, Lemma 2.1].

Lemma 1 Let a ∈ L∞(�) and p1 ≥ 2. There exists a unique solution u ∈ W 1,−→p
0 (�)

of the problem

⎧
⎪⎨

⎪⎩

−
N∑
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∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
= a in �,

u = 0 on ∂�.

(Pa)
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Remark 3 It is worthwhile to say that if a ∈ L∞(�) is a positive constant, then the
only solution of (Pa) is strictly positive in �. See [20, Lemma 3.1].

The next two results can be found in [16, Lemma 2.4] and [16, Lemma 2.1], respec-
tively.

Lemma 2 Let u ∈ W 1,−→p
0 (�) be a solution to problem

⎧
⎪⎨

⎪⎩

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
= f in �,

u = 0 on ∂�,

such that f ∈ Lr (�) with r > p∗/(p∗ − p1). Then u ∈ L∞(�). Moreover,

‖u‖∞ ≤ C‖ f ‖
1

p1−1
r |�| β−1

α

S
1

p1−1

,

where β, α, S and C are constants that does not depend on u.

Lemma 3 Consider u, v ∈ W 1,−→p
0 (�) satisfying

⎧
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−
N∑
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∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
≤ −

N∑

i=1

∂

∂xi

(∣
∣
∣
∂v

∂xi

∣
∣
∣
pi−2 ∂v

∂xi

)
in �,

u ≤ v on ∂�,

where u ≤ v on ∂� means that (u − v)+ ∈ W 1,−→p
0 (�). Then u(x) ≤ v(x) a.e in �.

4 Proof of Theorems 1 and 2

The goal of this section is to prove Theorems 1 and 2. The approach is based on the
sub-supersolution technique combined with the variational method.

We say that (u, u) ∈ (W 1,−→p
0 (�) ∩ L∞(�)) × (W 1,−→p

0 (�) ∩ L∞(�)) is a sub-
supersolution for (Pγ ) if u(x) ≤ u(x) a.e. in � and

∫

�

N∑

i=1

∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

∂ϕ

∂xi
≤

∫

�

(
αa(x)

uγ
+ λ f (x, u)

)

ϕ

and

∫

�

N∑

i=1

∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

∂ϕ

∂xi
≥

∫

�

(
αa(x)

uγ + λ f (x, u)

)

ϕ,
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Existence and multiplicity of solutions for a singular… 785

for all nonnegative functions ϕ ∈ W 1,−→p
0 (�).

The next lemma plays a key role in the proofs of our results:

Lemma 4 The following assertions are true.

(i) If (Ha) and (H f ) hold true, then there existα0 > 0, λ0 > 0 and u, u ∈ W 1,−→p
0 (�)∩

L∞(�) such that au−γ ∈ L∞(�), ‖u‖L∞ ≤ δ with the pair (u, u) being a sub-
supersolution for (Pγ ), for all α ≥ α0 and λ ∈ (0, λ0).

(ii) If (Ha), (H f ) and (H ′
a) hold true, then given α > 0 there exist λ0 > 0, depending

only on α, and u, u ∈ W 1,−→p
0 (�)∩ L∞(�) such that au−γ ∈ L∞(�), ‖u‖L∞ ≤ δ

with the pair (u, u) being a sub-supersolution for (Pγ ), for all λ ∈ (0, λ0).

Proof (i) We will begin by considering the function u. Since ∂� is of class C2 then
there exists δ > 0 such that d ∈ C2(�3δ) with |∇d| ≡ 1 in �3δ, see for example [23,
Lemma 14.16] and its proof.

For k > 0 and 2σ ∈ (0, δ)withσ := ln2
k consider the function,whichwas introduced

in [17], given by

φ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ekd(x) − 1 if d(x) < σ,

ekσ − 1 +
∫ d(x)

σ

kekσ
(
2δ − t

σ

)2

dt if σ ≤ d(x) < 2σ,

ekσ − 1 +
∫ 2σ

σ

kekσ
(
2δ − t

σ

)2

dt, if 2σ ≤ d(x).

(3)

Note that φ ∈ C1(�) and φ = 0 on ∂�. If pN > p1 define μ:= 1
kι , where

pN − p1 + 1

pN − p1
> ι > 1.

In the case pN = p1 consider μ:= 1
kι where ι > 1 is an arbitrary number.

The inequality ex − 1 ≥ x, x ≥ 0 combined with the condition (Ha) imply that
a(μφ)−γ ∈ L∞(�). If d(x) < σ wehave thatμφ(x) ≤ μ(ekd(x)−1) ≤ μ(ekσ −1) =
1
kι . In the case σ ≤ d(x) we have

μφ ≤ μ

(

ekσ − 1 +
∫ 2σ

σ

kekσ
(
2δ − t

σ

)2

dt

)

= μ

(

2 − 1 + 2k

3

((
2δ − σ

σ

)3

−
(
2δ − 2σ

σ

)3
))

.

(4)

If k → +∞we have σ → 0+. Since limσ→0+
( 2δ−σ

σ

)3−( 2δ−2σ
σ

)3
< +∞, it follows

from (4) that μφ ≤ C0
kι (1 + k) for some constant C0 > 0 which does not depend on

k. Then we obtain that ‖μφ‖L∞ ≤ δ for k > 0 large enough.
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A straightforward calculation shows that if x ∈ � satisfy d(x) < σ with ∂d(x)
∂xi

�= 0,
then

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂(μφ)

∂xi

∣
∣
∣
∣

pi−2
∂(μφ)

∂xi

)

= −
N∑

i=1

(kμ)pi−1

(

ekd(x)(pi−1)k(pi − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi
+ ekd(x)(pi−1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi−2
∂2d

∂x2i

)

:=B(x).

(5)

In the case σ < d(x) < 2σ we have

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂(μφ)

∂xi

∣
∣
∣
∣

pi−2
∂(μφ)

∂xi

)

=
n∑

i=1

(μkekσ )pi−1θ(pi − 1)

(
2σ − d(x)

σ

)2(pi−1)−1 1

σ

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi−1

+
n∑

i=1

(μkekσ )pi−1
(
2σ − d(x)

σ

)2(pi−1) ∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi−2
(

−∂2d

∂x2i

)

:=C(x).

(6)

From (5) and (6) we get

∫

�

N∑

i=1

∣
∣
∣
∣
∂(μφ)

∂xi

∣
∣
∣
∣

pi−2
∂(μφ)

∂xi

∂ϕ

∂xi
=

∫

�

Aϕ,∀ϕ ∈ W 1,−→p
0 (�),

where A(x) = B(x), if d(x) < σ and ∂d(x)
∂xi

�= 0, A(x) = C(x), if σ < d(x) < 2σ

and ∂d(x)
∂xi

�= 0 and A(x) is defined to be zero if one of the conditions is satisfied
∂d(x)
∂xi

= 0, d(x) ≥ 2σ or d(x) = σ.

From now on consider kμ ≤ 1which occurs for k large enough. Nowwewill obtain
some estimates for the function A. Let x ∈ � with d(x) < σ. Therefore |∇d(x)| = 1.
Note that

−(kμ)pi−1ekd(x)(pi−1)k(pi − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi
≤ −(kμ)pN−1ekd(x)(pi−1)k(p1 − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pN

≤ −(kμ)pN−1k(p1 − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pN
.

(7)
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Thus we obtain from (7) that

N∑

i=1

−(kμ)pi−1ekd(x)(pi−1)k(pi − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi
≤

N∑

i=1

−(kμ)pi−1k(p1 − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi

≤
N∑

i=1

−(kμ)pi−1k(p1 − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pN
.

(8)

Using in (8) the inequality (a + b)pN ≤ C1(a pN + bpN ), for all a, b ≥ 0, where
C1 > 0 is a constant that does not depend on a and b, we get

N∑

i=1

−(kμ)pi−1ekd(x)(pi−1)k(pi − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi

≤ −(kμ)pN−1k(p1 − 1)

(
N∑

i=1

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

)pN

C1. (9)

Since
∑N

i=1 |ai | ≥ C2

√
∑N

i=1 a
2
i , for all ai ≥ 0, i = 1, ..., N with C2 > 0 being a

constant that does not depend on ai , we obtain from (9) that

N∑

i=1

−(kμ)pi−1ekd(x)(pi−1)k(pi − 1)

∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi
≤ −(kμ)pN−1k(p1 − 1)|∇d|pN C2

≤ −(kμ)pN−1k(p1 − 1)C2,

(10)

because |∇d| ≡ 1 near the boundary with C2 > 0 being a constant which does not
depend on k > 0.

Since d(x) < σ, we have for all i = 1, ..., N that

∣
∣
∣
∣
∣

N∑

i=1

(kμ)pi−1ekd(x)(pi−1)
∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi−2
(

−∂2d

∂x2i

)∣
∣
∣
∣
∣

≤
N∑

i=1

(kμ)pi−1ekd(x)(pN−1)
∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi−2
∣
∣
∣
∣
∣

∂2d

∂x2i

∣
∣
∣
∣
∣

≤
N∑

i=1

(kμ)p1−1e(pN−1)ln2
∣
∣
∣
∣
∂d

∂xi

∣
∣
∣
∣

pi−2

sup
x∈�δ

i=1,.,,,N

{∣
∣
∣
∣
∣

∂2d

∂x2i

∣
∣
∣
∣
∣

}

≤ (kμ)p1−1C3,

(11)
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where C3 > 0 is a constant that does not depend on k. Thus by (5), (10) and (11), we
obtain that

A(x) ≤ −(kμ)pN−1k(p1 − 1)C2 + (kμ)p1−1C3, d(x) < σ. (12)

If pN > p1 we have

A(x) ≤ (kμ)p1−1(C3 − (kμ)pN−1−(p1−1)k(p1 − 1)C2)

= (kμ)p1−1(C3 − k(1−ι)(pN−p1))+1(p1 − 1)C2), if d(x) < σ.
(13)

The inequality pN−p1+1
pN−p1

> ι implies that (1− ι)(pN − p1)+1 > 0. Thus if pN > p1,
we have from (13) that A(x) ≤ 0 for k > 0 large enough, for all x ∈ �with d(x) < σ.

If pN = p1 we have from (12) that

A(x) ≤ (kμ)pN−1(−k(p1 − 1)C2 + C3), if d(x) < σ. (14)

Using (13) and (14), we can conclude in all cases that

A(x) ≤ 0, if d(x) < σ or 2σ < d(x), (15)

for k large.
Consider the case σ < d(x) < 2σ. Since d ∈ C2(�3δ) with |∇d(x)| ≡ 1 in �2δ

and μk ≤ 1 for k > 0 large we have from (6) that

|A(x)| ≤ max
i=1,...,N

{(μkekσ )pi−1}C4

σ
≤ C5k. (16)

where C4,C5 > 0 are constants that do not depend on k. Define μφ:=u with k0:=k
such that (15) and (16) occur and ‖μφ‖L∞ ≤ δ. Consider x ∈ � with d(x) < σ or
d(x) > 2σ and λ ∈ (0, 1). From (H f ) we have

αa(x)

uγ
+ λ f (x, u) ≥ αa(x)

δγ
− λa(x)c

≥ a(x)
( α

δγ
− c

)

≥ 0

≥ −
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
,

(17)

for α > 0 large enough, which does not depend on k0.
Consider the case σ < d(x) < 2σ. Fix k0:=k > 0 such that (16) and (17) are

verified. Define inf
x∈Wk0

a(x):=ak0 ,where {x ∈ �; σ < d(x) < 2σ }:=Wk0 . In this case

123



Existence and multiplicity of solutions for a singular… 789

we have by (16) that

αa(x)

uγ
+ λ f (x, u) ≥ a(x)

( α

δγ
− λc

)

≥ ak0
( α

δγ
− c

)

≥ C5k0

≥ −
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
,

for α > 0 large enough, which depends only on δ, c, γ and k0.

Since au−γ ∈ L∞(�), by Lemma 1 there exists u ∈ W 1,−→p
0 (�) such that

⎧
⎪⎨

⎪⎩

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
= αa(x)

uγ
+ C5k0 in �,

u = 0 on ∂�,

is verified. Using (16) and the fact that A(x) ≤ 0 in the cases d(x) < σ or d(x) > 2σ
we can infer by Lemma 3 that u(x) ≤ u(x) a.e. in �. Since λ does not depend on k0
we have

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
− αa(x)

uγ − λ f (x, u) ≥ αa(x)

(
1

uγ
− 1

uγ

)

+ C5k0 − λ f (x, u)

≥ C5k0 − |λ| sup
x∈�

| f (x, u)|,
≥ 0, (18)

for all λ ∈ (0, λ0), for some 0 < λ0 < 1 depending only on k0.
(ii) The argument will be based on nontrivial modifications of (i). Since ι > 1 there

exists ξ > 0 such that (1 − ι)(p1 − 1) + ξ(1 + τ) < 0. Consider φ,μ, δ as before

with
ln 2

kξ
:=σ . Note that a(μφ)−γ ∈ L∞(�) with ‖μφ‖L∞ ≤ δ for k:=k0 > 0 large

enough. Consider 0 < λ′
0 < 1, depending only on α, with

α

δγ
− λ′

0c > 0.

Arguing as in (15) and (16) we obtain

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂(μφ)

∂xi

∣
∣
∣
∣

pi−2
∂(μφ)

∂xi

)

≤ 0, if d(x) < σ or 2σ < d(x)

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂(μφ)

∂xi

∣
∣
∣
∣

pi−2
∂(μφ)

∂xi

)

≤ C6(μk)
p1−1kξ , if σ < d(x) < 2σ,

(19)
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for k:=k0 large enough, where C6 > 0 is a constant which does not depend on k. If
necessary consider a larger k0 satisfying

(
K ln 2

k0ξ

)τ ( α

δγ
− λ′

0c
)

≥ C6k0
(1−ι)(p1−1)+ξ , (20)

where K > 0 is the constant given in (H ′
a), which is possible because (1 − ι)(p1 −

1) + ξ(1 + τ) < 0. Denoting by μφ:=u we get

αa(x)

uγ
+ λ f (x, u) ≥ a(x)

( α

δγ
− λc

)
≥ a(x)

( α

δγ
− λ′

0c
)

≥ 0

≥ −
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
,

for all λ ∈ (0, λ′
0) and d(x) < σ or 2σ < d(x). In the case σ < d(x) < 2σ we derive

from (19), (20) and (H ′
a) that

αa(x)

uγ
+ λ f (x, u) ≥ a(x)

( α

δγ
− λc

)
≥ (Kd(x))τ

( α

δγ
− λc

)
≥ (Kσ)τ

( α

δγ
− λc

)

≥
(
K ln 2

k0ξ

)τ ( α

δγ
− λ′

0c
)

≥ C6k0
(1−ι)(p1−1)+ξ

≥ −
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
,

for all λ ∈ (0, λ′
0). Let u ∈ W 1,−→p

0 (�) be the only solution of the problem

⎧
⎪⎨

⎪⎩

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
= αa(x)

uγ
+ C6k0

(1−ι)(p1−1)+ξ in �,

u = 0 on ∂�.

Note that 0 ≤ u(x) ≤ u(x) a.e. in �. If necessary by considering a smaller λ′
0 it is

possible to argue as in (18) to obtain that

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∂u

∂xi

∣
∣
∣
pi−2 ∂u

∂xi

)
− αa(x)

uγ ≥ 0,

for all λ ∈ (0, λ′
0), where λ′

0 depends only on α > 0 and k0. ��
Proof of Theorem 1 As pointed in Lemma 4 we have the existence of a sub-
supersolution in each case stated in the theorem. We will prove the existence of a

solution u ∈ W 1,−→p
0 (�) ∩ L∞(�) satsifying 0 < u(x) ≤ u(x) ≤ u(x) a.e. in �.
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Define the function

g(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αa(x)

uγ + λ f (x, u(x)), t > u(x),

αa(x)

tγ
+ λ f (x, t), u(x) ≤ t ≤ u(x),

αa(x)

uγ
+ λ f (x, u(x)), t < u(x),

(21)

for (x, t) ∈ � × R and the functional

Jα,λ(u):=
∫

�

N∑

i=1

1

pi

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi
dx −

∫

�

G(x, u)dx, u ∈ W 1,−→p
0 (�), (22)

whereG(x, t):=
∫ t

0
g(x, s)ds. Let us consider the spaceW 1,−→p

0 (�) equipped with the

norm given in (2). Using the continuity of f and that u, u, au−γ , au−γ ∈ L∞(�) it
follows that exists K > 0 such that |g(x, t)| ≤ C7, for all (x, t) ∈ � × R. Thus, we

obtain that Jα,λ ∈ C1(W 1,−→p
0 (�),R) with

J ′
α,λ(u)v =

∫

�

N∑

i=1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi−2
∂u

∂xi

∂v

∂xi
dx −

∫

�

g(x, u)vdx, u, v ∈ W 1,−→p
0 (�).

Note that Jα,λ is coercive. In fact, by using the continuous embedding W 1,−→p
0 (�) ↪→

L1(�), the boundedness of g and the inequalities |t |pi ≥ 1+|t |p1, t ∈ R, (a1 +· · ·+
aN )b ≤ C8(ab1 + · · · + abN ), ai ≥ 0, i = 1, ..., N , b ≥ 1, where C depends only on
N and b, we obtain that

Jα,λ(u) ≥ 1

pN

N∑

i=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥

pi

L pi
dx − C9

∫

�
|u|dx ≥ 1

pN

N∑

i=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥

p1

L pi
− C10(‖u‖ + 1)

≥ 1

pN

⎛

⎝
N∑

i=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥
L pi

⎞

⎠

p1

− C10(‖u‖ + 1),

which proves the coerciveness of Jα,λ. Since g ∈ L∞(�), we have that Jα,λ is weak
lower semicontinuous. The set

C=:{v ∈ W 1,−→p
0 (�) : u(x) ≤ v(x) ≤ u(x) a.e in �

}

is closed and convex inW 1,−→p
0 (�), thus the reflexivity ofW 1,−→p

0 (�) and [32, Theorem
1.2] imply that the restriction Jα,λ

∣
∣C attains its infimum at a point u in C. Arguing as

123



792 F. J. S. A. Corrêa et al.

in [32, Theorem 2.4], we see that u is a weak solution of the problem

⎧
⎪⎨

⎪⎩

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂w

∂xi

∣
∣
∣
∣

pi−2
∂w

∂xi

)

= g(x, w) in �,

w = 0 on ∂�.

(23)

Since u ∈ C it follows from the definition of g given in (21) that u solves (Pγ ). ��
Let u ∈ W 1,−→p

0 (�) be as in Lemma 4 and consider g̃ the continuous function defined
on � × R by

g̃(x, t) =

⎧
⎪⎨

⎪⎩

αa(x)

tγ
+ λ f (x, t), t ≥ u(x),

αa(x)

u(x)γ
+ λ f (x, u(x)) t < u(x).

(24)

Consider the auxiliary problem

⎧
⎪⎨

⎪⎩

−
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi−2
∂u

∂xi

)

= g̃(x, u) in �,

u = 0 on ∂�,

(25)

and the functional associated to (25), whose formula is

J̃α,λ(u):=
∫

�

N∑

i=1

1

pi

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi
−

∫

�

G̃(x, u), u ∈ W 1,−→p
0 (�), (26)

where G̃(x, t):=
∫ t

0
g̃(x, s)ds. We have that J̃α,λ ∈ C1(W 1,−→p

0 (�),R) with

J̃ ′
α,λ(u)ϕ =

∫

�

N∑

i=1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi−2
∂u

∂xi

∂ϕ

∂xi
−

∫

�

g̃(x, u)ϕ, u, ϕ ∈ W 1,�
0 (�).

Now we will focus our attention in the proof of (i) of Theorem 2. The next Lemma
is needed.

Lemma 5 Suppose that (Ha) and (H f ) hold and consider the notation of Lemma 4
and Theorem 2. Given α ≥ α0 there exists 0 < λ̃0 ≤ λ0, depending only on α > 0,
such that the following properties are satisfied:
(i) There are constants R and η̃ with R > ‖u‖, which depends only on α , such that

J̃α,λ(u) ≤ η < η̃ ≤ inf
u∈∂BR(0)

J̃α,λ(u),

for all λ ∈ (0, λ̃0), where η is a constant that does not depend on α.
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(ii) There exists eα,λ ∈ W 1,−→p
0 (�)\BR(0), depending only on α ≥ α0 and λ ∈ (0, λ̃0),

such that J̃α,λ(eα,λ) < η̃.

Proof (i) Fix α ≥ α0 and λ ∈ (0, λ0). Using (H f ), Lemma 4 and the fact that
G̃(x, u(x)) ≥ λu(x) f (x, u(x)) a.e. in � we obtain that

J̃α,λ(u) ≤
∫

�

N∑

i=1

1

p1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi
− λ

∫

�

u(x) f (x, u(x)) ≤
N∑

i=1

1

p1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi
+ λc

∫

�

u(x)

≤
N∑

i=1

1

p1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi
+ λ0c

∫

�

u(x):=η. (27)

From the definition of g̃ we obtain that g̃(x, t) ≤ α

∥
∥
∥
∥
a

uγ

∥
∥
∥
∥
L∞

+ λC(|t |r−1 + 1),

for all (x, t) ∈ � × R. Then by direct computations combined with the continuous

embedding W 1,−→p
0 (�) ↪→ Lq(�), q ∈ [1, p�] we obtain that

J̃α,λ(u) ≥ C11‖u‖p1 − C12(‖u‖ + λ‖u‖r ), u ∈ W 1,−→p
0 (�), (28)

where C12 is constant that depends only on α. Fix η > η. Consider R > ‖u‖,
depending only on α, such that C11Rp1 − C12R > 2η. Let 0 < λ̃0 ≤ λ0 such that
C11Rp1 − C12R − λ̃0C12R ≥ η. The choices of η, η, R and λ̃0 combined with (27)
and (28) imply that the condition (i) is satisfied.

(ii) Recall that ‖u‖L∞ ≤ δ thus by using the previous inequality and (H f ) we
obtain for t ≥ 1 that

G̃(x, tu(x)) =
∫ u(x)

0
g̃(x, s)ds +

∫ tu(x)

u(x)
g̃(x, s)ds

≥
∫ u(x)

0
λ f (x, u(x))ds +

∫ tu(x)

u(x)
λ f (x, s)ds

≥ −ca(x)u(x) + λ(F(x, tu(x)) − F(x, u(x))).

From (HAR) we have F(x, t) ≥ C13tθ − C14, for all t ≥ 0 a.e. in � with C13,C14
positive constants.

Thus we obtain for t ≥ 1 that

J̃α,λ(tu) ≤ C15t
pN − C16t

θ − C17,

where C15,C16 and C17 are positive constants. Since pN < θ we have the result. ��

Lemma 6 The functional J̃α,λ satisfies the Palais-Smale condition at any level c ∈ R.
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Proof Let t ∈ R and x ∈ � with t < u(x). Since θ > pN > 1 we have

g̃(x, t)t − θ G̃(x, t) = (1 − θ)t

(
αa(x)

u(x)γ
+ λ f (x, u(x))

)

≥ (1 − θ)|t |(α‖au−γ ‖L∞ + λ sup
x∈�

| f (x, u(x))|). (29)

If t ≥ u(x) we have

g̃(x, t)t − θ G̃(x, t) =
(

αa(x)

tγ
+ λ f (x, t)

)

t − θ

∫ t

0
g̃(x, s)ds

(
αa(x)

tγ
+ λ f (x, t)

)

t − θ

(∫ u(x)

0
g̃(x, s)ds +

∫ t

u(x)
g̃(x, s)ds

)

=
(

αa(x)

tγ
+ λ f (x, t)

)

t − θu(x)

(
αa(x)

u(x)γ
+ λ f (x, u(x))

)

− θ

(∫ t

u(x)

αa(x)

sγ
+ λ f (x, s)ds

)

. (30)

Case γ �= 1:
In this case we have from (30) that

g̃(x, t)t − θ G̃(x, t) ≥ αa(x)t1−γ + λ f (x, t)t

− θ(α‖au1−γ ‖L∞ + λ‖ f (·, u(·))u‖L∞ + λ‖F(·, u(·))‖L∞)

− θ

(
αa(x)

1 − γ
t1−γ − αa(x)u(x)1−γ

1 − γ
+ λF(x, t)

)

≥ αa(x)

(

1 − θ

1 − γ

)

t1−γ + λ( f (x, t)t − θF(x, t)) − αa(x)u(x)1−γ

1 − γ

− C18,

(31)

where C18 is a positive constant.
If γ > 1 we have that 1

1−γ
< 0. Since a and u are nonnegative functions we obtain

from (31) and (HAR) that

g̃(x, t)t − θ G̃(x, t) ≥ −C19, (32)

for some positive constant C19.

Consider the case 0 < γ < 1. Since θ > pN > 1 we obtain that 1 − θ
1−γ

< 0.

Thus by using the inequality |t | + 1 ≥ |t |1−γ , t ∈ R, (31) and (HAR) it follows that

g̃(x, t)t − θ G̃(x, t) ≥ −C20t − C21, (33)

for positive constants C20 and C21.
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Case γ = 1:
From (30) we have

g̃(x, t)t − θ G̃(x, t) = αa(x) + λ f (x, t)t − θαa(x) ln

(
t

u(x)

)

− θλF(x, t)

− θ(αa(x) − λF(x, u(x)) + u f (x, u(x)).

(34)

By using (34), the inequalities ln t < t, t > 0, the fact that au−γ ∈ L∞(�) and
(HAR) it follows that

g̃(x, t)t − θ G̃(x, t) ≥ λ( f (x, t)t − θF(x, t)) − θα
a(x)

u(x)
t − C22

≥ −C23t − C24,

(35)

for all t ≥ t0, where C23 and C24 are positive constants.
Thus by using (29), (32), (33) and (35) it follows that

g̃(x, t)t − θ G̃(x, t) ≥ −C25|t | − C26, t ∈ R, a.e. in �, (36)

where C25 and C26 are positive constants.

Let (un) ⊂ W 1,−→p
0 (�) be a sequence with J̃α,λ(un) → c and J̃ ′

α,λ(un) → 0. There
exists a constant C27 > 0 such that

J̃α,λ(un) − 1

θ
J̃ ′
α,λ(un)un ≤ C27(1 + ‖un‖), (37)

for all n ∈ N. On other hand we have

J̃α,λ(un) − 1

θ
J̃ ′
α,λ(un)un ≥

(
1

pN
− 1

θ

)∫

�

N∑

i=1

∣
∣
∣
∣
∂un
∂xi

∣
∣
∣
∣

pi
+

∫

�

1

θ
g̃(x, un)un − G̃(x, un)

≥ C27‖u‖p1 +
∫

�

1

θ
g̃(x, un)un − G̃(x, un).

(38)

Using (36), (37), (38) and the continuous embedding W 1,−→p
0 (�) ↪→ Lq(�), q ∈

[1, p�] we get ‖un‖p1 ≤ C28(1 + ‖un‖) which implies that (un) is bounded in

W 1,−→p
0 (�). Since the embedding W 1,−→p

0 (�) ↪→ Lq(�), q ∈ [1, p�) is compact we
have, up to a subsequence, that

⎧
⎨

⎩

un ⇀u in W 1,−→p
0 (�),

un → u in Lq(�), 1 ≤ q < p�,

un(x) → u(x) a.e. in �,

(39)
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for some u ∈ W 1,−→p
0 (�). We have

∫

�

N∑

i=1

(∣
∣
∣
∣
∂un
∂xi

∣
∣
∣
∣

pi−2
∂un
∂xi

−
∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi−2
∂u

∂xi

) (
∂un
∂xi

− ∂u

∂xi

)

= J̃ ′
α,λ(un)(un − u)

+
∫

�

g̃(x, un)(un − u)dx −
∫

�

N∑

i=1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi−2
∂u

∂xi

∂(un − u)

∂xi
.

(40)

Since J̃ ′
α,λ(un) → 0 and (un) is bounded in W 1,−→p

0 (�) we obtain that

J̃ ′
α,λ(un)(un − u) → 0. (41)

From the weak convergence of (39) we get

∫

�

N∑

i=1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi−2
∂u

∂xi

∂(un − u)

∂xi
→ 0. (42)

Using (H ′
f ), (39) and the Lebesgue Dominated Convergence Theorem we get

∫

�

g̃(x, un)(un − u) → 0. (43)

From (40), (41), (42) and (43) we have

∫

�

N∑

i=1

(∣
∣
∣
∣
∂un
∂xi

∣
∣
∣
∣

pi−2
∂un
∂xi

−
∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi−2
∂u

∂xi

)(
∂un
∂xi

− ∂u

∂xi

)

→ 0,

which implies that un → u in W 1,−→p
0 (�). ��

Proof of Theorem 2 It will be proved (i). Consider the notation provided in Lemma
5. Using (21) and (24) we get g(x, t) = g̃(x, t) for t ∈ [0, u(x)], thus it follows
that Jα,λ(u) = J̃α,λ(u) for u ∈ [0, u], where [0, u]:={v ∈ W 1,−→p

0 (�) : 0 ≤ u(x) ≤
u(x) a.e. in �} with Jα,λ(u), J̃α,λ(u) given in (22) and (26), respectively. Consider u
the solution of (23) provided by Theorem 1. Then,

J̃α,λ(u) = inf
C

J̃α,λ(v),

where C = [u, u] is given in the proof of Theorem 1.
Using Lemma 5, we conclude, with the Mountain Pass Theorem [4], that c̃ =

inf
w∈�

max
t∈[0,1] J̃α,λ(w(t)) is a critical value of J̃α,λ, where

� = {w ∈ C
([0, 1],W 1,−→p

0 (�)
): w(0) = u, w(1) = eλ}.
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Therefore, the problem (Pγ ) has two weak solutions u, v ∈ W 1,−→p
0 (�), such that

J̃α,λ(u) ≤ J̃α,λ(u) ≤ η < η̃ ≤ J̃α,λ(v) = c̃.

The other part can be obtained by proving a suitable version of Lemma 5 by adapting
its reasoning and the proof of (i).
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