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Abstract
Let {hn} be a sequence in R

d tending to infinity and let {Thn } be the corresponding
sequence of shift operators given by (Thn f )(x) = f (x−hn) for x ∈ R

d .We prove that
{Thn } converges weakly to the zero operator as n → ∞ on a separable rearrangement-
invariant Banach function space X(Rd) if and only if its fundamental function ϕX

satisfies ϕX (t)/t → 0 as t → ∞. On the other hand, we show that {Thn } does not
converge weakly to the zero operator as n → ∞ on all Marcinkiewicz endpoint spaces
Mϕ(Rd) and on all non-separable Orlicz spaces LΦ(Rd). Finally, we prove that if {hn}
is an arithmetic progression: hn = nh, n ∈ Nwith an arbitrary h ∈ R

d\{0}, then {Tnh}
does not converge weakly to the zero operator on any non-separable rearrangement-
invariant Banach function space X(Rd) as n → ∞.
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92 A. Karlovich, E. Shargorodsky

1 Introduction

One of the powerful methods for the study of Fredholm properties of convolution type
operators with oscillating symbols on Lebesgue spaces L p is the so-called method
of limit operators (see [5,15,21] and also [6]). It is based on the observation that
for a given bounded linear operator A and a cleverly chosen sequence of isometries
{Vn}, the strong limit of the sequence V−1

n AVn (if it exists) preserves some important
information about A and can be much simpler than the original operator A. This
strong limit is called the limit operator of the operator A with respect to the sequence
of isometries {Vn}. To give a simple example illustrating this idea, let us consider the
shift operator Th on L p(Rd) with d ∈ N and 1 ≤ p ≤ ∞ given for h ∈ R

d by

(Th f )(x) := f (x − h), x ∈ R
d . (1.1)

It is clear that Th is an isometry on L p(Rd).

Lemma 1 Let {hn} be a sequence in R
d such that |hn| → +∞ as n → ∞ and

let {Thn } be the corresponding sequence of shift operators on the Lebesgue space
L p(Rd), 1 < p < ∞. If K is a compact operator on L p(Rd), then the strong limit of

the sequence
{
T−1
hn

K Thn
}
as n → ∞ is the zero operator.

Thus the limit operators of a compact operator with respect to the sequences
{
Thn

}
with {hn} tending to infinity are all equal to the zero operator. The proof of the above
lemma is contained in [6, Lemma 18.9] for d = 1. For other values of d ∈ N the proof
is essentially the same. It is reduced to the proof of the weak convergence of

{
Thn

}
to

the zero operator as n → ∞.
Weak convergence of the sequence {Thn } to the zero operator (that is, convergence

to the zero operator in the weak operator topology) on more general rearrangement-
invariant Banach function spaces does not seem to have been studied before. Since
this is not an entirely trivial question, we address it in the present paper.

For definitions of a rearrangement-invariant Banach function space X(Rd) and its
fundamental function ϕX we refer the reader to [3, Chap. 2] and Sect. 2.1 below (see
also [20, Chap. 7], [13, Chap. 2], and [23]). Let h ∈ R

d and f ∈ X(Rd). Since f and
Th f are equimeasurable, the shift operator defined by (1.1) is an isometry on X(Rd).

Our first main result gives necessary and sufficient conditions for the weak
convergence of the sequence {Thn } to the zero operator as n → ∞ on a rearrangement-
invariant Banach function space X(Rd).

Theorem 1 Let {hn} be a sequence in R
d such that |hn| → +∞ as n → ∞ and let

{Thn } be the corresponding sequence of shift operators on a rearrangement-invariant
Banach function space X(Rd) with fundamental function ϕX .

(a) If the sequence {Thn } converges weakly to the zero operator as n → ∞ on the
space X(Rd), then

ϕX (t)/t → 0 as t → ∞. (1.2)
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On the weak convergence of shift operators to zero on… 93

(b) If the space X(Rd) is separable and (1.2) is fulfilled, then the sequence {Thn }
converges weakly to the zero operator as n → ∞ on the space X(Rd).

Note that condition (1.2) is not fulfilled for the space L1(Rd). Hence the sequence
{Thn } does not converge weakly to the zero operator on L1(Rd). We will show that
condition (1.2) is fulfilled if the space X(Rd) is reflexive (see Corollary 1) or its upper
Zippin index is non-trivial, that is, qX < 1 (see Lemma 3).

On the other hand, we will show that there are non-separable rearrangement-in-
variant Banach function spaces satisfying (1.2), in which the sequence {Thn } fails
to converge weakly to the zero operator as n → ∞. For instance, these are the
Marcinkiewicz endpoint spaces Mϕ(Rd) built upon quasi-concave functions ϕ :
[0,∞) → [0,∞) satisfying ϕ(t)/t → 0 as t → ∞ and non-separable Orlicz spaces
LΦ(Rd) (see Sect. 2.2 below).

Our second main result is the following.

Theorem 2 Let {hn} be a sequence in R
d such that |hn| → +∞ as n → ∞ and let

{Thn } be the corresponding sequence of shift operators on a rearrangement-invariant
Banach function space X(Rd)with fundamental function ϕX . Then the sequence {Thn }
does not converge weakly to the zero operator as n → ∞ on the space X(Rd) if one
of the following conditions is satisfied:

(a) limt→0 ϕX (t) > 0 or limt→∞ ϕX (t) < ∞;
(b) the space X(Rd) is the Marcinkiewicz endpoint space Mϕ(Rd) built upon a quasi-

concave function ϕ;
(c) X(Rd) is a non-separable Orlicz space LΦ(Rd) built upon a Young’s function Φ.

Note that L∞(Rd) satisfies both conditions in (a) in the above theorem. Hence the
sequence {Thn } does not converge weakly to the zero operator on L∞(Rd).

The above theorem suggests the following question, which we were unable to
answer.

Question 1 Let {hn} be a sequence in R
d such that |hn| → +∞ as n → ∞. Is there

a non-separable rearrangement-invariant Banach function space X(Rd) on which the
sequence {Thn } converges weakly to the zero operator as n → ∞?

Nevertheless, our last main result shows that the answer to the above question is
negative in the case when {hn} is an arithmetic progression: hn = nh, n ∈ N with
an arbitrary h ∈ R

d\{0}. In this case, the sequence of shift operators {Tnh} does not
converge weakly to the zero operator on any non-separable rearrangement-invariant
Banach function space X(Rd) as n → ∞.

Theorem 3 Let X(Rd) be a non-separable rearrangement-invariant Banach function
space and h ∈ R

d\{0}. Then there exist f ∈ X(Rd) and F ∈ X∗(Rd) such that

inf
n∈N |F(Tnh f )| > 0, (1.3)

and hence the sequence {Tnh} does not convergeweakly to the zero operator as n → ∞
on the space X(Rd).
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94 A. Karlovich, E. Shargorodsky

The paper is organized as follows. In Sect. 2, we recall definitions of a
rearrangement-invariant Banach function space X(Rd) and its fundamental function
ϕX , as well as definitions of Marcinkiewicz endpoint spaces and Orlicz spaces, which
are prominent examples of rearrangement-invariant Banach function spaces. Then we
discuss the measure preserving transformation Θ(x) = ωd |x |d of R

d to R+, where
ωd is the volume of the unit ball in R

d . Further, we recall the definitions of the Boyd
and Zippin indices of a rearrangement-invariant Banach function space X(Rd) and
state some sufficient conditions for (1.2) in terms of these indices. Finally, we present
a version of [13, Chap. II, Theorem 4.8]. In Sect. 3, we prove that, given a compact
set F of positive measure, the condition ϕX (t) → ∞ as t → ∞ is equivalent to the
condition

∫
hn+F f (x) dx = o(1) as n → ∞ for every function f ∈ X(Rd). Using this

auxiliary fact, we prove Theorem 1. In Sect. 4, we first state an extension of Lemma 1
to the setting of separable rearrangement-invariant Banach function spaces satisfying
(1.2). Further, we show that condition (1.2) is fulfilled if the space X(Rd) is reflexive
or if its upper Zippin index satisfies qX < 1. We believe that these two cases will arise
more frequently in expected applications of our analogue of Lemma 1. Section 5 is
devoted to the proof of Theorem 2. We start it with the proof of part (a). Further, we
show that if the space X(Rd) contains a function g, whose non-increasing rearrange-
ment cannot be approximated by the right truncations g∗χ[0,N ], then the sequence of
shift operators {Thn } cannot converge weakly to the zero operator as n → ∞ on the
space X(Rd). Using this result, we prove parts (b) and (c) of Theorem 2. In Sect. 6,
we give a proof of Theorem 3. In Sect. 7, we show that the closure Xc(R

d) of the
set of all compactly supported (not necessarily bounded) functions in a non-separable
rearrangement-invariant Banach function space X(Rd) with respect to the norm of
X(Rd) is a proper subspace of the space X(Rd). We prove that if the upper Boyd
index satisfies βX < 1, then the sequences {Thn f } converge weakly to the zero func-
tion as n → ∞ in the space X(Rd) for all functions f ∈ Xc(R

d).

2 Preliminaries

2.1 Rearrangement-invariant Banach function spaces

By md and m denote the Lebesgue measure on R
d and R+ := [0,∞), respectively.

Let (S, μ) be one of the measure spaces (Rd ,md) or (R+,m). The set of all μ-
measurable extended complex-valued functions on S is denoted by M(S, μ). Let
M+(S, μ) be the subset of all functions in M(S, μ) whose values lie in [0,∞].
The measure and the characteristic (indicator) function of a measurable set E ⊂ S

are denoted by μ(E) and χE , respectively. Following [3, Chap. 1, Definition 1.1], a
mappingρ : M+(S, μ) → [0,∞] is called aBanach functionnorm if, for all functions
f , g, fn (n ∈ N) inM+(S, μ), for all constants a ≥ 0, and for all measurable subsets
E of S, the following axioms hold:

(A1) ρ( f ) = 0 ⇔ f = 0 a.e., ρ(a f ) = aρ( f ), ρ( f + g) ≤ ρ( f ) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ( f ) (the lattice property),
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On the weak convergence of shift operators to zero on… 95

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ( fn) ↑ ρ( f ) (the Fatou property),

(A4) μ(E) < ∞ ⇒ ρ(χE ) < ∞,

(A5) μ(E) < ∞ ⇒
∫

E
f (x) dx ≤ CEρ( f )

with CE ∈ (0,∞), which may depend on E and ρ but is independent of f . When
functions differing only on a set of measure zero are identified, the set X(S) of all
functions f ∈ M(S, μ) for which ρ(| f |) < ∞ is called a Banach function space. For
each f ∈ X(S), the norm of f is defined by ‖ f ‖X(S) := ρ(| f |). Under the natural
linear space operations and under this norm, the set X(S) becomes a Banach space
(see [3, Chap. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function norm, its associate
norm ρ′ is defined on M+(S, μ) by

ρ′(g) := sup

{∫

S

f (x)g(x) dx : f ∈ M+(S, μ), ρ( f ) ≤ 1

}
, g ∈ M+(S, μ).

It is a Banach function norm itself [3, Chap. 1, Theorem 2.2]. The Banach function
space X ′(S) determined by the Banach function norm ρ′ is called the associate space
(Köthe dual) of X(S). The associate space X ′(S) is naturally identified with a subspace
of the (Banach) dual space X∗(S).

LetM0(S, μ) andM+
0 (S, μ) be the classes of a.e. finite functions inM(S, μ) and

M+(S, μ), respectively. The distribution function μ f of f ∈ M0(S, μ) is given by

μ f (λ) := μ{x ∈ S : | f (x)| > λ}, λ ≥ 0.

The non-increasing rearrangement of f ∈ M0(S, μ) is the function defined by

f ∗(t) := inf{λ : μ f (λ) ≤ t}, t ≥ 0.

We use here the standard convention that inf ∅ = +∞. Now let (S, μ), (T, ν) ∈
{(Rd ,md), (R+,m)}. Two functions f ∈ M0(S, μ) and g ∈ M0(T, ν) are said to be
equimeasurable if μ f (λ) = νg(λ) for all λ ≥ 0.

A Banach function norm ρ : M+(S, μ) → [0,∞] is called rearrangement-in-
variant if for every pair of equimeasurable functions f , g ∈ M+

0 (S, μ), the equality
ρ( f ) = ρ(g) holds. In that case, theBanach function space X(S) generated byρ is said
to be a rearrangement-invariant Banach function space (or simply a rearrangement-
invariant space). Lebesgue spaces L p(S), 1 ≤ p ≤ ∞, Orlicz spaces LΦ(S), and
Lorentz spaces L p,q(S) are classical examples of rearrangement-invariant Banach
function spaces (see, e.g., [3] and the references therein). By [3, Chap. 2, Proposi-
tion 4.2], if a Banach function space X(S) is rearrangement-invariant, then its associate
space X ′(S) is also rearrangement-invariant.

Following [3, Chap. 2, Definition 5.1], for each finite value t , let E ⊂ S be such
that μ(E) = t and let

ϕX (t) := ‖χE‖X(S).
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96 A. Karlovich, E. Shargorodsky

The function ϕX so defined is called the fundamental function of the rearrangement-
invariant Banach function space X(S).

2.2 Marcinkiewicz endpoint spaces and Orlicz spaces

Let us recall the definition of Marcinkiewicz endpoin spaces Mϕ(Rd). Following [3,
Chap. 2, Definition 5.6], [13, Chap. II, Definition 1.1], and [20, Definition 7.9.10],
a non-decreasing function ϕ : [0,∞) → [0,∞) is said to be quasi-concave if (i)
ϕ(0) = 0; (ii) ϕ(t) > 0 for t > 0; (iii) t/ϕ(t) is non-decreasing on (0,∞). For
a given quasi-concave function ϕ : [0,∞) → [0,∞), the Marcinkiewicz endpoint
space Mϕ(Rd) consists of all functions f ∈ M0(R

d ,md) such that

‖ f ‖Mϕ(Rd ) := sup
0<t<∞

(
ϕ(t) f ∗∗(t)

)

is finite, where

f ∗∗(t) := 1

t

∫ t

0
f ∗(x) dx

(see [3, Chap. 2, Definition 5.7], [20, Definition 7.10.1] and also [13, Chap. II,
§ 5]). It is well known that if ϕ : [0,∞) → [0,∞) is quasi-concave, then the
Marcinkiewicz endpoint space Mϕ(Rd) is a rearrangement-invariant Banach function
space, whose fundamental function is ϕ (see [3, Chap. 2, Proposition 5.8] and [20,
Proposition 7.10.2]). Note that if 1 < p < ∞, then the function ϕ(t) = t1/p is
concave and Mϕ(Rd) is nothing but the weak L p-space L p,∞(Rd), also known as
the Marcinkiewicz space. It is well known that the Marcinkiewicz endpoint space is
separable if and only if it coincides with L1(Rd) up to equivalence of the norms (see,
e.g., [9, p. 256], [12]), i.e. if and only if ϕ(t) � t . As it was communicated to us by F.
Sukochev, this fact can be obtained from [13, Chap. II, Theorem 4.8 and Lemma 5.4]
(see also [20, Theorem 7.10.23]).

We will also need Orlicz spaces. Let φ : [0,∞) → [0,∞] be a non-decreasing
and left-continuous function such that φ(0) = 0. Suppose that φ is neither identically
zero nor identically infinite on (0,∞). Then the function

Φ(t) :=
∫ t

0
φ(s) ds

is said to be a Young’s function (see, e.g., [3, Chap. 4, Definition 8.1]). The Orlicz
space LΦ(Rd) is the set of all measurable function f : R

d → C such that

MΦ( f /k) :=
∫

Rd
Φ

( | f (x)|
k

)
dx < ∞
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On the weak convergence of shift operators to zero on… 97

for some k = k( f ) > 0. It is well known that LΦ(Rd) is a rearrangement-invariant
Banach function space with respect to the norm

‖ f ‖LΦ(Rd ) := inf {k > 0 : MΦ( f /k) ≤ 1}

(see, e.g., [3, Chap. 4, Theorem 8.9] or [17, Chap. II, §2, Theorem 1]).

2.3 Ameasure preserving transformation fromR
d toR+

Throughout the paper, we assume that R
d and R+ are equipped with the standard

metrics and the measures md and m, respectively.
Recall that a mapping σ : R

d → R+ is said to be a measure preserving transfor-
mation if, whenever E is an m-measurable subset of R+, the set

σ−1(E) := {x ∈ R
d : σ(x) ∈ E}

is an md -measurable subset of R
d and md(σ

−1(E)) = m(E) (see [3, Chap. 2, Defi-
nition 7.1]).

Let

ωd := md

{
x ∈ R

d : |x | < 1
}

= πd/2

Γ (d/2 + 1)

be the volume of the unit ball in R
d .

Lemma 2 The mapping Θ : R
d → R+, given by

Θ(x) := ωd |x |d , x ∈ R
d , (2.1)

is a measure preserving transformation from R
d to R+.

Proof Since Θ is continuous, Θ−1(B) is a Borel set in R
d for every Borel set B in

R+. Hence, we can define a Borel measure ν on R+ by

ν(B) := md

(
Θ−1(B)

)

for every Borel set B ⊂ R+ (see [25, Theorem 3.21]). If 0 ≤ α ≤ β, then

md

(
Θ−1([α, β])

)
= md

{
x ∈ R

d : α ≤ ωd |x |d ≤ β
}

= md

{
x ∈ R

d :
(

α

ωd

)1/d

≤ |x | ≤
(

β

ωd

)1/d
}

= md

{
x ∈ R

d : |x | ≤
(

β

ωd

)1/d
}
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98 A. Karlovich, E. Shargorodsky

− md

{
x ∈ R

d : |x | <

(
α

ωd

)1/d
}

= β − α. (2.2)

So, ν([α, β]) = β − α = m([α, β]). Then, for every Borel set B ⊂ R+,

ν(B) = m(B) (2.3)

(see [4, Theorem 1.5.6 and Corollary 1.5.9]; note that [4, Corollary 1.5.9] deals with
the case of R, but the proof is essentially the same in the case of R+).

Let Z ⊂ R+ be a measurable set such that m(Z) = 0. Then there exists a Borel set
H ⊂ R+ such that Z ⊆ H and m(H) = 0 (see [25, Theorem 3.8 and (3.11)]). Then
Θ−1(Z) ⊆ Θ−1(H), and md

(
Θ−1(H)

) = 0 according to (2.3). Hence Θ−1(Z) is
measurable and md

(
Θ−1(Z)

) = 0 (see [25, Sect. 3.2, Example 2]).
For any measurable set E ⊂ R+, there exist a Borel set B ⊂ R+ and a measurable

set Z ⊂ R+ such that E = B ∪ Z andm(Z) = 0 (see, [25, Theorem 3.28]). It follows
from the above that Θ−1(E) = Θ−1(B) ∪ Θ−1(Z) is measurable and

md

(
Θ−1(E)

)
= md

(
Θ−1(B)

)
= m(B) = m(E).

This completes the proof. ��

2.4 Submultiplicative functions and their indices

A measurable function � : (0,∞) → (0,∞) is said to be submultiplicative if
�(x1x2) ≤ �(x1)�(x2) for all x1, x2 ∈ (0,∞). The behavior of a measurable sub-
multiplicative function � in neighborhoods of zero and infinity is described by the
quantities

α(�) := sup
x∈(0,1)

log �(x)

log x
= lim

x→0

log �(x)

log x
,

β(�) := inf
x∈(1,∞)

log �(x)

log x
= lim

x→∞
log �(x)

log x
,

where−∞ < α(�) ≤ β(�) < ∞ (see [13, Chap. II, Theorem1.3]). The numbersα(�)

and β(�) are called the lower and upper indices of the measurable submultiplicative
function �.

2.5 Zippin indices

Following [26, p. 271] (see also [18, p. 28]), for a given rearrangement-invariant
Banach function space X(Rd) with fundamental function ϕX , let us consider the
function

123



On the weak convergence of shift operators to zero on… 99

M(t, X) := sup
0<x<∞

ϕX (t x)

ϕX (x)
, t ∈ (0,∞).

It is easy to check that this function is nondecreasing (and hence, measurable) and
submultiplicative on (0,∞). The indices of M(·, X) are called the Zippin (or funda-
mental) indices of the rearrangement-invariant Banach function space X(Rd) and are
denoted by

pX := α(M(·, X)), qX := β(M(·, X)).

They satisfy the inequalities 0 ≤ pX ≤ qX ≤ 1 (see [18, formula (4.14)]).

Lemma 3 If X(Rd) is a rearrangement-invariant Banach function space with the
upper Zippin index satisfying qX < 1, then condition (1.2) is fulfilled.

Proof It is clear that for t > 0,

ϕX (t)

t
≤ ϕX (1)

t
sup

0<s<∞
ϕX (st)

ϕX (s)
= ϕX (1)

M(t, X)

t
. (2.4)

Since qX < 1, there exists ε > 0 such that qX + ε < 1. Then in view of [13, Chap. II,
Theorem 1.3], there exists t0 = t0(ε) > 1 such that

M(t, X) ≤ tqX+ε, t > t0. (2.5)

Now condition (1.2) immediately follows from (2.4)–(2.5) and qX + ε < 1. ��

2.6 Dilation operators on the Luxemburg representation and Boyd indices

Let X(Rd) be a rearrangement-invariant Banach function space generated by a
rearrangement-invariant Banach function norm ρ over (Rd ,md). By the Luxemburg
representation theorem (see [3, Chap. 2, Theorem 4.10] or [20, Theorem 7.8.3]), there
exists a unique rearrangement-invariant Banach function norm ρ over (R+,m) such
that

ρ( f ) = ρ( f ∗), f ∈ M+
0 (Rd ,md).

The rearrangement-invariant Banach function space over (R+,m) generated by ρ is
denoted by X(R+) and is called the Luxemburg representation of X(Rd). For t > 0,
let Et be the dilation operator defined on the setM0(R+,m) by

(Etϕ)(s) = ϕ(ts), 0 < s < ∞. (2.6)

It follows from [3, Chap. 3, Proposition 5.11] that the operators Et are bounded on
X(R+) for all t > 0. The operator norm of the operator E1/t on the Luxemburg
representation X(R+) will be denoted by

h(t, X) := ‖E1/t‖B(
X(R+)

), t > 0.
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100 A. Karlovich, E. Shargorodsky

By [3, Chap. 3, Proposition 5.11], the function h(·, X) is nondecreasing (and hence,
measurable) and submultiplicative on (0,∞). The indices of h(·, X) are called the
Boyd indices [7] of the rearrangement-invariant Banach function space X(Rd) and are
denoted by

αX := α(h(·, X)), βX := β(h(·, X)).

The Boyd and Zippin indices of X(Rd) satisfy

0 ≤ αX ≤ pX ≤ qX ≤ βX ≤ 1

(see [18, formula (4.14)]). We refer to the survey paper [18] and the monographs
[3,13] for the properties of the Zippin indices pX , qX and the Boyd indices αX , βX of
rearrangement-invariant Banach function spaces. The following statement is a conse-
quence of [13, Chap. II, Theorem 1.3 and Corollary 2].

Lemma 4 Let X(Rd) be a rearrangement-invariant Banach function space. Then its
upper Boyd index satisfies βX < 1 if and only if

lim
τ→0

τ‖Eτ‖B(
X(R+)

) = 0.

2.7 Separability of a rearrangement-invariant Banach function space

The results in this subsection are probably well known, but we could not find suitable
references for them. We provide details here for the sake of completeness.

Let X(R+) be a rearrangement-invariant Banach function space. For a function
w ∈ X(R+) and N > 0, let

EN = Ew,N := {s ∈ R+ : |w(s)| > N }

and

wN (t) :=
⎧⎨
⎩

w(t), if t ∈ R+\EN ,

N
w(t)

|w(t)| , if t ∈ EN .

Lemma 5 Fora rearrangement-invariantBanach function space X(R+), the following
statements are equivalent:

lim
t→0

ϕX (t) = 0, lim
N→∞

∥∥∥w − wN
∥∥∥
X(R+)

= 0 for all w ∈ X(R+), (2.7)

and

lim
τ→0

∥∥w∗χ(0,τ ]
∥∥
X(R+)

= 0 for all w ∈ X(R+). (2.8)
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On the weak convergence of shift operators to zero on… 101

Proof Suppose (2.7) holds. Take any w ∈ X(R+). For any ε > 0, there exists N > 0
such that

∥∥∥w − wN
∥∥∥
X(R+)

<
ε

2
.

For this N , there exists tN > 0 such that

ϕX (t) <
ε

2N

for all t ∈ (0, tN ). Since |w| ≤ ∣∣w − wN
∣∣ + N , we have

w∗ ≤
(∣∣∣w − wN

∣∣∣ + N
)∗ =

(
w − wN

)∗ + N for all N > 0.

Then for all τ ∈ (0, tN ),

∥∥w∗χ(0,τ ]
∥∥
X(R+)

≤
∥∥∥
(
w − wN

)∗
χ(0,τ ]

∥∥∥
X(R+)

+ ∥∥Nχ(0,τ ]
∥∥
X(R+)

≤
∥∥∥w − wN

∥∥∥
X(R+)

+ NϕX (τ ) <
ε

2
+ N

ε

2N
= ε,

which proves (2.8).
Suppose now (2.8) holds. Applying it to w = χ(0,1], we get

lim
t→0

ϕX (t) = lim
t→0

∥∥χ(0,t]
∥∥
X(R+)

= lim
t→0

∥∥χ(0,1]χ(0,t]
∥∥
X(R+)

= lim
t→0

∥∥∥χ∗
(0,1]χ(0,t]

∥∥∥
X(R+)

= 0.

It is easy to see that, for any w ∈ X(R+),

∣∣∣w − wN
∣∣∣ = (|w| − N )χEN ≤ |w|χEN , |w| ≥ NχEN . (2.9)

Let

τ(N ) := m(EN ), τ0 := lim
N→∞ τ(N ).

If τ0 > 0, then the second inequality in (2.9) implies

‖w‖X(R+) ≥ ∥∥NχEN

∥∥
X(R+)

= NϕX (τ (N )) ≥ NϕX (τ0) → ∞ as N → ∞,

which contradicts w ∈ X(R+). Hence τ0 = 0, i.e. τ(N ) → 0 as N → ∞. Then it
follows from the inequality

(|w|χEN

)∗ ≤ w∗χ(0,τ (N )], the first inequality in (2.9), and
equality (2.8) that
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lim
N→∞

∥∥∥w − wN
∥∥∥
X(R+)

≤ lim
N→∞

∥∥|w|χEN

∥∥
X(R+)

= lim
N→∞

∥∥(|w|χEN

)∗∥∥
X(R+)

≤ lim
N→∞

∥∥w∗χ(0,τ (N )]
∥∥
X(R+)

= lim
τ→0

∥∥w∗χ(0,τ ]
∥∥
X(R+)

= 0,

which completes the proof. ��
The following result is a reformulation of [13, Chap. II, Theorem 4.8]. A similar

result is stated in [23, Note 6.5.4] without proof. For the reader’s convenience, we give
a proof here.

Theorem 4 A rearrangement-invariant Banach function space X(R+) is separable if
and only if for all w ∈ X(R+),

lim
τ→0

∥∥w∗χ(0,τ ]
∥∥
X(R+)

= 0 = lim
N→∞ ‖w∗χ[N ,∞)‖X(R+). (2.10)

Proof Suppose X(R+) is separable. Then it follows from [13, Chap. II, Theorem 4.8]
(and Lemma 5) that (2.10) holds.

Suppose now (2.10) holds. Take any non-negative function w ∈ X(R+) and ε > 0.
There exist 0 < τ < N such that

∥∥w∗χ(0,τ ]
∥∥
X(R+)

<
ε

2
, ‖w∗χ[N ,∞)‖X(R+) <

ε

2
.

The second equality in (2.10) implies also that limt→∞ w∗(t) = 0. Indeed, if ω∞ :=
limt→∞ w∗(t) > 0, then

‖w∗χ[N ,∞)‖X(R+) ≥ ω∞‖χ[N ,∞)‖X(R+) ≥ ω∞ϕX (1) �→ 0 as N → ∞,

which contradicts (2.10). Since limt→∞ w∗(t) = 0, there exists a measure preserving
transformation σ from the support of w onto the support of w∗ such that w = w∗ ◦ σ

(see [3, Chap. 2, Corollary 7.6]).
Let

Gτ,N := σ−1((τ, N ) ∩ suppw∗)
)
.

Then

m
(
Gτ,N

) ≤ m
(
(τ, N )

) = N − τ, wχGτ,N = (
w∗χ(τ,N )

) ◦ σ,

and wχGτ,N is a bounded function supported in a set of finite measure. Hence

w − wχGτ,N = (
w∗ − w∗χ(τ,N )

) ◦ σ,

which implies that the functions w − wχGτ,N and w∗ − w∗χ(τ,N ) are equimeasurable
(see [3, Chap. 2, Proposition 7.2]), and
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∥∥w − wχGτ,N

∥∥
X(R+)

= ∥∥w∗ − w∗χ(τ,N )

∥∥
X(R+)

≤ ∥∥w∗χ(0,τ ]
∥∥
X(R+)

+ ‖w∗χ[N ,∞)‖X(R+) <
ε

2
+ ε

2
= ε.

Let Xb(R+) denote the closure in X(R+) of the set of bounded functions supported
in sets of finite measure. The above inequality implies that w ∈ Xb(R+) for every
non-negative w ∈ X(R+). Since every complex-valued function w ∈ X(R+) is a
linear combination of four non-negative functions from X(R+), we conclude that
X(R+) = Xb(R+). It follows from the first equality in (2.10) and Lemma 5 that
limt→0 ϕX (t) = 0. Then [3, Chap. 2, Theorem 5.5; Chap. 1, Corollary 5.6] imply that
the space X(R+) is separable. ��

3 Proof of the result about the weak convergence

3.1 Integrals over translations of a compact set

Let 1 be the constant function identically equal to 1. In order to prove Theorem 1, we
will need the following auxiliary result.

Lemma 6 Let {hn} be a sequence in R
d such that |hn| → ∞ as n → ∞ and F ⊂ R

d

be a compact set of positive measure. Suppose X(Rd) is a rearrangement-invariant
Banach function space with fundamental function ϕX . Then

∫

hn+F
f (x) dx → 0 as n → ∞ for every f ∈ X(Rd) (3.1)

if and only if ϕX (t) → ∞ as t → ∞.

Proof Necessity. Suppose (3.1) holds and

κ := lim
t→∞ ϕX (t) < ∞.

Let {Bn} be the sequence of the closed balls of radii n ∈ N centered at 0 ∈ R
d . Since

χBn ↑ 1 as n → ∞ and
∥∥χBn

∥∥
X(Rd )

≤ ϕX (md(Bn)) ≤ κ for all n ∈ N, by Fatou’s

lemma for X(Rd) (see [3, Chap. 1, Lemma 1.5]), we have 1 ∈ X(Rd). It is clear that

∫

hn+F
1(x) dx = md(F) > 0 for all n ∈ N,

and (3.1) does not hold, so we arrive at a contradiction.
Sufficiency. Suppose ϕX (t) → ∞ as t → ∞ and (3.1) does not hold. Then there

exist a function f ∈ X(Rd), a number δ > 0, and a strictly increasing sequence of
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natural numbers {n j } such that

∣∣∣∣∣
∫

hn j +F
f (x) dx

∣∣∣∣∣ ≥ δ for all j ∈ N. (3.2)

Extracting a subsequence if necessary, we can assume that the sets hn j +F are pairwise
disjoint. Let

g :=
∞∑
j=1

(
1

md(F)

∫

hn j +F
f (x) dx

)
χhn j +F .

By [3, Chap. 2, Theorem 4.8], ‖g‖X(Rd ) ≤ ‖ f ‖X(Rd ) < ∞. On the other hand, it
follows from (3.2) that for all N ∈ N,

|g| ≥ δ

md(F)
χEN , where EN :=

N⋃
j=1

(hn j + F).

Hence

ϕX (Nmd(F)) = ∥∥χEN

∥∥
X(Rd )

≤ md(F)

δ
‖g‖X(Rd ) < ∞,

which contradicts the condition ϕX (t) → ∞ as t → ∞. ��

3.2 Proof of Theorem 1

(a) Necessity. By [3, Chap. 1, Theorem 2.9], the associate space X ′(Rd) is canonically
isometrically isomorphic to a closed subspace of the Banach space dual X∗(Rd) of
X(Rd). This implies that if the sequence {Thn } converges weakly to the zero operator
as n → ∞ on the space X(Rd), then

∫

Rd
f (x − hn)g(x) dx → 0 as n → ∞ (3.3)

for every f ∈ X(Rd) and g ∈ X ′(Rd). Assume that (1.2) does not hold. Then

lim
t→∞

ϕX (t)

t
> 0 (3.4)

(note that the above limit exists because the function ϕX (t)/t is nonincreasing in view
of [3, Chap. 2, Corollary 5.3]). It follows from (3.4) and [3, Chap. 2, Theorem 5.2]
that

lim
t→∞ ϕX ′(t) = lim

t→∞
t

ϕX (t)
< ∞.
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Then one can prove as in the proof of the necessity portion of Lemma 6 that 1 ∈
X ′(Rd). Let F ⊂ R

d be a measurable set of finite positive measure and f := χF .
Then f ∈ X(Rd) and

∫

Rd
f (x − hn)1(x) dx = md(F) > 0 for all n ∈ N.

Hence (3.3) does not hold and the sequence {Thn } does not converge weakly to the
zero operator. The obtained contradiction completes the proof of part (a).

(b) Sufficiency. Since X(Rd) is separable, its Banach space dual is canonically
isometrically isomorphic to its associate space X ′(Rd) (see [3, Chap. 1, Corollaries 4.3
and 5.6]). Hence it is enough to prove that (1.2) implies that (3.3) is fulfilled for all
f ∈ X(Rd)\{0} and g ∈ X ′(Rd)\{0}.
It follows from [3, Chap. 1, Propositions 3.6 and 3.10, Theorem 3.11, and Corol-

lary 5.6] that the set L∞
c (Rd) of all bounded compactly supported functions is dense

in the separable rearrangement-invariant Banach function space X(Rd).
Take any ε > 0. There exists f0 ∈ L∞

c (Rd) such that

‖ f − f0‖X(Rd ) <
ε

2‖g‖X ′(Rd )

.

Then it follows from Hölder’s inequality for X(Rd) (see [3, Chap. 1, Theorem 2.4]),
the fact that Thn is an isometry on X(Rd), and the above inequality that

∣∣∣∣
∫

Rd
f (x − hn)g(x) dx

∣∣∣∣ ≤
∣∣∣∣
∫

Rd
f0(x − hn)g(x) dx

∣∣∣∣
+ ‖Thn ( f − f0)‖X(Rd )‖g‖X ′(Rd )

=
∣∣∣∣
∫

Rd
f0(x − hn)g(x) dx

∣∣∣∣ + ‖ f − f0‖X(Rd )‖g‖X ′(Rd )

<

∣∣∣∣
∫

Rd
f0(x − hn)g(x) dx

∣∣∣∣ + ε

2
. (3.5)

Let F be the support of f0. Since ϕX ′(t) = t/ϕX (t) → ∞ as t → ∞, it follows from
Lemma 6 applied to |g| ∈ X ′(Rd) that there exists n0 ∈ N such that

∫

hn+F
|g(x)| dx <

ε

2‖ f0‖L∞(Rd )

for all n ≥ n0. (3.6)

Inequalities (3.5)–(3.6) imply that

∣∣∣∣
∫

Rd
f (x − hn)g(x) dx

∣∣∣∣ <

∣∣∣∣
∫

Rd
f0(x − hn)g(x) dx

∣∣∣∣ + ε

2

=
∣∣∣∣
∫

hn+F
f0(x − hn)g(x) dx

∣∣∣∣ + ε

2
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≤ ‖ f0‖L∞(Rd )

∫

hn+F
|g(x)| dx + ε

2

<
ε

2
+ ε

2
= ε

for all n ≥ n0. So, (3.3) holds for all f ∈ X(Rd)\{0} and g ∈ X ′(Rd)\{0}. This
completes the proof. ��

4 Some corollaries of the result about the weak convergence

4.1 On the strong convergence of the sequence {T−1
hn

KThn} to zero for a compact
operator K

Nowwe are in a position to extend Lemma 1 to the setting of separable rearrangement-
invariant Banach function spaces.

Lemma 7 Let {hn} be a sequence in R
d such that |hn| → +∞ as n → ∞ and let

{Thn } be the corresponding sequence of shift operators on a separable rearrangement-
invariant Banach function space X(Rd) such that ϕX (t)/t → 0 as t → ∞. If K is a
compact operator on X(Rd), then the sequence {T−1

hn
K Thn } converges strongly to the

zero operator as n → ∞ on the space X(Rd).

Proof Since the sequence {Thn } converges weakly to the zero operator as n → ∞ in
view of Theorem 1 and the operator K is compact, it follows from [22, Lemma 1.4.6]
that the sequence {KThn } converges strongly to the zero operator as n → ∞. Now
taking into account that ‖T−1

hn
‖ = 1 for all n ∈ N, the desired result follows from [22,

Lemma 1.4.4]. ��

4.2 Condition (1.2) is fulfilled if X(Rd) is reflexive

In the following two subsections, we give some sufficient conditions for (1.2).We start
with the following result, which follows easily from the known ones. Since we were
not able to provide a suitable reference, we give its proof below.

Lemma 8 Let X(Rd) be a separable rearrangement-invariant Banach function space.
Then ϕX (t) → ∞ as t → ∞.

Proof If X(Rd) is separable, then its Luxemburg representation X(R+) is also sep-
arable. If limt→∞ ϕX (t) < ∞, then one can show as in the proof of Lemma 6 that
1 ∈ X(R+). For every N > 0, the functions 1 and 1 − χ(0,N )1 are equimeasurable.
Therefore,

lim
N→∞ ‖1 − χ(0,N )1‖X(R+) = ‖1‖X(R+) > 0,

which contradicts [13, Chap. II, Theorem 4.8(2)]. ��
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Corollary 1 If X(Rd) is a reflexive rearrangement-invariant Banach function space,
then (1.2) holds.

Proof Since the space X(Rd) is reflexive, both X(Rd) and X ′(Rd) are separable (see
[3, Chap. 1, Corollaries 4.4 and 5.6]). It follows from Lemma 8 that ϕX (t) → ∞ and
ϕX ′(t) → ∞ as t → ∞. Then ϕX (t)/t = 1/ϕX ′(t) → 0 as t → ∞. ��

Theorem 1 and Corollary 1 yield the following.

Corollary 2 Let {hn} be a sequence in R
d such that |hn| → +∞ as n → ∞ and let

{Thn } be the corresponding sequence of shift operators on a rearrangement-invariant
Banach function space X(Rd). If the space X(Rd) is reflexive, then the sequence {Thn }
converges weakly to the zero operator as n → ∞.

4.3 The case when the upper Zippin index of X(Rd) satisfies qX < 1

Theorem 1 and Lemma 3 immediately imply the following.

Corollary 3 Let {hn} be a sequence in R
d such that |hn| → +∞ as n → ∞ and let

{Thn } be the corresponding sequence of shift operators on a separable rearrangement-
invariant Banach function space X(Rd). If the upper Zippin index of X(Rd) satisfies
qX < 1, then the sequence {Thn } converges weakly to the zero operator as n → ∞.

Note that there exist reflexive rearrangement-invariant Banach function spaces
X(Rd) with both Zippin indices being trivial, that is, pX = 0 and qX = 1 (see
[11]). On the other hand, the Lorentz space L p,1(Rd) is a separable and non-
reflexive rearrangement-invariant Banach function space with the Zippin indices
pL p,1 = qL p,1 = 1/p < 1 (see [3, Chap. 4, Theorem 4.6], [8, p. 83], and [18,
formula (4.14)]). So, neither of Corollaries 2 and 3 implies the other one.

5 Proofs of the results about the absence of the weak convergence

5.1 Proof of Theorem 2(a)

If limt→∞ ϕX (t) < ∞, then 1 ∈ X(Rd) (see the proof of the necessity portion of
Lemma 6). Let B be the unit ball in R

d . Then χB ∈ X ′(Rd). It follows from Hölder’s
inequality (see [3, Chap. 1, Theorem 2.4]) that

G( f ) :=
∫

Rd
f (x)χB(x) dx, f ∈ X(Rd),

is a bounded linear functional on X(Rd). Since

inf
h∈Rd

|G(Th1)| =
∫

B
dx > 0,

the functions Thn1 cannot converge weakly to the zero function as n → ∞.
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Now suppose that limt→0 ϕX (t) > 0. Let X0(R
d) be the linear subspace of X(Rd)

consisting of all functions f ∈ X(Rd) that are continuous in a neighborhood of the
origin (which may depend on f ). Consider the linear functional F0 : X0(R

d) → C

defined by F0( f ) = f (0) for all f ∈ X0(R
d). The condition limt→0 ϕX (t) > 0

implies that X(Rd) ⊆ L∞(Rd) (see, e.g., [24, Lemma 4(d)]). Then

|F0( f )| = | f (0)| ≤ ‖ f ‖L∞(Rd ) ≤ const ‖ f ‖X(Rd ), f ∈ X0(R
d).

By the Hahn–Banach theorem, F0 admits an extension F ∈ X∗(Rd). Let

Bn :=
{
x ∈ R

d : |x + hn| < 2−n
}

, n ∈ N, B :=
∞⋃
n=1

Bn . (5.1)

Since B has finite measure, χB ∈ X(Rd). It is easy to see that ThnχB ∈ X0(R
d) for

all n ∈ N. Since for all n ∈ N,

F
(
ThnχB

) = F0
(
ThnχB

) = (
ThnχB

)
(0) = χB(−hn) = 1,

the sequence {ThnχB} does not converge weakly to 0 as n → ∞. ��

5.2 A sufficient condition for the absence of the weak convergence of shift
operators to the zero operator

Theorem 5 Let X(Rd) be a rearrangement-invariant Banach function space and let
X(R+) be its Luxemburg representation. Suppose that there exists g ∈ X(Rd) such
that

κ(g) := lim
N→∞ ‖g∗χ(N ,∞)‖X(R+) > 0.

Then there exists a functional F ∈ X∗(Rd) such that

inf
h∈Rd

|F(Th f )| > 0,

where f := g∗ ◦ Θ and Θ is given by (2.1).

Proof Let F be the closed convex hull of the set

{
f − Th f : h ∈ R

d
}

⊂ X(Rd).

Let us show that f /∈ F. Take any h1, . . . , hn ∈ R
d and any c1, . . . , cn ∈ [0, 1] such

that
∑n

k=1 ck = 1. If

|x | ≥ R := max {|h1|, . . . , |hn|} ,
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then

|x − hk | ≤ 2|x |, k = 1, . . . , n.

Since f (x) = g∗(ωd |x |d) and g∗ is non-negative and non-increasing, we have for
|x | ≥ R,

∣∣∣∣∣ f (x) −
n∑

k=1

ck
(
f (x) − (

Thk f
)
(x)

)
∣∣∣∣∣ =

∣∣∣∣∣ f (x) − f (x) +
n∑

k=1

ck
(
Thk f

)
(x)

∣∣∣∣∣

=
n∑

k=1

ck
(
Thk f

)
(x) =

n∑
k=1

ckg
∗ (

ωd |x − hk |d
)

≥
n∑

k=1

ckg
∗ (

ωd |2x |d
)

= g∗ (
2dΘ(x)

)
= (

E2d g
∗) (Θ(x)),

where the dilation operator Et is defined by (2.6). Let r := ωd Rd . Then

∣∣∣∣∣ f −
n∑

k=1

ck
(
f − Thk f

)
∣∣∣∣∣ ≥ χ{x∈Rd :|x |≥R}

(
E2d g

∗) ◦ Θ

= (
χ[r ,∞)

(
E2d g

∗)) ◦ Θ. (5.2)

By Lemma 2, Θ is a measure preserving transformation. Then, in view of [3, Chap. 2,
Proposition 7.2], we obtain f ∗ = g∗ and

((
χ[r ,∞)

(
E2d g

∗)) ◦ Θ
)∗ = (

χ[r ,∞)

(
E2d g

∗))∗
. (5.3)

Taking into account (5.2), (5.3), and the following equalities that hold for every non-
increasing function u : (0,∞) → [0,∞),

u∗(t) = u(t),
(
χ[r ,∞)u

)∗
(t) = u(t + r), t, r > 0, (5.4)

one gets for t > 0,

(
f −

n∑
k=1

ck
(
f − Thk f

))∗
(t) ≥ (

χ[r ,∞)

(
E2d g

∗))∗
(t) = (

E2d g
∗)∗

(t + r)

= (
E2d g

∗) (t + r) ≥ χ[r ,∞)(t)
(
E2d g

∗) (t + r)

≥ χ[r ,∞)(t)
(
E2d g

∗) (2t)

=
(
E2d+1

(
χ[2d+1r ,∞)g

∗))
(t). (5.5)

123



110 A. Karlovich, E. Shargorodsky

Since the operator E2−(d+1) is bounded on the space X(R+), we see that

∥∥∥χ[2d+1r ,∞)g
∗
∥∥∥
X(R+)

=
∥∥∥E2−(d+1)E2d+1

(
χ[2d+1r ,∞)g

∗)∥∥∥
X(R+)

≤ ∥∥E2−(d+1)

∥∥B(
X(R+)

)
∥∥∥E2d+1

(
χ[2d+1r ,∞)g

∗)∥∥∥
X(R+)

.

Therefore

∥∥∥E2d+1

(
χ[2d+1r ,∞)g

∗)∥∥∥
X(R+)

≥

∥∥∥χ[2d+1r ,∞)g
∗
∥∥∥
X(R+)∥∥E2−(d+1)

∥∥B(
X(R+)

)

≥
lim

N→∞
∥∥χ(N ,∞)g∗∥∥

X(R+)

‖E2−(d+1)‖B(
X(R+)

) = κ(g)

‖E2−(d+1)‖B(
X(R+)

)

> 0. (5.6)

Combining (5.5) and (5.6), we see that

∥∥∥∥∥ f −
n∑

k=1

ck
(
f − Thk f

)
∥∥∥∥∥
X(Rd )

≥ κ(g)

‖E2−(d+1)‖B(
X(R+)

) > 0.

Then

‖ f − w‖X(Rd ) ≥ κ(g)

‖E2−(d+1)‖B(
X(R+)

) > 0 for all w ∈ F.

SinceF is closed and convex, and f /∈ F, theHahn–Banach separation theorem implies
the existence of a functional F ∈ X∗(Rd) and numbers γ1, γ2 ∈ R such that

Re F( f ) > γ1 > γ2 > Re F(w) for all w ∈ F.

Hence, for all h ∈ R
d ,

Re F(Th f ) = Re F( f ) − Re F
(
f − Th f

)
> γ1 − γ2 > 0

and

inf
h∈Rd

|F(Th f )| ≥ inf
h∈Rd

Re F(Th f ) ≥ γ1 − γ2 > 0,

which completes the proof. ��
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5.3 Proof of Theorem 2(b)

Let

κ∞ := lim
t→∞

ϕ(t)

t
.

If κ∞ > 0, then it follows fromTheorem1(a) that the sequence {Thn } does not converge
to the zero operator as n → ∞ on the space Mϕ(Rd).

Let us show that if κ∞ = 0, then there exists g ∈ Mϕ(Rd) such that

κ(g) := lim
N→∞ sup

0<t<∞
(
ϕ(t)

(
g∗χ(N ,∞)

)∗∗
(t)

) ≥ 1 > 0. (5.7)

Let ψ be the quasi-concave function given by

ψ(t) = t

ϕ(t)
for t > 0, ψ(0) = 0. (5.8)

Then there exists a smallest concave function ψ̃ , which dominates ψ . The function ψ̃

is called the least concave majorant of ψ . It satisfies

1

2
ψ̃(t) ≤ ψ(t) ≤ ψ̃(t), t ∈ [0,∞). (5.9)

(see [3, Chap. 2, Proposition 5.10], [13, Chap. II, inequalities (1.7)], or [20, Propo-
sition 7.10.10]). Fix t > 0 and take ε ∈ (0, t). Since the least concave majorant ψ̃

of ψ is concave and positive for t > 0 in view of (5.9), its right derivative ψ̃ ′+ is
right-continuous, non-negative, non-increasing and

ψ̃(t) − ψ̃(ε) =
∫ t

ε

ψ̃ ′+(s) ds, 0 < ε < t (5.10)

(see [19, Theorems 1.4.2 and 1.5.2]), where these facts are proved for convex func-
tions). By [3, Chap. 2, Corollary 7.8], there exists g ∈ M0(R

d ,md) such that
ψ̃ ′+(s) = g∗(s) for s > 0. It follows from this observation and (5.8)–(5.10) that

∫ t

ε

g∗(s) ds ≤ 2ψ(t) − ψ(ε) ≤ 2ψ(t) = 2t

ϕ(t)
, 0 < ε < t .

Passing to the limit as ε → 0+ and multiplying by ϕ(t)/t , we get ϕ(t)g∗∗(t) ≤ 2 for
0 < t < ∞, which implies that g ∈ Mϕ(Rd).

If N > 0, then

(
g∗χ(N ,∞)

)∗
(s) = g∗(s + N ), s > 0
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(see (5.4)). Then, similarly to (5.10), we get for t > 0,

∫ t

0

(
g∗χ(N ,∞)

)∗
(s) ds =

∫ t

0
g∗(s + N ) ds =

∫ t+N

N
g∗(s) ds

=
∫ t+N

N
ψ̃ ′+(s) ds = ψ̃(t + N ) − ψ̃(N ). (5.11)

It follows from (5.8), (5.9), and (5.11) that for t > 0 and N ∈ N,

(
g∗χ(N ,∞)

)∗∗
(t) ≥ ψ(t + N )

t
− 2ψ(N )

t
≥ ψ(t)

t
− 2ψ(N )

t
= 1

ϕ(t)
− 2ψ(N )

t
.

Taking into account that κ∞ = 0, we deduce from the later inequality that for N > 0,

sup
0<t<∞

(
ϕ(t)

(
g∗χ(N ,∞)

)∗∗
(t)

) ≥ 1 − 2ψ(N ) lim
t→∞

ϕ(t)

t
= 1,

which immediately implies (5.7).
It follows from (5.7) and Theorem 5 that there exists a functional F ∈ M∗

ϕ(Rd)

such that

inf
h∈Rd

|F(Th f )| > 0, (5.12)

where f = g∗ ◦ Θ and Θ is given by (2.1). In view of Lemma 2 and [3, Chap. 2,
Proposition 7.2], we see that f ∈ Mϕ(Rd). Therefore, (5.12) implies that {Thn f } does
not converge weakly to the zero function as n → ∞ in Mϕ(Rd). ��

5.4 Proof of Theorem 2(c)

Following [17, Chap. I, §3, Definition 3], let LΦ
b (Rd) be the closure in LΦ(Rd) of

the set of all bounded functions ϕ ∈ M0(R
d ,md) with compact support. Further, let

LΦ
0 (Rd) be the set of all finite elements of LΦ(Rd), that is, the set of all functions ϕ ∈

LΦ(Rd) such that MΦ(ϕ/k) < ∞ for all k > 0 (see [17, Chap. II, §3, Definition 1]).
Since LΦ(Rd) is non-separable, by [17, Chap. I, §3, Theorem 7], LΦ(Rd)\LΦ

b (Rd) �=
∅. On the other hand, LΦ

0 (Rd) is a closed linear subspace of LΦ(Rd) and LΦ
0 (Rd) =

LΦ
b (Rd) (see [17, Chap. II, §3, Lemma 1 and Theorem 1]). Thus, there exists g ∈

LΦ(Rd)\LΦ
0 (Rd).

Let f := g∗ ◦ Θ , where Θ is defined by (2.1). It follows from Lemma 2 and [3,
Chap. 2, Proposition 7.2] that f ∗ = g∗. Since

∫

Rd
Φ(|ϕ(x)|) dx =

∫

R+
Φ(ϕ∗(t)) dt, ϕ ∈ M0(R

d ,md) (5.13)
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(see, e.g., [3, Chap. 2, Exercise 3]), we observe that the Luxemburg representation
LΦ(R+) of LΦ(Rd) is generated by the Banach function norm

ρ(ϕ) = inf

{
k > 0 :

∫

R+
Φ

(
ϕ∗(t)
k

)
dy ≤ 1

}
, ϕ ∈ M+

0 (R+,m).

If

κ(g) := lim
N→∞

∥∥g∗χ(N ,∞)

∥∥
LΦ(R+)

> 0, (5.14)

then it follows from Theorem 5 that there exists a functional F ∈ (LΦ(Rd))∗ such
that

inf
n∈N |F(Thn f )| > 0.

Thus, the sequence {Thn f } does not converge weakly to the zero function as n → ∞
in the Orlicz space LΦ(Rd).

Now assume that (5.14) does not hold. It follows from (5.13) and f ∗ = g∗ that for
k > 0,

∫

Rd
Φ

( |g(x)|
k

)
dx =

∫

Rd
Φ

( | f (x)|
k

)
dx .

Therefore f ∈ LΦ(Rd)\LΦ
0 (Rd) and

δ := inf
ϕ∈LΦ

0 (Rd )

‖ f − ϕ‖LΦ(Rd ) > 0. (5.15)

Since (5.14) does not hold, there exists N ∈ N such that

∥∥g∗χ(N ,∞)

∥∥
LΦ(R+)

<
δ

2
.

Put

fN := (
g∗χ[0,N ]

) ◦ Θ.

Then f − fN = (
g∗χ(N ,∞)

)◦Θ and g∗χ(N ,∞) are equimeasurable in view of Lemma2
and [3, Chap. 2, Proposition 7.2]. Hence

‖ f − fN‖LΦ(Rd ) = ∥∥g∗χ(N ,∞)

∥∥
LΦ(R+)

<
δ

2
. (5.16)

It follows from (5.15) and (5.16) that fN ∈ LΦ(Rd)\LΦ
0 (Rd). The support of fN

lies in the closed ball BN ⊂ R
d centered at the origin and such that md(BN ) = N .
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Therefore, the radius of BN is equal to

RN = 1√
π

(
NΓ

(
d

2
+ 1

))1/d

. (5.17)

Since fN ∈ LΦ(Rd), there exists α > 0 such that f0 := fN/α satisfies

MΦ( f0) =
∫

Rd
Φ( f0(x)) dx =

∫

BN

Φ( f0(x)) dx < ∞. (5.18)

On the other hand, fN /∈ LΦ
0 (Rd) implies that there exists β > 0 such that

MΦ( fN/β) = ∞, which yields MΦ( f0/γ ) = ∞ for γ = β/α > 0. Thus
f0 /∈ LΦ

0 (Rd) = LΦ
b (Rd).

It follows from (5.18) that for every n ∈ N there exists a ball Bn ⊂ BN centered at
0 such that

∫

Bn
Φ( f0(x)) dx ≤ 2−n . (5.19)

Since |hn| → +∞ as n → ∞, we can extract a subsequence
{
h(1)
n

}
of {hn} such that

min
n∈N

∣∣∣h(1)
n

∣∣∣ > 2RN , inf
n �=k

∣∣∣h(1)
n − h(1)

k

∣∣∣ > 2RN , (5.20)

where RN is given by (5.17).
Set

f̃ := f0 +
∞∑
n=1

T−h(1)
n

(
f0 χBn

)
.

The support of T−h(1)
n

(
f0 χBn

)
lies in −h(1)

n + Bn ⊂ −h(1)
n + BN . It follows from

(5.20) that −h(1)
n + BN are pairwise disjoint and disjoint form BN . Therefore, taking

into account (5.19), we see that

∫

Rd
Φ

(
f̃ (x)

)
dx =

∫

Rd
Φ( f0(x)) dx +

∞∑
n=1

∫

Rd
Φ

((
T−h(1)

n

(
f0 χBn

) )
(x)

)
dx

=
∫

BN

Φ( f0(x)) dx +
∞∑
n=1

∫

Rd
Φ

((
f0 χBn

)
(x)

)
dx

=
∫

BN

Φ( f0(x)) dx +
∞∑
n=1

∫

Bn
Φ( f0(x)) dx

≤
∫

BN

Φ( f0(x)) dx +
∞∑
n=1

2−n =
∫

BN

Φ( f0(x)) dx + 1 < ∞.
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Hence f̃ ∈ LΦ(Rd).
Let LΦ

b,N (Rd) be the closure of the set of all functions in LΦ(Rd) that are bounded
on the ball BN . It is easy to see that for all m ∈ N,

(
f̃ − T

h(1)
m

f̃
)

χBN = (
f0 − f0 χBm

)
χBN = f0 χBN \Bm

= 1

α

((
g∗χ[0,N ]

) ◦ Θ
)
χBN \Bm .

Hence the function f̃ − T
h(1)
m

f̃ is bounded on BN . Thus f̃ − T
h(1)
m

f̃ ∈ LΦ
b,N (Rd) for

all m ∈ N.
We claim that f̃ /∈ LΦ

b,N (Rd). Indeed, if f̃ ∈ LΦ
b,N (Rd), then there exists a sequence

{ f j } of functions in LΦ(Rd) such that f jχBN ∈ L∞(Rd) and

∥∥ f̃ − f j
∥∥
LΦ(Rd )

→ 0 as j → ∞.

Since f̃ χBN = f0χBN = f0, we obtain

∥∥ f0 − f jχBN

∥∥
LΦ(Rd )

= ∥∥χBN ( f̃ − fn)
∥∥
LΦ(Rd )

≤ ∥∥ f̃ − f j
∥∥
LΦ(Rd )

→ 0 as j → ∞.

Hence f0 ∈ LΦ
b (Rd), which is not the case. Thus, f̃ ∈ LΦ(Rd)\LΦ

b,N (Rd).

By the Hahn–Banach theorem, there exists a functional G ∈ (LΦ(Rd))∗ such that

G( f̃ ) = 1 and G(w) = 0 for all w ∈ LΦ
b,N (Rd).

Then for all m ∈ N,

G
(
T
h(1)
m

f̃
)

= G
(
f̃ − (

f̃ − T
h(1)
m

f̃
)) = G( f̃ ) − G

(
f̃ − T

h(1)
m

f̃
)

= 1 − 0 = 1.

So, the sequence
{
Thn f̃

}
does not converge weakly to the zero function as n → ∞ in

the non-separable Orlicz space LΦ(Rd), which completes the proof in the case when
(5.14) does not hold. ��

6 Proof of Theorem 3

Since X(Rd) is non-separable, its Luxemburg representation X(R+) is also non-
separable. Therefore, at least one equality in (2.10) does not hold. If the second equality
there does not hold, then (1.3) follows from Theorem 5. Suppose now the first equality
in (2.10) does not hold, i.e. there exists g ∈ X(Rd), for which

κ0(g) := lim
τ→0

∥∥g∗χ(0,τ ]
∥∥
X(R+)

> 0.
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Then E4g∗ ∈ X(R+) and for every τ > 0,

κ0(g) ≤ ∥∥g∗χ(0,4τ ]
∥∥
X(R+)

=
∥∥∥E 1

4
E4

(
g∗χ(0,4τ ]

)∥∥∥
X(R+)

≤
∥∥∥E 1

4

∥∥∥B(
X(R+)

)
∥∥E4

(
g∗χ(0,4τ ]

)∥∥
X(R+)

=
∥∥∥E 1

4

∥∥∥B(
X(R+)

)
∥∥(

E4g
∗)χ(0,τ ]

∥∥
X(R+)

.

So,

∥∥(
E4g

∗) χ(0,τ ]
∥∥
X(R+)

≥ κ0(g)∥∥∥E 1
4

∥∥∥B(
X(R+)

)
> 0 for all τ > 0. (6.1)

Let

sm := ωd |h|d2−d
∞∑
j=m

1

j2
, Δm := [

g∗(sm), g∗(sm+1)
]
, m ∈ N. (6.2)

Note that

sm − sm+1 = ωd |h|d
2dm2 .

Let

gm(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g∗(t + sm+1) if 0 ≤ t ≤ ωd |h|d
2dm2 ,

0 if t >
ωd |h|d
2dm2 ,

and

fm := T−mh (gm ◦ Θ) , f :=
∞∑

m=1

fm .

It follows fromLemma 2 and [3, Chap. 2, Proposition 7.2] that the functions fm and gm
are equimeasurable. By construction, fm is supported in the ball Bm of volume ωd |h|d

2dm2 ,

i.e. of radius |h|
2m2/d , centred at −mh, and its nonzero values belong to Δm (see (6.2)).

Since the supports of the functions fm , m ∈ N are pairwise disjoint, the functions f
and g∗χ(0,s1] are equimeasurable. In particular, f ∈ X(Rd).

Applying the same procedure as above to E4g∗, one gets a function f̃ ∈ X(Rd),
which is equimeasurable with (E4g∗) χ(0,s1/4], is supported in the union of the balls
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B̃m of volume ωd |h|d
2d (2m)2

centred at −mh, m ∈ N, and whose values on each of these
balls belong to the corresponding Δm .

Take any n ∈ N. It is easy to see that the values of the function Tnh f on the ball

Bm,n of volume ωd |h|d
2d (m+n)2

centred at −mh belong to Δm+n . Ifm ≥ n, i.em+n ≤ 2m,

then Bm,n ⊇ B̃m , and it follows from minΔm+n ≥ maxΔm that

(Tnh f ) (x) ≥ f̃ (x), x ∈ B̃m .

Hence

Tnh f ≥ f̃ χ{
x∈Rd :|x |≥

(
n− 1

2

)
|h|

}. (6.3)

The remaining part of the proof is similar to the argument used in the proof of
Theorem 5. Let F be the closed convex hull of the set

{ f − Tnh f : n ∈ N} ⊂ X(Rd).

Let us show that f /∈ F. Take any n1, . . . , n� ∈ N and any c1, . . . , c� ∈ [0, 1] such
that

∑�
k=1 ck = 1. Let

N := max {n1, . . . , n�} .

Using (6.3), one gets

∣∣∣∣∣ f −
�∑

k=1

ck
(
f − Tnkh f

)
∣∣∣∣∣ =

∣∣∣∣∣ f − f +
�∑

k=1

ckTnkh f

∣∣∣∣∣ =
�∑

k=1

ckTnkh f

≥
�∑

k=1

ck f̃ χ{
x∈Rd :|x |≥

(
N− 1

2

)
|h|

}

= f̃ χ{
x∈Rd :|x |≥

(
N− 1

2

)
|h|

}.

It is easy to see that the functions f̃ χ{
x∈Rd :|x |≥

(
N− 1

2

)
|h|

} and (E4g∗) χ(0,sN /4]
equimeasurable. Then it follows from (6.1) that

∥∥∥∥∥ f −
�∑

k=1

ck
(
f − Tnkh f

)
∥∥∥∥∥
X(Rd )

≥
∥∥∥∥ f̃ χ{

x∈Rd :|x |≥
(
N− 1

2

)
|h|

}
∥∥∥∥
X(Rd )

= ∥∥(
E4g

∗)χ(0,sN /4]
∥∥
X(R+)

≥ κ0(g)∥∥∥E 1
4

∥∥∥B(
X(R+)

)
.
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So,

‖ f − w‖X(Rd ) ≥ κ0(g)∥∥∥E 1
4

∥∥∥B(
X(R+)

)
> 0 for all w ∈ F.

Since F is closed and convex, and f /∈ F, the Hahn–Banach separation theorem
implies the existence of a functional F ∈ X∗(Rd) and numbers γ1, γ2 ∈ R such that

Re F( f ) > γ1 > γ2 > Re F(w) for all w ∈ F.

Hence, for all n ∈ N,

Re F(Tnh f ) = Re F( f ) − Re F
(
f − Tnh f

)
> γ1 − γ2 > 0.

So, (1.3) holds. ��

7 Weak convergence of shifts of compactly supported functions to
zero

7.1 Compactly supported functions are not dense in non-separable
rearrangement-invariant spaces

Let X(Rd) be a rearrangement-invariant Banach function space. By Xc(R
d) denote

the closure with respect to the norm of X(Rd) of the set of all compactly supported
(not necessarily bounded) functions in X(Rd). Let {hn} be a sequence in R

d such that
|hn| → +∞ as n → ∞. In this section, we will find some conditions guaranteeing
that the sequences {Thn f } converge weakly to the zero function as n → ∞ for all
functions f ∈ Xc(R

d) even if the sequence {Thn } does not converge weakly to the
zero operator as n → ∞ on the whole space X(Rd).

We start with the following result, which shows that the set of compactly supported
functions is not dense in a non-separable rearrangement-invariant Banach function
space X(Rd), that is, Xc(R

d) �= X(Rd).

Theorem 6 If X(Rd) is a non-separable rearrangement-invariant Banach function
space, then there exists f ∈ X(Rd) such that

lim
R→∞

∥∥χ{x∈Rd :|x |>R} f
∥∥
X(Rd )

> 0. (7.1)

Proof Since X(Rd) is non-separable, its Luxemburg representation X(R+) is non-
separable. Therefore there exists g ∈ X(R+) such that

κ0(g) := lim
τ→0

∥∥g∗χ(0,τ ]
∥∥
X(R+)

> 0 (7.2)
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or

lim
N→∞ ‖g∗χ[N ,∞)‖X(R+) > 0 (7.3)

(see Theorem 4). Then there exists g0 ∈ X(R+) such that

lim
N→∞ ‖g0χ[N ,∞)‖X(R+) > 0. (7.4)

Indeed, there is nothing to prove if (7.3) holds as one can simply take g0 = g∗ in this
case. So, suppose that (7.2) holds. Let τ1 := 1. Since g∗χ(1/n,1] ↑ g∗χ(0,1] as n → ∞,
we have

∥∥g∗χ(1/n,1]
∥∥
X(R+)

↑ ∥∥g∗χ(0,1]
∥∥
X(R+)

≥ κ0(g)

as n → ∞. Hence there exists τ2 ∈ (0, 1) such that

∥∥g∗χ(τ2,1]
∥∥
X(R+)

≥ κ0(g)

2
.

Arguing similarly, we can construct a sequence {τn} such that τn ↓ 0 as n → ∞ and

∥∥g∗χ(τn+1,τn ]
∥∥
X(R+)

≥ κ0(g)

2
, n ∈ N.

The supports of the functions

gn(x) := (
g∗χ(τn+1,τn ]

)
(x − n), x ∈ R+, n ∈ N,

lie in (n, n + 1], and hence are pairwise disjoint. It is easy to see that the functions
g0 := ∑∞

n=1 gn and g∗χ(0,1] are equimeasurable. So, g0 ∈ X(R+). For any N > 0,
we have

‖g0χ[N ,∞)‖X(R+) ≥ ‖g[N ]+1‖X(R+) ≥ κ0(g)

2
.

Hence (7.4) holds.
Let f := g0 ◦ Θ , where Θ is given by (2.1). It follows from Lemma 2 and [3,

Chap. 2, Proposition 7.2] that f ∗ = g∗
0 and

(
χ{

x∈Rd :|x |>ω
−1/d
d N1/d

} f
)∗

= (
(g0 ◦ Θ)χ{x∈Rd :Θ(x)>N }

)∗

= ((
g0χ(N ,∞)

) ◦ Θ
)∗ = (

g0χ(N ,∞)

)∗
.
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Hence f ∈ X(Rd) and

lim
R→∞

∥∥χ{x∈Rd :|x |>R} f
∥∥
X(Rd )

= lim
N→∞

∥∥∥∥χ{
x∈Rd :|x |>ω

−1/d
d N1/d

} f
∥∥∥∥
X(Rd )

= lim
N→∞

∥∥g0χ(N ,∞)

∥∥
X(R+)

> 0

(see (7.4)), which completes the proof of (7.1). ��
Remark 1 One can prove the above theorem with the help of an argument used in
the proof of [1, Theorem 1]. If (7.2) holds, then X(0, 1) is non-separable and hence
contains a subspace that is order isomorphic to �∞(N) according to a theorem by
G.Ja. Lozanovskiı̆ and A.A. Mekler ([16], see also [2, Theorem 4.51] or [14, Vol.
II, Proposition 1.a.7]). Moreover, the images of the standard unit vectors of �∞(N)

under this isomorphism have pairwise disjoint supports. Taking their shifts, one gets
analogues of the functions gn used in the proof of Theorem 6. Their sum is an analogue
of the function g0 constructed above and is equimeasurable with the image of the
element (1, 1, 1, . . . ) ∈ �∞(N).

Remark 2 Condition (7.1) plays an important role in the proof of [10, Theorem 1.4]
saying that a certain algebra AL p,1(R) of convolution type operators with continuous
data on the separable non-reflexive Lorentz space L p,1(R), 1 < p < ∞, does not
contain all rank one operators. In that proof, we constructed a function f , lying in
the non-separable Marcinkiewicz space L p′,∞(R), where 1/p + 1/p′ = 1, such
that (7.1) holds for the norm ‖ · ‖L p′,∞(R)

. Theorem 6 allows one to improve [10,

Theorem 1.4], replacing the separable non-reflexive Lorentz space L p,1(R), 1 < p <

∞, by an arbitrary separable non-reflexive rearrangement-invariant Banach function
space X(R) with the Boyd indices satisfying αX , βX ∈ (0, 1). This follows from the
Lorentz-Shimogaki theorem [3, Chap. 3, Theorem 5.17], the fact that the associate
space X ′(Rd) of X(Rd) is non-separable (see [3, Chap. 1, Corollaries 4.4 and 5.6]),
our result [10, Theorem 4.3], and Theorem 6 applied to the space X ′(Rd).

7.2 Sufficient condition for the weak convergence of {Thnf} to the zero function for
f ∈ Xc(Rd)

We are now in a position to prove the main result of this section.

Theorem 7 Let {hn} be a sequence in R
d such that |hn| → +∞ as n → ∞ and let

{Thn } be the corresponding sequence of shift operators on a rearrangement-invariant
Banach function space X(Rd). If the space X(Rd) is non-separable and its upper
Boyd index satisfies βX < 1, then the sequence {Thn f } converges weakly to the zero
function as n → ∞ in the space X(Rd) for every function f ∈ Xc(R

d).

Proof By Lemma 4,

lim
τ→0

τ‖Eτ‖B(
X(R+)

) = 0. (7.5)
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Let us prove by contradiction that if g ∈ X(Rd) is compactly supported, then the
sequence {Thn g} converges weakly to the zero function as n → ∞ in the space X(Rd).
Suppose that there exists a functional G ∈ X∗(Rd) such that the sequence

{
G(Thn f )

}

does not converge to 0 as n → ∞. Then there exist δ > 0 and a subsequence
{
h(1)
n

}

of {hn} such that

∣∣∣G
(
T
h(1)
n
g
)∣∣∣ ≥ δ for all n ∈ N.

Clearly, there exists a subsequence
{
h(2)
n

}
of

{
h(1)
n

}
such that the numbersG

(
T
h(2)
n
g
)
,

n ∈ N, belong to the same quadrant of C. Then the closed convex hull C of the set{
G

(
T
h(2)
n
g
)

: n ∈ N

}
lies outside the triangle with the vertices at 0 and the two points

where the circle {ζ ∈ C : |ζ | = δ} meets the sides of the quadrant. Hence

inf
ζ∈C |ζ | ≥ δ√

2
. (7.6)

Let B be a ball containing the support of g and let R be the radius of B. Since

|h(2)
n | → +∞ as n → ∞, there is a subsequence

{
h(3)
n

}
of

{
h(2)
n

}
such that

inf
n �=k

∣∣∣h(3)
n − h(3)

k

∣∣∣ > 2R.

Then the supports of the functions T
h(3)
n
g, n ∈ N, are pairwise disjoint. Therefore, we

have for all N ∈ N and λ > 0,

md

{
x ∈ R

d :
∣∣∣∣∣

N∑
n=1

(
T
h(3)
n
g
)

(x)

∣∣∣∣∣ > λ

}

= md

(
N⋃

n=1

{
x ∈ supp T

h(3)
n
g :

∣∣∣
(
T
h(3)
n
g
)

(x)
∣∣∣ > λ

})

=
N∑

n=1

md

{
x ∈ supp T

h(3)
n
g :

∣∣∣
(
T
h(3)
n
g
)

(x)
∣∣∣ > λ

}

= Nmd

{
x ∈ R

d : |g(x)| > λ
}

.

So,

(
N∑

n=1

T
h(3)
n
g

)∗
(t) = g∗(t/N ), t > 0,
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and

∥∥∥∥∥
1

N

N∑
n=1

T
h(3)
n
g

∥∥∥∥∥
X(Rd )

= 1

N

∥∥E1/N g
∗∥∥

X(R+)
≤ 1

N

∥∥E1/N
∥∥B(

X(R+)
) ∥∥g∗∥∥

X(R+)
.

It follows from this inequality and (7.5) that

lim
N→∞

∥∥∥∥∥
1

N

N∑
n=1

T
h(3)
n
g

∥∥∥∥∥
X(Rd )

= 0. (7.7)

On the other hand, since 1
N

∑N
n=1 G

(
T
h(3)
n
g
)

∈ C for all N ∈ N, inequality (7.6)

implies that for all N ∈ N,

‖G‖X∗(Rd )

∥∥∥∥∥
1

N

N∑
n=1

T
h(3)
n
g

∥∥∥∥∥
X(Rd )

≥
∣∣∣∣∣G

(
1

N

N∑
n=1

T
h(3)
n
g

)∣∣∣∣∣

=
∣∣∣∣∣
1

N

N∑
n=1

G
(
T
h(3)
n
g
)∣∣∣∣∣ ≥ δ√

2
,

which contradicts (7.7). Thus, we have proved that the sequence {Thn g} converges
weakly to the zero function as n → ∞ in the space X(Rd) for every compactly
supported function g ∈ X(Rd).

Let f ∈ Xc(R
d) and F ∈ X∗(Rd). Take any ε > 0. Then there exists a compactly

supported function g ∈ X(Rd) such that

‖ f − g‖X(Rd ) <
ε

2(‖F‖X∗(Rd ) + 1)
. (7.8)

By what has been already proved, there exists n0 ∈ N such that for all n > n0,

|F(Thn g)| <
ε

2
. (7.9)

It follows from (7.8) and (7.9) that for all n > n0,

|F(Thn f )| ≤ |F(Thn g)| + |F(Thn ( f − g))|
<

ε

2
+ ‖F‖X∗(Rd )‖Thn ( f − g)‖X(Rd )

= ε

2
+ ‖F‖X∗(Rd )‖ f − g‖X(Rd ) <

ε

2
+ ε

2
= ε.

Thus, the sequence {Thn f } converges weakly to the zero function as n → ∞ in the
space X(Rd) for every function f ∈ Xc(R

d). ��
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The above theorem is meaningful only if the space X(Rd) is non-separable because
if the space X(Rd) is separable, then Theorem 7 follows fromTheorem 1(b), Lemma 3
and the inequality qX ≤ βX < 1.
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