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Abstract
In this paper, we analyse the oscillation of second-order half-linear differential equa-
tions whose coefficients are given by the products of (typically bounded) functions and
power functions. Applying the generalized Riccati technique, we find a very general
oscillation criterion for the studied equations. This criterion covers several half-linear
equations with unbounded non-power parts of coefficients, but it is new also for linear
equations with bounded non-power parts. This fact is appropriately documented by
new corollaries.

Keywords Half-linear equation · Linear equation · Riccati equation · Oscillation ·
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1 Introduction

We study the oscillation of the half-linear differential equation

(
R(t)�

(
x ′(t)

))′ + S(t)�(x(t)) = 0, �(x) = |x |p−1 sgn x, p > 1, (1.1)

where coefficients R > 0, S are continuous functions. Function � generates the so-
called one dimensional p-Laplacian. This function connects the considered half-linear
equations with partial differential equations (see, e.g., [3,12]). Half-linear equations
generalize linear equations which form a special case of Eq. (1.1) for p = 2. We point
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out that the basic difference between linear and half-linear equations is the lack of
the additivity of solution spaces in the half-linear case. This discrepancy motivates
the used nomenclature. Nevertheless, the Sturm separation theorem remains valid for
half-linear equations (see again [3,12]). Thus, analogously as in the linear case, one
can classify half-linear equations as oscillatory and non-oscillatory, i.e., if one non-
trivial solution is oscillatory (which means that it has zero points tending to infinity),
then every solution is oscillatory.

Now we mention two known oscillation theorems which give specific motivation
for our current research. In the first theorem, we consider equations whose coefficients
are constant.

Theorem 1 Let us consider the equation

(
tαr1−p�(x ′(t))

)′ + tα−ps�(x(t)) = 0, (1.2)

where α �= p − 1 and r > 0 and s ∈ R are constants.

(i) If p ps > |p − α − 1|pr1−p, then Eq. (1.2) is oscillatory.
(ii) If p ps ≤ |p − α − 1|pr1−p, then Eq. (1.2) is non-oscillatory.

Proof We refer, e.g., to [12, Theorem 1.4.4] (or directly to [15,16]). ��
The strongest known oscillation criterion for equations in the form of Eq. (1.2)

reads as follows.

Theorem 2 Let a positive continuously differentiable function f and a continuous
function g ≥ 1 be such that

lim
t→∞ f ′(t)g(t) = 0, lim

t→∞
f (t)g2(t)

t
= 0.

Let us consider the equation

(
tαr1−p(t)�

(
x ′(t)

))′ + tα−ps(t)�(x(t)) = 0, (1.3)

where α �= p − 1 and r > 0, s are continuous functions satisfying

lim sup
t→∞

∫ t+ f (t)
t r(τ ) dτ

f (t)g(t)
< ∞, lim sup

t→∞

∫ t+ f (t)
t |s(τ )| dτ

f (t)g(t)
< ∞.

Let

r f := lim inf
t→∞

1

f (t)

t+ f (t)∫

t

r(τ ) dτ ∈ R, s f := lim inf
t→∞

1

f (t)

t+ f (t)∫

t

s(τ ) dτ ∈ R.

If p ps f > |p − α − 1|pr1−p
f , then Eq. (1.3) is oscillatory.
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Proof See [36]. ��

The aim of this paper is to contribute to the rapidly developing oscillation theory
of half-linear equations in the form of Eq. (1.2). More precisely, we want to obtain an
oscillation criterion which enhances Theorem 1 substantially and which is not based
on estimations of average values of coefficients, i.e., which differs from Theorem 2
significantly. Using the generalized Riccati technique, we find such a criterion (appli-
cable also for coefficients whose average values do not exist). We point out that the
method used in [36] is the modified half-linear Prüfer angle and that a non-oscillatory
counterpart of Theorem 2 is proved in [48]. Note that our main result is new even for
linear equations which is demonstrated in the last section of this paper.

In this paragraph, we mention references that are connected to the treated topic.
Other oscillation criteria for equations in the form of Eq. (1.2) are obtained, e.g., in [14,
29]. We add also papers [24–26,35,37,47] and references cited therein for important
special cases. The oscillation theory of general half-linear equations is systematically
presented, e.g., in the already mentioned books [3,12]. The oscillation of special types
of corresponding discrete equations is studied in [23,28,38,43] (and also in [10,53])
in the case of difference equations and in [30,34,39,51] (and also in [18,45]) in the
case of dynamic equations on time scales. For possible generalizations in the discrete
case, see [1,2,54,55]; for more general non-linear equations, see [4,22,46,49] (and
also [41,50]); for half-linear advanced (delay) differential equations, see [5–8]; and,
for applications in the theory of PDE’s, see at least [11,19,40,52].

The rest of this paper is divided into three sections. The next section contains the
detailed specification of the studied equations togetherwith all considered assumptions
and the description of the used generalized Riccati transformation. The main result is
proved in Sect. 3. The last section is devoted to corollaries of our main result, where
we demonstrate the novelty of the main result and its impact to linear equations.

To conclude this section, we mention the basic considered notation. Let p > 1 be
given and let q be the number conjugated with p, i.e., p+q = pq. Since we consider
all equations for very large t , we consider t ≥ a for simplicity, where a > 0 is given
(and arbitrarily large).

2 Treated equations

In this paper, we study the Euler type second-order half-linear differential equation

(
tαr1−p(t)�(x ′(t))

)′ + tα−ps(t)�(x(t)) = 0, t > a, (2.1)

where α < p − 1 and r : [a,∞) → (0,∞) and s : [a,∞) → (−∞,∞) are
continuous functions such that

∞∫

a

τα(1−q)r(τ ) dτ = ∞,

∞∫

a

τα−ps(τ ) dτ ∈ R. (2.2)
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We consider Eq. (2.1) with

∞∫

a

pps(τ ) − (p − α − 1)p r1−p(τ )

τ
dτ = ∞. (2.3)

Nowwemention the used generalizedRiccati equation. Let x be a non-zero solution
of Eq. (2.1). Using the transformation

ζ(t) = −�

(
t x ′(t)

r(t)x(t)

)
,

from Eq. (2.1), we obtain the equation

ζ ′(t) = 1

t

(
(p − α − 1)ζ(t) + s(t) + (p − 1)r(t)|ζ(t)|q) , t > a. (2.4)

In fact, for a non-zero solution x of Eq. (2.1), the well-known Riccati transformation

w(t) = tαr(t)�

(
x ′(t)
x(t)

)

leads to the Riccati half-linear equation

w′(t) + tα−ps(t) + (p − 1)tα(1−q)r(t)|w(t)|q = 0, t > a. (2.5)

Then, the transformation

ζ(t) = −t p−α−1w(t) (2.6)

gives Eq. (2.4). We add that the derivation of Eq. (2.4) is described, e.g., in [35] (see
also [12, Eq. (9.2.3) on p. 439]) and that Eq. (2.4) is called the generalized Riccati
equation (this designation is motivated by the consistency with used versions of the
Riccati equation in the literature). At the end of this section, we highlight that the aim
of this paper is to prove the oscillation of Eq. (2.1) using Eq. (2.4).

3 Main result

We begin with a known theorem containing a condition which is equivalent to the
non-oscillation of Eq. (2.1).

Theorem 3 Equation (2.1) is non-oscillatory if and only if there exist b ≥ a and a
solution w : [b,∞) → R of Eq. (2.5) satisfying either

w(t) =
∞∫

t

τα−ps(τ ) dτ + (p − 1)

∞∫

t

τα(1−q)r(τ )|w(τ)|q dτ ≥ 0, t ≥ b, (3.1)
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or

w(t) =
∞∫

t

τα−ps(τ ) dτ + (p − 1)

∞∫

t

τα(1−q)r(τ )|w(τ)|q dτ ≤ 0, t ≥ b. (3.2)

Proof We refer, e.g., to [12, Theorems 2.2.4 and 2.2.5], where it is necessary to use
the divergence of

∫ ∞
a τα(1−q)r(τ ) dτ and the convergence of

∫ ∞
a τα−ps(τ ) dτ [see

(2.2)]. ��
To prove the announced result, we need the lemma below which describes the

connection between the non-oscillation of solutions of Eq. (2.1) and the non-positivity
of a solution of the associated generalized Riccati equation (2.4).

Lemma 1 Let us consider Eq. (2.1), where α < p − 1 and r : [a,∞) → (0,∞) and
s : [a,∞) → (−∞,∞) are continuous functions satisfying (2.2), and let (2.3) be
valid. If Eq. (2.1) is non-oscillatory, then there exists a solution ζ : [b,∞) → (−∞, 0]
of the generalized Riccati equation (2.4).

Proof At first [see (2.2)], we recall that

∞∫

t

τα−ps(τ ) dτ ∈ R, t ≥ a.

We show that there exists a sequence {ak}k∈N ⊂ [a,∞) satisfying

lim
k→∞ ak = ∞,

∞∫

ak

τα−ps(τ ) dτ ≥ 0, k ∈ N. (3.3)

On the contrary, we will assume the existence of a0 ≥ a such that

∞∫

t

τα−ps(τ ) dτ < 0, t ≥ a0. (3.4)

From (2.3), considering the positivity od r , we obtain

∞∫

a

s(τ )

τ
dτ = ∞. (3.5)

For any interval [t1, t2] ⊂ [a0,∞), the second mean value theorem for definite inte-
grals guarantees the existence of t3 ∈ (t1, t2] such that

t2∫

t1

τα−ps(τ ) dτ =
t2∫

t1

s(τ )

τ p−α
dτ = 1

t p−α−1
1

t3∫

t1

s(τ )

τ
dτ. (3.6)
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The inequality (3.4) for t = a0 implies the existence of t1 > a0 with the property that

t1∫

a0

τα−ps(τ ) dτ < 0. (3.7)

From (3.6) for t1 = a0 and t2 = t1 and from (3.7), it follows the existence of
t� ∈ (

a0, t1
]
such that

t�∫

a0

s(τ )

τ
dτ < 0,

i.e., the set

T :=
⎧
⎨

⎩
t� > a0;

t�∫

a0

s(τ )

τ
dτ < 0

⎫
⎬

⎭
(3.8)

is non-empty. Then, we denote

T := sup T . (3.9)

Let us assume that T < ∞. In particular [see directly (3.8) and (3.9)],

T∫

a0

s(τ )

τ
dτ = 0 (3.10)

and

t∫

a0

s(τ )

τ
dτ > 0, t > T . (3.11)

From (3.4) for t = T , we obtain the existence of t2 > T such that

t2∫

T

τα−ps(τ ) dτ < 0. (3.12)
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Next, we use (3.6) for t1 = T and t2 = t2. Considering (3.12), there exists t̃ ∈ (
T , t2

]

for which

t̃∫

T

s(τ )

τ
dτ < 0. (3.13)

From (3.10) and (3.13), we have

t̃∫

a0

s(τ )

τ
dτ < 0. (3.14)

Of course, (3.14) gives a contradiction [see (3.11)], i.e., T = ∞.
Thus, for any c > a0, there exists t(c) > c with the property that

t(c)∫

a0

s(τ )

τ
dτ < 0. (3.15)

It is seen that (3.15) contradicts (3.5). Indeed, (3.15) implies

lim inf
t→∞

t∫

a

s(τ )

τ
dτ ≤

a0∫

a

s(τ )

τ
dτ < ∞.

Therefore, (3.4) is not true and we have proved that there exists a sequence {ak}k∈N ⊂
[a,∞) satisfying (3.3).

Now the statement of the lemma follows from Theorem 3, because [consider the
positivity of r and see (3.3)]

∞∫

ak

τα−ps(τ ) dτ + (p − 1)

∞∫

ak

τα(1−q)r(τ )|w(τ)|q dτ ≥ 0, k ∈ N, lim
k→∞ ak = ∞,

i.e., (3.2) can be valid only ifw ≡ 0 (and (3.1) givesw(t) ≥ 0 for all t ≥ b). Theorem3
says that there exists a solution w : [b,∞) → [0,∞) of Eq. (2.5). Thus [see (2.6)],
there exists a non-positive solution ζ of Eq. (2.4) on [b,∞). ��

Now we can prove the announced oscillation criterion.

Theorem 4 Let us consider Eq. (2.1), where α < p−1 and r : [a,∞) → (0,∞) and
s : [a,∞) → (−∞,∞) are continuous functions satisfying (2.2). If (2.3) is valid,
then Eq. (2.1) is oscillatory.
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Proof On the contrary, let us asumme that Eq. (2.1) is non-oscillatory. We apply
Lemma 1 which says that there exists a solution ζ : [b,∞) → (−∞, 0] of Eq. (2.4).
We have [see directly Eq. (2.4)]

t ζ ′(t) = (p − α − 1)ζ(t) + s(t) + (p − 1)r(t)|ζ(t)|q , t > b. (3.16)

Putting

A(t) :=
(
p − α − 1

p

)p

r1−p(t), B(t) := (p − 1)r(t)|ζ(t)|q , t > b, (3.17)

we can rewrite (3.16) into the form

t ζ ′(t) = s(t) − A(t) + B(t) + (p − α − 1)ζ(t) + A(t), t > b. (3.18)

To proceed further, we recall the well-known Young inequality

x p

p
+ yq

q
≥ xy, x, y ≥ 0. (3.19)

For

x = (pA(t))1/p , y = (qB(t))1/q , t > b,

we have

x p

p
=

(
p − α − 1

p

)p

r1−p(t),
yq

q
= (p − 1)r(t)|ζ(t)|q , t > b, (3.20)

and

x · y = (p − α − 1) p
1−p
p r

1−p
p (t) · (q(p − 1))

1
q r

1
q (t)|ζ(t)|

= (p − α − 1) p− 1
q r− 1

q (t) · p 1
q r

1
q (t)|ζ(t)|

= (p − α − 1) |ζ(t)| = − (p − α − 1) ζ(t), t > b.

(3.21)

Thus, considering (3.19), (3.20), and (3.21), it holds [see also (3.17)]

B(t) + (p − α − 1)ζ(t) + A(t) = yq

q
− xy + x p

p
≥ 0, t > b. (3.22)

From (3.18) and (3.22), we obtain

ζ ′(t) ≥ s(t) − A(t)

t
, t > b. (3.23)
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At the same time, from (2.3), we obtain

∞∫

b

s(τ ) − A(τ )

τ
dτ =

∞∫

b

s(τ ) −
(
p−α−1

p

)p
r1−p(τ )

τ
dτ

= p−p

⎛

⎝
∞∫

a

pps(τ ) − (p − α − 1)p r1−p(τ )

τ
dτ

−
b∫

a

pps(τ ) − (p − α − 1)p r1−p(τ )

τ
dτ

⎞

⎠ = ∞.

(3.24)

Finally, (3.23) gives

ζ(t) =
t∫

b

ζ ′(τ ) dτ + ζ(b) ≥
t∫

b

s(τ ) − A(τ )

τ
dτ + ζ(b), t > b,

and, consequently, (3.24) implies

lim inf
t→∞ ζ(t) ≥

∞∫

b

s(τ ) − A(τ )

τ
dτ + ζ(b) = ∞.

Especially, the considered solution ζ of Eq. (2.4) is positive in a neighbourhood of∞.
This contradiction proves the oscillation of Eq. (2.1). ��
Remark 1 A very intensively studied case of the considered equations is given by the
choiceα = 0. Nevertheless, Theorem 4 gives new results forα = 0 and even for p = 2
(in the linear case). See Corollaries 1 and 2 below. We add that the strongest known
results concerning the oscillation of the studied equations are proved in [32,35,37] for
α = 0 and in [14,29,36] for more general α �= p − 1. We point out that any result in
those papers does not cover corollaries and examples in the next section.

Remark 2 Theorem 4 covers the case when

pps(t) ≥ (p − α − 1)p r1−p(t) + ε

for some ε > 0 and all large t . See Corollary 3 below [or directly (2.3)]. Note that the
statement of Theorem 4 is not true if

pps(t) = (p − α − 1)p r1−p(t)

for all large t . It suffices to consider Theorem 1, (ii) (see directly [15,16] or [44]
for generalizations). Thus, the presented oscillation criterion cannot be substantially
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improved. In addition, it is known (see, e.g., [9,13,17,20,21,42]) that the case

∞∫

a

pps(τ ) − (p − α − 1)p r1−p(τ )

τ
dτ ∈ R (3.25)

is not generally solvable, i.e., there exist continuous functions r = r1 > 0, s = s1
satisfying (2.2) and (3.25) for which Eq. (2.1) is oscillatory and continuous functions
r = r2 > 0, s = s2 satisfying (2.2) and (3.25) for which Eq. (2.1) is non-oscillatory.

Remark 3 The oscillation behaviour of Eq. (2.1) in the case α = p − 1 differs from
the analysed case α < p − 1 substantially. It is sufficient to consider [12, p. 43]. For
details, we refer at least to our papers [27,31,33] together with references cited therein.

Remark 4 Theorem 2 was proved for any α �= p − 1, but Theorem 4 for α < p − 1.
This distinction is caused by different usedmethods (the generalized Riccati technique
in this paper and the adapted Prüfer angle in [36]). Similarly, due the applied process,
only α ≤ 0 is considered in [29].

4 Corollaries

To illustrate the impact of Theorem 4, we mention the following new corollaries and
some surprisingly simple examples which are not covered by any previously known
results (to the best of our knowledge). In illustrative examples, for simplicity, we
consider only a = e and the both coefficients given by the same functions containing
sin and logarithms. We remark that log denotes the natural logarithm.

At first, we formulate two corollaries in the most studied case α = 0. In fact, our
main result is so general that the power function tα can be incorporated into coefficients
(see also Example 1 below).

Corollary 1 Let us consider the equation

(
r1−p(t)�(x ′(t))

)′ + s(t)

t p
�(x(t)) = 0, t > a, (4.1)

where r : [a,∞) → (0,∞) and s : [a,∞) → (−∞,∞) are continuous functions
such that

∞∫

a

r(τ ) dτ = ∞,

∞∫

a

s(τ )

τ p
dτ ∈ R. (4.2)

If

∞∫

a

s(τ ) − q−pr1−p(τ )

τ
dτ = ∞, (4.3)
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then Eq. (4.1) is oscillatory.

Proof It suffices to put α = 0 in Theorem 4, when (2.2) reduces to (4.2) and (2.3) is
equivalent with (4.3). ��
Corollary 2 Let us consider the equation

(
x ′(t)
r(t)

)′
+ s(t)

t2
x(t) = 0, t > a, (4.4)

where r : [a,∞) → (0,∞) and s : [a,∞) → (−∞,∞) are continuous functions
such that

∞∫

a

r(τ ) dτ = ∞,

∞∫

a

s(τ )

τ 2
dτ ∈ R.

If

lim inf
t→∞

(
s(t) − 1

4r(t)

)
> 0, (4.5)

then Eq. (4.4) is oscillatory.

Proof See Corollary 1 for p = 2, where (4.5) gives the existence of b > a and ε > 0
such that

s(t) − 1

4r(t)
> ε, t ≥ b,

i.e.,

∞∫

a

s(τ ) − q−pr1−p(τ )

τ
dτ =

b∫

a

s(τ ) − 1
4r(τ )

τ
dτ +

∞∫

b

s(τ ) − 1
4r(τ )

τ
dτ

≥
b∫

a

s(τ ) − 1
4r(τ )

τ
dτ +

∞∫

b

ε

τ
dτ = ∞.

(4.6)

��
Example 1 For arbitrary real numbers λ2 > λ1, let us consider the equation

((
3
√
t log t (2 + sin t) + λ1

)
x ′(t)

)′

+
log t (2 + sin t) + λ2

3√t

4
3√
t5

x(t) = 0, t > e. (4.7)
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Putting

r(t) = 1
3
√
t log t

(
2 + sin t + λ1

3√t log t

)

for sufficiently large t and

s(t) = 1

4
3
√
t log t

(
2 + sin t + λ2

3
√
t log t

)
, t ≥ e,

in Corollary 2, we obtain the oscillation of Eq. (4.7).

Similarly, we mention two corollaries for equations with bounded coefficients.

Corollary 3 Let us consider Eq. (2.1), where α < p − 1 and r : [a,∞) → (0,∞)

and s : [a,∞) → (−∞,∞) are continuous functions such that

0 < lim inf
t→∞ r(t), lim sup

t→∞
|s(t)| < ∞. (4.8)

If

lim inf
t→∞

(
pps(t) − (p − α − 1)p r1−p(t)

)
> 0, (4.9)

then Eq. (2.1) is oscillatory.

Proof The corollary follows from Theorem 4, where (4.8) (together with α < p − 1)
gives (2.2) and (4.9) gives (2.3) (as in the proof of Corollary 2). ��
Corollary 4 Let us consider the equation

(
tα

r(t)
x ′(t)

)′
+ tα−2s(t)x(t) = 0, t > a, (4.10)

where α < 1 and r : [a,∞) → (0,∞) and s : [a,∞) → (−∞,∞) are continuous
functions satisfying (4.8). If

lim inf
t→∞

(

4s(t) − (1 − α)2

r(t)

)

> 0, (4.11)

then Eq. (4.10) is oscillatory.

Proof It suffices to consider Corollary 3 for p = 2. ��
Example 2 Let λ2 > λ1 > 1. Considering Corollary 4 for α = 1/2 and

r(t) = 1

λ1 + sin (log t)
, s(t) = λ2 + sin (log t)

16
, t ≥ e,
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we can see that the equation

(√
t (λ1 + sin (log t)) x ′(t)

)′ + λ2 + sin (log t)

16
√
t3

x(t) = 0, t > e,

is oscillatory.

At the end of this paper, we remark that the presented corollaries can be easily
improved. For example, one can replace (4.5) by

lim inf
t→∞

(
log t

(
s(t) − 1

4r(t)

))
> 0

and Corollary 2 remains valid. Indeed, it suffices to consider (4.6) in the proof of
Corollary 2 together with

∞∫

e

1

τ log τ
dτ = ∞.

Analogously, (4.9) can be replaced by

lim inf
t→∞

(
log t

(
pps(t) − (p − α − 1)p r1−p(t)

))
> 0

in Corollary 3 and (4.11) by

lim inf
t→∞

(

log t

(

4s(t) − (1 − α)2

r(t)

))

> 0

in Corollary 4. We formulate only these special cases of Theorem 4, because we want
to highlight the novelty of our result in these cases.
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45. Řehák, P., Yamaoka, N.: Oscillation constants for second-order nonlinear dynamic equations of Euler
type on time scales. J. Diff. Equ. Appl. 23(11), 1884–1900 (2017)

46. Santra, S.S.: Necessary and sufficient conditions for oscillation to second-order half-linear delay dif-
ferential equations. J. Fixed Point Theory Appl. 21(85), 1–10 (2019)

47. Schmidt, K.M.: Oscillation of perturbed Hill equation and lower spectrum of radially periodic
Schrödinger operators in the plane. Proc. Am. Math. Soc. 127, 2367–2374 (1999)

48. Šišoláková, J.: Non-oscillation of linear and half-linear differential equations with unbounded coeffi-
cients. Math. Methods Appl. Sci. 44(2), 1285–1297 (2021)

49. Sugie, J., Kita, K.: Oscillation criteria for second order nonlinear differential equations of Euler type.
J. Math. Anal. Appl. 253(2), 414–439 (2001)

50. Sugie, J., Matsumura, K.: A nonoscillation theorem for half-linear differential equations with periodic
coefficients. Appl. Math. Comput. 199(2), 447–455 (2008)

51. Vítovec, J.: Critical oscillation constant for Euler-type dynamic equations on time scales. Appl. Math.
Comput. 243, 838–848 (2014)

52. Xu, Z.: Oscillation and nonoscillation of solutions of PDE with p-Laplacian. Taiwan. J. Math. 13(6B),
2037–2049 (2009)

53. Yamaoka, N.: Oscillation criteria for second-order nonlinear difference equations of Euler type. Adv.
Differ. Equ. 2012(218), 1–14 (2012)

54. Zhou, Y., Ahmad, B., Alsaedi, A.: Necessary and sufficient conditions for oscillation of second-order
dynamic equations on time scales. Math. Methods Appl. Sci. 42(13), 4488–4497 (2019)

55. Zhou,Y.,Ahmad,B.,Alsaedi,A.:Oscillation and nonoscillation theorems of neutral dynamic equations
on time scales. Adv. Differ. Equ. 2019(404), 1–11 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Oscillation of linear and half-linear differential equations via generalized Riccati technique
	Abstract
	1 Introduction
	2 Treated equations
	3 Main result
	4 Corollaries
	Acknowledgements
	References




