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Abstract
In the setting of the semigroup generated by the Schrödinger operator L = −� + V
with the potential V satisfying an appropriate reverse Hölder condition, we consider
some non-local fractional differentiation operators. We study their behaviour on suit-
able weighted smoothness spaces. Actually, we obtain such continuity results for
positive powers of L as well as for the mixed operators Lα/2V σ/2 and L−α/2V σ/2

with σ > α, together with their adjoints.

Keywords Schrödinger operator · Weights · Regularity spaces

Mathematics Subject Classification Primary 42B20 · Secondary 35J10

1 Introduction

We will work in the frame of the harmonic analysis related to the Schrödinger differ-
ential operator in R

d with d > 2 as given in [11] by Shen,

Lu = −�u + V u ,

where the potential V is a non-negative locally integrable function belonging to RHq

for some q > d/2. We remind that the last property means that there exists a constant
C such that
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(
1

|B|
∫
B
V q

)1/q

≤ C
1

|B|
∫
B
V , (1)

holds for any ball B ⊂ R
d . When the left hand side is replaced by supB V , we say

that V ∈ RH∞. Our work relies strongly on Shen’s estimates which are valid only
for d > 2. His main tool is a comparison between the fundamental solutions of L and
−�. As it is known, the fundamental solution of the Laplacian has a different form
when d = 2.

During the last two decades many authors have been working in this context, study-
ing the behaviour of associate integral operators such as negative powers of L , the
maximal semigroupoperator,RieszTransforms, theLittlewood-Paley function, among
others. Results have been obtained for boundedness on weighted L p spaces as well as
on appropriate regularity spaces and their weighted versions.

In order to describe the latter spaces we recall an important feature of this environ-
ment. Our assumption on V allows to define a critical radius function ρ : Rd �−→ R

+
as

ρ(x) = sup

{
r : r2

|B(x, r))|
∫
B(x,r)

V ≤ 1

}
.

Under the present assumptions on the potential it is possible to show that 0 <

ρ(x) < ∞ for all x and that the following inequalities hold

c−1
ρ ρ(x)

(
1 + |x − y|

ρ(x)

)−N0

≤ ρ(y) ≤ cρ ρ(x)

(
1 + |x − y|

ρ(x)

) N0
N0+1

, (2)

for some constants cρ and N0, independent of x and y. For a proof of these facts see
[11].

It turns out that this function ρ plays a special role in defining the suitable weighted
regularity spaces we are interested in. Let us point out that the first appearance of the
space BMOL , the appropriate substitute of the John-Nirenberg space BMO , can be
found in [6]. The main difference with the classical case is that, besides the condition
on the oscillations, averages over balls B(x, r) with r > ρ(x) must be also uniformly
bounded. This reveals the fact that −L is a perturbation of the Laplacian. Later on,
appropriated variants of integral Lipschitz spaces were introduced as well as weighted
versions. We remind their precise definition.

Given a weight w and some β, 0 ≤ β < 1, we say that a locally integrable function
f belongs to BMOβ

ρ (w) if there is a constant C such that

1

w(B)

∫
B

| f − fB | ≤ C |B|β/d , (3)

for any ball B, where fB stands for the average with respect to Lebesgue measure,
and
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1

w(B)

∫
B

| f | ≤ C |B|β/d (4)

for any ball B = B(x, r) with r ≥ ρ(x). Clearly condition (4) implies (3) and
moreover, under a mild restriction on the weight, it is enough to know that (4) is
satisfied on critical balls, that is, balls of the type B(x, ρ(x)). See [1] for the details.

As in the case of Laplacian, these weighted integral Lipschitz spaces can be iden-
tified with functions satisfying some point-wise smoothness under certain restriction
on the weight. To be precise, we introduce doubling classes of weights adapted to this
context. Forμ ≥ 1 let us denote Dρ

μ = ⋃
θ≥0 D

ρ,θ
μ , where Dρ,θ

μ is the class of weights
w such that for some constant C ,

w(B(x, R)) ≤ Cw(B(x, r))

(
R

r

)dμ (
1 + R

ρ(x)

)θ

, (5)

for any x ∈ R
d and 0 < r ≤ R.

It turns out that when w ∈ Dρ
μ for some μ ≥ 1 and 0 < β < 1, BMOβ

ρ (w) has

a point-wise description and, in fact, it coincides with �
β
ρ(w), defined as the class of

functions f satisfying

| f (x)| ≤ CWβ(x, ρ(x)) (6)

and

| f (x) − f (z)| ≤ C[Wβ(x, |x − z|) + Wβ(z, |x − z|)] (7)

for all x, z ∈ R
d such that |x − z| ≤ ρ(x), where

Wβ(x, r) =
∫
B(x,r)

w(u)

|u − x |d−β
du. (8)

For a proof of this equivalence we refer to Proposition 4 in [4]. When we deal with
the unweighted case w = 1 we will simply denote �

β
ρ(1) = �

β
ρ .

The aim of this work is the study of the behaviour of non-local fractional differenti-
ation operators acting on the above mentioned weighted regularity spaces�

β
ρ(w)with

0 < β < 1. Being differentiation operators we expect them to reduce smoothness,
and such is the case for positive fractional powers of L . In fact, in Sect. 3 we are
able to prove that Lα/2 maps �

β
ρ(w) into �

β−α
ρ (w) under suitable assumptions on w.

For the case of w = 1, this result was obtained in [9]. However they achieve that by
using a different description of �

β
ρ based on extensions of functions to the positive

half space Rd × (0,∞) by means of the generated semigroup. Here we give a direct
proof, obtaining the needed pointwise estimates, and our approach also works for a
wide class of weighted spaces.

In Sect. 4 we also deal with some mixed fractional differentiation operators that
combine powers of L , positives or negatives, with multiplication by positive powers
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of the potential V . In order to prove continuity of these operators we analyse general
pointwise multiplication operators by a function φ, which are bounded from �

β
ρ(w)

into �
η
ρ(w) with 0 < η ≤ β ≤ 1. We find sufficient conditions on the function φ that

for w = 1 turn to be also necessary. As a consequence we derive boundedness results
for fractional differentiation operators as Lα/2V σ/2 and L−α/2V σ/2 with σ > α, under
stronger assumptions on the potential.

2 Preliminaries

All along this work we deal with weights in the doubling classes Dρ
μ defined above.

Let us notice that any weight in the class Aρ
p, appearing in [5], belongs to Dρ

p . We

recall that For a given p > 1, Aρ
p =

⋃
θ≥0

Aρ,θ
p , where Aρ,θ

p is defined as those weights

w such that

(∫
B

w

)1/p (∫
B

w
− 1

p−1

)1/p′

≤ C |B|
(
1 + r

ρ(x)

)θ

, (9)

for every ball B = B(x, r), where |B| stands for the Lebesguemeasure of B. Similarly,
when p = 1, we denote Aρ

1 =
⋃
θ≥0

Aρ,θ
1 , where Aρ,θ

1 is the class of weights w such

that

1

|B|
∫
B

w ≤ C

(
1 + r

ρ(x)

)θ

inf
B

w, (10)

for every ball B = B(x, r).
These classes contain the classical Muckenhoupt families of weights but as it was

shown in [5] are strictly larger. For instance if ρ ≡ 1, w(x) = 1 + |x |γ with γ >

d(p − 1) belongs to Aρ
p but it is not in Ap. Moreover, this weight belongs to Dρ

μ for
any μ ≥ 1 but it is not in Dμ when μ < 1 + γ /d.

We will devote this section to develop some results that will be useful in what
follows. We start giving some properties for the function Wβ . The first one states that
Wβ(x, ·) inherits some kind of doubling property from w.

Lemma 1 Let w ∈ Dρ,θ
μ , x ∈ R

d and r > 0. Then, there exist a constant C > 0 such
that for every τ ≥ 1,

Wβ(x, τr) ≤ Cτ dμ−d+βWβ(x, r)

(
1 + τr

ρ(x)

)θ
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Proof Let τ > 1 and j0 ∈ Z such that 2 j0 ≤ τ < 2 j0+1. Then,

Wβ(x, τr) =
∫
B(x,r)

w(z)

|x − z|d−β
dz +

j0∑
j=0

∫
2 j r≤|x−z|<2 j+1r

w(z)

|x − z|d−β
dz

≤ Wβ(x, r) +
j0∑
j=0

(2 j r)β−dw(B(x, 2 j r))

≤ Wβ(x, r) + C
j0∑
j=0

(2 j r)β−dw(B(x, r))2 jdμ

(
1 + 2 j r

ρ(x)

)θ

≤ Wβ(x, r) + C
w(B(x, r))

rd−β

(
1 + 2 j0r

ρ(x)

)θ j0∑
j=0

(2 j )dμ−d+β

≤ Wβ(x, r) + CWβ(x, r)

(
1 + τr

ρ(x)

)θ

τ dμ−d+β.

��
Next we give some estimates concerning the integral of Wβ over a ball. First notice
that from the definition of Wβ , the inequality Wβ(x, R) ≥ w(B(x, R))Rβ−d holds
while the opposite is not always true. The next lemma provides a weaker version of
that.

Lemma 2 Let w ∈ Dρ
μ for some μ ≥ 1 and β > 0. Then, for any x ∈ R

d and R > 0,

∫
B(x,R)

Wβ(y, R)dy ≤ CRβw(B(x, R)).

Proof Let x ∈ R
d and R > 0. Applying the definition ofWβ together with Lemma 1,

∫
B(x,R)

Wβ(y, R)dy =
∫
B(x,R)

∫
B(y,R)

w(z)

|y − z|d−β
dzdy

≤
∫
B(x,2R)

w(z)
∫
B(x,R)

dy

|y − z|d−β
dz

≤
∫
B(x,2R)

w(z)
∫
B(z,3R)

dy

|y − z|d−β
dz

≤ Cw(B(x, R))Rβ.

��
Lemma 3 Let w ∈ Dρ

μ, x ∈ R
d , R > 0 and β > 0. If 0 < r ≤ ρ(x),

1

|B(x, r)|
∫
B(x,r)

Wβ(y, ρ(y))dy ≤ CWβ(x, ρ(x)).
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Proof Let 0 < r ≤ ρ(x) and y ∈ B(x, r). By (2), taking c = 2cρ we have
B(y, ρ(y)) ⊂ B(x, cρ(x)). Therefore, we may write

∫
B(x,r)

Wβ(y, ρ(y))dy =
∫
B(x,r)

∫
B(y,ρ(y))

w(z)

|y − z|d−β
dzdy

≤
∫
B(x,r)

∫
B(x,cρ(x))

w(z)

|y − z|d−β
dzdy

=
∫
B(x,cρ(x))

w(z)
∫
B(x,r)

dy

|y − z|d−β
dz.

(11)

Now, we split the integration domain B(x, cρ(x)) = B(x, 2r) ∪ B(x, cρ(x)) \
B(x, 2r) obtaining two terms. For the first one, since w is doubling

∫
B(x,2r)

w(z)
∫
B(x,r)

dy

|y − z|d−β
dz ≤ Crβw(B(x, 2r))

≤ CrdWβ(x, r)

≤ CrdWβ(x, ρ(x)).

For the remaining term, we may use that |y − z| ≥ |x − z|/2 when y ∈ B(y, r)
and z /∈ B(x, 2r) together with Lemma 1 to obtain

∫
B(x,cρ(x))\B(x,2r)

w(z)
∫
B(x,r)

dy

|y − z|d−β
dz ≤ Crd

∫
B(x,cρ(x))

w(z)

|x − z|d−β
dz

≤ CrdWβ(x, ρ(x)).

��
Wefinish this section with some results concerning the diffusion semigroup {Tt }t>0

associated to −L , where

Tt f (x) = e−t L f (x) =
∫
Rd

kt (x, y) f (y)dy.

For this kernel kt , the Feynman-Kac formula assures that

0 ≤ kt (x, y) ≤ ht (x − y) = (4π t)−d/2e− |x−y|2
4t ,

where ht is the kernel associated to the classical heat diffusion semigroup. In fact,
under our assumptions on V , it is shown in [11] that for each N > 0 there exists a
constant CN such that

kt (x, y) ≤ CN

td/2 e
− |x−y|2

5t

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

, (12)

123



Fractional powers of the Schrödinger operator on… 521

for x , y ∈ R
d and t > 0.

It is known that the classical heat kernel satisfies the following smoothness estimate:
there exist positive constants c and C such that

|ht (x − y) − ht (z − y)| ≤ C
|x − z|√

t
t−d/2e− c|x−y|2

t , (13)

for any y ∈ R
d and |x − z| ≤ √

t .
A similar estimate can be obtained for the kernel kt . We state it in the following

Lemma. For a proof of this result we refer to Proposition 4.11 in [8].

Lemma 4 For any 0 < δ < δ0 = min{1, 2− d/q} and N > 0, there exist constants c
and CN such that

|kt (x, y) − kt (z, y)| ≤ CN

( |x − z|√
t

)δ

t−d/2e− c|x−y|2
t

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

,

(14)

for any y ∈ R
d and |x − z| ≤ √

t .

Now we present the following lemmas that give size and smoothness estimates for
the difference between kt and ht . They will be essential in what follows.

Lemma 5 Let V ∈ RHq with q > d/2. There exists a constant C > 0 such that

|kt (x, y) − ht (x − y)| ≤ Ct−d/2e−C |x−y|2
t

( √
t

ρ(x)

)2−d/q

, (15)

for any x, y ∈ R
d and t > 0.

Lemma 6 Let V ∈ RHq with q > d/2. For any 0 < δ < δ0 = min{1, 2 − d/q} there
exists a constant C > 0 such that for every x, y and z ∈ R

d such that 4|x−z| ≤ |x− y|
and |x − z| ≤ ρ(x),

|kt (x, y) − ht (x − y) − [kt (z, y) − ht (z − y)]| ≤ Ct−d/2e−C |x−y|2
t

( |x − z|
ρ(x)

)δ

.

(16)

For a proof of these estimates we refer to Proposition 2.16 and Proposition 2.17 in [7].

3 Positive fractional powers of L

In this section we study the behaviour of the operator Lα/2 , with 0 < α < 2, acting on
functions belonging to the appropriateweighted smoothness spaceswe just introduced.
Let us remind that this operator can be written in terms of the semigroup kernel as

123



522 B. Bongioanni et al.

Lα/2 f (x) =
∫ ∞

0

(
e−t L − I

)
f (x)

dt

t1+α/2 .

The precise result is stated in the following theorem.

Theorem 1 Let V ∈ RHq for some q > d/2 and 0 < α < β < δ0 = min{1, 2−d/q}.
Then Lα/2 is bounded from �

β
ρ(w) into �

β−α
ρ (w) as long as w ∈ Dρ

μ with 1 ≤ μ <

1 + δ0−β
d .

Before proving this result, we present a few technical lemmas that summarize
some of the properties we will need. Observe that estimates like (14), (15) and (16)
involve exponentials functions with perhaps different exponents. For that reason the
next results are worked out for a generic function of that type.

Lemma 7 Let γ, θ ≥ 0 and h̃t a function of the form

h̃t (x) = t−d/2e−C |x |2
t , (17)

for some constant C > 0. Then there exists a constant C ′ such that

∫
Rd

h̃t (x − y)

( |x − y|√
t

)γ (
1 + |x − y|

ρ(x)

)θ

dy ≤ C ′
(
1 +

√
t

ρ(x)

)θ

,

for x ∈ R
d and t > 0.

Proof To prove this inequality we are going to split the integration domain on
B(x, ρ(x)) and its complement. For the integral over the ball we obtain

∫
B(x,ρ(x))

h̃t (x − y)

( |x − y|√
t

)γ (
1 + |x − y|

ρ(x)

)θ

dy

≤ Ct−d/2
∫
B(x,ρ(x))

e−C |x−y|2
t

( |x − y|√
t

)γ

dy ≤ C,

by performing a simple change of variables.
For the remaining term we have

∫
B(x,ρ(x))c

h̃t (x − y)

( |x − y|√
t

)γ (
1 + |x − y|

ρ(x)

)θ

dy

≤ Ct−d/2
( √

t

ρ(x)

)θ ∫
B(x,ρ(x))c

e−C |x−y|2
t

( |x − y|√
t

)γ+θ

dy

≤ C

(
1 +

√
t

ρ(x)

)θ

.

��

123



Fractional powers of the Schrödinger operator on… 523

Lemma 8 Let h̃t be a function as in (17), w ∈ Dρ
μ for some μ ≥ 1 and 0 < β ≤ 1.

Then, for any x ∈ R
d , t > 0 and 0 ≤ r < R ≤ ∞, we have

∫
r<|x−y|≤R

h̃t (x − y)Wβ(y, |x − y|)dy ≤ C
∫
r<|x−y|≤4R

h̃t ((x − y)/4)Wβ(x, |x − y|)dy

Proof Suppose first that r > 0 and R < ∞ and let j0 and k0 ∈ Z such that

2 j0
√
t < r ≤ 2 j0+1√t,

2k0
√
t < R ≤ 2k0+1√t .

Applying Lemma 2,

∫
r≤|x−y|≤R

h̃t (x − y)Wβ(y, |x − y|)dy

≤
k0∑
j= j0

∫
2 j

√
t<|x−y|≤2 j+1

√
t
h̃t (x − y)Wβ(y, |x − y|)dy

≤
k0∑
j= j0

t−d/2h̃1(2
j )

∫
2 j

√
t<|x−y|≤2 j+1

√
t
Wβ(y, 2 j+1√t)dy

≤ C
k0∑
j= j0

t−d/2h̃1(2
j )(2 j+1√t)dWβ(x, 2 j+1√t)

≤ C
k0∑
j= j0

t−d/2
∫
2 j+1

√
t<|x−y|≤2 j+2

√
t
h̃t (|x − y|/4)Wβ(x, |x − y|)dy

≤ C
∫
r<|x−y|≤4R

h̃t (|x − y|/4)Wβ(x, |x − y|)dy.

If r = 0 or R = ∞ the proof is analogous performing the sum from j = −∞ or until
j = ∞ respectively.

��

Lemma 9 Let h̃ be a function as in (17), w ∈ Dρ,θ
μ and 0 < β ≤ 1. Then, for any

x ∈ R
d , we have that

∫
Rd

h̃t (x − y)Wβ(y, ρ(y))dy ≤ CWβ(x, ρ(x))

(
1 +

√
t

ρ(x)

)dμ−d+β+θ

.

Proof First we are going to splitRd and integrate over B(x, ρ(x)) and its complement.
For the first integral we consider k0 ∈ Z such that 2k0

√
t ≤ ρ(x) < 2k0+1√t . Then

we may write,
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∫
B(x,ρ(x))

h̃t (x−y)Wβ(y, ρ(y))dy≤
k0∑

k=−∞

∫
2k

√
t<|x−y|≤2k+1

√
t
h̃t (x − y)Wβ(y, ρ(y))dy

≤
k0∑

k=−∞

h̃1(2k)

td/2

∫
B(x,2k+1

√
t)
Wβ(y, ρ(y))dy.

Therefore, applying Lemma 3 we get

∫
B(x,ρ(x))

h̃t (x − y)Wβ(y, ρ(y))dy

≤ CWβ(x, ρ(x))
k0∑

k=−∞

h̃1(2k)

td/2 (2k
√
t)d

≤ CWβ(x, ρ(x))
∞∑

k=−∞

∫
2k

√
t<|x−y|≤2k+1

√
t
h̃t (x − y)dy

≤ CWβ(x, ρ(x)).

To deal with the integral over the complement we use thatWβ(y, ·) is an increasing
function and apply Lemma 8 to obtain

∫
|x−y|≥ρ(x)

h̃t (x − y)Wβ(y, ρ(y))dy

≤
∫

|x−y|≥ρ(x)
h̃t (x − y)Wβ(y, |x − y|)dy

≤ C
∫

|x−y|≥cρ(x)
h̃t ((x − y)/4)Wβ(x, |x − y|)dy.

(18)

Now, we apply the doubling property of Wβ stated on Lemma 1 together with
Lemma 7 in the following way,

∫
|x−y|≥ρ(x)

h̃t (x − y)Wβ(y, ρ(y))dy

≤ C
Wβ(x, ρ(x))

ρ(x)dμ−d+β+θ

∫
h̃t ((x − y)/4)|x − y|dμ−d+β+θdy

≤ CWβ(x, ρ(x))

( √
t

ρ(x)

)dμ−d+β+θ

.

(19)

��

Now we can give the proof of the main result of this section.
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Proof of Theorem 1. Let w ∈ Dρ
μ and f ∈ �

β
ρ(w) for 0 < β < δ0. We can assume,

without loss of generality, that ‖ f ‖
�

β
ρ (w)

= 1. First, we are going to check condi-

tion (6). Let x ∈ R
d , we may write

Lα/2 f (x) =
∫ ∞

0

(
e−t L − I

)
f (x)

dt

t1+α/2 ±
∫ ρ2(x)

0

(
et� − I

)
f (x)

dt

t1+α/2

= I + I I + I I ,

where

I =
∫ ρ2(x)

0
(e−t L − et�) f (x)

dt

t1+α/2 ,

I I =
∫ ρ(x)2

0
(et� − I ) f (x)

dt

t1+α/2 ,

I I I =
∫ ∞

ρ(x)2
(e−t L − I ) f (x)

dt

t1+α/2 .

To deal with I , we may apply Lemma 5 together with the size estimate for f to
obtain

|I | ≤
∫ ρ2(x)

0

∫
Rd

|kt (x, y) − ht (x − y)|| f (y)|dy dt

t1+α/2

≤ C
∫ ρ2(x)

0

( √
t

ρ(x)

)δ ∫
Rd

h̃t (x − y)Wβ(y, ρ(y))dy.
dt

t1+α/2

Now, by Lemma 9,

|I | ≤ CWβ(x, ρ(x))ρ(x)−δ

∫ ρ2(x)

0
t

δ−α
2
dt

t

≤ CWβ(x, ρ(x))ρ(x)−α ≤ CWβ−α(x, ρ(x)).

To bound I I , we use first that
∫
ht (x − y)dy = 1 and then the smoothness estimate

for f , obtaining

|I I | ≤
∫ ρ2(x)

0

∫
Rd

ht (x − y)| f (y) − f (x)|dy dt

t1+α/2

≤
∫ ρ2(x)

0

(∫
Rd

ht (x − y)Wβ(x, |x − y|)dy

+
∫
Rd

ht (x − y)Wβ(y, |x − y|)dy
)

dt

t1+α/2 .
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Wewill bound the first term only, since the second one can be estimated following the
same lines once we have applied Lemma (8). We divide the first term as follows,

∫ ρ2(x)

0

∫
Rd

ht (x − y)Wβ(x, |x − y|)dy dt

t1+α/2

≤
∫ ρ2(x)

0

∫
|x−y|<√

t
ht (x − y)Wβ(x, |x − y|)dy dt

t1+α/2

+
∫ ρ2(x)

0

∫
|x−y|≥√

t
ht (x − y)Wβ(x, |x − y|)dy dt

t1+α/2 = I I1 + I I2.

For I I1 we have

I I1 ≤
∫ ρ2(x)

0
Wβ(x,

√
t)

∫
|x−y|<√

t
ht (x − y)dy

dt

t1+α/2

≤
∫ ρ2(x)

0
Wβ(x,

√
t)

dt

t1+α/2

≤
∫ ρ2(x)

0

∫
|x−u|<√

t

w(u)

|x − u|d−β
du

dt

t1+α/2

≤
∫
B(x,ρ(x))

w(u)

|x − u|d−β

∫
t≥|x−u|2

dt

t1+α/2 du

≤ C
∫
B(x,ρ(x))

w(u)

|x − u|d−(β−α)
du

= CWβ−α(x, ρ(x)).

For I I2 we apply Lemmas 1 and 7 since the integration is performed on
√
t ≤ ρ(x).

I I2 ≤ C
∫ ρ2(x)

0

∫
|x−y|≥√

t
ht (x − y)Wβ(x, |x − y|)dy dt

t1+α/2

≤ C
∫ ρ2(x)

0
Wβ(x,

√
t)

∫
|x−y|≥√

t
ht (x − y)

( |x − y|√
t

)dμ−d+β

×
(
1 + |x − y|

ρ(x)

)θ

dy
dt

t1+α/2

≤ C
∫ ρ2(x)

0
Wβ(x,

√
t)

dt

t1+α/2

≤ CWβ−α(x, ρ(x)),

where for the last inequality we follow the same steps as for I I1.
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Now we turn our attention to I I I . Since
∫
kt (x, y)dy is not necessarily one, we

split in the two following terms

|I I I | ≤
∫ ∞

ρ2(x)

∫
Rd

|kt (x, y)|| f (y)|dy dt

t1+α/2 +
∫ ∞

ρ2(x)
| f (x)| dt

t1+α/2 = I I I1 + I I I2.

To bound I I I1 we use the size estimates for f and kt given in (12). Also we apply
Lemma 9 to obtain

I I I1 ≤ CN

∫ ∞

ρ2(x)

( √
t

ρ(x)

)−N ∫
Rd

h̃t (x − y)Wβ(y, ρ(y))dy
dt

t1+α/2

≤ CN

∫ ∞

ρ2(x)

( √
t

ρ(x)

)−N

Wβ(x, ρ(x))

( √
t

ρ(x)

)dμ−d+β+θ
dt

t1+α/2

≤ CN
Wβ(x, ρ(x))

ρ(x)dμ−d+β+θ−N

∫ ∞

ρ2(x)
t
dμ−d+β+θ−α−N

2
dt

t

≤ CN
Wβ(x, ρ(x))

ρ(x)dμ−d+β+θ−N

∫ ∞

ρ2(x)
t
dμ−d+β+θ−α−N

2
dt

t

≤ Cρ−α(x)Wβ(x, ρ(x))

≤ CWβ−α(x, ρ(x)),

choosing N large enough.
Finally, for I I I2 we simply use the size estimate for f arriving to

I I I2 ≤ Wβ(x, ρ(x))
∫ ∞

ρ2(x)
t−α/2 dt

t

≤ Cρ−α(x)Wβ(x, ρ(x))

≤ CWβ−α(x, ρ(x)).

Now we check condition (7). For x, z ∈ R
d with |x − z| ≤ ρ(x) we want to show

that

|Lα/2 f (x) − Lα/2 f (z)| ≤ C [Wβ(x, |x − z|) + Wβ(z, |x − z|)]. (20)

Let x, z ∈ R
d such that |x − z| ≤ ρ(x), we write

Lα/2 f (x) − Lα/2 f (z) =
∫ ∞
0

(e−t L − I ) f (x)
dt

t1+α/2 −
∫ ∞
0

(e−t L − I ) f (z)
dt

t1+α/2

±
[∫ ρ(x)2

0
(et� − I ) f (x)

dt

t1+α/2 −
∫ ρ(x)2

0
(et� − I ) f (z)

dt

t1+α/2

]

= I V + V + V I ,
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where

I V =
∫ ρ(x)2

0
(e−t L − et�) f (x)

dt

t1+α/2 −
∫ ρ(x)2

0
(e−t L − et�) f (z)

dt

t1+α/2

=
∫ ρ(x)2

0

∫
Rd

[kt (x, y) − ht (x − y) − (kt (z, y) − ht (z − y))] f (y)dy
dt

t1+α/2 ,

V =
∫ ρ(x)2

0
(et� − I ) f (x)

dt

t1+α/2 −
∫ ρ(x)2

0
(et� − I ) f (z)

dt

t1+α/2 ,

V I =
∫ ∞

ρ(x)2
(e−t L − I ) f (x)

dt

t1+α/2 −
∫ ∞

ρ(x)2
(e−t L − I ) f (z)

dt

t1+α/2 .

First, to estimate I V we decompose the integral in the following way,

I V ≤
∫ |x−z|2

0

∫
Rd

[|kt (x, y) − ht (x, y)| + |kt (z, y) − ht (z, y)|] | f (y)| dt

t1+α/2

+
∫ ρ(x)2

|x−z|2

∫
Rd

|kt (x, y) − ht (x, y) − (kt (z, y) − ht (z, y))| | f (y)| dt

t1+α/2

= I V1 + I V2.

Now we decompose I V1 in a sum of two terms. Both of them can be treated in the
same way, so we do only the first one. Given β andμ satisfying the assumptions of the
theorem, we can fix δ > 0 such that β < δ < δ0 and μ ≤ 1 + δ−β

d . Using again the
size estimate for f , applying Lemma 5 for δ as above, Lemma 9 and then Lemma 1,
we obtain

I V1 ≤ C
∫ |x−z|2

0

( √
t

ρ(x)

)δ ∫
Rd

h̃t (x − y)Wβ(y, ρ(y))dy
dt

t1+α/2

≤ CWβ(x, ρ(x))ρ(x)−δ

∫ |x−z|2

0
t

δ−α
2 −1dt

≤ C |x − z|−αWβ(x, |x − z|)
( |x − z|

ρ(x)

)δ−dμ+d−β

≤ CWβ−α(x, |x − z|),

since α < δ and μ ≤ 1 + δ−β
d .

To handle I V2, we break the integral onRd into B(x, 4|x− z|) and its complement,
giving rise to I V21 and I V22. For the first we proceed as for I V1 producing two similar
terms. For each one we apply Lemma 5 together with Lemma 3 to get
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I V21 ≤
∫ ρ(x)2

|x−z|2

( √
t

ρ(x)

)δ ∫
|x−y|≤4|x−z|

t−d/2e− |x−y|2
t Wβ(y, ρ(y))dy

dt

t1+α/2

≤ ρ(x)−δ

∫ ρ(x)2

|x−z|2

∫
|x−y|≤4|x−z|

Wβ(y, ρ(y))dy
dt

t1+ α−δ+d
2

≤ ρ(x)−δ|x − z|dWβ(x, ρ(x))
∫ ∞

|x−z|2
dt

t1+ α−δ+d
2

.

Now, applying Lemma 1,

I V21 ≤ |x − z|−αWβ(x, |x − z|)
( |x − z|

ρ(x)

)d−μd+δ−β

≤ Wβ−α(x, |x − z|)

since μ ≤ 1 + δ−β
d .

To estimate I V22 we use Lemma 6 with δ as above, together with Lemma 9 and
Lemma 1 to obtain

I V22 ≤
( |x − z|

ρ(x)

)δ ∫ ρ(x)2

|x−z|2

∫
Rd

h̃t (x − y)Wβ(y, ρ(y))dy
dt

t1+α/2

≤
( |x − z|

ρ(x)

)δ

Wβ(x, ρ(x))
∫ ρ(x)2

|x−z|2
dt

t1+α/2

≤ C |x − z|−αWβ(x, |x − z|)
( |x − z|

ρ(x)

)δ−dμ+d−β

≤ CWβ−α(x, |x − z|),

if μ ≤ 1 + δ−β
d .

Next, we turn our attention to V . First we write it in the following way

|V | ≤
∣∣∣∣∣
∫ |x−z|2

0

∫
Rd

ht (x − y)[ f (y) − f (x)]dy

−
[∫

Rd
ht (z − y)[ f (y) − f (z)]dy

]
dt

t1+α/2

∣∣∣∣
+

∣∣∣∣∣
∫ ρ(x)2

|x−z|2

∫
Rd

ht (x − y)[ f (y) − f (x)]dy

−
[∫

Rd
ht (z − y)[ f (y) − f (z)]dy

]
dt

t1+α/2

∣∣∣∣
= V1 + V2.

In V1 we may bound the difference by the sum of two analogous terms V11 and V12.
To deal with V11 we split the inner integral in B(x,

√
t) and its complement, obtaining

the terms V111 and V112 respectively. In V111, after applying the smoothness estimate
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for f , we obtain

V111 ≤ C
∫ |x−z|2

0

∫
|x−y|≤√

t
ht (x − y)[Wβ(x, |x − y|) + Wβ(y, |x − y|)]dy dt

t1+α/2 .

Now we split the inner sum in two terms. For the first term

∫ |x−z|2

0

∫
|x−y|≤√

t
ht (x − y)Wβ(x, |x − y|)dy dt

t1+α/2

≤
∫ |x−z|2

0
Wβ(x,

√
t)

∫
Rd

ht (x − y)dy
dt

t1+α/2

≤ C
∫ |x−z|2

0
Wβ(x,

√
t)

dt

t1+α/2

≤ C
∫ |x−z|2

0

∫
B(x,

√
t)

w(u)

|u − x |d−β
du

dt

t1+α/2

≤ C
∫
B(x,|x−z|)

w(u)

|u − x |d−β

∫
√
t>|x−u|

dt

t1+α/2 du

≤ C
∫
B(x,|x−z|)

w(u)

|u − x |d−(β−α)
du

≤ CWβ−α(x, |x − z|).

The second term can be treated in the same way once we have applied Lemma 8.
To handle V112 we use the smoothness estimate for f , obtaining

V112 ≤ C
∫ |x−z|2

0

∫
|x−y|>√

t
ht (x − y)[Wβ(x, |x − y|) + Wβ(y, |x − y|)]dy dt

t1+α/2 .

Again, we split the inner sum in two terms. For the first term we apply Lemma 1
together with Lemma 7 since

√
t < |x − z| < ρ(x). In this way

∫ |x−z|2

0

∫
|x−y|>√

t
ht (x − y)Wβ(x, |x − y|)dy dt

t1+α/2

≤
∫ |x−z|2

0
Wβ(x,

√
t)

∫
Rd

ht (x − y)

( |x − y|√
t

)dμ−d+β

(
1 + |x − y|

ρ(x)

)θ

dy
dt

t1+α/2

≤ C
∫ |x−z|2

0
Wβ(x,

√
t)

dt

t1+α/2

≤ CWβ−α(x, |x − z|),
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where for the last line we use the same argument as for V111. Oncemore, after applying
Lemma 8, the second term can be treated in the same way.

Now we turn our attention to V2. We add and subtract ht (z − y)[ f (y) − f (x)]
obtaining V2 ≤ V21 + V22, where

V21 =
∫ ρ2(x)

|x−z|2

∫
Rd

ht (z − y)| f (x) − f (z)|dy dt

t1+α/2

and

V22 =
∫ ρ2(x)

|x−z|2

∫
Rd

|ht (x − y) − ht (z − y)|| f (y) − f (x)|dy dt

t1+α/2 .

In V21 we simply apply the smoothness estimate for f arriving to

V21 ≤ C[Wβ(x, |x − z|) + Wβ(z, |x − z|)]
∫ ρ2(x)

|x−z|2

∫
Rd

ht (z − y)dy
dt

t1+α/2

≤ [Wβ(x, |x − z|) + Wβ(z, |x − z|)]|x − z|−α

≤ Wβ−α(x, |x − z|) + Wβ−α(z, |x − z|).

To handle V22, we use the smoothness of the heat kernel given in (13) together with
the smoothness estimate for f to obtain,

V22 =
∫ ρ2(x)

|x−z|2

∫
Rd

|ht (x − y) − ht (z − y)|| f (y) − f (x)|dy dt

t1+α/2

≤ C
∫ ρ2(x)

|x−z|2
|x − z|√

t

∫
Rd

h̃t (x − y)Wβ(x, |x − y|)dy dt

t1+α/2

+ C
∫ ρ2(x)

|x−z|2
|x − z|√

t

∫
Rd

h̃t (x − y)Wβ(y, |x − y|)dy dt

t1+α/2

= V221 + V222.

Once more we estimate only V221 since V222 can be handled following the same lines,
after an application of Lemma 9. First, we decompose the inner integral of V221 in
B(x, |x − z|) and its complement obtaining two terms. For the first one we simply use
that Wβ is increasing on the second variable as follows

123



532 B. Bongioanni et al.

∫ ρ2(x)

|x−z|2

( |x − z|√
t

) ∫
|x−y|<|x−z|

h̃t (x − y)Wβ(x, |x − y|)dy dt

t1+α/2

≤ C
∫ ρ2(x)

|x−z|2

( |x − z|√
t

)
Wβ(x, |x − z|)

∫
|x−y|<|x−z|

h̃t (x − y)dy
dt

t1+α/2

≤ CWβ(x, |x − z|)|x − z|
∫ ∞

|x−z|2
dt

t1+α/2+1/2

≤ CWβ(x, |x − z|)|x − z|−α ≤ CWβ−α(x, |x − z|).

For the second term we can apply Lemma 1 together with Lemma 7 and, since√
t < ρ(x), we get

∫ ρ2(x)

|x−z|2
|x − z|√

t

∫
|x−y|≥|x−z|

h̃t (x − y)Wβ(x, |x − y|)dy dt

t1+α/2

≤ C
∫ ρ2(x)

|x−z|2

( |x − z|√
t

) ∫
Rd

h̃t (x − y)Wβ(x, |x − z|)
( |x − y|

|x − z|
)dμ−d+β

×
(
1 + |x − y|

ρ(x)

)θ

dy
dt

t1+α/2

≤ CWβ(x, |x − z|)|x − z|1−dμ+d−β

∫ ∞

|x−z|2
√
t
dμ−d+β−1 dt

t1+α/2

≤ CWβ(x, |x − z|)|x − z|−α ≤ CWβ−α(x, |x − z|).

Finally, we need to bound V I . First we write

V I =
∫ ∞

ρ(x)2

[∫
Rd

kt (x, y) f (y)dy − f (x) −
(∫

Rd
kt (z, y) f (y)dy − f (z)

)]
dt

t1+α/2

≤
∫ ∞

ρ(x)2

(∫
Rd

|kt (x, y) − kt (z, y)|| f (y)|dy + | f (x) − f (z)|
)

dt

t1+α/2

= V I1 + V I2,

where

V I1 =
∫ ∞

ρ(x)2

∫
Rd

|kt (x, y) − kt (z, y)|| f (y)|dy dt

t1+α/2

and

V I2 = | f (x) − f (z)|
∫ ∞

ρ(x)2

dt

t1+α/2 .
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To take care of V I1, we apply Lemma 4with δ as above, since |x−z| < ρ(x) <
√
t .

That, together with the size estimate for f , Lemmas 1 and 9 give us

V I1 =
∫ ∞

ρ(x)2

∫
Rd

|kt (x, y) − kt (z, y)|| f (y)|dy dt

t1+α/2

≤ CN

∫ ∞

ρ(x)2

( |x − z|√
t

)δ (
ρ(x)√

t

)N ∫
Rd

h̃t (x − y)Wβ(y, ρ(y))dy
dt

t1+α/2

≤ CNWβ(x, ρ(x))|x − z|δ
∫ ∞

ρ(x)2

(
ρ(x)√

t

)N−dμ+d+−β−θ dt

t1+α/2+δ/2

≤ CWβ(x, ρ(x))

( |x − z|
ρ(x)

)δ

ρ(x)−α

≤ CWβ(x, |x − z|)
( |x − z|

ρ(x)

)δ−dμ+d−β

ρ(x)−α

≤ CWβ−α(x, |x − z|)
( |x − z|

ρ(x)

)δ−dμ+d−β+α

≤ CWβ−α(x, |x − z|),

for N large enough and as long as μ ≤ 1 + δ−(β−α)
d .

It only remains to bound V I2. To do that, we just apply the smoothness estimate
for f to obtain

V I2 ≤ (
Wβ(x, |x − z|) + Wβ(z, |x − z|))

∫ ∞

ρ(x)2

dt

t1+α/2

≤ ρ(x)−α
(
Wβ(x, |x − z|) + Wβ(z, |x − z|))

≤ |x − z|−α
(
Wβ(x, |x − z|) + Wβ(z, |x − z|))

≤ (
Wβ−α(x, |x − z|) + Wβ−α(z, |x − z|)) ,

since |x − z| ≤ ρ(x).
��

4 Other fractional differentiation operators

We will consider in this section other fractional differentiation operators related to
L . These will be defined as the composition of powers of L (positive or negative)
together with a multiplication by a power of the potential V . We have already results
concerning the behaviour on �

β
ρ(w) of powers of L so we need a tool to handle

point-wise multiplication operators. That is the first aim of this section.
For a measurable function φ : Rd �−→ R we consider a multiplication operator

Tφ f (x) = φ(x) f (x). The next theorem gives sufficient conditions on the function φ

to guarantee the boundedness of Tφ from �
β
ρ(w) to �σ

ρ (w) when 0 < σ ≤ β.
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Theorem 2 Let w ∈ Dρ
μ for some μ ≥ 1 and η, β such that 0 < η ≤ β ≤ 1. Suppose

there exists a constant C > 0 such that the function φ satisfies:

|φ(x)| ≤ Cρη−β(x), for all x ∈ R
d (21)

and

|φ(x) − φ(z)| ≤ Cρη−β(x)

( |x − z|
ρ(x)

)η+d(μ−1)

, if |x − z| ≤ ρ(x). (22)

Then, the operator Tφ is bounded from �
β
ρ(w) into �

η
ρ(w).

Proof Let w ∈ Dρ
μ and f ∈ �

β
ρ(w). First we are going to check condition (6). For

x ∈ R
d we have that

|Tφ( f )(x)| = |φ(x)|| f (x)|
≤ Cρη−β(x)Wβ(x, ρ(x))

≤ CWη(x, ρ(x)),

where we have used (21) for φ and that f ∈ �
β
ρ(w).

Now, to check (7) for Tφ f , we apply both conditions asked to φ. Let x , z ∈ R
d

with |x − z| ≤ ρ(x).

|Tφ( f )(x) − Tφ( f )(z)| = |φ(x) f (x) − φ(z) f (z)|
≤ |φ(x)|| f (x) − f (z)| + |φ(x) − φ(z)|| f (z)|. (23)

For the first term of (23), we use again assumption (21) on φ to obtain,

|φ(x)|| f (x) − f (z)| ≤ Cρη−β(x)[Wβ(x, |x − z|) + Wβ(z, |x − z|)]
≤ C[Wη(x, |x − z|) + Wη(z, |x − z|)]

as above, since f ∈ �
β
ρ(w).

As for the second term of (23), we apply now (22) in the following way,

|φ(x) − φ(z)|| f (z)| ≤ C

( |x − y|
ρ(x)

)η+d(μ−1)

ρη−β(x)Wβ(z, ρ(z))

≤ C

( |x − y|
ρ(z)

)η+d(μ−1)

ρη−β(z)Wβ(z, ρ(z))

≤ C

( |x − y|
ρ(z)

)η+d(μ−1)

Wη(z, ρ(z))

≤ CWη(z, |x − z|).
Here, we have used that ρ(x) � ρ(z) and the duplication property for Wη given in
Lemma 1. ��
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Remark 1 In Theorem 2 the conditions on the function φ depend only onw through its
doubling exponent μ. In particular, note that if w ∈ Aρ

1 (hence in Dρ
1 ), condition (22)

on φ becomes

|φ(x) − φ(z)| ≤ C

( |x − z|
ρ(x)

)η

ρη−β(x) if |x − z| ≤ ρ(x). (24)

Remark 2 It is worth noting that the point-wise conditions for φ given in Theorem 2
are equivalent to the following integral conditions:

1

|B(x, ρ(x))|
∫
B(x,ρ(x))

|φ(y)|dy ≤ Cρη−β(x), for all x ∈ R
d (25)

and

1

|B(x, s)|
∫
B(x,s)

|φ(y) − φB |dy

≤ C

(
s

ρ(x)

)η+d(μ−1)

ρη−β(x), whenever 0 < s ≤ ρ(x). (26)

It is immediate that the point-wise conditions imply the integral ones. On the other
hand, if φ satisfies the integral conditions above we can use Lebesgue Differentiation
Theorem to obtain the point-wise ones. Given x , y ∈ R

d with |x − y| ≤ ρ(x) we
write

|φ(x) − φ(y)| ≤ |φ(x) − φB(x,|x−y|)| + |φ(y) − φB(y,|x−y|)|
+ |φB(x,|x−y|) − φB(y,|x−y|)|

For the the first term, defining Bi = B(x, 2−i |x − y|),

|φ(x) − φB(x,|x−y|)| ≤ lim
m→∞

(
|φ(x) − φBm | +

m−1∑
i=0

|φBi+1 − φBi |
)

≤ C
∞∑
i=0

1

|Bi |
∫
Bi

|φ(z) − φBi |dz

≤ C

( |x − y|
ρ(x)

)η+d(μ−1)

ρη−β(x)
∞∑
i=0

2−i(η+d(μ−1))

≤ C

( |x − y|
ρ(x)

)η+d(μ−1)

ρη−β(x).

The second and third terms of the sum can be bounded in a similar way, obtaining (22).
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Finally, to obtain (21) we set B = B(x, ρ(x)/2)

|φ(x)| ≤ |φ(x) − φB + φB |
≤ 1

|B|
∫
B

|φ(x) − φ(z)|dz + 1

|B|
∫
B

|φ(z)|dz
≤ Cρ(x)η−β,

applying condition (25) and the estimate we just obtained.

If we consider the casew = 1 in Theorem 2, we are able to prove that the conditions
imposed on φ are also necessary for the operator Tφ to be bounded from �

β
ρ into �

η
ρ ,

as we show in the next proposition.

Proposition 1 Let φ a real function such that the operator Tφ is bounded from�
β
ρ into

�
η
ρ , for some 0 < η ≤ β. Then the function φ satisfies:

|φ(x)| ≤ Cρη−β(x), for all x ∈ R
d (27)

|φ(x) − φ(z)| ≤ C

( |x − z|
ρ(x)

)η

ρη−β(x), if |x − z| ≤ ρ(x). (28)

Proof Consider first, for x ∈ R
d and s ≤ ρ(x), the function

fx,s(y) = χ[0,s](|x − y|)(ρ(x)β − sβ) + χ[s,ρ(x)](|x − y|)(ρ(x)β − |x − y|β).

As it was shown in Lemma 2.5 of [10], this function belongs to �
β
ρ and its norm does

not depend neither on x nor on s.
To check (27) we take s = ρ(x)/2. Since Tφ is bounded from �

β
ρ into �

η
ρ ,

|φ(x) fx,s(x)| = |φ(x)|(ρ(x)β − sβ) ≤ Cρ(x)η

Then,

|φ(x)| ≤ Cρ(x)η−β.

Now, to verify inequality (28), we take x and z ∈ R
d such that |x − z| ≤ ρ(x). If

|x − z| ≤ ρ(x)/2, choose s = |x − z|. Then

|φ(x) fx,s(x) − φ(z) fx,s(z)| = |φ(x) − φ(z)|(ρ(x)β − sβ) ≤ C |x − z|η.

Therefore, since ρ(x)β − sβ � ρ(x)β ,

|φ(x) − φ(z)| ≤ C |x − z|ηρ(x)−β = C

( |x − z|
ρ(x)

)η

ρ(x)η−β.
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On the other hand, if ρ(x)/2 < |x − z| ≤ ρ(x), then

|φ(x) − φ(y)| ≤ ρ(x)η−β + ρ(z)η−β ≤ C

( |x − z|
ρ(x)

)η

ρ(x)η−β.

��
Remark 3 In view of Remarks 1, 2 and Proposition 1, we are able to extend Propo-
sition 3.2 in [10] in two directions. On one side, for η = β, we prove that the same
conditions on φ required in [10] imply not only the boundedness on�

β
ρ(w) forw = 1,

but also for anyw ∈ Aρ
1 . On the other side, forw = 1, we obtain equivalence between

some conditions on φ and the boundedness of the multiplication operator Tφ from �
β
ρ

into �
η
ρ with η ≤ β, extending the already known result for the case η = β.

With this tool at hand, we will continue this section by stating and proving bound-
edness results for some other fractional differentiation operators in this context. First
we take a look at compositions of two fractional differentiation operators, namely,
given two positives numbers σ and α such that α + σ < 1 we consider V σ/2Lα/2 and
its adjoint, Lα/2V σ/2. In this case we have the following result.

Theorem 3 Let us assume that V ∈ RHd and that we are given σ > 0 and α > 0
with α + σ < 1.

(i) If there exists some ε0 > α such that for each 0 < ε < ε0, V satisfies

|V σ/2(x) − V σ/2(y)| ≤ Cρ(x)−σ

( |x − y|
ρ(x)

)ε

for |x − y| ≤ ρ(x), (29)

then Lα/2V σ/2 maps continuously �
β
ρ(w) into �

β−(α+σ)
ρ (w), for any α + σ <

β < min{ε0 + σ, 1} and w ∈ Dρ
μ with 1 ≤ μ < 1 + min{ε0+σ,1}−β

d .

(ii) If there exists some ε0 > 0 such that for each 0 < ε < ε0, V satisfies (29), then
V σ/2Lα/2 maps continuously �

β
ρ(w) into �

β−(α+σ)
ρ (w), for any α + σ < β <

min{ε0 + α + σ, 1} and w ∈ Dρ
μ with 1 ≤ μ < 1 + min{ε0+α+σ,1}−β

d .

Proof We are going to prove (ii) in the first place. Applying Theorem 1 with q = d we
obtain that Lα/2 maps continuously �

β
ρ(w) into �

β−α
ρ (w), provided 0 < α < β < 1

and 1 ≤ μ < 1 + 1−β
d .

To conclude (ii), we make the following observation. For x ∈ R
d and y ∈ B =

B(x, ρ(x)), condition (29) implies

V (x)σ/2 ≤ V (y)σ/2 + |V (x)σ/2 − V (y)σ/2| ≤ V (y))σ/2 + C

ρσ (x)
.

Therefore, averaging over B = B(x, ρ(x)) in the y-variable

V (x)σ/2 = 1

|B|
∫
B
V (x)σ/2dy ≤ 1

|B|
∫
B
V σ/2 + C

ρσ (x)
≤ C ′

ρσ (x)
,
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where we have used Hölder’s inequality and the definition of ρ(x).
So, (29) together with the above inequality give the sufficient conditions to get

that multiplication by V σ/2 is bounded from �
β−α
ρ (w) into �

β−α−σ
ρ (w) as long as

α + σ < β < ε0 + α + σ and 1 ≤ μ < 1 + ε0+α+σ−β
d . Therefore, under our

assumptions on β and μ both operators are bounded and the conclusion follows.
Item (i) can be proved in an analogous way, noting that condition (29) allows us to

apply Theorem 2 obtaining that multiplication by V σ/2 is bounded from �
β
ρ(w) into

�
β−σ
ρ (w). Applying again Theorem 1 we obtain the desired result. ��

Next we consider the case of compositions of negative powers of L with multiplica-
tion by positive powers of the potential, that is, operators of the form L−α/2V σ/2, with
α < σ . In order to do that we look at the operator as the composition of L−α/2V α/2

with multiplication by V (σ−α)/2. The behaviour on �
β
ρ(w) of the first of these oper-

ators was analysed in [2]. However, the hypotheses considered there were different
from those needed here. In fact, since we must assume some regularity on V (σ−α)/2 to
get boundedness of the multiplication operator, we have a fortiori a size estimate for
V , namely V (x) ≤ Cρ(x)−2. For that reason we state and prove the following result.
Before, let us recall that Aρ∞ = ⋃

p≥1 A
ρ
p.

Proposition 2 Let us assume that V ∈ RHd/2 and that there exists a constant C such

that V (x) ≤ Cρ(x)−2. Let 0 < α ≤ 2, the operator L−α/2V α/2 is bounded on�
β
ρ(w)

as long as 0 ≤ β < min{α, 1} and w ∈ Aρ∞ ∩ Dρ
μ with 1 ≤ μ < 1 + min{α,1}−β

d .

Proof We are going to apply the general criterium given in [2], Corollary 4. Let Jα/2
be the kernel of the fractional integral L−α/2. By Lemma 4 in [3], we know that for
each N > 0, there exists a constant CN such that

Jα/2(x, y) ≤ CN

|x − y|d−α

(
1 + |x − y|

ρ(x)

)−N

and

|Jα/2(x, y) − Jα/2(x + h, y)| ≤ C
|h|

|x − y|d−α+1

(
1 + |x − y|

ρ(x)

)−N

,

if |h| ≤ |x − y|/2.
Now, we consider Kα/2 = Jα/2(x, y)V α/2(y) the kernel of L−α/2V α/2. First, we

make the following observation. For f ∈ L1
loc, by (2), the hypothesis on V and the

size estimate for Jα/2 given above, we get

123



Fractional powers of the Schrödinger operator on… 539

L−α/2V α/2 f (x) ≤
∫
Rd

|Jα/2(x, y)|V α/2(y)| f (y)|dy

≤ CN

∫
Rd

1

|x − y|d−α

(
1 + |x − y|

ρ(x)

)−N

ρ−α(y)| f (y)|dy

≤ CNρ−α(x)
∫
Rd

1

|x − y|d−α

(
1 + |x − y|

ρ(x)

)−N+αN0

| f (y)|dy

≤ CNρ−α(x)
j=∞∑
j=−∞

(1 + 2 j )−N+αN0

(2 jρ(x))d−α

∫
|x−y|≤2 jρ(x)

| f (y)|dy

≤ CNM f (x)
j=∞∑
j=−∞

(1 + 2 j )−N+αN02 jα

≤ CM f (x),

where M is the Hardy–Littlewood maximal function and N is chosen large enough.
This point-wise estimate guarantee that L−α/2V α/2 is bounded from L1 into L1,∞.

Now, we are going to derive size and smoothness estimates for Kα/2 from the ones
given for Jα/2. For each N > 0 there exists CN such that

|V α/2(y)Jα/2(x, y)| ≤ CN

ρα(y)|x − y|d−α

(
1 + |x − y|

ρ(x)

)−N

≤ CN

|x − y|d
(
1 + |x − y|

ρ(x)

)−N+α+αN0

.

(30)

In a similar way, taking |h| ≤ |x − y|/2 ,

|V α/2(y)Jα/2(x, y) − V α/2(y)Jα/2(x + h, y)|
≤ V α/2(y)|Jα/2(x, y) − Jα/2(x + h, y)|

≤ CN |h|
ρα(y)|x − y|d−α+1

(
1 + |x − y|

ρ(x)

)−N

≤ CN
|h|

|x − y|d+1

(
1 + |x − y|

ρ(x)

)−N+α+αN0

.

(31)

Finally, we are going to show a T 1 condition for L−α/2V α/2. Consider x0 ∈ R
d

and r > 0 such that r ≤ ρ(x)/2. If x , z ∈ B(x0, r)

|L−α/2V α/21(x) − L−α/2V α/21(z)|
=

∣∣∣∣
∫
Rd

Jα/2(x, y)V
α/2(y)dy −

∫
Rd

Jα/2(z, y)V
α/2(y)dy

∣∣∣∣
≤

∣∣∣∣∣
∫
Bρ

Jα/2(x, y)V
α/2(y)dy −

∫
Bρ

Jα/2(z, y)V
α/2(y)dy

∣∣∣∣∣
123



540 B. Bongioanni et al.

+
∫
Bc

ρ

∣∣∣V α/2(y)Jα/2(x, y) − V α/2(y)Jα/2(z, y)
∣∣∣ dy

= I + I I ,

where Bρ = B(x0, ρ(x0)).
To bound I I , we may simply apply the smoothness estimate obtained for the kernel

to get

I I ≤
∫
Bc

ρ

|x − z|
|x − y|d+1 dy ≤ C

r

ρ(x0)
,

since ρ(x) � ρ(x0).
The point-wise estimates for Jα/2 allow us to apply Proposition 3 in [2] to obtain

that L−α/2 is bounded from L p into �
α−d/p
ρ , for any p ∈ (d/α, d/(α − 1)+). From

this property we obtain,

I = |L−α/2(V α/2χBρ )(x) − L−α/2(V α/2χBρ )(z)|
≤ C‖V α/2χBρ ‖p|x − z|α−d/p

≤ C

(∫
Bρ

V pα/2(y)dy

)1/p

rα−d/p

≤ C

(
r

ρ(x0)

)α−d/p

.

Now, since we can take any p ∈ (d/α, d/(α − 1)+), we obtain that

|L−α/2V α/21(x) − L−α/2V α/21(z)| ≤ C

(
r

ρ(x0)

)ε

, (32)

for any ε < min{α, 1}.
To conclude, the weak type (1, 1) together with estimates (30), (31) and (32), allow

us to apply Corollary 4 of [2] to obtain the stated result.
��

Remark 4 Notice that we get the same conclusions as in Theorem 6 in [2] under the
assumption V ∈ RHq for all q ≥ 1. However, as it was pointed out in [3], there are
potentials that satisfy the hypothesis of Proposition 2 above but they are not in RHq

for all q ≥ 1.

Now, as a consequence of Theorem 2 and the previous result, we can obtain the
following boundedness properties for differentiation operators of the form L−α/2V σ/2

and V σ/2L−α/2, where σ > α. In what follows, for a better understanding of the
statements, we change the parameters α and σ by α and γ with γ = σ − α.
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Theorem 4 Let us assume that V ∈ RHd/2, 0 < α ≤ 2 and 0 < γ < 1. If there exists
some ε0 > 0 such that for each 0 < ε < ε0, V satisfies

|V γ /2(x) − V γ /2(y)| ≤ Cρ(x)−γ

( |x − y|
ρ(x)

)ε

, (33)

then L−α/2V α/2+γ /2 maps continuously �
β
ρ(w) into �

β−γ
ρ (w), for any γ < β <

min{1, α + γ, ε0 + γ } and w ∈ w ∈ Aρ∞ ∩ Dρ
μ with 1 ≤ μ < 1+ min{1,α+γ,ε0+γ }−β

d .

Proof Let w ∈ Aρ∞ ∩ Dρ
μ and f ∈ �

β
ρ(w). First, observe that condition (33) implies

that V γ /2(x) ≤ Cρ−γ (x), as it was done in the proof of Theorem 3.
This observation together with condition (33), let us apply Theorem 2 obtaining

that the multiplication by V γ /2 is an operator bounded from �
β
ρ(w) into �

β−γ
ρ (w),

provided γ < β < min{1, γ + ε0} and 1 ≤ μ < 1 + min{1,γ+ε0}−β
d .

On the other hand, we apply Proposition 2 to assure that L−α/2V α/2 is bounded on
�

β−γ
ρ (w) as long as γ < β < min{1, γ + α} and 1 ≤ μ < 1 + min{1,γ+α}−β

d .
Since our assumptions on β and μ allow us to conclude the boundedness of both

operators, the proof is complete.
��

Theorem 5 Let V ∈ RHd/2 and 0 < α < 2, 0 < γ < 1. Assume further that for some
ε > 0, V satisfies

|V α/2(x) − V α/2(y)| ≤ Cρ(x)−α

( |x − y|
ρ(x)

)ε

,

for |x − y| ≤ ρ(x). Then, for γ < β < β0 = min{1, ε, γ + εγ /α}, V α/2+γ /2L−α/2

maps continuously �
β
ρ(w) into �

β−γ
ρ (w) as long as w ∈ Aρ∞ ∩ Dρ

μ with 1 ≤ μ <

1 + β0−β
d .

Proof Let w ∈ Aρ∞ ∩ Dρ
μ and f ∈ �

β
ρ(w). The assumptions on V and w allow

us to apply Theorem 1 in [3], to show that for 0 < β < min{1, ε} and 1 ≤ μ <

1 + min{1,ε}−β
d ,

‖V α/2L−α/2 f ‖
�

β
ρ (w)

≤ C‖ f ‖
�

β
ρ (w)

.

Now we will show that the same hypothesis on V allows us to establish the bound-
edness of the multiplier operator Tg = V γ /2g from �

β
ρ(w) into �

β−γ
ρ (w), via

Theorem 2. It would be sufficient to find all possible 0 < β < 1 and μ ≥ 1 such that,
for |x − y| ≤ ρ(x),

|V γ /2(x) − V γ /2(y)| ≤ Cρ(x)−γ

( |x − y|
ρ(x)

)β−γ+d(μ−1)

, (34)

since, as in the previous results, (34) implies the size condition on V .
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We will do that considering two cases: α > γ and α ≤ γ . Let x , y ∈ R
d such that

|x − y| ≤ ρ(x). If α > γ , we may apply the hypothesis on V to obtain

|V γ /2(x) − V γ /2(y)| ≤ C |V α/2(x) − V α/2(y)|γ /α

≤ C

( |x − y|
ρ(x)

)εγ /α

ρ(x)−γ ,

so (34) holds provided γ < β < min{1, γ +εγ /α} and 1 ≤ μ < 1+ min{1,γ+εγ /α}−β
d .

Next, if α ≤ γ , we can use the Mean Value Theorem together with the hypothesis
on V to obtain, for a point ξ lying between x and y,

|V γ /2(x) − V γ /2(y)| ≤ C |V α/2(x) − V α/2(y)|V (ξ)α(γ /α−1)/2

≤ C

( |x − y|
ρ(x)

)ε

ρ(x)−αρ(x)−α(γ /α−1)

≤ C

( |x − y|
ρ(x)

)ε

ρ(x)−γ ,

which implies (34) for γ < β < min{1, γ + ε} and 1 ≤ μ < 1 + min{1,γ+ε}−β
d .

Therefore, the three conditions on β and μ are satisfied for γ < β < β0 =
min{1, ε, γ + εγ /α} and 1 ≤ μ < 1 + β0−β

d . Altogether, we obtain that

‖V γ /2(L−α/2V α/2 f )‖
�

β−γ
ρ (w)

≤ C‖L−α/2V α/2 f ‖
�

β
ρ (w)

≤ C‖ f ‖
�

β
ρ (w)

.

��
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6. Dziubański, J., Garrigós, G., Martínez, T., Torrea, J.L., Zienkiewicz, J.: BMO spaces related to
Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249(2), 329–356
(2005)
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