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Abstract
In this paper, we study normalized ground states for the following critical fractional
NLS equation with prescribed mass:

{
(−�)su = λu + μ|u|q−2u + |u|2∗

s −2u, x ∈ R
N ,∫

RN u2dx = a2,

where (−�)s is the fractionalLaplacian, 0 < s < 1, N > 2s, 2 < q < 2∗
s = 2N/(N−

2s) is a fractional critical Sobolev exponent, a > 0, μ ∈ R. By using Jeanjean’s trick
in Jeanjean (Nonlinear Anal 28:1633–1659, 1997), and the standard method which
can be found in Brézis andNirenberg (Commun PureApplMath 36:437–477, 1983) to
overcome the lack of compactness, we first prove several existence and nonexistence
results for a L2-subcritical (or L2-critical or L2-supercritical) perturbation μ|u|q−2u,
then we give some results about the behavior of the ground state obtained above as
μ → 0+. Our results extend and improve the existing ones in several directions.
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1 Introduction andmain results

In this paper, we consider the following critical nonlinear Schrödinger equation involv-
ing the fractional Laplacian:

(−�)su = λu + μ|u|q−2u + |u|2∗
s −2u x ∈ R

N , (1.1)

and possessing prescribed mass

∫
RN

u2dx = a2, (1.2)

where (−�)s is the fractional Laplacian, 0 < s < 1, 2 < q < 2∗
s = 2N/(N − 2s) is

a fractional critical Sobolev exponent. The fractional Laplacian (−�)s is defined by

(−�)su(x) = C(N , s)P.V.

∫
RN

u(x) − u(y)

|x − y|N+2s
dy, x ∈ R

N

for u ∈ C∞
0 (RN ), where C(N , s) is a suitable positive normalizing constant and P.V.

denotes the Cauchy principle value. We refer to [6,15,16,19,29,35] for a simple intro-
duction to basic properties of the fractional Laplace operator and concrete applications
based on variational methods.

Our main driving force for the study of (1.1) arises in the study of the following
time-dependent fractional Schrödinger equation with combined power nonlinearities:

iψt − (−�)sψ + μ|ψ |q−2ψ + |ψ |2∗
s −2ψ = 0 in RN . (1.3)

When searching for stationary waves of the form ψ(t, x) = e−iλt u(x), where λ ∈ R

is the chemical potential and u(x) : RN → C is a time-independent function, one is
led to studying (1.1). In this case, particular attention is paid to ground state solutions,
a.e., solutions minimizing an energy functional among all non-trivial solutions. An
alternative choice is to look for solutions to (1.1) having prescribed mass, and in this
case λ ∈ R is part of the unknown. This approach seems particularly meaningful from
the physical point of view, since, in addition to being a conserved quantity for the
time dependent (1.3), the mass has often an evident physical meaning, for example, it
indicates the power supply in nonlinear optics, or the total number of atoms in Bose-
Einstein condensation. Moreover, this approach gives a better insight of the properties
of the stationary solutions for (1.1), for example, stability or instability, see [31] for
more details.

The existence of normalized stationary states can be summarized as follows: given
a > 0 and μ ∈ R, 2 < q < 2∗

s , our aim is to find (λ, u) ∈ R × Hs(RN ,C)

such that (1.1) and (1.2) hold. For the Laplacian case, i.e., s = 1 in (1.1), we would
like to mention a seminal paper by Jeanjean in [26], which dealt with the existence
of normalized solutions when the energy function is unbounded from below on the
L2 constraint. In fact, the normalized solutions for nonlinear Schrödinger equation
or system have attracted much attention in recent years, both for their interesting
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theoretical structure and their concrete applications (see [1–3,31,32] and references
therein). Since λ and μ are parts of the unknown, the Nehari manifold method is not
available in the framework of normalized solutions. Meanwhile, the appearance of the
L2 constraint makes some classical methods, used to prove the boundedness of any
Palais–Smale sequence for the unconstrained problem, difficult to implement. It is well
known that a new L2-critical exponent p̃ = 2+4/N plays a special role. Indeed, if the
problem is L2-subcritical, i.e., 2 < q < p < p̃, the energy functional Eμ (defined in
(1.4)) is bounded from below on the constraint Sa = {u ∈ H1(RN ,C) : ∫

RN u2dx =
a2}, so the ground state solution can be found as globalminimizers of Eμ|Sa

.Moreover,

if the problem is L2-supercritical, i.e., p̃ < q < p < 2∗ = 2N/(N − 2), then the
energy functional Eμ is unbounded both fromabove and frombelowon Sa . In this case,
the ideas introduced by Jeanjean in [26] can be employed to consider the existence of
normalized solutions for any a, μ > 0.

Compared to the semilinear case that corresponds to the Laplace operator, the frac-
tional Laplacian problems are nonlocal andmore challenging. For fractional Laplacian
equations or systemswith fixed λi , the existence and non-degeneracy of solutions have
been studied by a lot of researchers and there aremany results about existence, nonexis-
tence, multiplicity of solutions for fractional Laplacian equation, since it seems almost
impossible for us to provided a complete list of references, we just refer the readers
to [5,9–11,13,14,20,21,23–25,36–38] and references therein.

Recently, Soave in [31,32] first investigated the existence and properties of ground
states for the nonlinear Schrödinger equation with combined power type nonlinear-
ities and also gave new criteria for global existence and finite time blow-up in the
associated dispersive equation. More precisely, Soave in [31] considered the normal-
ized solutions for subcritical exponent and give a complete classification about the
existence and nonexistence of normalized solution for L2-subcritical, L2-critical and
L2-supercritical. For the critical case, the problem is also interesting and challenging.
By focusing the leading nonlinearity and analysing how the introduction of lower
order term modifies the energy functional structure, Soave in [32] obtained the exis-
tence and nonexistence of normalized solutions for L2-subcritical, L2-critical and
L2-supercritical in the Sobolev critical case. Due to the lack of compactness of the
Sobolev embedding H1(RN ) ↪→ L2∗

(RN ), the problem is more complicated, how-
ever, the difficulty was overcome ingeniously by combining some ideas from [8,26].

Inspired by the above-mentioned works, especially by [31,32], in the present paper
our goal is two-fold. One is to show the existence and nonexistence of normalized
ground states for fractional elliptic equations with critical exponent. Another is to
give some results about the behavior of ground state solutions obtained above as
μ → 0+. The method we use is Jeanjean’s method [26] combined with Pohozaev
manifold argument. By using the test function as in [30], we show that the least energy
of the equation is below the critical energy s

N SN/(2s)
s under the proper conditions given

on N , s, p, λ under which the Palais–Smale condition is satisfied. The main difficulty
is to prove the convergence of constrained Palais–Smale sequence. Indeed, if we find
a bounded Palais–Smale sequence, according to the compactness of the embedding
Hs

rad(RN ) ↪→ L p(RN ), 2 < p < 2∗
s , we just get a strongly convergent subsequence

in L p(RN ), butwe cannot deduce the strong convergence in L2(RN ).Hencewe require
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92 M. Zhen, B. Zhang

new arguments to overcome the lack of compactness of the embedding Hs
rad(RN ) ↪→

L2(RN ). To this end, we adopt some ideas of [18] to obtain a Liouville-type result.
Before we state our main results, we first introduce some notations. Let Hs(RN )

be the Hilbert space of function in R
N endowed with the standard inner product and

norm

〈u, v〉 =
∫
RN

(
(−�)

s
2 u(−�)

s
2 v + uv

)
dx, ‖u‖2Hs (RN )

= 〈u, u〉.

Let Ds(R
N ) be the Hilbert space defined as the completion of C∞

c (RN ) with the
inner product

〈u, v〉Ds (RN ) = C(N , s)

2

∫∫
R2N

(u(x) − u(y))(v(x) − v(y))

|y − x |N+2s
dxdy

and norm

‖u‖2Ds (RN )
=
∫
RN

|(−�)
s
2 u|2dx = C(N , s)

2

∫∫
R2N

|u(x) − u(y)|2
|y − x |N+2s

dxdy.

The energy functional associated with (1.1) and the constraint are given by

Eμ(u) = 1

2
||u||2Ds(RN )

− μ

q

∫
RN

|u|qdx − 1

2∗
s

∫
RN

|u|2∗
s dx (1.4)

and

Sa =
{

u ∈ Hs(RN ,C) :
∫
RN

u2dx = a2
}

.

Let Ss be the sharp imbedding constant of Ds(R
N ) ↪→ L2∗

(RN ),

Ss = inf
u∈Ds (RN ))\{0}

‖u‖2
Ds (RN )

(
∫
RN |u|2∗dx)

2
2∗

. (1.5)

From [14] we know that Ss is attained in R
N by

Uε,x0(x) = κ(ε2 + |x − x0|2)− N−2s
2 (1.6)

where κ 	= 0 ∈ R, ε > 0 are fixed constants and x0 ∈ R
N .

To present our main results, put

γq,s = N (q − 2)

2qs
,

C ′ = q(2∗
s − 2)

2Cq
N ,q,s(2

∗
s − qγq,s)

(
(2 − qγq,s)2∗

s

2(2∗
s − qγq,s)

S
2∗s
2

s

) 2−qγq,s
2∗s −2

, (1.7)

123
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C ′′ = 22

s

(2

s − qγq,s)C

q
N ,q,s

⎛
⎝ Nqγ 2

q,s S
N
2s
s

(2 − qγq,s)s

⎞
⎠

2−qγq,s
2

. (1.8)

Theorem 1.1 Let N > 2s, a, μ > 0 and 2 < q < p := 2 + 4s/N. If there exists a
constant α = α(N , q) > 0 such that

μaq(1−γq,s ) < α := min{C ′, C ′′}, (1.9)

then Eμ|Sa has a ground state ũ with the following properties: ũ is a positive, radially
symmetric function and solves (1.1)–(1.2) for some λ̃ < 0. Moreover, m(a, μ) < 0
and ũ is an interior local minimizer of Eμ(u) on the set

Ak = {u ∈ Sa : ||u||Ds(RN ) < k},

for suitable k small enough. Any other ground state solution of Eμ on Sa is a local
minimizer of Eμ on Ak.

Theorem 1.2 Let N > 2s, a, μ > 0 and 2 < q = p. If

μa
4s
N < p

(
2C p

N ,p,s

)−1
, (1.10)

then Eμ|Sa has a ground state ũ with the following properties: ũ is a positive, radially
symmetric function and solves (1.1)–(1.2) for some λ̃ < 0. Moreover, 0 < m(a, μ) <
s
N SN/(2s)

s , and ũ is a critical point of Mountain Pass type.

Theorem 1.3 Let N > 2s, a, μ > 0 and p < q < 2∗
s . If one of the following

conditions holds:

(1) N > 4s and μaq(1−γq,s ) <
S

N
4s q(1−γq,s )

s
γq,s

,

(2) N = q
q−12s and μaq(1−γq,s ) <

S
N
4s q(1−γq,s )

s
γq,s

,

(3) N = 4s or q
q−12s < N < 4s or 2s < N <

q
q−12s,

then Eμ|Sa has a ground state ũ with the following properties: ũ is a positive, radially
symmetric function and solves (1.1)–(1.2) for some λ̃ < 0. Moreover, 0 < m(a, μ) <
s
N SN/(2s)

s , and ũ is a critical point of Mountain Pass type.

Theorem 1.4 Let a > 0 and μ = 0. Then we have the following conclusions:

(1) If N > 4s, then E0 on Sa has a unique positive radial ground state Uε,0 defined
in (1.6) for the unique choice of ε > 0 which gives ||Uε,0||L2(RN ) = a.

(2) If 2s < N ≤ 4s, then (1.1) has no positive solutions in Sa for any λ ∈ R.

Theorem 1.5 Let uμ be the corresponding positive ground state solution obtained in
Theorems 1.1–1.3 with energy level m(a, μ). Then the following conclusions hold:
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94 M. Zhen, B. Zhang

(1) If 2 < q < p, then m(a, μ) → 0, and ‖uμ‖2
Ds (RN )

→ 0 as μ → 0+.

(2) If p ≤ q < 2∗, then m(a, μ) → s
N S

N
2s
s , and ‖uμ‖2

Ds (RN )
→ S

N
2s
s as μ → 0+.

Remark 1.1 The assumptions (1.7), (1.8) and (1.10) are used to describe the geometry
of Eμ. Meanwhile, the assumptions in Theorem 1.3 are applied to overcome the lack
of compactness.

Remark 1.2 We should point out that Luo and Zhang in [28] considered the subcrit-
ical fractional equation with combined nonlinearities and proved the existence and
nonexistence of normalized solutions, however, in this paper we consider the exis-
tence and nonexistence of normalized solutions for the critical fractional equation
with combined nonlinearities. Compared with the subcritical case, the critical case is
more complicated and needs to overcome the lack of compactness.

In this paper, we invoke some ideas proposed by Soave in [31,32]. Compared to
the Laplacian problems, the fractional Laplacian problems are nonlocal and more
challenging. Indeed, when we consider the fractional Laplacian problem, the corre-
sponding algebraic equation is about fractional order, which is more complicated to
deal with than an integer-order algebraic equation. Moreover, one of the main difficul-
ties is to analyze the convergence of constrained Palais–Smale sequence. To overcome
the lack of compactness, we employ delicate methods which can be found in [8], that
is, cut-off technique and energy estimate. To show the least energy strictly less than
“the threshold energy”, our analysis is more difficult and complicated. Indeed, when
we deal with the L2-critical and L2-supercritical case, we need to give an exact classi-
fication of dimensions N , which depends on s and q, and give exact estimate for energy
function in each cases. In particular, for 2s < N < 4s andμ = 0, to showTheorem1.4
(2), we need to prove that all solutions for equation (−�)sv = v2

∗
s −1, v ≥ 0 in R

N ,

must be αUε,0 for some α, ε > 0.
Finally, let us sketch the proof of above theorems. In general, this study can be

considered as a counterpart of the fractionalBrézis-Nirenberg problem in the context of
normalized solutions. To overcome the lack of compactness which is a crucial step for
the critical case, we show that the least energy strictly less than “the threshold energy”,
we employ delicate methods which can be found in [8], that is, cut-off technique and
energy estimate. The convergence of Palais–Smale sequence (see Proposition 2.2) is
one of the most delicate ingredient in the proofs of our main results. We introduce a
fiber maps �

μ
u (t) [see (2.9)], it is well known that any critical point of Eμ|Sa stays in

Pa,μ [see (2.5)], the monotonicity and convexity properties of �
μ
u (t) strongly affect

the structure of Pa,μ. It is easy to see that (�
μ
u )′(t) = Pμ(t
u), so that t is a critical

point of �
μ
u (t) if and only if t
u ∈ P(a,μ) and in particular u ∈ P(a,μ) if and only if 0

is a critical point of �
μ
u (t). In this spirit, we split Pa,μ into three parts, then we prove

that P0
a,μ = ∅ and Pa,μ is a smooth manifold of codimension 1 in Sa under suitable

conditions. For L2-subcritical case, we restricted the energy function Eμ on the Pa,μ

and we can prove that Eμ|Pa,μ
is bounded from below, so a local minimizer ũ for

Eμ on the Pa,μ can be obtained. For L2-critical/supercritical, we construct different
linking structures to obtain the Mountain Pass type solutions.
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The paper is organized as follows. In Sect. 2, we introduce some preliminaries
that will be used to prove Theorems 1.1–1.3. In Sect. 3, we give some lemmas for
L2-subcritical perturbation. In Sect. 4, we give some preliminaries for L2-critical
perturbation. In Sect. 5, we give some lemmas for L2-supercritical perturbation. In
Sect. 6, we prove Theorem 1.1. In Sect. 7, we prove Theorems 1.2–1.3. In Sect. 8, we
prove Theorem 1.4. Finally, the proof of Theorem 1.5 will be given in Sect. 9.

2 Preliminaries

Let Ss be the sharp embedding constant of Ds(RN ) ↪→ L2∗
s (RN ),

Ss = inf
u∈Ds (RN ))\{0}

‖u‖2
Ds (RN )

(
∫
RN |u|2∗

s dx)
2
2∗s

. (2.1)

from [14] Ss is attained in R
N by ũ(x) = κ(ε2 + |x − x0|2)− N−2s

2 , where κ 	= 0 ∈
R, ε > 0 are fixed constants and x0 ∈ R

N .
It is useful to introduce the fractional Gagliardo–Nirenberg–Sobolev inequality

(see[21])

∫
RN

|u|pdx ≤ CN ,p,s

(∫
RN

|(−�)
s
2 u|2dx

) N (p−2)
4s

(∫
RN

|u|2dx

) p
2 − N (p−2)

4s

for all u ∈ Hs(RN ). (2.2)

Define

γp,s = N (p − 2)

2ps
,

it is easy to see that

pγp,s

⎧⎨
⎩

< 2, if 2 < p < p,

= 2, if p = p,

> 2, if p < p < 2∗
s ,

and that γ2∗
s

= 1, (2.3)

and

‖u‖L p ≤ CN ,p,s‖(−�)su‖γp,s

L2 ‖u‖1−γp,s

L2 for all u ∈ Hs(RN ). (2.4)

Wefirst give the following keyPohozaev identity for the fractional Laplace operator.
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96 M. Zhen, B. Zhang

Proposition 2.1 [Theorem A.1 in [7]] Let u ∈ Hs(RN )
⋂

L∞(RN ) be a positive
solution of (−�)su = f (u) and F(u) ∈ L1(RN ), then it holds that

N − 2s

2

∫
RN

|(−�)
s
2 u|2dx = N

∫
RN

F(u)dx,

where F(u) = ∫ u
0 f (t)dt.

Remark 2.1 Since u ∈ Hs(RN ), by the fractional Sobolev embedding theorem (see
[33, Theorem 2.2]), it is easy to see u ∈ L p(RN ), p ∈ [2, 2∗

s ], which implies that
F(u) = λ

2u2 + μ
q |u|q + 1

2∗
s
|u|2∗

s ∈ L1(RN ), hence we can modify the proof of

Proposition 5.1 in [4] to obtain that u ∈ L∞B(0, r
2 ). Using the same arguments for

a neighborhood of any x ∈ R
N , we get u ∈ L∞

loc(R
N ). Thus we can use similar

arguments as in the proof of Theorem 3.4 in [17] to obtain that u ∈ L∞(RN ), which
implies that the above Pohozaev identity can be applied to our equation. In fact, similar
method to prove u ∈ L∞(RN ) can also be used to prove Proposition 4.1 in [12].

Lemma 2.1 Let u ∈ Hs(RN ) be a solution of (1.1), then

Pa,μ = {u ∈ Sa : Pμ(u) = 0}, (2.5)

where

Pμ(u) = s||u||2Ds(RN )
− μγq,ss

∫
RN

|u|qdx − s
∫
RN

|u|2∗
s dx .

Proof From Proposition 2.1, we have

N − 2s

2
||u||2Ds(RN )

= λ
N

2

∫
RN

u2dx + Nμ

q

∫
RN

|u|qdx + N

2∗
s

∫
RN

|u|2∗
s dx . (2.6)

Since u is a solution of (1.1), we have

||u||2Ds(RN )
= λ

∫
RN

u2dx + μ

∫
RN

|u|qdx +
∫
RN

|u|2∗
s dx . (2.7)

Combining (2.6) with (2.7), we obtain

s||u||2Ds(RN )
= μγq,ss

∫
RN

|u|qdx + s
∫
RN

|u|2∗
s dx .

As desired. ��
Define

(t
u)(x) = e
Nt
2 u(et x) for a.e. x ∈ R

N , (2.8)

123



Normalized ground states for the critical fractional NLS… 97

it is easy to see that t
u ∈ Sa . We define the fiber map as follows:

�μ
u (t) = Eμ(t
u) = e2st

2
||u||2Ds(RN )

− μ
eqγq,s st

q

∫
RN

|u|qdx − e2
∗
s st

2∗
s

∫
RN

|u|2∗
s dx .

(2.9)
It is easy to see that (�

μ
u )′(t) = Pμ(t
u), so that t is a critical point of �

μ
u (t) if and

only if t
u ∈ P(a,μ) and in particular u ∈ P(a,μ) if and only if 0 is a critical point of
�

μ
u (t).
We split Pa,μ into three parts.

P+
a,μ =

{
u ∈ Pa,μ | (�μ

u )′′(0) > 0

}

=
{

u ∈ Pa,μ | 2s2||u||2Ds(RN )
> μqγ 2

q,ss2
∫
RN

|u|qdx + 2∗
s s2

∫
RN

|u|2∗
s dx

}
,

P0
a,μ =

{
u ∈ Pa,μ | (�μ

u )′′(0) = 0

}

=
{

u ∈ Pa,μ | 2s2||u||2Ds(RN )
= μqγ 2

q,ss2
∫
RN

|u|qdx + 2∗
s s2

∫
RN

|u|2∗
s dx

}
,

P−
a,μ =

{
u ∈ Pa,μ | (�μ

u )′′(0) < 0

}

=
{

u ∈ Pa,μ | 2s2||u||2Ds(RN )
< μqγ 2

q,ss2
∫
RN

|u|qdx + 2∗
s s2

∫
RN

|u|2∗
s dx

}
.

(2.10)

It is easy to see that

Pa,μ = P+
a,μ ∪ P0

a,μ ∪ P−
a,μ.

Lemma 2.2 Let N > 2s, 2 < q < 2∗
s and a, μ > 0. Let {un} ⊂ Sa,r = Sa ∩ Hs(RN )

be a Palais–Smale sequence for Eμ|Sa at level m(a, μ). Then {un} is bounded in
Hs(RN ).

Proof Case 1 q < p. This yields that γq,sq < 2. Since Pμ(un) → 0, we have

s||u||2Ds(RN )
− μγq,ss

∫
RN

|u|qdx − s
∫
RN

|u|2∗
s dx = on(1).

Thus, by fractional Gagliardo–Nirenberg–Sobolev inequality (2.4), we have

Eμ(un) = s

N
||un||2Ds (RN )

− μ

q

(
1 − qγq,s

2∗
s

)∫
RN

|un|qdx + on(1)

≥ s

N
||un||2Ds (RN )

− μ

q

(
1 − qγq,s

2∗
s

)
Cq

N ,q,s ||un||qγq,s

Ds (RN )
aq(1−γq,s ).
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98 M. Zhen, B. Zhang

Since {un} is a Palais–Smale sequence for Eμ|Sa at level m(a, μ), we have Eμ(un) ≤
m + 1 for n large. Hence

s

N
||un||2Ds(RN )

≤ μ

q

(
1 − qγq,s

2∗
s

)
Cq

N ,q,s ||un||qγq,s

Ds (RN )
aq(1−γq,s ) + m(a, μ) + 2,

which implies that {un} is bounded in Hs(RN ).
Case 2 q = p. Then γp,s p = 2. Since Pμ(un) → 0, we know

||u||2Ds(RN )
− μγp,s

∫
RN

|u|pdx −
∫
RN

|u|2∗
s dx = on(1). (2.11)

Thus,

Eμ(un) = s

N

∫
RN

|un|2∗
s dx + on(1) ≤ +m(a, μ) + 1 ⇒

∫
RN

|un|2∗
s dx ≤ C .

Since q ∈ (2, 2∗
s ), we have q = α2+ (1−α)2∗

s for suitable α ∈ (0, 1), so by Hölder’s
inequality, we have

∫
RN

|un|qdx ≤
(∫

RN
|un|2dx

)α (∫
RN

|un|2∗
s dx

)1−α

≤ C .

Thus, from (2.11), we know that

||u||2Ds(RN )
= μγp,s

∫
RN

|u|pdx +
∫
RN

|u|2∗
s dx ≤ C .

Case 3 p < q < 2∗
s . This implies that γq,sq > 2. Since Pμ(un) → 0, we know

||u||2Ds(RN )
− μγq,s

∫
RN

|u|qdx −
∫
RN

|u|2∗
s dx = on(1).

Thus

Eμ(un) = μ

q

(γq,sq

2
− 1

) ∫
RN

|u|qdx + s

N

∫
RN

|u|2∗
s dx ≤ m(a, μ) + 1.

So
∫
RN |u|qdx and

∫
RN |u|2∗

s dx are both bounded. Hence

||u||2Ds(RN )
= μγq,s

∫
RN

|u|qdx +
∫
RN

|u|2∗
s dx + on(1) ≤ C .

This completes the proof. ��
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Proposition 2.2 Let N > 2s, 2 < q < 2∗
s and a, μ > 0. Let {un} ⊂ Sa,r =

Sa
⋂

Hs(RN ) be a Palais–Smale sequence for Eμ|Sa at level m(a, μ) with

m(a, μ) <
s

N
S

N
2s
s and m 	= 0.

Suppose in addition that Pa,μ(un) → 0 as n → +∞. Then one of the following
alternatives holds:

(i) either up to a subsequence un⇀u weakly in Hs(RN ) but not strongly , where
u 	≡ 0 is a solution of (1.1) for some λ < 0, and

Eμ(u) ≤ m(a, μ) − s

N
S

N
2s
s .

(ii) or up to a subsequence un → u strongly in Hs(RN ), Eμ(u) = m(a, μ) and u
solves (1.1)–(1.2) for some λ < 0.

Proof By Lemma 2.2, we know that the sequence {un} is bounded in Hs(RN ), which
is radial functions, and by compactness of Hs

rad(RN ) ↪→↪→ Lq(RN ), which implies
that

un⇀u in Hs(RN ), un → u in Lq(RN ) a.e in RN .

Since {un} is a bounded Palais–Smale sequence for Eμ|Sa at level m(a, μ), by
Lagrange multipliers rule, there exists {λn} ⊂ R such that for every ϕ ∈ Hs(RN )

∫
RN

(
(−�)

s
2 u(−�)

s
2 ϕdx − λnunϕ − μ|u|q−2unϕ − |u|2∗

s −2unϕ
)

dx = on(1)‖ϕ‖,
as n → +∞. (2.12)

If we choose that ϕ = un , from (2.12), it is easy to see that {un} is bounded, hence up
to a subsequence λn → λ ∈ R. By the fact that Pμ(un) → 0 and γq,s < 1, we deduce
that

λa2 = lim
n→+∞ λn

∫
RN

|un|2dx = lim
n→+∞

(
||un||2Ds (RN )

−
∫
RN

(
μ|un|q + |un|2∗

s

)
dx

)

= lim
n→+∞ μ(γq,s − 1)

∫
RN

|un|qdx = μ(γq,s − 1)
∫
RN

|u|qdx ≤ 0. (2.13)

It is easy to see that λ = 0 if and only if u ≡ 0. Next, we show that the u 	≡ 0.Assume
by contradiction that u ≡ 0, by {un} is bounded in Hs(RN ), hence up to a subsequence
||un||2Ds (RN )

→ � ∈ R. From Pμ(un) → 0 and un → 0 strongly in Lq(RN ), hence

∫
RN

|u|2∗
s dx = ||u||2Ds(RN )

− μγq,s

∫
RN

|u|qdx → �,
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Therefore, by the definition of Ss in (1.5), we have � ≥ Ss�
2
2∗s , we can deduce

� = 0 or � ≥ S
N
2s
s .

Case 1 If ||un||2Ds (RN )
→ � = 0, then

∫
RN |un|qdx → 0,

∫
RN |un|2∗

s dx → 0, which
implies that Eμ(un) → 0, this contradict the fact that Eμ(un) → m(a, μ).

Case 2 If � ≥ S
N
2s
s , from Pμ(un) → 0 and Eμ(un) → m(a, μ), we obtain

m(a, μ) + on(1) = Eμ(un) = s

N
||un ||2Ds (RN )

− μ

q

(
1 − qγq,s

2∗
s

)∫
RN

|u|q dx + on(1)

= s

N
||un ||2Ds (RN )

+ on(1) = s

N
� + on(1),

which implies that

m(a, μ) = s

N
� ≥ s

N
S

N
2s
s ,

which contradicts our assumptions. Thus, u 	≡ 0. From (2.13), we know that λ < 0.
Pass to the limit in (2.12) by the weak convergence, we obtain that

(−�)su = λu + μ|u|q−2u + |u|2∗
s −2u, x ∈ R

N . (2.14)

By the Pohozaev identity, Pμ(u) = 0. Let σn = un −u, then σn⇀0 in Hs(RN ). Since

||un||2Ds(RN )
= ||σn||2Ds (RN )

+ ||u||2Ds(RN )
+ on(1) (2.15)

and by the well-known Brézis–Lieb lemma, we get

∫
RN

|un|2∗
s dx =

∫
RN

|σn|2∗
s dx +

∫
RN

|u|2∗
s dx + on(1) (2.16)

Therefore, from Pμ(un) → 0 and un → u in Lq(RN ), we have

||σn||2Ds (RN )
+ ||u||2Ds(RN )

= μγq,s

∫
RN

|u|qdx

+
∫
RN

|σn|2∗
s dx +

∫
RN

|u|2∗
s dx + on(1).

Combining this with Pμ(u) = 0, we know that ||σn||2Ds (RN )
= ∫

RN |σn|2∗
s dx + on(1),

thus

lim
n→+∞ ||σn||2Ds(RN )

= lim
n→+∞

∫
RN

|σn|2∗
s dx = � ≥ 0.
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By the definition of Ss in (1.5), we have � ≥ Ss�
2
2∗s , hence we can deduce

� = 0 or � ≥ S
N
2s
s .

Case 1 � ≥ S
N
2s
s . By (2.15) and (2.16), we have

m(a, μ) = lim
n→+∞ Eμ(un) = lim

n→+∞

(
Eμ(u) + 1

2
||σn||2Ds(RN )

− 1

2∗
s

∫
RN

|σn|2∗
s dx

)

= Eμ(u) + s

N
� ≥ Eμ(u) + s

N
S

N
2s
s .

Thus, the conclusion i) holds, i.e., up to a subsequence, un⇀u weakly in Hs(RN ) but
not strongly, where u 	≡ 0 is a solution of (1.1) for some λ < 0, and

Eμ(u) ≤ m(a, μ) − s

N
S

N
2s
s .

Case 2 � = 0. Then un → u strongly in Ds(R
N ), which implies that un → u strongly

in L2∗
s (RN ) by Sobolev embedding inequality. Next, we show that un → u strongly

in L2(RN ). If we let ϕ = un − u in (2.12) and multiply un − u on both side of (2.14),
we obtain

||un − u||2Ds(RN )
−
∫
RN

(λnun − λu)(un − u)dx

=
∫
RN

(|un|q−2un − |u|q−2u)(un − u)dx

+
∫
RN

(|un|2∗
s −2un − |u|2∗

s −2u)(un − u)dx + on(1)

Thus, by un → u strongly in Ds(R
N ) and un → u strongly in L2∗

s (RN ), we have

0 = lim
n→+∞

∫
RN

(λnun − λu)(un − u)dx = lim
n→+∞ λ

∫
RN

(un − u)2dx,

which implies that un → u strongly in L2(RN ) by λ < 0. Thus, the conclusion ii)
holds, i.e. up to a subsequence un → u strongly in Hs(RN ), Eμ(u) = m(a, μ) and u
solves (1.1)–(1.2) for some λ < 0. The proof is thus complete. ��
By the similar arguments as inProposition 2.2,we canobtain the followingproposition.

Proposition 2.3 Let N > 2s, 2 < q < 2∗
s and a, μ > 0. Let {un} ⊂ Sa be a Palais–

Smale sequence for Eμ|Sa at level m(a, μ) with

m(a, μ) <
s

N
S

N
2s
s and m 	= 0.
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Suppose in addition that Pa,μ(un) → 0 as n → +∞, and that there exists {vn} ⊂ Sa

and vn is radially symmetric for every n such that ‖un − vn‖ → 0 as n → +∞. Then
one of the alternatives (i) and (ii) in Proposition 2.2 holds.

3 L2-subcritical perturbation

For N > 2s and 2 < q < 2 + 4s/N , let us recall C ′ in (1.7). We consider the
constrained functional Eμ|Sa . For every u ∈ Sa , by fractional Gagliardo–Nirenberg–
Sobolev inequality (2.4) and Sobolev inequality (1.5)

Eμ(u) ≥ 1

2
||u||2Ds(RN )

− μ

q
Cq

N ,q,s ||u||qγq,s

Ds(RN )
aq(1−γp,s ) − 1

2∗
s

S
− 2∗s

2
s ||u||2∗

s
Ds(RN )

.

(3.1)

Therefore, we consider the function h : R+ → R

h(t) = 1

2
t2 − μ

q
Cq

N ,q,saq(1−γq,s )tqγq,s − 1

2∗
s

S
− 2∗s

2
s t2

∗
s . (3.2)

Since μ > 0 and qγq,s < 2 < 2∗
s , we have h(0+) = 0− and h(+∞) = −∞.

Lemma 3.1 Under the assumption that μa(1−γq,s )q < C ′ [see (1.7)], the function h
has a local strict minimum at negative level, a global strict maximum at positive level,
and no other critical points, and there exists a R0 and R1 both depending on a and μ,
such that h(R0) = 0 = h(R1) and h(t) ≥ 0 if and only if t ∈ (R0, R1).

Proof For t > 0, we have h(t) > 0 if and only if

ϕ(t) >
μ

q
Cq

N ,q,saq(1−γq,s ), with ϕ(t) = 1

2
t2−qγq,s − 1

2∗
s

S
− 2∗s

2
s t2

∗
s −qγq,s .

Since

ϕ′(t) = 2 − qγq,s

2
t1−qγq,s − 2∗

s − qγq,s

2∗
s

S
− 2∗s

2
s t2

∗
s −1−qγq,s ,

it is easy to see that ϕ(t) is increasing on (0, t) and decreasing on (t,+∞) and
has a unique global maximum point at positive level on (0,+∞), where t =(

(2−qγq,s )2∗
s

2(2∗
s −qγq,s )

S
2∗s
2

s

) 1
2∗s −2

. Thus the maximum level is

ϕ(t) = 2∗
s − 2

2(2∗
s − qγq,s)

(
(2 − qγq,s)2∗

s

2(2∗
s − qγq,s)

S
2∗s
2

s

) 2−qγq,s
2∗s −2

.
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Therefore, h is positive on an open interval (R0, R1) if and only if ϕ(t) >
μ
q Cq

N ,q,saq(1−γq,s ), which implies that

μaq(1−γq,s ) <
q(2∗

s − 2)

2Cq
N ,q,s(2

∗
s − qγq,s)

(
(2 − qγq,s)2∗

s

2(2∗
s − qγq,s)

S
2∗s
2

s

) 2−qγq,s
2∗s −2

.

Since h(0+) = 0− , h(+∞) = −∞ and h is positive on an open interval
(R0, R1) , it is easy to see that h has a global maximum at positive level in
(R0, R1) and has a local minimum point at negative level in (0, R0). Since h′(t) =
tqγq,s−1

[
t2−qγq,s − μγq,sCq

N ,q,saq(1−γq,s ) − S
− 2∗s

2
s t2

∗
s −qγq,s

]
= 0 if and only if

ψ(t) = μγq,sCq
N ,q,saq(1−γq,s ) where ψ(t) = t2−qγq,s − S

− 2∗s
2

s t2
∗
s −qγq,s .

Obviously, ψ(t) has only one critical point, which is a strict maximum. Therefore, if
ψ(t)max ≤ μγq,sCq

N ,q,saq(1−γq,s ), then it is easy to see that contract with h is positive

on an open interval (R0, R1). Thus, ψ(t)max > μγq,sCq
N ,q,saq(1−γq,s ), which implies

that h only has a local strict minimum at negative level, a global strict maximum at
positive level, and no other critical points. ��

Lemma 3.2 Under the condition of μa(1−γq,s )q < C ′ [see (1.7)], then P0
a,μ = ∅ and

Pa,μ is a smooth manifold of codimension 1 in Sa.

Proof Assume by contradiction that there exists a u ∈ P0
a,μ such that

||u||2Ds(RN )
− μγq,s

∫
RN

|u|qdx −
∫
RN

|u|2∗
s dx = 0, (3.3)

and

2||u||2Ds (RN )
= μqγ 2

q,s

∫
RN

|u|qdx + 2∗
s

∫
RN

|u|2∗
s dx . (3.4)

Thus, from (1.5), (2.4), (3.3), and (3.4), we have

μγq,s(2 − qγq,s)

∫
RN

|u|q dx = (2∗
s − 2)

∫
RN

|u|2∗
s dx,

||u||2Ds (RN )
= 2∗

s − qγq,s

2 − qγq,s

∫
RN

|u|2∗
s dx ≤ 2∗

s − qγq,s

2 − qγq,s
S

− 2∗s
2

s ||u||2∗
s

Ds (RN )
, (3.5)

||u||2Ds (RN )
= μγq,s

2∗
s − qγq,s

2∗
s − 2

∫
RN

|u|q dx ≤ μγq,s
2∗

s − qγq,s

2∗
s − 2

Cq
N ,q,saq(1−γq,s )||u||qγq,s

Ds (RN )
,

(3.6)
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From (3.5) and (3.6), we can infer that

[
2 − qγq,s

2∗
s − qγq,s

S
2∗s
2

s

] 1
2∗s −2 ≤

[
μγq,s

2∗
s − qγq,s

2∗
s − 2

Cq
N ,q,saq(1−γq,s )

] 1
2−qγq,s

,

which implies that

μaq(1−γq,s ) ≥ 2∗
s − 2

γq,sCq
N ,q,s(2

∗
s − qγq,s)

[
2 − qγq,s

2∗
s − qγq,s

S
2∗s
2

s

] 2−qγq,s
2∗s −2

. (3.7)

Next, we show that the right hand of (3.7) is greater than or equal to C ′. To show

2∗
s − 2

γq,sCq
N ,q,s(2

∗
s − qγq,s)

[
2 − qγq,s

2∗
s − qγq,s

S
2∗s
2

s

] 2−qγq,s
2∗s −2

≥ q(2∗
s − 2)

2Cq
N ,q,s(2

∗
s − qγq,s)

(
(2 − qγq,s)2∗

s

2(2∗
s − qγq,s)

S
2∗s
2

s

) 2−qγq,s
2∗s −2

,

we only need to prove that

(qγq,s

2

)2∗
s −2

(
2∗

s

2

)2−qγq,s

≤ 1, for every 2 < q < p < 2∗
s .

Let qγq,s = x ∈ (0, 2), we need to show that
( x
2

)2∗
s −2

(
2∗

s
2

)2−x ≤ 1. For this, we

set f (x) = ( x
2

)2∗
s −2

(
2∗

s
2

)2−x
, it is easy to see that f (x) is strictly increasing on

(0, 2∗
s −2

ln 2∗
s −ln 2 ) and decreasing on (

2∗
s −2

ln 2∗
s −ln 2 ,+∞). Thus, when x ∈ (0, 2) f (x) ≤

f (2) = 1, which implies that

(qγq,s

2

)2∗
s −2

(
2∗

s

2

)2−qγq,s

≤ 1.

This contradicts the assumption μaq(1−γq,s ) < C ′. Thus, P0
a,μ = ∅.

Next, we show that Pa,μ is a smooth manifold of codimension 1 on Sa . Since

Pa,μ =
{

u ∈ Sa : ||u||2
Ds (RN )

= μγq,s
∫
RN |u|qdx + ∫

RN |u|2∗
s dx

}
, we know that

Pa,μ is defined by Pμ(u) = 0, G(u) = 0, where

Pμ(u) = s||u||2Ds(RN )
− μγq,ss

∫
RN

|u|qdx

−s
∫
RN

|u|2∗
s dx and G(u) =

∫
RN

|u|2dx = a2.
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Since Pμ(u) and G(u) are class of C1, we only need to check that d(Pμ(u), G(u)):
Hs(RN ) → R

2 is surjective. If this not true, d Pμ(u) has to be linearly dependent
from dG(u) i.e. there exist a ν ∈ R such that

2s
∫
RN

(−�)
s
2 u(−�)

s
2 ϕdx − μqγq,ss

∫
RN

|u|q−2uϕdx − s2∗
s

∫
RN

|u|2∗
s −2uϕdx

= ν

∫
RN

uϕdx

for every ϕ ∈ Hs(RN ), which implies that

2s(−�)2u = νu + μqγq,ssuq−1 + 2∗
s su2∗

s −1 in RN .

By the Pohozaev identity for above equation, we know that

2s2||u||2Ds(RN )
= μqγ 2

q,ss2
∫
RN

|u|qdx + 2∗
s s2

∫
RN

|u|2∗
s dx,

that is u ∈ P0
a,μ, a contradiction. Hence, Pa,μ is a natural constraint. ��

Lemma 3.3 For every u ∈ Sa, the function �
μ
u (t) has exactly two critical points

au < tu ∈ R and two zeros cu < du ∈ R, with au < cu < tu < du. Moreover,

(1) au
u ∈ P+
a,μ and tu
u ∈ P−

a,μ, and if t
u ∈ Pa,μ, then either t = au or t = tu .

(2) ||t
u||Ds(RN ) ≤ R0 for every t ≤ cu, and

Eμ(u)(au
u) = min{Eμ(t
u) : t ∈ R and ||t
u||Ds(RN ) < R0} < 0.

(3) We have

Eμ(u)(tu
u) = max{Eμ(t
u) : t ∈ R} > 0

and �
μ
u (t) is strictly decreasing and concave on (tu,+∞). In particular, if tu < 0,

then Pμ(u) < 0.
(4) The maps u ∈ Sa : au ∈ R and u ∈ Sa : tu ∈ R are of class C1.

Proof Let u ∈ Sa , since t
u ∈ Pa,μ if and only if (�
μ
u )′(t) = 0. Thus, we first show

that �μ
u (t) has at least two critical points. From (3.1), we have

�μ
u (t) = Eμ(t
u) ≥ h(||t
u||Ds(RN )) = h(est ||u||Ds(RN )).

Thus, the C2 function �
μ
u (t) is positive on

⎛
⎝ ln

(
R0||u||

Ds (RN )

)
s ,

ln

(
R1||u||

Ds (RN )

)
s

⎞
⎠ and

�
μ
u (−∞) = 0−, �

μ
u (+∞) = −∞, thus it is easy to see that �

μ
u (t) has a local

minimum point au at negative level in (0,
ln

(
R0||u||

Ds (RN )

)
s ) and has a global maximum
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point tu at positive level in

⎛
⎝ ln

(
R0||u||

Ds (RN )

)
s ,

ln

(
R1||u||

Ds (RN )

)
s

⎞
⎠ .Next,we show that�μ

u (t)

has no other critical points. Indeed, (�μ
u )′(t) = 0 implies that

�(t) = μγq,ss
∫
RN

|u|qdx where

�(t) = se(2−qγq,s )st‖u‖2Ds (RN )
− se(2∗

s −qγq,s )st
∫
RN

|u|2∗
s dx .

It is easy to see that �(t) has a unique maximum point, thus the above equation
has at most two solutions. From u ∈ Sa, t ∈ R is a critical point of �

μ
u (t) if and

only if t
u ∈ Pa,μ, we have au
u, tu
u ∈ Pa,μ and t
u ∈ Pa,μ if and only
if t = au or t = tu . Since au is a local minimum point of �

μ
u (t), we know that

(�
μ
au
u)′′(0) = (�

μ
u )′′(au) ≥ 0, since P0

a,μ = ∅, we know that (�
μ
u )′′(au) 	= 0, thus

(�
μ
au
u)′′(0) = (�

μ
u )′′(au) > 0, which implies that au
u ∈ P+

a,μ, similarly, we have
tu
u ∈ P−

a,μ. By the monotonicity and the behavior at infinity of �
μ
u , we know that

�
μ
u has exactly two zeros cu < du with au < cu < tu < du and �

μ
u has exactly two

inflection points, in particular, �μ
u is concave on [tu,+∞) and hence if tu < 0, then

Pμ(u) = (�
μ
u )′(0) < 0. Finally, we prove that u ∈ Sa : au ∈ R and u ∈ Sa : tu ∈ R

are of class C1. Indeed, we can apply the implicit function theorem on the C1 function
�(t, u) = (�

μ
u )′(t), then �(au, u) = (�

μ
u )′(au) = 0, ∂s�(au, u) = (�

μ
u )′′(au) < 0,

by the implicit function theorem, we know that u ∈ Sa : au ∈ R is class of C1,
similarly, we can prove that u ∈ Sa : tu ∈ R is class of C1. ��
For k > 0, set

Ak = {u ∈ Sa : ‖u‖2Ds (RN )
< k}, and m(a, μ) = inf

u∈AR0

Eμ(u).

From Lemma 3.3, we immediately have the following corollary:

Corollary 3.1 The set P+
a,μ is contained in

AR0 = {u ∈ Sa : ||u||Ds(RN ) < R0} and sup
P+

a,μ

Eμ ≤ 0 ≤ inf
P−

a,μ

Eμ.

Lemma 3.4 We have m(a, μ) ∈ (−∞, 0) that

m(a, μ) = inf
Pa,μ

Eμ = inf
P+

a,μ

Eμ and that m(a, μ) < inf
AR0\AR0−ρ

Eμ

for ρ > 0 small enough.

Proof For u ∈ AR0 , we have

Eμ(u) ≥ h(‖u‖Ds (RN )) ≥ min
t∈[0,R0]

h(t) > −∞.
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Therefore, m(a, μ) > −∞. Moreover, for any u ∈ Sa , we obtain ||t
u||Ds(RN ) < R0
and Eμ(t
u) < 0 for t � −1 and hence m(a, μ) < 0. Since P+

a,μ ⊂ AR0 , we know
that m(a, μ) ≤ infP+

a,μ
Eμ. On the other hand, if u ∈ AR0 , then au
u ∈ P+

a,μ ⊂ AR0

and

Eμ(u)(au
u) = min{Eμ(t
u) : t ∈ R and ||t
u||Ds(RN ) < R0} ≤ Eμ(u),

which implies that infP+
a,μ

Eμ ≤ m(a, μ). Since Eμ > 0 on P−
a,μ, we know that

infP+
a,μ

Eμ = infPa,μ
Eμ. Finally, by the continuity of h there exists ρ > 0 such that

h(t) ≥ m(a,μ)
2 if t ∈ [R0 − ρ, R0]. Therefore,

Eμ(u) ≥ h(‖u‖Ds (RN )) ≥ m(a, μ)

2
> m(a, μ)

for every u ∈ Sa with R0 − ρ ≤ ‖u‖Ds (RN ) ≤ R0. This completes the proof. ��

4 L2-critical perturbation

In this section, we consider the case N > 2s and 2 < q = p. Assume that

μa
4s
N < p

(
2C p

N ,p,s

)−1
. (4.1)

We recall the decomposition of

Pa,μ = P+
a,μ ∪ P0

a,μ ∪ P−
a,μ.

Lemma 4.1 P0
a,μ = ∅ and Pa,μ is a smooth manifold of codimension 1 in Sa.

Proof Assume by contradiction that if there exists a u ∈ P0
a,μ, then

||u||2Ds(RN )
− μγq,s

∫
RN

|u|qdx −
∫
RN

|u|2∗
s dx = 0, (4.2)

and

2||u||2Ds (RN )
= μ2γq,s

∫
RN

|u|qdx + 2∗
s

∫
RN

|u|2∗
s dx, (4.3)

thus, from (4.2) and (4.3), we have
∫
RN |u|2∗

s dx = 0, which is not possible since
u ∈ Sa . The rest of the proof is similar to that of Lemma 3.2, so we omit the details
here. ��
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Lemma 4.2 Under the condition of (4.1), for every u ∈ Sa, there is a unique tu ∈ R

such that tu
u ∈ Pa,μ, where tu is the unique critical point of the function of �
μ
u and

is a strict maximum point at positive level. Moreover,

(1) Pa,μ = P−
a,μ.

(2) �
μ
u (t) is strictly decreasing and concave on (tu,+∞) and tu < 0 implies that

Pμ(u) < 0.
(3) The map u ∈ Sa : tu ∈ R os of class C1.
(4) If Pμ(u) < 0, then tu < 0.

Proof Since

�μ
u (t) = Eμ(t
u) =

[
1

2
||u||2Ds(RN )

− μ

p

∫
RN

|u|pdx

]
e2st − e2

∗
s st

2∗
s

∫
RN

|u|2∗
s dx,

and t
u ∈ Pa,μ if and only if (�
μ
u )′(t) = 0, it is easy to see that if[

1
2 ||u||2

Ds (RN )
− μ

p

∫
RN |u|pdx

]
is positive, then �

μ
u (t) has a unique critical point

tu , which is is a strict maximum point at positive level. By the fractional Gagliardo–
Nirenberg–Sobolev inequality (2.4), we have

1

2
||u||2Ds (RN )

− μ

p

∫
RN

|u|pdx ≥
(
1

2
− μ

p
C p

N ,p,sa
4s
N

)
||u||2Ds(RN )

,

so under the condition of μa
4s
N < p(2C p

N ,p,s)
−1, we know that 1

2 ||u||2
Ds(RN )

−
μ
p

∫
RN |u|pdx > 0. Since, if u ∈ Pa,μ, then tu is a maximum point, we have that

�
μ
u (0) ≤ 0. Since P0

a,μ = ∅, we have �
μ
u (0) < 0. Thus, Pa,μ = P−

a,μ. To prove
that the map u ∈ Sa : tu ∈ R is of class C1, we can apply the implicit function
theorem as in Lemma 3.3. Finally, since (�

μ
u )′(t) < 0 if and only if t > tu , so

Pμ(u) = (�
μ
u )′(0) < 0 if and only if tu < 0. ��

Lemma 4.3

m(a, μ) = inf
Pa,μ

Eμ > 0.

Proof If u ∈ Pa,μ, then Pμ(u) = 0, and then by fractional Gagliardo–Nirenberg–
Sobolev inequality (2.4) and Sobolev inequality (1.5), we have

||u||2Ds(RN )
= μ

2

p

∫
RN

|u|pdx +
∫
RN

|u|2∗
s dx

≤ μ
2

p
C p

N ,p,sa
4s
N ||u||2Ds(RN )

+ S
− 2∗s

2
s ||u||2∗

s
Ds(RN )

From (4.1) and above inequality, we have

||u||2∗
s

Ds(RN )
≥ S

2∗s
2

s

(
1 − μ

2

p
C p

N ,p,sa
4s
N

)
||u||2Ds(RN )

⇒ inf
Pa,μ

||u||Ds (RN ) > 0.(4.4)
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Thus, from Pμ(u) = 0 and above inequality, we have

Eμ(u) = s

N

(
||u||2Ds (RN )

− 2μ

p

∫
RN

|u|pdx

)

≥ s

N

(
1 − μ

2

p
C p

N ,p,sa
4s
N

)
||u||2Ds(RN )

> 0.

Therefore,

m(a, μ) = inf
Pa,μ

Eμ > 0.

As required. ��
Lemma 4.4 There exists k > 0 sufficiently small such that

0 < sup
Ak

Eμ < m(a, μ) and u ∈ Ak ⇒ Eμ(u), Pμ(u) > 0.

where Ak =
{

u ∈ Sa : ||u||2
Ds(RN )

< k
}

.

Proof By fractional Gagliardo–Nirenberg–Sobolev inequality (2.4) and Sobolev
inequality (1.5), we have

Eμ(u) ≥
(
1

2
− μ

p
C p

N ,p,sa
4s
N

)
||u||2Ds(RN )

− 1

2∗
s

S
− 2∗s

2
s ||u||2∗

s
Ds(RN )

> 0,

and

Pμ(u) = s||u||2Ds(RN )
− sμ

2

p

∫
RN

|u|pdx − s
∫
RN

|u|2∗
s dx

≥ s

(
1 − 2μ

p
C p

N ,p,sa
4s
N

)
||u||2Ds(RN )

− s

2∗
s

S
− 2∗s

2
s ||u||2∗

s
Ds(RN )

> 0,

provided that u ∈ Ak for k small enough. By Lemma 4.4, we know that m(a, μ) > 0,
thus if necessary replacing k with smaller quantity, we also have

Eμ(u) ≤ 1

2
||u||2Ds(RN )

< m(a, μ).

The proof is complete. ��
In order to applyProposition 2.2 and recover compactness,weneed an estimate from

above on mr (a, μ) = infPa,μ

⋂
Sr

a
Eμ, where Sr

a is the subset of the radial functions
in Sa .

Lemma 4.5 Under condition (4.1), we have mr (a, μ) < s
N S

N
2s
s .
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Proof From [14], we know that Ss is attained in R
N by

U0(x) = C(N , s)

(
1

1 + |x |2
) N−2s

2

with C(N , s) chosen so that

‖U0(x)‖2Ds (RN )
=
∫
RN

|U0(x)|2∗
s dx = S

N
2s
s .

Take η(x) ∈ C∞
0 (RN , [0, 1]) be a cut-off function such that 0 ≤ η ≤ 1, η =

1 on B(0, δ) and η = 1 on R
N \ B(0, 2δ). Let

uε = η(x)Uε(x), vε = a
uε

‖uε‖L2(RN )

and

Uε(x) = ε− N−2s
2 U0(

x

ε
).

From Proposition 21 and Proposition 22 in [30], it is easy to deduce that the following
estimates hold true

‖vε‖2Ds (RN )
≤ ‖U0‖2Ds (RN )

+ o(εN−2s), (4.5)

∫
RN

|vε |2dx =
⎧⎨
⎩

Cε2s + o(εN−2s), i f N > 4s,
Cε2s log( 1

ε
) + o(ε2s), i f N = 4s,

CεN−2s + o(ε2s), i f N < 4s,
(4.6)

It is easy to see that

∫
RN

|vε |2
∗
s dx =

∫
RN

|U0|2
∗
s dx + o(εN ). (4.7)

By the similar arguments as Proposition 22 in [30], we can deduce that

∫
RN

|vε |pdx =

⎧⎪⎪⎨
⎪⎪⎩

CεN− N−2s
2 p + o(ε

N−2s
2 p), i f N >

p
p−12s,

Cε
N
2 log( 1

ε
) + o(ε

N
2 ), i f N = p

p−12s,

Cε
N−2s
2 p + o(εN− N−2s

2 p), i f N <
p

p−12s.

(4.8)

It is easy to see that uε ∈ C∞
0 (RN , [0, 1]) and vε ∈ Sr

a . By Lemma 4.2, we know that

mr (a, μ) = inf
Pa,μ

⋂
Sr

a

Eμ ≤ Eμ(tvε 
vε) = max
t∈R Eμ(t
vε).
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Next, we give a upper estimate of

Eμ(tvε 
vε) = max
t∈R Eμ(t
vε).

Step 1 Consider the case μ = 0 and estimate

max
t∈R �0

vε
(t) = E0(t
vε).

Since

�0
vε

(t) = e2st

2
||vε ||2Ds (RN )

− e2
∗
s st

2∗
s

∫
RN

|vε |2∗
s dx .

It is easy to see that for every vε ∈ Sa the function �0
vε

(t) has a unique critical point
tvε,0, which is a strict maximum point and is given by

estvε ,0 =
( ||vε ||2Ds (RN )∫

RN |vε |2∗
s dx

) 1
2∗s −2

. (4.9)

Thus, from the estimates (4.5)–(4.7), we have

max
t∈R E0(t
vε) = E0(tvε ,0
vε) = �0

vε
(tvε ,0)

=
⎡
⎢⎣1

2

( ||vε ||2Ds (RN )∫
RN |vε |2∗

s dx

) 2
2∗s −2

||vε ||2Ds (RN )
− 1

2∗
s

( ||vε ||2Ds (RN )∫
RN |vε |2∗

s dx

) 2∗s
2∗s −2 ∫

RN
|vε |2∗

s dx

⎤
⎥⎦

= s

N

⎛
⎝ ||vε ||2Ds (RN )(∫

RN |vε |2∗
s dx

) 2
2∗s

⎞
⎠

2∗s
2∗s −2

= s

N

⎡
⎢⎢⎢⎣ S

N
2s

s + O(εN−2s)(
S

N
2s

s + O(εN )

) 2
2∗s

⎤
⎥⎥⎥⎦

N
2s

= s

N
S

N
2s

s + O(εN−2s)

Step 2 Estimate on tvε,μ. Since

�μ
vε

(t) = Eμ(t
vε) = e2st

2
||vε ||2Ds (RN )

− μ
e2st

p

∫
RN

|vε |pdx − e2
∗
s st

2∗
s

∫
RN

|vε |2∗
s dx .

Let tvε,μ be the unique maximum point of�μ
vε (t), then by (�

μ
vε )

′(t) = Pμ(tvε,μ
vε) =
0 and fractional Gagliardo–Nirenberg–Sobolev inequality (2.4), we have

e(2∗
s −2)st =

||vε ||2Ds (RN )∫
RN |vε |2∗

s dx
− 2μ

p

∫
RN |vε |pdx∫
RN |vε |2∗

s dx
≥
(
1 − 2μ

p
C p

N ,p,sa
4s
N

) ||vε ||2Ds (RN )∫
RN |vε |2∗

s dx
.
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Step 3 Estimate on maxt∈R �
μ
vε (t). Since

max
t∈R �μ

vε
(t) = �μ

vε
(tvε,μ) = �0

vε
(tvε,μ) − μ

e2stvε ,μ

p

∫
RN

|vε |pdx

≤ sup
R

�0
vε

− μ

p

(
1 − 2μ

p
C p

N ,p,sa
4s
N

) 2
2∗s −2

( ||vε ||2Ds (RN )∫
RN |vε |2∗

s dx

) 2
2∗s −2 ∫

RN
|vε |pdx

≤ s

N
S

N
2s
s + O(εN−2s)

− μ

p

(
1 − 2μ

p
C p

N ,p,sa
4s
N

) 2
2∗s −2 a

4s
N

‖uε‖
4s
N
L2(RN )

||uε ||
4

2∗s −2

Ds (RN )

∫
RN |uε |pdx(∫

RN |uε |2∗
s dx

) 2
2∗s −2

≤ s

N
S

N
2s
s + O(εN−2s) − CN ,a,μ

∫
RN |uε |pdx

‖uε‖
4s
N
L2(RN )

From (4.6) and (4.8), we have the following estimate:

∫
RN |uε |pdx

‖uε‖
4s
N
L2(RN )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CεN− N−2s
2 p− 4s2

N = C, if N > 4s,

Cε4s−s p−s | ln ε|− 1
2 = C | ln ε|− 1

2 , if N = 4s,

CεN− N−2s
2 p− N−2s

2
4s
N = Cε

2s(4s−N )
N , if

p

p − 1
2s < N < 4s,

Cε
N
2 − N−2s

2
4s
N | ln ε|, if N = p

p − 1
2s,

Cε
N−2s
2 p− N−2s

2
4s
N = CεN−2s, if 2s < N <

p

p − 1
2s.

Thus,

max
t∈R �μ

vε
(t) ≤ s

N
S

N
2s
s .

The proof is thus finished. ��

5 L2-supercritical perturbation

In this section, we consider N > 2s and p < q < 2∗
s . We recall the decomposition of

Pa,μ = P+
a,μ ∪ P0

a,μ ∪ P−
a,μ.

Lemma 5.1 P0
a,μ = ∅ and Pa,μ is a smooth manifold of codimension 1 in Sa.
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Proof Assume by contradiction that there exists a u ∈ P0
a,μ, then

||u||2Ds(RN )
− μγq,s

∫
RN

|u|qdx −
∫
RN

|u|2∗
s dx = 0, (5.1)

and

2||u||2Ds (RN )
= μqγ 2

q,s

∫
RN

|u|qdx + 2∗
s

∫
RN

|u|2∗
s dx . (5.2)

Thus, from (5.1) and (5.2), we have

(2 − qγq,s)μγq,s

∫
RN

|u|qdx = (2∗
s − 2)

∫
RN

|u|2∗
s dx = 0.

Since 2 − qγq,s < 0, 2∗
s − 2 > 0, we have u = 0, which is not possible, thanks to

u ∈ Sa . The rest of the proof is similar to the one of Lemma 3.2, so we omit the details
here. ��
Lemma 5.2 For every u ∈ Sa, there is a unique tu ∈ R such that tu
u ∈ Pa,μ, where
tu is the unique critical point of the function of �

μ
u and is a strict maximum point at

positive level, moreover,

(1) Pa,μ = P−
a,μ.

(2) �
μ
u (t) is strictly decreasing and concave on (tu,+∞) and tu < 0 implies that

Pμ(u) < 0.
(3) The map u ∈ Sa : tu ∈ R os of class C1.
(4) If Pμ(u) < 0, then tu < 0.

Proof Since

�μ
u (t) = Eμ(t
u) = e2st

2
||u||2Ds(RN )

− μ
eqγq,s st

q

∫
RN

|u|qdx − e2
∗
s st

2∗
s

∫
RN

|u|2∗
s dx,

and

(�μ
u )′(t) = se2st ||u||2Ds(RN )

− μγq,sseqγq,s st
∫
RN

|u|qdx − se2
∗
s st
∫
RN

|u|2∗
s dx,

it follows that (�μ
u )′(t) = 0 if and only if

||u||2Ds(RN )
= f (t) := μγq,se(qγq,s−2)st

∫
RN

|u|qdx + e(2∗
s −2)st

∫
RN

|u|2∗
s dx .

It is easy to see that f (t) is positive , continuous, monotone increasing and f (t) → 0+
as t → −∞ and f (t) → +∞ as t → +∞. Thus, there exists a unique point tu,s such
that f (t) = ||u||2

Ds(RN )
. Since �

μ
u → 0+ as s → −∞ and �

μ
u → −∞ as s → +∞,

we know that there is a unique tu ∈ R such that tu
u ∈ Pa,μ, where tu is the unique
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critical point of the function of �
μ
u and is a strict maximum point at positive level.

Since tu is a strict maximum point, we know that (�μ
u )′′(tu) ≤ 0. Because P0

a,μ = ∅,

we have (�
μ
u )′′(tu) 	= 0, which implies that tu
u ∈ P−

a,μ, since �
μ
u (t) has exactly

one maximum point, so Pa,μ = P−
a,μ. To prove that the map u ∈ Sa : tu ∈ R os of

class C1, we can apply the implicit function theorem as Lemma 3.3. Finally, since
(�

μ
u )′(t) < 0 if and only if t > tu , so Pμ(u) = (�

μ
u )′(0) < 0 if and only if tu < 0. ��

Lemma 5.3 There holds

m(a, μ) = inf
Pa,μ

Eμ > 0.

Proof If u ∈ Pa,μ, then Pμ(u) = 0, then by fractional Gagliardo–Nirenberg–Sobolev
inequality (2.4) and Sobolev inequality (1.5), we have

||u||2Ds(RN )
= μγq,s

∫
RN

|u|qdx +
∫
RN

|u|2∗
s dx

≤ μγq,sCq
N ,q,sa(1−γq,s )q ||u||qγq,s

Ds(RN )
+ S

− 2∗s
2

s ||u||2∗
s

Ds(RN )

Thus, from above inequality and ||u||2
Ds(RN )

	= 0 (since u ∈ Sa), we have

μγq,sCq
N ,q,sa(1−γq,s )q ||u||qγq,s−2

Ds(RN )
+ S

− 2∗s
2

s ||u||2∗
s −2

Ds(RN )
≥ 1, ∀ u ∈ Pa,μ,

which implies that infu∈Pa,μ
||u||Ds(RN ) > 0. Since

μγq,s

∫
RN

|u|qdx +
∫
RN

|u|2∗
s dx = ||u||2Ds(RN )

,

we have

inf
u∈Pa,μ

[
μγq,s

∫
RN

|u|qdx +
∫
RN

|u|2∗
s dx

]
> 0.

Thus, from Pμ(u) = 0 and above inequality, we have

inf
u∈Pa,μ

Eμ(u) = inf
u∈Pa,μ

[
1

2
||u||2Ds(RN )

− μ

q

∫
RN

|u|qdx − 1

2∗
s

∫
RN

|u|2∗
s dx

]

= inf
u∈Pa,μ

[
μ

q

(qγq,s

2
− 1

) ∫
RN

|u|qdx + s

N

∫
RN

|u|2∗
s dx

]
> 0.

Therefore,

m(a, μ) = inf
Pa,μ

Eμ > 0.

This finishes the proof. ��
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Lemma 5.4 There exists k > 0 sufficiently small such that

0 < sup
Ak

Eμ < m(a, μ) and u ∈ Ak ⇒ Eμ(u), Pμ(u) > 0,

where Ak =
{

u ∈ Sa : ||u||2
Ds(RN )

< k
}

.

Proof By fractional Gagliardo–Nirenberg–Sobolev inequality (2.4) and Sobolev
inequality (1.5), we have

Eμ(u) ≥ 1

2
||u||2Ds(RN )

− μ

q
Cq

N ,q,saq(1−γq,s )||u||qγq,s

Ds(RN )
− 1

2∗
s

S
− 2∗s

2
s ||u||2∗

s
Ds(RN )

> 0,

and

Pμ(u) = s||u||2Ds(RN )
− sμγq,s

∫
RN

|u|qdx − s
∫
RN

|u|2∗
s dx

≥ s||u||2Ds (RN )
− sμγq,sCq

N ,q,saq(1−γq,s )||u||qγq,s

Ds (RN )
− sS

− 2∗s
2

s ||u||2∗
s

Ds(RN )
> 0.

If u ∈ Ak for k small enough. By Lemma 5.3, we know that m(a, μ) > 0, thus if
necessary replacing k with smaller quantity, we also have

Eμ(u) ≤ 1

2
||u||2Ds(RN )

< m(a, μ).

This ends the proof. ��
In order to applyProposition 2.2 and recover compactness,weneed an estimate from

above on mr (a, μ) = infPa,μ

⋂
Sr

a
Eμ, where Sr

a is the subset of the radial functions
in Sa .

Lemma 5.5 If one of following conditions holds:

(1) N > 4s and μaq(1−γq,s ) <
S

N
4s q(1−γq,s )

s
γq,s

;

(2) N = q
q−12s and μaq(1−γq,s ) <

S
N
4s q(1−γq,s )

s
γq,s

;

(3) N = 4s or q
q−12s < N < 4s or 2s < N <

q
q−12s,

then we have mr (a, μ) < s
N S

N
2s
s .

Proof Let us recall the definition of uε and vε as Lemma 4.5. It is easy to see that
uε ∈ C∞

0 (RN , [0, 1]) and vε ∈ Sr
a . By Lemma 4.2, we know that

mr (a, μ) = inf
Pa,μ

⋂
Sr

a

Eμ ≤ Eμ(tvε,μ
vε) = max
t∈R Eμ(t
vε).
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By the same argument as step 1 in Lemma 4.5, we have

�0
vε

(tvε,0) = s

N
S

N
2s
s + O(εN−2s).

Step 1 Estimate on tvε,μ. Since

�μ
vε

(t) = Eμ(t
vε) = e2st

2
||vε ||2Ds (RN )

− μ
eqγq,s st

q

∫
RN

|vε |qdx − e2
∗
s st

2∗
s

∫
RN

|vε |2∗
s dx

and tvε,μ be the uniquemaximum point of�μ
vε (t), then by (�

μ
vε )

′(t) = Pμ(tvε,μ
vε) =
0, we have

e2
∗
s stvε ,μ

∫
RN

|vε |2∗
s dx = e2stvε ,μ ||vε ||2Ds (RN )

−μγq,seqγq,s stvε ,μ

∫
RN

|vε |qdx ≤ e2stvε ,μ ||vε ||2Ds (RN )
,

which means that

estvε ,μ ≤
( ||vε ||2Ds (RN )∫

RN |vε |2∗
s dx

) 1
2∗s −2

. (5.3)

By (5.3), qγq,s > 2 and vε = auε‖uε‖L2(RN )
, we have

e(2∗
s −2)stvε ,μ

=
||vε ||2Ds (RN )∫
RN |vε |2∗

s dx
− μγq,se(qγq,s−2)stvε ,μ

∫
RN |vε |qdx∫
RN |vε |2∗

s dx

≥
||vε ||2Ds (RN )∫
RN |vε |2∗

s dx
− μγq,s

∫
RN |vε |qdx∫
RN |vε |2∗

s dx

( ||vε ||2Ds(RN )∫
RN |vε |2∗

s dx

) qγq,s−2
2∗s −2

≥
‖uε‖2

∗
s −2

L2(RN )

a2∗
s −2

||uε ||2Ds (RN )∫
RN |uε |2∗

s dx

− μγq,s

‖uε‖2
∗
s −q

L2(RN )

a2∗
s −q

∫
RN |uε |qdx∫
RN |uε |2∗

s dx

⎛
⎝‖uε‖2

∗
s −2

L2(RN )

a2∗
s −2

||uε ||2Ds (RN )∫
RN |uε |2∗

s dx

⎞
⎠

qγq,s−2
2∗s −2

≥
‖uε‖2

∗
s −2

L2(RN )

a2∗
s −2

(
||uε ||2Ds (RN )

) qγq,s−2
2∗s −2∫

RN |uε |2∗
s dx
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⎡
⎢⎣(||uε ||2Ds (RN )

) 2∗s −qγq,s
2∗s −2 − μγq,saq(1−γq,s )

∫
RN |uε |qdx(∫

RN |uε |2∗
s dx

) qγq,s−2
2∗s −2 ‖uε‖q(1−γq,s )

L2(RN )

⎤
⎥⎦ . (5.4)

By the estimates in (4.5), (4.6), (4.7) and (4.8), we can infer that there exist
C1, C2, C3 > 0 (depending on N , q) such that

(
||uε ||2Ds (RN )

) 2∗s −qγq,s
2∗s −2 ≥ C1 and C2 ≤

(∫
RN

|uε |2∗
s dx

) qγq,s−2
2∗s −2 ≤ 1

C2
(5.5)

and

∫
RN |uε |qdx

‖uε‖q(1−qγq,s )

L2(RN )

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CεN− N−2s
2 q−q(1−γq,s ), if N > 4s,

CεN− N−2s
2 q−q(1−γq,s )| ln ε| q(γq,s−1)

2 , if N = 4s,

CεN− N−2s
2 q− N−2s

2 q(1−γq,s ), if
q

q − 1
2s < N < 4s,

Cε
N
2 − N−2s

2 q(1−γq,s )| ln ε|, if N = q

q − 1
2s,

Cε
N−2s
2 q− N−2s

2 q(1−γq,s ), if 2s < N <
q

q − 1
2s.

(5.6)

Next, we claim that

e(2∗
s −2)stvε ,μ ≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2 ,

under suitable conditions.
Case 1 N > 4s. Since p < q < 2∗

s , we can deduce that

N − N − 2s

2
q − q(1 − γq,s) < 0. (5.7)

Indeed, since p < q < 2∗
s , we have 4s/N < q − 2 < 4s/(N − 2s), so

N − N − 2s

2
q − q(1 − γq,s)

= N − N − 2s

2
(q − 2) − (N − 2s) − (q − 2) − 2 + N (q − 2)

2s
:= f (q − 2),

it is easy to deduce that f (q −2) is strictly increasing about q −2, since f ( 4s
N−2s ) = 0,

thus we obtain

N − N − 2s

2
q − q(1 − γq,s) < 0.
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So we can not get

e(2∗
s −2)stvε ,μ ≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2

[
C1 − μγq,saq(1−γq,s )

C3

C2
oε(1)

]
≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2

for a positive constantC = C(N , q, μ, a) > 0 for every ε ∈ (0, ε0)with ε0 sufficiently
small. Thus, we have to give a more precise estimate, let us recall the inequality about
e(2∗

s −2)stvε ,μ in (5.4), by well-known interpolation inequality, we have

∫
RN |uε |q dx(∫

RN |uε |2∗
s dx

) qγq,s −2
2∗s −2 ‖uε‖q(1−γq,s )

L2(RN )

≤
(∫

RN |uε |2∗
s dx

) q−2
2∗s −2 (∫

RN |uε |2dx
) 2∗s −q
2∗s −2

(∫
RN |uε |2∗

s dx
) qγq,s −2

2∗s −2 ‖uε‖q(1−γq,s )

L2(RN )

≤
(∫

RN
|uε |2∗

s dx

) q(1−γq,s )

2∗s −2 =
((∫

RN
|uε |2∗

s dx

) 2
2∗s
) 2∗s −qγq,s

2∗s −2

.

(5.8)

Therefore, by (5.4) and (5.8), we have

e(2∗
s −2)stvε ,μ =

||vε ||2Ds (RN )∫
RN |vε |2∗

s dx
− μγq,se(qγq,s−2)stvε ,μ

∫
RN |vε |qdx∫
RN |vε |2∗

s dx

≥
‖uε‖2

∗
s −2

L2(RN )

a2∗
s −2

(
||uε ||2Ds (RN )

) qγq,s−2
2∗s −2∫

RN |uε |2∗
s dx⎡

⎢⎣(||uε ||2Ds (RN )

) 2∗s −qγq,s
2∗s −2 − μγq,saq(1−γq,s )

((∫
RN

|uε |2∗
s dx

) 2
2∗s
) 2∗s −qγq,s

2∗s −2

⎤
⎥⎦ .

(5.9)

Thus, if the right hand of above is positive provided that

μγq,saq(1−γq,s ) <

⎛
⎝ ||uε ||2Ds (RN )(∫

RN |uε |2∗
s dx

) 2
2∗s

⎞
⎠

2∗s −qγq,s
2∗s −2

= S
N
4s q(1−γq,s )
s + O(εN−2s)

Thus, if N > 4s and μaq(1−γq,s ) <
S

N
4s q(1−γq,s )

s
γq,s

, we have

e(2∗
s −2)stvε ,μ ≥

C‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2 .
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Case 2 N = 4s. Then we have 3 < q < 4 and | ln ε| � 1
ε
as ε → 0. Thus

εN− N−2s
2 q−q(1−γq,s )| ln ε| q(γq,s−1)

2 = ε(4−q)(s−1)| ln ε|q−4 → 0 as ε → 0.

Furthermore,∫
RN |uε |qdx

‖uε‖q(1−qγq,s )

L2(RN )

≤ CεN− N−2s
2 q−q(1−γq,s )| ln ε| q(γq,s−1)

2 = oε(1).

So, we have

e(2∗
s −2)stvε ,μ ≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2

[
C1 − μγq,saq(1−γq,s )

C3

C2
oε(1)

]
≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2 .

Case 3 q
q−12s < N < 4s. By the same arguments as (5.7), we have

N − N − 2s

2
q − N − 2s

2
q(1 − γq,s) > 0.

Thus,

εN− N−2s
2 q− N−2s

2 q(1−γq,s ) → 0 as ε → 0.

Therefore, ∫
RN |uε |qdx

‖uε‖q(1−qγq,s )

L2(RN )

≤ CεN− N−2s
2 q− N−2s

2 q(1−γq,s ) = oε(1).

So, we have

e(2∗
s −2)stvε ,μ ≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2

[
C1 − μγq,saq(1−γq,s )

C3

C2
oε(1)

]
≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2 .

Case 4 N = q
q−12s. By the similar arguments as Case 1, we get

Cε
N
2 − N−2s

2 q(1−γq,s )| ln ε| → +∞ as ε → 0.

Thus, by the same argument as Case 1, we know that if N = q
q−12s andμaq(1−γq,s ) <

S
N
4s q(1−γq,s )

s
γq,s

, then we have

e(2∗
s −2)stvε ,μ ≥

C‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2 .
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Case 5 2s < N <
q

q−12s. It is easy to see that

∫
RN |uε |qdx

‖uε‖q(1−qγq,s )

L2(RN )

≤ Cε
N−2s
2 q− N−2s

2 q(1−γq,s ) = oε(1).

Then we have

e(2∗
s −2)stvε ,μ ≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2

[
C1 − μγq,saq(1−γq,s )

C3

C2
oε(1)

]
≥ C

‖uε‖2
∗
s −2

L2(RN )

a2∗
s −2 .

Step 2 Estimate on maxt∈R �
μ
vε (t).

max
t∈R �μ

vε
(t) = �μ

vε
(tvε,μ) = �0

vε
(tvε,μ) − μ

eqγq,s stvε ,μ

q

∫
RN

|vε |qdx

≤ sup
R

�0
vε

− μC

q

‖uε‖qγq,s

L2(RN )

aqγq,s

aq

‖uε‖q
L2(RN )

∫
RN

|uε |qdx

≤ s

N
S

N
2s
s + O(εN−2s) − C

μ

q
γq,saq(1−γq,s )

∫
RN |uε |qdx

‖uε‖q(1−qγq,s )

L2(RN )

.

By (5.6), we know that

max
t∈R �μ

vε
(t) ≤ s

N
S

N
2s
s ,

for ε small enough. This completes the proof. ��

6 Proof of Theorem 1.1

Let {vn} be a minimizing sequence for inf AR0
Eμ(u). By Lemma 3.3, for every n we

can take tvn 
vn ∈ P+
a,μ such that ||tvn 
vn||Ds (RN ) ≤ R0 and

Eμ(u)(tvn 
vn) = min{Eμ(t
vn) : t ∈ R and ||t
vn||Ds (RN ) < R0} ≤ Eμ(vn).

Thus, we obtain a new minimizing sequence {wn = tvn 
vn} with wn ∈ Sr
a ∩ P+

a,μ

radially decreasing for every n. By Lemma 3.4, we have ||wn||Ds (RN ) < R0 − ρ for
every n and hence by Ekeland’s variational principle in a standard way, we know the
existence of a new minimizing sequence for {un} ⊂ AR0 for m(a, μ) with ‖un −
wn‖ → 0 as n → +∞, which is also a Palais–Smale sequence for Eμ on Sa . By the
boundedness of {wn}, ‖un − wn‖ → 0, Brézis–Lieb lemma and Sobolev embedding
theorem, we have

‖un‖2Ds (RN )
= ‖un − wn‖2Ds (RN )

+ ‖wn‖2Ds (RN )
) + on(1) = ‖wn‖2Ds (RN )

) + on(1),
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∫
RN

|un|pdx =
∫
RN

|un − wn|pdx +
∫
RN

|wn|p + on(1)

=
∫
RN

|wn|p + on(1), for p ∈ [2, 2∗
s ].

Thus,

Pμ(un) = Pμ(un) + on(1) → as n → +∞.

Therefore, one of the alternatives in Proposition 2.2 holds. We prove that the second
alternative in Proposition 2.2 occurs. Assume by contradiction that there exists a
sequence un⇀u weakly in Hs(RN ) but not strongly, where u 	≡ 0 is a solution of
(1.1) for some λ < 0, and

Eμ(u) ≤ m(a, μ) − s

N
S

N
2s
s .

Since u is a solution of(1.1), we have Pμ(u) = 0, which implies that

||u||2Ds(RN )
= μγq,s

∫
RN

|u|qdx +
∫
RN

|u|2∗
s dx .

Therefore

m(a, μ) ≥ Eμ(u) + s

N
S

N
2s
s = s

N
S

N
2s
s + s

N
||u||2Ds(RN )

− μ

q

(
1 − qγq,s

2∗
s

)∫
RN

|u|qdx

≥ s

N
S

N
2s
s + s

N
||u||2Ds (RN )

− μ

q

(
1 − qγq,s

2∗
s

)
Cq

N ,q,saq(1−γq,s )||u||qγq,s

Ds(RN )
.

Next, we show that the right hand side of above inequality is positive under suitable
conditions, then we can get a contradiction with m(a, μ) < 0. Let

ϑ(t) = s

N
t2 − μ

q

(
1 − qγq,s

2∗
s

)
Cq

N ,q,saq(1−γq,s )tqγq,s .

Then it is easy to see that the function ϑ(t) has a unique minimum point t and

ϑ(t) = −2 − qγq,s

q

[
Nγq,s

s

] qγq,s
2−qγq,s

[
2


s − qγq,s

22

s

Cq
N ,q,s

] 2
2−qγq,s [μaq(1−γq,s )] 2

2−qγq,s < 0.

If

ϑ(t) > − s

N
S

N
2s
s ,
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which yields that

μaq(1−γq,s ) <
22


s

(2

s − qγq,s)C

q
N ,q,s

⎛
⎝ Nqγ 2

q,s S
N
2s
s

(2 − qγq,s)s

⎞
⎠

2−qγq,s
2

,

then we have

m(a, μ) ≥ s

N
S

N
2s
s + ϑ(||u||Ds(RN )) ≥ s

N
S

N
2s
s + ϑ(t) > 0,

which contradicts the fact that m(a, μ) < 0. Thus un → u strongly in Hs(RN ),

Eμ(u) = m(a, μ) and u solves (1.1)–(1.2) for some λ < 0. It remains to show that
any ground state is a local minimizer for Eμ on AR0 . Since Eμ(u) = m(a, μ), then
u ∈ Pa,μ and Eμ(u) < 0, so by Lemma 3.3 we have that u ∈ P+

a,μ ⊂ AR0 and

Eμ(u) = m(a, μ) = inf
AR0

Eμ(u) and ||u||Ds(RN ) < R0.

Therefore, the proof of Theorem 1.1 is complete.

7 Proof of Theorems 1.2–1.3

We first list some well-known results, which will be used to prove Theorems 1.2–1.3.
For this purpose, we give the following definition.

Definition 7.1 (see [22, Definition 3.1]) Let B be a closed subset of X. We shall say
that a class F of compact subsets of X is a homotopy-stable family with boundary B
provided that

(a) every set in F contains B.
(b) for any set A in F and any η ∈ ([0, 1] × X; X) satisfying η(t, x) = x for all

(t, x) ∈ (0 × X) ∪ ([0, 1] × B), we have η(1 × A) ∈ F .

Theorem 7.1 (see [22, Theorem 3.2]) Let ϕ be a C1 function on a complete connected
C1-Finsler manifold X (without boundary) and consider a homotopy-stable family F
of compact subsets of X with a closed boundary B. Set c = c(ϕ,F) = inf

A∈F
max
x∈A

ϕ(x)

and suppose that

supϕ(B) < c.

Then, for any sequence of sets (An)n in F such that lim
n

sup
An

ϕ = c, there exists a

sequence (xn)n in X such that
(i) lim

n
ϕ(xn) = c (ii) lim

n
‖dϕ(xn)‖ = 0 (iii) lim

n
dist(xn, An) = 0.

Moreover, if dϕ is uniformly continuous, then xn can be chosen to be in An for each
n.
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Now we are in a position to prove Theorems 1.2–1.3.
Case 1 L2-critical perturbation, i.e., q = p. Let k > 0 be defined by Lemma

4.4, we follow the ideas introduced in [26] and consider the following functional
Eμ(s, μ) : R × Hs(RN ) → R:

Ẽμ(t, μ) = Eμ(t
u) =
[
1

2
||u||2Ds(RN )

− μ

p

∫
RN

|u|pdx

]
e2st − e2

∗
s st

2∗
s

∫
RN

|u|2∗
s dx .

(7.1)

It is easy to see that Eμ(t, μ) is of class of C1, since Eμ(t, μ) is invariant under
rotations applied to u, a Palais–Smale sequence for Eμ(t, μ)|R×Sr

a
is a Palais–Smale

sequence for Eμ(t, μ)|R×Sa . Let Ec be the closed sublevel set {u ∈ Sa : Eμ ≤ c}, we
introduce the minimax class

� := {γ = (α, β) ∈ C([0, 1],R × Sr
a) : γ (0) ∈ (0, Ak), γ (1) ∈ (0, E0)} (7.2)

with associated minimax level

σ(a, μ) := inf
γ∈�

max
(t,u)∈γ ([0,1]) Ẽμ(t, μ).

Since ||t
u||2
Ds(RN )

→ 0+ as t → −∞ and Eμ(t
u) → −∞ as t → +∞. Let
u ∈ Sr

a . There exist t0 � −1 and t1 � 1 such that

γu : τ ∈ [0, 1] → (0, ((1 − τ)t0 + τ t1)
u) ∈ R × Sr
a (7.3)

is a path in �. Then σ(a, μ) is a real number. For any γ = (α, β) ∈ �, let us consider
the function

Pγ : τ ∈ [0, 1] → P(α(τ)
β(τ)) ∈ R.

We have Pγ (0) = P(β(0)) > 0, by Lemmas 4.3 and 4.4. Since �β(1)(t) > 0 for
every t ∈ (−∞, tβ(1)) and �β(1)(0) = Eμ(β(1)) ≤ 0, we have that tβ(1) < 0. Thus,
by Lemma 4.2, we have Pγ (1) = P(β(1)) < 0. Moreover, the map τ : α(τ)
β(τ)

is continuous from [0, 1] to Hs(RN ), hence we deduce that there exists τγ ∈ (0, 1)
such that Pγ (τγ ) = 0, namely α(τγ )
β(τγ ) ∈ Pa,μ, this implies that

max
γ ([0,1]) Ẽμ ≥ Ẽμ(γ (τγ )) = Eμ(α(τγ )
β(τγ )) ≥ inf

Pa,μ∩Sr
a

Eμ = mr (a, μ).

Consequently, σ(a, μ) ≥ mr (a, μ). On the other hand, if u ∈ Pa,μ ∩ Sr
a , then γu

defined in (7.3) ia s path in � with

Eμ(u) = max
γu([0,1]) Ẽμ ≥ σ(a, μ),
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which implies that

mr (a, μ) ≥ σ(a, μ).

Combining this with Lemmas 4.3–4.4, we have that

σ(a, μ) = mr (a, μ) > sup
(Ak∪E0)∩Sr

a

Eμ = sup
((0,Ak )∪(0,E0))∩(R×Sr

a)

Ẽμ.

By Theorem 7.1, we know that {γ ([0, 1]) : γ ∈ �} is a homotopy stable family of
compact subsets of R× Sr

a with closed boundary (0, Ak)∪ (0, E0) and the superlevel
set {Ẽ ≥ σ(a, μ)} is a dual set for �. By Theorem 7.1 we can taking any minimizing
sequence {γn = (αn, βn)} ⊂ �n for σ(a, μ) with the property that αn = 0 and
βn(τ ) ≥ 0 a.e in R

N , there exists a Palais–Smale sequence {(tn, wn)} ⊂ R × Sr
a for

Ẽ |R×Sr
a
at level σ(a, μ), that is

∂t Ẽμ(tn, wn) → 0 and ‖∂u Ẽμ(tn, wn)‖ → 0 as n → +∞. (7.4)

with the additional property that

|tn| + distHs (wn, βn([0, 1])) → 0 as n → +∞. (7.5)

By the definition of Ẽμ(tn, wn) in (7.1), from (7.4) we know that P(tn, wn) → 0, that
is

d Eμ(tn
wn)[tn
ϕ] = o(1)‖ϕ‖ = o(1)‖tn
ϕ‖ as n → +∞ for every ϕ ∈ Twn Sr
a .

(7.6)

Let un = tn
wn , by (7.6), we know that {un} is a Palais–Smale sequence for Eμ|Sr
a
at

the level σ(a, μ) = mr (a, μ) and P(un) → 0. Thus, by Lemmas 4.3–4.5, we obtain

that mr (a, μ) ∈ (0, s
N S

N
2s
s ), so by Proposition 2.2, one of the alternatives occurs.

Assume (i) occurs in Proposition 2.2, then up to a subsequence un⇀ũ weakly in
Hs(RN ) but not strongly, where ũ 	≡ 0 is a solution of (1.1) for some λ < 0, and

Eμ(̃u) ≤ m(a, μ) − s

N
S

N
2s
s < 0.

Hence by the Pohozaev identity, P (̃u) = 0 holds, which implies that

||̃u||2Ds(RN )
− 2μ

p

∫
RN

|̃u|pdx −
∫
RN

|̃u|2∗
s dx = 0.

Thus

Eμ(u) = 1

2
||̃u||2Ds (RN )

− 2μ

p

∫
RN

|̃u|pdx − 1

2∗
s

∫
RN

|̃u|2∗
s dx = s

N

∫
RN

|̃u|2∗
s dx > 0,

123



Normalized ground states for the critical fractional NLS… 125

which contradicts the fact that

Eμ(̃u) ≤ m(a, μ) − s

N
S

N
2s
s < 0.

Therefore, the alternative (ii) in Proposition 2.2 holds. There exists a subsequence
un → ũ strongly in Hs(RN ), Eμ(̃u) = m(a, μ) and ũ solves (1.1)–(1.2) for some
λ < 0. By βn(τ ) ≥ 0 a.e in RN , (7.5) and the convergence implies that ũ ≥ 0, by the
strong maximum principle for the fractional Laplacian, see Proposition 2.17 in [34],
we have u is positive. Finally, we prove that ũ is a ground state solution. Since any
normalized solutions in Pa,μ and

Eμ(u) = mr (a, μ) = inf
Pa,μ∩Sa

Eμ.

It is sufficient to show that

inf
Pa,μ∩Sa

Eμ = inf
Pa,μ

Eμ = m(a, μ).

Assume by contradiction that there is a u ∈ Pa,μ\Sr
a such that Eμ(u) < infPa,μ∩Sa Eμ

and there exists a minimizer u, let v = |u|∗ the symmetric decreasing rearrangement
of u. Then by the properties of symmetric decreasing rearrangement, we have

||v||2Ds(RN )
≤ ||u||2Ds(RN )

, Eμ(v) ≤ Eμ(u) and Pμ(v) ≤ 0 = Pμ(u).

If Pμ(v) = 0, then Pμ(v) = Pμ(v) = 0, which is a contradiction with above inequal-
ities. If Pμ(v) < 0, then by Lemma 4.2, we know that tv,μ < 0, thus

Eμ(u) ≤ Eμ(tv,μ
u) = se2


s stv,μ

N

∫
RN

|v|2∗
s dx = se2



s stv,μ

N

∫
RN

|v|2∗
s dx

= e2


s stv,μ Eμ(u) < Eμ(u),

which is a contraction. Thus

m(a, μ) = mr (a, μ)

and hence ũ is a ground state solution.
Case 2 L2-supercritical perturbation, i.e., 2 + 4s/N < q < 2∗

s . Proceeding
exactly as in the case q = p, we obtain a Palais–Smale sequence {un} ⊂ Sr

a for Eμ|Sa

at the level σ(a, μ) = mr (a, μ) and P(un) → 0. Thus, by Lemma 5.5, we obtain that

mr (a, μ) ∈ (0, s
N S

N
2s
s ), so by Proposition 2.2, one of the alternatives occurs. Assume

(i) occurs in Proposition 2.2, then up to a subsequence un⇀ũ weakly in Hs(RN ) but
not strongly, where ũ 	≡ 0 is a solution of (1.1) for some λ < 0, and

Eμ(̃u) ≤ m(a, μ) − s

N
S

N
2s
s < 0,
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hence by the Pohozaev identity P (̃u) = 0 holds, which implies that

||̃u||2Ds (RN )
− μγq,s

∫
RN

|̃u|qdx −
∫
RN

|̃u|2∗
s dx = 0,

thus, by qγq,s > 2, we have

Eμ(u) = 1

2
||̃u||2Ds (RN )

− μ

q

∫
RN

|̃u|qdx − 1

2∗
s

∫
RN

|̃u|2∗
s dx

= μ

q

(qγq,s

2
− 1

) ∫
RN

|̃u|qdx + s

N

∫
RN

|̃u|2∗
s dx > 0,

which contradicts the fact that

Eμ(̃u) ≤ m(a, μ) − s

N
S

N
2s
s < 0.

Therefore, the alternative (ii) in Proposition 2.2 holds. There exists a subsequence
un → ũ strongly in Hs(RN ), Eμ(̃u) = m(a, μ) and ũ solves (1.1)–(1.2) for some
λ < 0. By βn(τ ) ≥ 0 a.e in R

N , (7.5) and the convergence implies that ũ ≥ 0, by
the strong maximum principle for fractional Laplacian (see Proposition 2.17 in [34]),
we have u is positive. The next arguments are the same as case 1. This completes the
proof.

8 Proof of Theorem 1.4

Proof of Theorem 1.4 If we focus on the case μ = 0, then

E0(u) = 1

2
||u||2Ds(RN )

− 1

2∗
s

∫
RN

|u|2∗
s dx

on Sa . The associated Pohozaev manifold is

Pa,0 =
{

u ∈ Sa : s||u||2Ds(RN )
= s

∫
RN

|u|2∗
s dx

}
=
{

u ∈ Sa : (�0
u )′(0) = 0

}
,

where

�0
u (t) = e2st

2
||u||2Ds(RN )

− e2
∗
s st

2∗
s

∫
RN

|u|2∗
s dx .

Recall the decomposition

Pa,0 = P+
a,0 ∪ P0

a,0 ∪ P−
a,0.

Since

�0
u (t) = e2st

2
||u||2Ds(RN )

− e2
∗
s st

2∗
s

∫
RN

u2∗
s dx .
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It is easy to see that for every u ∈ Sa , the function �0
u (t) has a unique critical point

tu,0, which is a strict maximum point and is given by

estu,0 =
( ||u||2

Ds(RN )∫
RN |u|2∗

s dx

) 1
2∗s −2

. (8.1)

By the definition of P+
a,0, we know that P+

a,0 = ∅. If u ∈ P0
a,0, then u ∈ Pa,0 and

(�
μ
u )′′(0) = 0, which implies that

2||u||2Ds(RN )
= 2∗

s

∫
RN

|u|2∗
s dx = 2∗

s ||u||2Ds(RN )
⇒ ||u||Ds(RN ) = 0,

which is not possible since u ∈ Sa . Then Pa,0 = P−
a,0.

Next, we show that Pa,0 is a smooth manifold of codimension 1 on Sa . Since

Pa,0 =
{

u ∈ Sa : ||u||2Ds(RN )
=
∫
RN

|u|2∗
s dx

}
,

we know that Pa,0 is defined by P0(u) = 0, G(u) = 0, where

P0(u) = s||u||2Ds(RN )
− s

∫
RN

|u|2∗
s dx and G(u) =

∫
RN

|u|2dx = a2.

Since P0(u) and G(u) are class of C1, we only need to check that d(P0(u), G(u)):
Hs(RN ) → R

2 is surjective. If this not true, d P0(u) has to be linearly dependent from
dG(u) i.e. there exist a ν ∈ R such that

2s
∫
RN

(−�)
s
2 u(−�)

s
2 ϕdx − s2∗

s

∫
RN

|u|2∗
s −2uϕdx

= ν

∫
RN

uϕdx for every ϕ ∈ Hs(RN ),

which implies that

2s(−�)2u = νu + 2∗
s su2∗

s −1 in RN .

By the Pohozaev identity for above equation, we know that

2s||u||2Ds (RN )
= 2∗

s s
∫
RN

|u|2∗
s dx,

that is, u ∈ P+
a,0, a contradiction. Hence Pa,0 is a natural constraint.

Indeed, if u ∈ Pa,0 is a critical point of E0|Pa,0 , then u is a critical point of E0|Sa .
Thus, for every u ∈ Sa there exist a unique tu,0 ∈ R such that tu,0
u ∈ Pa,0 and tu,0
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is a strict maximum point of �0
u (t), if u ∈ Pa,0, we have that tu,0 = 0 and

E0(u) = max
t∈R E0(t
u) ≥ inf

v∈Sa
max
t∈R E0(t
u).

On the other hand, if u ∈ Sa, then tu,0
u ∈ Pa,0, so

max
t∈R E0(t
u) = E0(tu,0
u) ≥ inf

v∈Pa,0

E0(v).

Thus

inf
u∈Pa,0

E0(u) = inf
u∈Sa

max
t∈R E0(t
u).

Now, by (8.1), we have

inf
u∈Pa,0

E0(u) = inf
u∈Sa

max
t∈R E0(t
u)

= inf
u∈Sa

⎡
⎢⎣1

2

( ||u||2
Ds (RN )∫

RN |u|2∗
s dx

) 2
2∗s −2

||u||2Ds (RN )

− 1

2∗
s

( ||u||2
Ds(RN )∫

RN |u|2∗
s dx

) 2∗s
2∗s −2 ∫

RN
|u|2∗

s dx

⎤
⎥⎦

= inf
u∈Sa

s

N

⎛
⎝ ||u||2

Ds(RN )(∫
RN |u|2∗

s dx
) 2
2∗s

⎞
⎠

2∗s
2∗s −2

= inf
u∈Hs (RN )\{0}

s

N

⎛
⎝ ||u||2

Ds(RN )(∫
RN |u|2∗

s dx
) 2
2∗s

⎞
⎠

N
2s

.

So it follows that

inf
u∈Hs (RN )\{0}

s

N

⎛
⎝ ||u||2

Ds(RN )(∫
RN |u|2∗

s dx
) 2
2∗s

⎞
⎠

N
2s

= s

N
S

N
2s
s

and the infimum is achieved if and only if by the extremal functions Uε,y defined in
(1.6) when N > 4s and stay in L2(RN ). If 2s < N ≤ 4s, we show that the infimum
of E0 on Pa,0 is not achieved. Assume by contradiction that there exists a minimizer
u, let v = |u|∗ the symmetric decreasing rearrangement of u. Then by the properties
of symmetric decreasing rearrangement, we have

||v||2Ds(RN )
≤ ||u||2Ds(RN )

, E0(v) ≤ E0(u) and P0(v) ≤ 0 = P0(u).
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If P0(v) < 0, then by (8.1), we know that tv,0 < 0, thus

E0(u) ≤ E0(tv,0
u) = se2stv,0

N
||v||2Ds(RN )

≤ se2stv,0

N
||u||2Ds(RN )

= e2stv,0 E0(u) < E0(u),

which is a contradiction. Thus P0(v) = 0 ⇒ v ∈ Pa,0. Since Pa,0 is a natural
constraint, we obtain

(−�)sv = λv + v2
∗
s −1, v ≥ 0 in RN , (8.2)

for some λ ∈ R. Since P0(v) = 0, which implies that λ = 0. By the strong maximum
principle, we have v > 0 in R

N . From [27], we know that v = αUε,0 for some
α, ε > 0, this is not possible, since Uε,0 /∈ Hs(RN ) for 2s < N ≤ 4s. The proof is
thus complete.

9 Proof of Theorem 1.5

In this section, we prove Theorem 1.5. Before the proof, we give some lemmas.

Lemma 9.1 Let a > 0 , μ ≥ 0, p ≤ q < 2∗
s and (1.9) holds. Then

inf
u∈Pa,μ

Eμ(u) = inf
u∈Sa

max
t∈R Eμ(t
u).

Proof Since p ≤ q < 2∗
s and μ ≥ 0, by Lemmas 4.2 and 5.2, we know that Pa,μ =

P−
a,μ, for every u ∈ Sa , there is a unique tu,μ ∈ R such that tu,μ
u ∈ Pa,μ, where tu,μ

is the unique critical point of the function of �
μ
u (see Proposition 1.4 for μ = 0). So,

if u ∈ Pa,μ, we have that tu,μ = 0 and

Eμ(u) = max
t∈R Eμ(t
u) ≥ inf

v∈Sa
max
t∈R Eμ(t
v).

On the other hand, if u ∈ Sa, then t
u ∈ Pa,μ and hence

max
t∈R Eμ(t
u) = Eμ(tu,μ
u) ≥ inf

v∈Pa,μ

Eμ(v).

This ends the proof. ��
Lemma 9.2 Let a > 0, p ≤ q < 2∗

s , μ̃ ≥ 0 satisfy (1.9) holds. Then the function
μ ∈ [0, μ̃] → m(a, μ) ∈ R is monotone non-increasing.

Proof Let 0 ≤ μ1 ≤ μ2 ≤ μ̃, by Lemma 9.1, we know that

m(a, μ2) = inf
u∈Sa

max
t∈R Eμ2(t
u) = inf

u∈Sa
Eμ2(tu,μ2
u)
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= inf
u∈Sa

[
Eμ1(tu,μ2
u) + (μ1 − μ2)

eqγq,s st

q

∫
RN

|u|qdx

]
≤ inf

u∈Sa
max
t∈R Eμ1(t
u) = m(a, μ1).

As desired. ��
Proof of Theorem 1.5 We divide the proof into two cases.

Case 1 2 < q < p. Since uμ is a positive ground state solution of Eμ(u) on
{u ∈ Sa : ||uμ||2

Ds (RN )
< R0}, where R0(a, μ) is defined by Lemma 3.1, since R0

is defined by h(R0) = 0, see h in (3.2), we can check that R0 = R0(a, μ) → 0
as μ → 0+, thus ||uμ||2

Ds(RN )
< R0 → 0 as μ → 0+. Since for every u ∈ Sa ,

by fractional Gagliardo–Nirenberg–Sobolev inequality (2.4) and Sobolev inequality
(1.5)

0 > m(a, μ) =Eμ(uμ) ≥ 1

2
||uμ||2Ds (RN )

− μ

q
Cq

N ,q,s ||uμ||qγq,s

Ds(RN )
aq(1−γp,s )

− 1

2∗
s

S
− 2∗s

2
s ||uμ||2∗

s
Ds(RN )

→ 0

as μ → 0+.
Case 2 p ≤ q < 2∗

s . Let μ̃ ≥ 0 and (1.9) holds. Firstly, we show that the family
of positive radial ground states {uμ : 0 < μ < μ̃} is a bounded in Hs(RN ). If
q = p = 2 + 4s/N , then by Lemma 9.2 and Pμ(uμ) = 0, we have

m(a, 0) ≥ m(a, μ) = Eμ(uμ) = s

N

(
||uμ||2Ds (RN )

− 2μ

p

∫
RN

|u|pdx

)

≥ s

N

(
1 − 2μ

p
C p

N ,p,sa
4s
N

)
||u||2Ds(RN )

.

If p < q < 2∗
s , by the similar arguments as above, we have

m(a, 0) ≥ m(a, μ) = Eμ(uμ) = s

N

∫
RN

|uμ|2∗
s dx + μ

q

(qγq,s

2
− 1

) ∫
RN

|uμ|qdx .

Thus, {uμ} is bounded in Lq(RN ) ∩ L2∗
s (RN ). From Pμ(uμ) = 0, we also have {uμ}

is bounded in Hs(RN ). Since

λ̃μa2 = ||uμ||2Ds (RN )
− μ

∫
RN

|uμ|qdx −
∫
RN

|uμ|2∗
s dx

= μ(γq,s − 1)
∫
RN

|uμ|qdx → 0

as μ → 0+. Therefore uμ⇀u weakly in Hs(RN ), Ds(R
N ), L2∗

s (RN ) and uμ⇀u
strongly in Lq(RN ), λ̃μ → 0. Let ||uμ||2

Ds (RN )
→ � ≥ 0, if � = 0, then uμ →
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0 strongly in Ds(R
N ), so Eμ(uμ) → 0. However, by Lemma 9.2, we know that

Eμ(uμ) ≥ m(a, μ̃) > 0 for every 0 < μ < μ̃, a contradiction. Thus � > 0. Since
Pμ(uμ) = 0, we have

∫
RN

|uμ|2∗
s dx = ||uμ||2Ds (RN )

− μγq,s

∫
RN

|uμ|qdx → �, as μ → 0+.

Therefore, by the Sobolev embedding � ≥ Ss�
2
2∗s , which implies that � ≥ S

N
2s
s . On the

other hand, we have

�

N
= lim

μ→0+

[
s

N
||uμ||2Ds (RN )

− μ

q

(
1 − qγq,s

2∗
s

)∫
RN

|uμ|qdx

]

= lim
μ→0+ Eμ(u) ≤ m(a, 0) = s

N
S

N
2s
s .

Thus, � = S
N
2s
s and the desired conclusion follows.
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