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Abstract
Given a topological group G that can be embedded as a topological subgroup into
some topological vector space (over the field of reals) we say that G has invariant
linear span if all linear spans of G under arbitrary embeddings into topological vector
spaces are isomorphic as topological vector spaces. For an arbitrary set A let Z(A) be
the direct sum of |A|-many copies of the discrete group of integers endowed with the
Tychonoff product topology. We show that the topological group Z

(A) has invariant
linear span. This answers a question from a paper of Dikranjan et al. (J Math Anal
Appl 437:1257–1282, 2016) in positive. We prove that given a non-discrete sequential
space X , the free abelian topological group A(X) over X is an example of a topological
group that embeds into a topological vector space but does not have invariant linear
span.

Keywords Topological group · Topological vector space · Embedding · Absolutely
Cauchy summable · Topologically independent · Diophantine approximation

Mathematics Subject Classification 46A99 · 22A99

All vector spaces in this paper are considered over the field R of real numbers and
all topological spaces are assumed to be Hausdorff. For an arbitrary non-empty set
A and a topological group G with addition and neutral element 0G let GA be the
topological group given by the direct product �a∈AG with coordinate-wise addition
and the Tychonoff product topology. We denote G(A) the topological subgroup of
GA, with inherited topology, consisting of those elements (ga)a∈A for which the set
{a ∈ A : ga �= 0G} is finite. Given a subset H of a group G and a subset M of a vector
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space L , we use the standard notation 〈H〉 to denote the subgroup of G generated by
H and span(M) for the vector subspace of L generated by M . For simplicity we write
〈g〉 rather than 〈{g}〉 for any g ∈ G and, similarly, span(l) instead of span({l}) for any
l ∈ L .

1 Introduction

In this note we study which topological groups enjoy the property stated in the fol-
lowing definition.

Definition 1.1 Let G be a topological group that can be embedded (as a topological
subgroup) into some topological vector space.We say thatG has invariant linear span
provided that all linear spans of G under arbitrary embeddings into topological vector
spaces are isomorphic as topological vector spaces.

A simple example of topological group with an invariant linear span is every topo-
logical vector space. Indeed, as follows from Theorem 2 on page 24 in Banach [1],
given arbitrary topological vector spaces L and E and a continuous group homomor-
phism h : L → E , the homomorphism h is automatically linear. This observation
further yields that if L is embedded in E as a topological subgroup, the same embed-
ding is already an embedding of topological vector spaces. In particular, the linear span
of L in E is (isomorphic to) the topological vector space L again and hence the linear
span of L does not depend on the space E in which L embeds. Yet another simple
example of a topological group with an invariant linear span is the discrete topological
group Z of integers. Its linear span is obviously (isomorphic to) the topological vector
space R.

In our paper we show that for an arbitrary non-empty set A the group Z
(A) has

invariant linear span (which is isomorphic toR(A)). SeeTheorem3.4 andCorollary 3.5.
This answers the Question 10.6 of Dikranjan et al. [3] in positive and generalizes the
well-known fact, EVT I.14 Théorème 2 [2], that all topological vector spaces of the
same finite dimension are isomorphic (see Remark 3.6).

The proof of Theorem 3.4 consists of two steps. The first was done in Proposition
10.1 [3] by showing that given an injective linear map l : R

(A) → L , where L
is a topological vector space, the continuity of l follows from the continuity of the
restriction of l to Z

(A). The second step is done in Theorem 2.4, where we basically
show, that if the restriction of l to Z

(A) is an embedding of topological groups, then l
is open. The proof of Theorem 2.4 is based on a Diophantine approximation done in
Lemma 2.2 which resembles the classical Kronecker’s approximation theorem.

We end the paper with Theorem 3.7, which shows that for an arbitrary non-discrete
sequential space X the free topological abelian group A(X) does not have invariant
linear span, as it canonically embeds in both the free topological vector space V (X)

and the free locally convex topological vector space L(X), and the linear spans of
A(X) in the latter spaces are the non-isomorphic topological vector spaces V (X) and
L(X). This theorem is based on non-trivial results of Tkachenko [9] and Gabriyelyan
and Morris [4].
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2 Themain technical theorem

We begin the section by two auxiliary observations.

Lemma 2.1 For every neighbourhood V of zero in a compact group G and every t ∈ G
there is m ∈ N\{0} such that

mt ∈ V . (1)

Proof Pick a neighbourhood V of zero in G and t ∈ G arbitrarily. There are two
possibilities. If 〈t〉 is a discrete subgroup of G then it is closed and, consequently,
compact and therefore finite. Let m be the order of 〈t〉 and observe that (1) holds. The
second possibility is, that 〈t〉 is not discrete. Then every neighbourhood of zero (and
V in particular) contains infinitely many elements of 〈t〉. Since t is a generator of 〈t〉
there is m ∈ N\{0} satisfying (1). ��
Lemma 2.2 Let (tn)n∈N be a sequence in RF , where F is a finite set. For every neigh-
borhood O of zero in R

F there is m ∈ N\{0} and a sequence (zn)n∈N ⊂ Z
F such

that

mtn − zn ∈ O (2)

holds for infinitely many n ∈ N.

Proof Fix O , a neighbourhood of zero in R
F , arbitrarily, and let q : RF → (R/Z)F

be the quotient map. Since (R/Z)F is sequentially compact, the sequence (q(tn))n∈N
has a convergent subsequence with a limit t . As q is an open map, we may pick a
neighbourhood V of zero in (R/Z)F such that

V + V ⊂ q(O).

By Lemma 2.1, there is a positive integer m satisfying (1). Observe that the set M
defined as

M := {n ∈ N : mq(tn) ∈ mt + V }

is infinite, and for every n ∈ M we have

q(mtn) = mq(tn) ∈ mt + V ⊂ V + V ⊂ q(O).

Thus for every n ∈ M there is zn ∈ Z
F such that (2) holds. ��

In order to formulate the main technical result of this paper we need to recall
three notions. Their importance to the topic of our manuscript will become clear from
Proposition 3.3 and from the proof of Theorem 3.4.

We say that a subset A of a topological vector space L is

123



222 E. Pernecká, J. Spěvák

• absolutely Cauchy summable provided that for every neighbourhood V of 0L there
exists a finite set F⊂A such that

span(A\F) ⊂ V ; (3)

• topologically independent if 0L /∈ A and for every neighbourhood W of 0L there
exists a neighbourhood U of 0L such that for every finite subset F ⊂ A and
every indexed set {za : a ∈ F} of integers the inclusion ∑

a∈F zaa ∈ U implies
that zaa ∈ W for all a ∈ F . We call this neighbourhood U a W -witness of the
topological independence of A;

• semi-basic if for all a ∈ A we have

a /∈ span(A\{a}). (4)

Remark 2.3 In Definition 3.1 [3] the notion of an absolutely Cauchy summable set
was introduced in an arbitrary abelian topological group. In topological vector spaces
it is equivalent to our definition by Proposition 9.2 from the same manuscript.

Topologically independent setswere introduced in Definition 4.1 [3] in an arbitrary
abelian topological group. For further properties of these sets in precompact groups
we refer to a paper of Spěvák [8].

Wehave adopted the name semi-basic fromKalton [6],where a semi-basic sequence
in an F-space was introduced. In Bourbaki [2], a semi-basic set is called topologically
free. Semi-basic sequences in Banach spaces are called minimal [5,7].

Now we are ready to state the main technical theorem of this note.

Theorem 2.4 If A is a topologically independent and absolutely Cauchy summable
subset of a topological vector space L, then A is semi-basic.

Proof To prove the contrapositive, assume that there is a ∈ A with

a ∈ span(A\{a}), (5)

and let A be absolutely Cauchy summable. We will show that A is not topologically
independent.

If a = 0L , then we are done. Otherwise we can find a neighbourhoodW of 0L such
that za /∈ W for every z ∈ Z\{0}. Pick an arbitrary neighborhood U of 0L . Let us
show that U is not a W -witness of topological independence of A.

Fix a balanced neighborhood V of 0L with V + V + V ⊂ U . Since A is absolutely
Cauchy summable, there is a finite F ⊂ A\{a} such that span(A\(F ∪ {a})) ⊂ V . In
particular, for every finite B ⊂ A\{a}, reals (sb)b∈B\F and each n ∈ N we have

∑

b∈B\F
sbb ∈ 1

n
V . (6)
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Given n ∈ N arbitrarily, by (5) we can fix a finite set B ⊂ A\{a} and an indexed
set (rnb )b∈B of reals such that

a −
∑

b∈B
rnb b ∈ 1

n
V . (7)

For b ∈ F\B define rnb = 0, and observe that (6) and (7) yield

a −
∑

b∈F
rnb b =

(

a −
∑

b∈B
rnb b

)

+
⎛

⎝
∑

b∈B\F
rnb b

⎞

⎠ ∈ 1

n
V + 1

n
V . (8)

By continuity of vector space operations, there is a neighborhood O of zero in RF

such that

∑

b∈F
sbb ∈ V for all (sb)b∈F ∈ O. (9)

Define a sequence (tn)n∈N in RF by tn = (rnb )b∈F , and let m ∈ N\{0} and (zn)n∈N ⊂
Z
F be as in the conclusion of Lemma 2.2. By this lemma, we may fix n ∈ N such that

n ≥ m and (2) holds. For b ∈ F let zb ∈ Z be the b-th coordinate of zn , and observe
that by (2) and (9) we have

∑

b∈F
(mrnb − zb)b ∈ V .

From this, (8), and the fact that V is balanced and n ≥ m we get

ma −
∑

b∈F
zbb = m

(

a −
∑

b∈F
rnb b

)

+
(

∑

b∈F
(mrnb − zb)b

)

∈ m

n
V

+m

n
V + V ⊂ V + V + V ⊂ U .

Since m is a non-zero integer and zb is an integer for each b ∈ F we conclude that
U is not a W -witness of the topological independence of A, because ma /∈ W by the
choice of W . ��

3 The invariance of the linear span of Z(A)

In this section we prove that the topological group Z
(A) has invariant linear span. In

order to do so we need to recall the notion of a (linear) Kalton map introduced in
Dikranjan et al. [3] which is useful to deal with embeddings of Z(A) and R

(A) into
topological vector spaces.

123



224 E. Pernecká, J. Spěvák

Given a non-empty subset A of a topological vector space L such that 0 /∈ A, we
denote

KA : Z(A) → L

the group homomorphism given by KA ((za)a∈A) = ∑
a∈A zaa for every (za)a∈A ∈

Z
(A). Similarly,

�KA : R(A) → L

is the linear operator between vector spaces defined by �KA ((ra)a∈A) = ∑
a∈A raa

for every (ra)a∈A ∈ R
(A). As in Dikranjan et al. [3] we call KA (�KA) the (linear)

Kaltonmap associatedwith A. Since the sums in the definitions are finite, themappings
are well-defined and KA(Z(A)) = 〈A〉 ⊂ L and �KA(R(A)) = span(A) ⊂ L . Notice
that the (linear) Kalton map is injective if and only if A is (linearly) independent.

Fact 3.1 (Proposition 10.1 [3]). Given a non-empty subset A of non-zero elements of
a topological vector space, the following statements are equivalent:

(i) the linear Kalton map �KA is continuous;
(ii) the Kalton map KA is continuous;
(iii) the set A is absolutely Cauchy summable.

Lemma 3.2 Let A be a non-empty subset of a topological vector space. The following
conditions are equivalent:

(i) the linear Kalton map �KA is an open injection onto span(A);
(ii) the set A is semi-basic.

Proof Observe that from both items (i) and (ii) it follows that A is linearly independent.
Therefore, if we assume either (i) or (ii), then for each a ∈ A there is a unique
linear projection π A

a : span(A) → span(a) such that ker π A
a = span(A\{a}) and π A

a
restricted to span(a) is the identity map.

To end the proof it suffices to show that items (i) and (ii) are both equivalent to the
following fact for a linearly independent set A:

π A
a : span(A) → span(a) is continuous for every a ∈ A. (10)

The equivalence of (i) and (10) follows from Proposition 10.2 [3]. To establish
the equivalence of (ii) and (10) it suffices to realize that the continuity of each π A

a is
equivalent to the fact that each ker(π A

a ) is closed in span(A) and this happens if and
only if (4) holds for all a ∈ A. ��
Proposition 3.3 Given a subset A of a topological vector space, the following condi-
tions are equivalent:

(i) The linear Kalton map �KA is an embedding of topological vector spaces.
(ii) A is absolutely Cauchy summable and semi-basic.
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Proof Assume (i). Then A is absolutely Cauchy summable by Fact 3.1 and semi-basic
by Lemma 3.2. Thus (ii) holds.

If (ii) holds, Lemma 3.2 implies, that the linear Kalton map �KA is open and
injective, while Fact 3.1 provides its continuity. This gives us (i). ��

Our next theorem answers Question 10.6 [3] in positive.

Theorem 3.4 Given a subset A of a topological vector space the following statements
are equivalent:

(i) The Kalton map KA is an embedding of topological groups;
(ii) The linear Kalton map �KA is an embedding of topological vector spaces.

Proof Since KA is a restriction of �KA, the implication (ii)⇒(i) follows.
Assume (i). Then A is absolutely Cauchy summable by Fact 3.1. Further, A is

topologically independent by Proposition 4.7 (ii) [3]. Theorem 2.4 yields that A is
also semi-basic. To show (ii) it remains to apply Proposition 3.3. ��

The next statement is a direct corollary of Theorem 3.4.

Corollary 3.5 For every non-empty set A the topological group Z
(A) has invariant

linear span (which is isomorphic to R
(A)).

Remark 3.6 Corollary 3.5 can be viewed as a generalization of the well-known fact
that all topological vector spaces of the same finite dimension are isomorphic (EVT
I.14 Théorème 2 [2]). Indeed, if A is a finite basis of a topological vector space V , then
A is topologically independent by Proposition 4.11 [3]. It follows then by Proposition
4.8 [3] that the Kalton map KA is an embedding of topological groups. That is, the
hull 〈A〉 is (isomorphic to) ZA. Hence V = span(A) is (isomorphic to) RA.

We end this paper with a theorem which provides a rich source of examples of
topological groups that embed in topological vector spaces and do not have invariant
linear spans.

Given a Tychonoff space X the symbols A(X), L(X) and V (X) stand for the free
abelian topological group, the free locally convex topological vector space and the
free topological vector space over X respectively. We refer the reader to Gabriyelyan
and Morris [4] for definitions of these notions.

Theorem 3.7 Let X be a Tychonoff space. The topological group A(X) canonically
embeds in the topological vector spaces L(X) and V (X). If X is sequential and non-
discrete, then A(X) does not have an invariant linear span.

Proof By Theorem 3 [9] the topological group A(X) embeds in L(X) and the linear
span of A(X) is L(X). On the other hand, by Proposition 5.1 [4], it also embeds in
V (X) and its linear span in V (X) is V (X). Finally, if L(X) and V (X) are isomorphic
as topological vector spaces and X is sequential, then X is discrete by Corollary 4.5
[4]. ��
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3. Dikranjan, D., Shakhmatov, D., Spěvák, J.: Direct sums and products in topological groups and vector

spaces. J. Math. Anal. Appl. 437, 1257–1282 (2016)
4. Gabriyelyan, S.S., Morris, S.A.: Free topological vector spaces. Topol. Appl. 223, 30–49 (2017)
5. Hájek, P.,MontesinosSantalucía,V.,Vanderwerff, J., Zizler,V.:Biorthogonal Systems inBanachSpaces.

Springer, Berlin (2008)
6. Kalton, N.J.: Basic sequences in F-spaces and their applications. Proc. Edinb. Math. Soc. 19, 151–167

(1974)
7. Singer, I.: Bases in Banach Spaces I. Springer, Berlin, Heidelberg, New York (1970)
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