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Abstract
In this paper, we investigate the complete convergence for weighted sums of widely
orthant-dependent (WOD, for short) random variables. Our results extend the corre-
sponding ones of Chen and Sung (Stat Probab Lett 154, 2019) to a much more general
type of complete convergence. As an application of our main results, we establish the
complete consistency for the estimator in the nonparametric regression models and
provide a simulation study to assess the finite sample performance of the theoretical
results.
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1 Introduction

Among many statistical problems, people tend to assume that the random variables
are independent. However, this assumption is not practical in some senses, such as
when dealing with financial time series. Therefore, various dependent structures have
been introduced by many authors. The widely orthant-dependent (WOD, for short)
structure is one of the most general dependent structures, which was introduced by
Wang et al. [25] as follows.
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Definition 1.1 For the random variables {Xn, n ≥ 1}, if there exists a finite real
sequence {gU (n), n ≥ 1} satisfying for each n ≥ 1 and for all xk ∈ (−∞,∞), 1 ≤
k ≤ n,

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)

n∏

k=1

P(Xk > xk),

then we say that the {Xn, n ≥ 1} are widely upper orthant dependent (WUOD, for
short); if there exists a finite real sequence {gL(n), n ≥ 1} satisfying for each n ≥ 1
and for all xk ∈ (−∞,∞), 1 ≤ k ≤ n,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ gL(n)

n∏

k=1

P(Xk ≤ xk),

then we say that the {Xn, n ≥ 1} are widely lower orthant dependent (WLOD, for
short); if they are bothWUOD andWLOD, then we say that the {Xn, n ≥ 1} areWOD
random variables, and gU (n), gL(n), n ≥ 1, are called dominating coefficients.

Since the concept of WOD random variables was introduced, many authors have
focused on the limit behavior ofWOD random variables. For example,Wang et al. [26]
studied the precise large deviations forWODrandomvariableswith dominated varying
tails; Yang et al. [36] investigated the Bahadur representation of sample quantiles for
WODrandomvariables;Gao et al. [6] established the precise large deviations forWOD
random variables with different distributions; Lu et al. [14] investigated the complete
f -moment convergence for WOD random variables and gave its applications; Shen et
al. [19] studied the asymptotic properties for the estimators of survival function and
failure rate function based onWOD samples; He [8] established the strong consistency
and complete consistency for the Priestley-Chao estimator in nonparametric regression
models with widely orthant dependent errors under some general conditions; Wu et
al. [32] studied the limiting behavior for arrays of rowwise WOD random variables
under conditions of R–h-integrability and its application; Shen et al. [18] provided
some sufficient conditions to prove the complete convergence for widely negatively
orthant dependent (WNOD, for short) random variables; Ning et al. [17] investigated
the complete convergence of weighted sums of WNOD random variables and gave its
application in nonparametric regression models. Now, we introduce the problem that
we focus on.

It is well-known that for a sequence of independent and identically distributed
random variables {X , Xn, n ≥ 1}, Spitzer [21] proved that EX = 0 is equivalent to

∞∑

n=1

n−1P

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ > εn

)
< ∞, for all ε > 0, (1.1)

and (1.1) is equivalent to
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∞∑

n=1

n−1P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣ > εn

)
< ∞, for all ε > 0. (1.2)

Chen and Sung [2] extended the result (1.2) to WOD random variables.

Theorem A Let {X , Xn, n ≥ 1} be a sequence of identically distributed WOD
random variables with dominating coefficients gL(n), gU (n) for n ≥ 1. Sup-
pose that there exists a nondecreasing positive function g(x) on [0,∞) such that
max{gL(n), gU (n)} ≤ g(n) for n ≥ 1. Assume that one of the following conditions
holds:

(i) g(x)/xτ ↓ for some 0 < τ < 1, and E |X |g(|X |) < ∞;
(ii) There exists a nondecreasing positive function h(x) on [0,∞), such that h(x)/x ↓

and
∑∞

n=1 g(n)/(nhγ (n)) < ∞ for some γ > 0, and E |X |h(|X |) < ∞.

Then

∞∑

n=1

n−1P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(Xi − EXi )

∣∣∣∣∣ > εn

)
< ∞, for all ε > 0.

However, the above result only considers the specialmoment condition E |X |g(|X |) <

∞ or E |X |h(|X |) < ∞. Besides, the general constant weights can also be considered.
Furthermore, the condition of identical distribution seems too strong.

The above type of convergence is called complete convergence, which was intro-
duced by Hsu and Robbins [10] as follows:

Definition 1.2 A sequence {Xn, n ≥ 1} of random variables converges completely to
the constant C , if

∞∑

n=1

P(|Xn − C | > ε) < ∞, for all ε > 0.

By the Borel–Cantelli lemma, it is obvious that the complete convergence implies
Xn → C almost surely (a.s., for short). Therefore, complete convergence is significant
in proving almost sure convergence.

The researches of complete convergence for different dependent structures have
been established by many authors. For example, Baum and Katz [1] established a
rate of convergence in the Marcinkiewicz–Zygmund law of large numbers; Sung [23]
investigated the complete convergence for weighted sums of ρ∗-mixing random vari-
ables;Wang et al. [27] studied the complete convergence forweighted sums of negative
superadditive dependent random variables (NSD, for short); Li et al. [12] established
the complete convergence for randomly weighted extended negatively dependent ran-
dom variables (END, for short) and gave its application; Wu et al. [34] investigated
the complete convergence for identically distributed END random variables; Zhang et
al. [37] studied the complete consistency for the weighted estimator of a nonparamet-
ric regression model; Hosseini and Nezakati [9] investigated the complete moment
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convergence for END linear processes with random coefficients and gave its applica-
tions; Liang and Wu [13] provided the complete convergence and complete moment
convergence for END random variables under sub-linear expectations; Lu and Wang
[16] studied the complete moment convergence for the widely orthant dependent lin-
ear processes with random coefficients; Lu et al. [15] established the complete and
complete moment convergence for randomly weighted sums of ρ∗-mixing random
variables and gave its application in linear-time-invariant systems and nonparametric
regression models; Deng and Wang [4] investigated the complete convergence for
extended independent random variables under sub-linear expectations.

Inspired by the above researches and the problem thatwe focus on, themain purpose
of this paper is to extend the result of Chen and Sung [2] to a much more general type
of complete convergence for WOD random variables and the identical distribution is
replacedby stochastic domination. Furthermore,wegive an application to the complete
consistency for the estimator in the nonparametric regression model and present a
simulation study.

The following concept of stochastic dominationwill be used in this paper as follows:

Definition 1.3 A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a constant C , such that

P(|Xn| > x) ≤ CP(|X | > x) for all x > 0 and n ≥ 1.

The layout of this paper is as follows: some preliminary lemmas are contained in
Sect. 2. Main results and their proofs are given in Sect. 3. An application of our main
results to the nonparametric regression model and numerical simulation are presented
in Sect. 4. Finally, conclusions are obtained in Sect. 5.

Throughout this paper, the symbol C denotes a positive constant which is not
necessarily the same one in each appearance. Denote log x = ln(max{x, e}). An =
O(Bn) stands for |An| ≤ C |Bn| for all n ≥ 1. Let g(n) = max{gL(n), gU (n)} be the
dominating coefficients of the WOD sequence and I (A) be the indicator function of
the set A.

2 Preliminary lemmas

To prove our main results, we need the following important lemmas. The first one is a
basic property for WOD random variables, which was established byWang et al. [28].

Lemma 2.1 Let {Xn, n ≥ 1} be a sequence of WOD random variables. If { fn, n ≥ 1}
is a sequence of all nondecreasing (or all nonincreasing) functions, then { fn(Xn), n ≥
1} is also a sequence ofWOD random variables with the same dominating coefficients.

We need some moment inequalities to prove our main results. The first one is the
Rosenthal-type moment inequality for WOD random variables which was obtained
by Wang et al. [28].
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Lemma 2.2 Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of zero mean WOD random
variables with the dominating coefficients g(n) and E |Xn|p < ∞ for each n ≥ 1.
Then there exists a positive constant Cp depending only on p such that

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

≤ Cp

⎧
⎨

⎩

n∑

i=1

E |Xi |p + g(n)

(
n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭ .

By Corollary 2.3 in Wang et al. [28] and Theorem 2.3.1 in Stout [24], we can
obtain the Rosenthal-type moment inequality for the maximum of partial sums of
WOD random variables.

Lemma 2.3 Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of zero mean WOD random
variables with the dominating coefficients g(n) and E |Xn|p < ∞ for each n ≥ 1.
Then there exists a positive constant Cp depending only on p such that

E max
1≤ j≤n

∣∣∣∣∣∣

j∑

i=1

Xi

∣∣∣∣∣∣

p

≤ Cp(log n)p

⎧
⎨

⎩

n∑

i=1

E |Xi |p + g(n)

(
n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭ .

To release the identical distribution to stochastic domination, we need the following
lemma, which can be found in Wu [30] or Shen et al. [20].

Lemma 2.4 Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically
dominated by a random variable X. For any α > 0 and b > 0, the following two
statements hold:

E |Xn|α I (|Xn| ≤ b) ≤ C1[E |X |α I (|X | ≤ b) + bαP(|X | > b)],
E |Xn|α I (|Xn| > b) ≤ C2E |X |α I (|X | > b),

where C1 and C2 are positive constants. Consequently, E |Xn|α ≤ CE |X |α , where C
is a positive constant.

For the convenience of our proofs, we need the last lemma which can be obtained
in the proof of Theorem 1.1 in Chen and Sung [2].

Lemma 2.5 For a random variable X, let g(x) be a nondecreasing positive function
on [0,∞). Assume that g(x)/xτ ↓ for some 0 < τ < 1 and E |X |g(|X |) < ∞. Then

∞∑

n=1

n−2g(n)EX2 I (|X | ≤ n) +
∞∑

n=1

g(n)P(|X | > n) < ∞.

3 Themain results and their proofs

Before presenting our main results and their proofs, we need the following assump-
tions.
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(A.1) Let {Xi , i ≥ 1} be a sequence of WOD random variables which is
stochastically dominated by a random variable X with dominating coefficients
g(n), n ≥ 1.

(A.2) Let g(x) be a nondecreasing positive function on [0,∞),such that g(x)/xτ ↓
for some 0 < τ < 1.

(A.3) There exists a nondecreasing positive function h(x) on [0,∞),such that
h(x)/x ↓ and

∑∞
n=1 g(n)/(nhγ (n)) < ∞ for some γ > 0.

Theorem 3.1 Let (A.1) hold and p ≥ 1. When p = 1, assume that (A.2) holds and
E |X |g(|X |) < ∞ or (A.3) holds and E |X |h(|X |) < ∞. When p > 1, assume that
E |X |p < ∞ and (A.2) or (A.3) holds. Let {ani , 1 ≤ i ≤ n, n ≥ 1} be an array of real
numbers satisfying

max
1≤i≤n

|ani | = O(n−1). (3.1)

Then, for all ε > 0,

∞∑

n=1

n p−2P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (Xi − EXi )

∣∣∣∣∣ > ε

)
< ∞. (3.2)

Proof Without loss of generality, wemay assume that Xi ≥ 0 for i ≥ 1 and ani ≥ 0 for
1 ≤ i ≤ n and all n ≥ 1. To simplify our proof, we may assume that max

1≤i≤n
ani ≤ n−1,

and thus,

n∑

i=1

a2ni ≤
(
max
1≤i≤n

ani

)2 n∑

i=1

1 ≤ n−1. (3.3)

When p = 1, it is obvious that E |X | < ∞ by E |X |g(|X |) < ∞ or E |X |h(|X |) <

∞. When p > 1, E |X | < ∞ follows from E |X |p < ∞. Therefore, there exists a
positive integer N such that E |X |I (|X | > N ) < ε

8C .

Denote for i ≥ 1 that

X ′
i = Xi I (Xi ≤ N ) + N I (Xi > N ), X ′′

i = Xi − X ′
i = (Xi − N )I (Xi > N ).

It is easily checked that

∞∑

n=1

n p−2P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (Xi − EXi )

∣∣∣∣∣ > ε

)

≤
∞∑

n=1

n p−2P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (X
′
i − EX ′

i )

∣∣∣∣∣ >
ε

2

)

+
∞∑

n=1

n p−2P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (X
′′
i − EX ′′

i )

∣∣∣∣∣ >
ε

2

)
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=: I1 + I2.

Thus, to prove the desired result (3.2), we only need to show I1 < ∞ and I2 < ∞.
For each n ≥ 1, it follows from Lemma 2.1 that {ani (X ′

i − EX ′
i ), 1 ≤ i ≤ n} are

also WOD random variables with the same dominating coefficients.
Takingq > max{2p, 2(p+γ −1)}, we have byLemma2.3 andMarkov’s inequality

that

I1 ≤ C
∞∑

n=1

n p−2E

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (X
′
i − EX ′

i )

∣∣∣∣∣

)q

≤ C
∞∑

n=1

n p−2(log n)q

[
n∑

i=1

E
∣∣ani (X ′

i − EX ′
i )
∣∣q

+ g(n)

(
n∑

i=1

E
(
ani (X

′
i − EX ′

i )
)2
)q/2

⎤

⎦

=: I11 + I12.

For I11, it follows from the definition of {X ′
i , i ≥ 1}, Jensen’s inequality and (3.1)

that

I11 ≤ C
∞∑

n=1

n p−2(log n)q
n∑

i=1

aqni E |X ′
i |q

≤ C
∞∑

n=1

n p−2(log n)q
n∑

i=1

aqni

≤ C
∞∑

n=1

n p−2(log n)q
(
max
1≤i≤n

ani

)q n∑

i=1

1

≤ C
∞∑

n=1

n p−1−q(log n)q < ∞.

For I12, similarly, we have by (3.3) and (A.2) or (A.3) that

I12 ≤ C
∞∑

n=1

n p−2(log n)qg(n)

(
n∑

i=1

a2ni E(X ′
i )
2

) q
2

≤ C
∞∑

n=1

n p−2(log n)qg(n)

(
n∑

i=1

a2ni

) q
2

≤

⎧
⎪⎪⎨

⎪⎪⎩

C
∞∑
n=1

n p−2+τ (log n)q
(∑n

i=1 a
2
ni

) q
2 , if (A.2) holds ,

C
∞∑
n=1

n p−2− q
2 (log n)q

g(n)hγ (n)nγ+1

nhγ (n)nγ , if (A.3) holds ,
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≤

⎧
⎪⎪⎨

⎪⎪⎩

C
∞∑
n=1

n p−2+τ− q
2 (log n)q , if (A.2) holds ,

C
∞∑
n=1

n p−1+γ− q
2 (log n)q

g(n)
nhγ (n)

, if (A.3) holds ,

< ∞.

Thus, we have proved I1 < ∞.
Now, we deal with I2. For n > N , denote for i ≥ 1 that

Yni = (Xi − N )I (N < Xi ≤ n) + (n − N )I (Xi > n).

Then, we have

I2 ≤
∞∑

n=1

n p−2P

(
n∑

i=1

ani X
′′
i +

n∑

i=1

ani E X ′′
i >

ε

2

)

≤
∞∑

n=1

n p−2
n∑

i=1

P(Xi > n) +
∞∑

n=1

n p−2P

(
n∑

i=1

aniYni +
n∑

i=1

ani E X ′′
i >

ε

2

)

=: I3 + I4.

For I3, we can get by E |X |p < ∞ that

I3 ≤ C
∞∑

n=1

n p−1P(|X | > n)

= C
∞∑

n=1

n p−1E I (|X | > n)

= C
∞∑

n=1

n p−1
∞∑

k=n

E I (k < |X | ≤ (k + 1))

= C
∞∑

k=1

E I (k < |X | ≤ (k + 1))
k∑

n=1

n p−1

≤ C
∞∑

k=1

k pE I (k < |X | ≤ (k + 1))

≤ CE |X |p < ∞. (3.4)

It follows from Lemmas 2.4 and (3.1) that

n∑

i=1

ani E X ′′
i ≤

n∑

i=1

ani E Xi I (Xi > N )

≤ C max
1≤i≤n

ani

n∑

i=1

E |X |I (|X | > N )

123



Complete convergence for weighted sums of widely… 861

≤ CE |X |I (|X | > N )

≤ ε

8
(3.5)

and

n∑

i=1

ani EYni ≤
n∑

i=1

ani E Xi I (Xi > N ) ≤ ε

8
. (3.6)

We have by (3.5) and (3.6) that

I4 ≤
∞∑

n=1

n p−2P

(
n∑

i=1

aniYni >
ε

4

)
+

∞∑

n=1

n p−2P

(
n∑

i=1

ani E X ′′
i >

ε

4

)

≤ C
∞∑

n=1

n p−2P

(∣∣∣∣∣

n∑

i=1

ani (Yni − EYni )

∣∣∣∣∣ >
ε

8

)

+C
∞∑

n=1

n p−2P

(
n∑

i=1

ani EYni >
ε

8

)

= C
∞∑

n=1

n p−2P

(∣∣∣∣∣

n∑

i=1

ani (Yni − EYni )

∣∣∣∣∣ >
ε

8

)
.

To estimate I4, we consider the following two cases.

Case 1. p 
= 1.
For each n ≥ 1, it follows from Lemma 2.1 that {ani (Yni − EYni ), 1 ≤ i ≤ n} are

WOD random variables with the same dominating coefficients.
Taking q > max{2p, 2(p + γ − 1)} when p ≥ 2 and q > max{ 2p

p−1 ,
2(p+γ−1)

p−1 }
when 1 < p < 2, we have by Lemma 2.2 and Markov’s inequality that

I4 ≤ C
∞∑

n=1

n p−2E

(∣∣∣∣∣

n∑

i=1

ani (Yni − EYni )

∣∣∣∣∣

q)

≤ C
∞∑

n=1

n p−2

{
n∑

i=1

E |ani (Yni − EYni )|q

+ g(n)

(
n∑

i=1

E(ani (Yni − EYni ))
2

)q/2
⎫
⎬

⎭

=: I5 + I6.

For I5, it follows from E |X |p < ∞, (3.4) and Lemma 2.4 that

I5 ≤ C
∞∑

n=1

n p−2
n∑

i=1

aqni EY
q
ni
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≤ C
∞∑

n=1

n p−2
n∑

i=1

aqni (EXq
i I (Xi ≤ n) + nq P(Xi > n))

≤ C
∞∑

n=1

n p−2
n∑

i=1

aqni (E |X |q I (|X | ≤ n) + nq P(|X | > n))

≤ C
∞∑

n=1

n p−q−1E |X |q I (|X | ≤ n) + C
∞∑

n=1

n p−1P(|X | > n)

≤ C
∞∑

n=1

n p−q−1
n∑

k=1

E |X |q I (k − 1 < |X | ≤ k) + CE |X |p

= C
∞∑

k=1

E |X |q I (k − 1 < |X | ≤ k)
∞∑

n=k

n p−q−1 + CE |X |p

≤ C
∞∑

k=1

k p−q E |X |q I (k − 1 < |X | ≤ k) + CE |X |p

≤ CE |X |p < ∞.

For I6, we consider the following two cases.
Case 1.1. p ≥ 2.

We have by Lemma 2.4, (3.3) and I12 < ∞ that

I6 ≤ C
∞∑

n=1

n p−2g(n)

(
n∑

i=1

a2ni EY
2
ni

)q/2

≤ C
∞∑

n=1

n p−2g(n)

(
n∑

i=1

a2ni

(
EX2

i I (Xi ≤ n) + n2P(Xi > n)
))q/2

≤ C
∞∑

n=1

n p−2g(n)

(
n∑

i=1

a2ni

(
EX2 I (|X | ≤ n) + n2P(|X | > n)

))q/2

≤ C
∞∑

n=1

n p−2g(n)

(
n∑

i=1

a2ni

)q/2 (
EX2

)q/2

< ∞.

Case 1.2. 1 < p < 2.
Similar to Case 1.1, we have

I6 ≤ C
∞∑

n=1

n p−2g(n)

(
n∑

i=1

a2ni

)q/2 (
EX2 I (|X | ≤ n) + n2P(|X | > n)

)q/2

≤ C
∞∑

n=1

n p−2−q/2+(2−p)q/2g(n)
(
E |X |p)q/2
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≤
{
C
∑∞

n=1 n
p−2−q/2+(2−p)q/2+τ , if (A.2) holds,

C
∑∞

n=1 n
p−2−q/2+(2−p)q/2+γ+1 g(n)

nhγ (n)
, if (A.3) holds ,

< ∞.

Case 2. p = 1.
If (A.2) holds and E |X |g(|X |) < ∞, similar to Case 1, we have by Lemma 2.2,

Markov’s inequality, Lemmas 2.4, 2.5 and (3.3) that

I4 ≤ C
∞∑

n=1

n−1E

(∣∣∣∣∣

n∑

i=1

ani (Yni − EYni )

∣∣∣∣∣

)2

≤ C
∞∑

n=1

n−1g(n)

n∑

i=1

a2ni EY
2
ni

≤ C
∞∑

n=1

n−1g(n)

n∑

i=1

a2ni

[
EX2 I (|X | ≤ n) + n2P(|X | > n)

]

≤ C
∞∑

n=1

n−2g(n)EX2 I (|X | ≤ n) + C
∞∑

n=1

g(n)P(|X | > n)

< ∞. (3.7)

If (A.3) holds and E |X |h(|X |) < ∞, taking q > max{2, 2γ }, we have by
Lemma 2.2 and Markov’s inequality that

I4 ≤ C
∞∑

n=1

n−1E

∣∣∣∣∣

n∑

i=1

ani (Yni − EYni )

∣∣∣∣∣

q

≤ C
∞∑

n=1

n−1

[
n∑

i=1

E |ani (Yni − EYni )|q

+ g(n)

(
n∑

i=1

E (ani (Yni − EYni ))
2

)q/2
⎤

⎦

=: I41 + I42. (3.8)

It follows from Lemma 2.4 and (3.4) that

I41 ≤ C
∞∑

n=1

n−q [E |X |q I (|X | ≤ n) + nq P(|X | > n)
]

= C
∞∑

n=1

n−q E |X |q I (|X | ≤ n) + C
∞∑

n=1

P(|X | > n)
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≤ C
∞∑

k=1

E |X |q I (k − 1 < |X | ≤ k)
∞∑

n=k

n−q + CE |X |

≤ CE |X | < ∞. (3.9)

Now we deal with I42. Since h(x) ↑ and h(x)/x ↓, we can get h(x)x ↑. Thus, we
have by (A.3) that

I42 ≤ C
∞∑

n=1

n−1g(n)

(
n∑

i=1

a2ni EY
2
ni

)q/2

≤ C
∞∑

n=1

n−1−q/2g(n)
[
EX2 I (|X | ≤ n) + n2P(|X | > n)

]q/2

≤ C
∞∑

n=1

n−1−q/2g(n)

[
E

|X |h(|X |)|X |
h(|X |) I (|X | ≤ n)

+ n2E

( |X |h(|X |)
nh(n)

I (|X | > n)

)]q/2

≤ C
∞∑

n=1

n−1−q/2g(n)

[
n

h(n)
E |X |h(|X |)I (|X | ≤ n)

+ n

h(n)
E |X |h(|X |)I (|X | > n)

]q/2

≤ C
∞∑

n=1

n−1−q/2g(n)

(
n

h(n)
E |X |h(|X |)

)q/2

≤ C (E |X |h(|X |))q/2
∞∑

n=1

g(n)

nhq/2(n)

< ∞. (3.10)

From (3.7)–(3.10), we have proved that I4 < ∞ in the case of p = 1.
The proof is completed. �

Theorem 3.1 considers the special constant weights satisfying (3.1). The next one
deals with much more general weights than Theorem 3.1.

Theorem 3.2 Let (A.1) hold, 1/p ≤ α < 1 and p > 1. Assume that E |X |p < ∞
and (A.2) or (A.3) holds. Let {ani , 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers
satisfying

n∑

i=1

a2ni = O(n−α) (3.11)
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and

max
1≤i≤n

|ani | = O(n−α). (3.12)

Then, for all ε > 0,

∞∑

n=1

nα p−2P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (Xi − EXi )

∣∣∣∣∣ > ε

)
< ∞. (3.13)

Proof Without loss of generality, we may assume that Xi ≥ 0 for i ≥ 1 and ani ≥ 0
for 1 ≤ i ≤ n and all n ≥ 1. For fixed n ≥ 1, denote for 1 ≤ i ≤ n that

Yni = Xi I (Xi ≤ nα) + nα I (Xi > nα).

We have

∞∑

n=1

nα p−2P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (Xi − EXi )

∣∣∣∣∣ > ε

)

≤
∞∑

n=1

nα p−2
n∑

i=1

P(Xi > nα) +
∞∑

n=1

nα p−2P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (Yni − EXi )

∣∣∣∣∣ > ε

)

=: I1 + I2.

Similar to the proof of (3.4), we can easily get that I1 < ∞. To prove the desired result
(3.13), we only need to show I2 < ∞.

First, we will show that

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (EYni − EXi )

∣∣∣∣∣→ 0 as n → ∞. (3.14)

We have by (3.11), Hölder’s inequality and Lemma 2.4 that

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (EYni − EXi )

∣∣∣∣∣

= max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (EXi I (Xi > nα) − nαE I (Xi > nα))

∣∣∣∣∣

≤ C max
1≤k≤n

k∑

i=1

ani E Xi I (Xi > nα)

≤ C
n∑

i=1

ani E |X |I (|X | > nα)
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≤ C

(
n∑

i=1

a2ni

)1/2 ( n∑

i=1

1

)1/2

E |X |1−p|X |p I (|X | > nα)

≤ Cn
1+α
2 −α pE |X |p I (|X | > nα) → 0 as n → ∞,

which implies (3.14).
For each n ≥ 1, {ani (Yni − EYni ), 1 ≤ i ≤ n} are still WOD random variables

with the same dominating coefficients by Lemma 2.1. Take q > max{2p, 2(α p−1+γ )
α

}
when p ≥ 2 and q > max{ 2α p

α p−α
,
2(α p−1+γ )

α p−α
}when 1 < p < 2.We have byMarkov’s

inequality, (3.14) and Lemma 2.3 that

I2 ≤
∞∑

n=1

nα p−2P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (Yni − EYni )

∣∣∣∣∣ >
ε

2

)

≤ C
∞∑

n=1

nα p−2E

⎛

⎝ max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ani (Yni − EYni )

∣∣∣∣∣

q⎞

⎠

≤ C
∞∑

n=1

nα p−2(log n)q

[
n∑

i=1

E |ani (Yni

−EYni )|q + g(n)

(
n∑

i=1

E(ani (Yni − EYni ))
2

)q/2
⎤

⎦

=: I3 + I4.

For I3, we have by Lemma 2.4, (3.11) and (3.12) that

I3 ≤ C
∞∑

n=1

nα p−2(log n)q
n∑

i=1

aqni EY
q
ni

≤ C
∞∑

n=1

nα p−2(log n)q
n∑

i=1

aqni
[
EXq

i I (Xi ≤ nα) + nαq P(Xi > nα)
]

≤ C
∞∑

n=1

nα p−2(log n)q
(
max
1≤i≤n

ani

)q−2 n∑

i=1

a2ni
[
EXq

i I (Xi ≤ nα)

+ nαq P(Xi > nα)
]

≤ C
∞∑

n=1

nα p−αq+α−2(log n)q
[
E |X |q I (|X | ≤ nα) + nαq P(|X | > nα)

]

≤ C
∞∑

n=1

nα−2(log n)q E |X |p

< ∞.
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Fig. 1 Boxplots of fn(x) − f (x) with x = 0.25, f (x) = −x3 and θ = 0.8

Table 1 MSE of the estimator fn(x) when θ = 0.8

f (x) x n = 100 n = 400 n = 800 n = 1200

−x3 0.25 0.004911171 0.001314164 0.000757779 0.000509074

0.5 0.005405692 0.001153960 0.000724159 0.000478595

0.75 0.004857873 0.001372061 0.000719374 0.000573112

sin x 0.25 0.005216352 0.001307749 0.000764948 0.000498383

0.5 0.005726582 0.001354458 0.000668739 0.000498343

0.75 0.005465108 0.001381979 0.000746998 0.000445454

Table 2 MSE of the estimator fn(x) when θ = 0.4

f (x) x n = 100 n = 400 n = 800 n = 1200

−x3 0.25 0.020488086 0.006894032 0.004028120 0.003395924

0.5 0.019808323 0.007050816 0.004480262 0.003548453

0.75 0.017520357 0.006961801 0.004027141 0.003438543

sin x 0.25 0.019632994 0.006689634 0.003842028 0.003670317

0.5 0.019004342 0.007475165 0.004606741 0.003583350

0.75 0.018098377 0.007197787 0.004530040 0.003370333
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Fig. 2 Boxplots of fn(x) − f (x) with x = 0.5, f (x) = −x3 and θ = 0.8

To deal with I4, we consider the following two cases.

Case 1. p ≥ 2.
We have by Lemma 2.4 and (3.11) that

I4 ≤ C
∞∑

n=1

nα p−2(log n)qg(n)

(
n∑

i=1

E(aniYni )
2

)q/2

≤ C
∞∑

n=1

nα p−2(log n)qg(n)

(
n∑

i=1

a2ni (EX2
i I (Xi ≤ nα) + n2αP(Xi > nα))

)q/2

≤ C
∞∑

n=1

nα p−2(log n)qg(n)

(
n∑

i=1

a2ni

)q/2

(EX2)q/2

≤ C
∞∑

n=1

nα p−2−αq/2(log n)qg(n)

≤

⎧
⎪⎪⎨

⎪⎪⎩

C
∞∑
n=1

nα p−2−αq/2+τ (log n)q , if (A.2) holds ,

C
∞∑
n=1

nα p−2−αq/2+γ+1 g(n)
nhγ (n)

(log n)q , if (A.3) holds ,

< ∞.
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Fig. 3 Boxplots of fn(x) − f (x) with x = 0.75, f (x) = −x3 and θ = 0.8

Case 2. 1 < p < 2.
Similar to Case 1, it can be checked that

I4 ≤ C
∞∑

n=1

nα p−2(log n)qg(n)

(
n∑

i=1

a2ni (EX2 I (|X | ≤ nα) + n2αP(|X | > nα))

)q/2

≤ C
∞∑

n=1

nα p−2+α(2−p)q/2−αq/2g(n)(log n)q(E |X |p)q/2

≤

⎧
⎪⎪⎨

⎪⎪⎩

C
∞∑
n=1

nα p−2+α(2−p)q/2−αq/2+τ (log n)q , if (A.2) holds ,

C
∞∑
n=1

nα p−2+α(2−p)q/2−αq/2+γ+1 g(n)
nhγ (n)

(log n)q , if (A.3) holds ,

< ∞.

The proof is completed. �
It is obvious that p = 1 implies (3.13) aswell whenα < 1. Combining Theorem 3.1

and Theorem 3.2, we have the following Theorem 3.3.

Theorem 3.3 Let (A.1) hold, 1/p ≤ α ≤ 1 and p ≥ 1. When p = 1, assume that
(A.2) holds and E |X |g(|X |) < ∞ or (A.3) holds and E |X |h(|X |) < ∞. When p > 1,
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Fig. 4 Boxplots of fn(x) − f (x) with x = 0.25, f (x) = sin x and θ = 0.8

assume that E |X |p < ∞ and (A.2) or (A.3) holds. Let {ani , 1 ≤ i ≤ n, n ≥ 1} be an
array of real numbers satisfying (3.12) and it also satisfies (3.11) when α < 1. Then
(3.13) holds.

Remark 3.1 It is easy to see that Theorem A only considers the case of ani = 1/n and
α = p = 1 in Theorem 3.3. Thus, compared to Theorem A, we have the following
generalizations or improvements: (i). Generalize the moment condition of X ; (ii).
Consider much more general weights than Theorem A; (iii). Release the identical
distribution to stochastic domination.

Remark 3.2 The constant weights satisfying (3.11) and (3.12) have been considered by
some researchers. For example, Wu et al. [34] investigated the complete convergence
for END random variables with the same weights. However, we consider a much more
general WOD setting and the scopes of α and p are released from 1/p ≤ α < 1 and
p ≥ 2 to 1/p ≤ α ≤ 1 and p ≥ 1. Thus, our results extend the results of Wu et
al. [34] as well.

Taking α p = 2 in Theorem 3.3, we can get the following strong law of large
numbers for weighted sums of WOD random variables by Borel–Cantelli lemma.

Corollary 3.1 Let (A.1) hold and 0 < α ≤ 1. Assume that E |X |2/α < ∞ and (A.2) or
(A.3) holds. Let {ani , 1 ≤ i ≤ n, n ≥ 1} have the same setting as those in Theorem 3.3.
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Fig. 5 Boxplots of fn(x) − f (x) with x = 0.5, f (x) = sin x and θ = 0.8

Then

n∑

i=1

ani (Xi − EXi ) → 0 a.s., n → ∞.

4 An application in nonparametric regressionmodels

4.1 Theoretical result

In what follows, we will apply the result of Theorem 3.3 to a nonparametric regres-
sion model and investigate the complete consistency for the nonparametric regression
estimator based on WOD errors.

Consider the following nonparametric regression model:

Yni = f (xni ) + εni , i = 1, 2, . . . , n, n ≥ 1, (4.1)

where xni are known fixed design points from a given compact set A ⊂ R
m for some

m ≥ 1, f (·) is an unknown regression function defined on A and εni are random
errors. Assume that for each n ≥ 1, (εn1, εn2, . . . , εnn) have the same distribution as
(ε1, ε2, . . . , εn). As an estimator of f (·), the following weighted regression estimator
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Fig. 6 Boxplots of fn(x) − f (x) with x = 0.75, f (x) = sin x and θ = 0.8

will be considered:

fn(x) =
n∑

i=1

Wni (x)Yni , x ∈ A ⊂ R
m, (4.2)

where Wni (x) = Wni (x; xn1, xn2, . . . , xnn), i = 1, 2, . . . , n are the weight functions.
The above estimator with constant weights was first proposed by Stone [22], and

adapted by Georgiev [7] in the fixed design case. Many authors have obtained many
interesting results in recent years. For example,Wang et al. [28] discussed the complete
convergence for weighted sums of arrays of rowwise WOD random variables in some
special cases and gave its applications to nonparametric regression model; Wang et al.
[29] obtained the complete consistency for the estimator of nonparametric regression
models based on END errors; Wu et al. [31] studied a result on complete consistency
for the weighted estimator in a nonparametric regression model based on ρ∗-mixing
errors; Wu et al. [33] investigated a result on complete consistency for the estimator
in a nonparametric regression model based on array of rowwise negatively associated
(NA, for short) random errors; Chen et al. [3] established the complete consistency for
the weighted estimator in a nonparametric regression model based on asymptotically
negatively associated (ANA, for short) random errors; Yan [35] provided some suf-
ficient conditions for the complete convergence for maximal weighted sums of END
random variables and gave some applications to a nonparametric regression model.
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Fig. 7 Boxplots of fn(x) − f (x) with x = 0.25, f (x) = −x3 and θ = 0.4

In this section, let c( f ) denote all continuity points of the function f on A. The
symbol ‖X‖ stands for the Euclidean norm. For any fixed point x ∈ A, the following
assumptions on weight functions Wni (x) will be used:

(H1)
n∑

i=1
Wni (x) → 1 as n → ∞;

(H2)
n∑

i=1
|Wni (x)| ≤ C < ∞ for all n;

(H3)
n∑

i=1
|Wni (x)| · | f (xni ) − f (x)|I (‖xni − x‖ > a) → 0 as n → ∞ for all a > 0.

Based on the assumptions above, we can get the following result on complete
consistency for the nonparametric regression estimator fn(x).

Theorem 4.1 Let p ≥ 2 and {εn, n ≥ 1} be a sequence of zero mean WOD ran-
dom errors which is stochastically dominated by a random error X with dominating
coefficients g(n), n ≥ 1. Assume that one of the following conditions holds.

(I) Let g(x) be a nondecreasing positive function on [0,∞), such that g(x)/xτ ↓ for
some 0 < τ < 1.

(II) There exists a nondecreasing positive function h(x) on [0,∞), such that h(x)/x ↓
and

∑∞
n=1 g(n)/(nhγ (n)) < ∞ for some γ > 0.
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Fig. 8 Boxplots of fn(x) − f (x) with x = 0.5, f (x) = −x3 and θ = 0.4

Suppose that conditions (H1) − (H3) hold. If

max
1≤i≤n

|Wni (x)| = O(n−2/p) (4.3)

and E |X |p < ∞, then for any x ∈ c( f ),

fn(x) → f (x) completely, as n → ∞. (4.4)

Proof For any a > 0 and x ∈ c( f ), it follows from (4.1) and (4.2) that

|E fn(x) − f (x)| ≤
n∑

i=1

|Wni (x)| · | f (xni ) − f (x)|I (‖xni − x‖ ≤ a)

+
n∑

i=1

|Wni (x)| · | f (xni ) − f (x)|I (‖xni − x‖ > a)

+| f (x)| ·
∣∣∣∣∣

n∑

i=1

Wni (x) − 1

∣∣∣∣∣ . (4.5)
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Fig. 9 Boxplots of fn(x) − f (x) with x = 0.75, f (x) = −x3 and θ = 0.4

Since x ∈ c( f ), for any δ > 0, there exists a θ > 0, such that | f (x ′) − f (x)| < δ

when ‖x ′ − x‖ < θ . Setting 0 < a < θ in (4.5), we have

|E fn(x) − f (x)| ≤ δ

n∑

i=1

|Wni (x)| +
n∑

i=1

|Wni (x)| · | f (xni )

− f (x)|I (‖xni − x‖ > a)

+| f (x)| ·
∣∣∣∣∣

n∑

i=1

Wni (x) − 1

∣∣∣∣∣ .

Therefore by assumptions (H1) − (H3) and the arbitrariness of δ > 0, we have

lim
n→∞ E fn(x) = f (x). (4.6)

In view of (4.6), to prove (4.4), we only need to verify that for all ε > 0,

∞∑

n=1

P (| fn(x) − E fn(x)| > ε) =
∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni (x)εi

∣∣∣∣∣ > ε

)
< ∞. (4.7)
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Fig. 10 Boxplots of fn(x) − f (x) with x = 0.25, f (x) = sin x and θ = 0.4

We have by (4.3) and (H2) that

n∑

i=1

W 2
ni (x) ≤ max

1≤i≤n
|Wni (x)| ·

n∑

i=1

|Wni (x)| ≤ Cn−2/p.

Applying Theorem 3.3 with Xi = εi , ani = Wni (x) and α = 2/p, we obtain (4.7)
immediately, and thus (4.4) holds.

The proof is completed. �
Remark 4.1 Compared with Theorem 1.1 in Zhang et al. [37], condition (I) is similar
to the condition on the dominating coefficients g(n) in Theorem 1.1 in Zhang et al.
[37]. However, as it is stated in Chen and Sung [2], condition (II) is not comparable
to condition (I). Thus, we consider a wider assumption on g(n) than that in Zhang et
al. [37]. Therefore, Theorem 4.1 extends and improves Theorem 1.1 in Zhang et al.
[37] to some extent.

4.2 Numerical simulation

In this section, we will illustrate that the designed assumptions (H1) − (H3) and (4.3)
are satisfied for the nearest neighbor weights. According to Theorem 4.1, it is easy
to see that the estimator fn(x) converges to f (x) completely theoretically. Now we
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Fig. 11 Boxplots of fn(x) − f (x) with x = 0.5, f (x) = sin x and θ = 0.4

will show the numerical performance of fn(x). First, let us recall the concept of the
nearest neighbor weight function as follows.

Put A = [0, 1] and let xni = i/n, i = 1, 2, . . . , n. For any x ∈ A, we rewrite

|xn1 − x |, |xn2 − x |, . . . , |xnn − x |

as follows:

|xn,R1(x) − x | ≤ |xn,R2(x) − x | ≤ · · · ≤ |xn,Rn(x) − x |,

if |xnk − x | = |xnj − x |, then |xnk − x | is located before |xnj − x | when xnk < xnj .
Let 1 ≤ kn ≤ n, the nearest neighbor weight function is defined as follows:

Wni (x) =
{
1/kn, i f |xni − x | ≤ |xn,Rkn (x) − x |,
0, otherwise.
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Fig. 12 Boxplots of fn(x) − f (x) with x = 0.75, f (x) = sin x and θ = 0.4

Then, we will generate the data. For any fixed n ≥ 3, let normal random vector
(ε1, ε2, . . . , εn) ∼ Nn(0,�), where 0 represents zero vector and

� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + θ2 −θ 0 · · · 0 0 0
−θ 1 + θ2 −θ · · · 0 0 0
0 −θ 1 + θ2 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 1 + θ2 −θ 0
0 0 0 · · · −θ 1 + θ2 −θ

0 0 0 · · · 0 −θ 1 + θ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,

where 0 < θ < 1. By Joag-Dev and Proschan [11], it can be seen that (ε1, ε2, . . . , εn)
is a NA vector for each n ≥ 3 with finite moment of any order, and thus is a WOD
vector satisfying condition (I) and (II). We choose casually that θ = 0.8 and θ = 0.4,
p = 3, kn = �n2/3�, where the �x� stands for the integer part of x . As is stated
in Wang et al. [28], the assumptions (H1) − (H3) hold true, besides the condition
(4.3) is easy to be checked. Taking the points x = 0.25, 0.5, 0.75 and the sample
sizes n as n = 100, 400, 800, 1200 respectively, we use Matlab software to compute
fn(x) − f (x) with f (x) = −x3 and f (x) = sin x for 500 times and obtain the
boxplots of fn(x) − f (x) in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. We show the
mean square error (MSE, for short) of fn(x) in Tables 1 and 2.
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When θ = 0.8, Figs. 1, 2 and 3 are the boxplots of fn(x) − f (x) for f (x) = −x3

and Figs. 4, 5 and 6 are the boxplots of fn(x) − f (x) for f (x) = sin x with x =
0.25, 0.5, 0.75, respectively. We can find that no matter f (x) = −x3 or f (x) = sin x ,
for x = 0.25, 0.5, 0.75, the differences fn(x)− f (x) fluctuate to zero and the variation
range decreases markedly as the sample n increases. Table 1 reflects precisely that the
MSE of fn(x) decreases markedly as n increases. These simulation results agree with
the theoretical result.

When θ = 0.4, Figs. 7, 8 and 9 are the boxplots of fn(x) − f (x) for f (x) = −x3

and Figs. 10, 11 and 12 are the boxplots of fn(x) − f (x) for f (x) = sin x with
x = 0.25, 0.5, 0.75, respectively. We can obtain the same conclusions as those when
θ = 0.8. Table 2 also reflects precisely that the MSE of fn(x) decreases markedly as
n increases. These simulation results agree with the theoretical result again.

5 Conclusions

The goal of this paper is to establish the complete convergence for WOD random vari-
ables. By using the Rosenthal-type moment inequalities and inequalities for stochastic
domination, we extend the results of Chen and Sung [2] and further investigate the
complete consistency for the estimator in nonparametric regression models based on
WOD errors. Finally, the simulation study is provided to assess the finite sample
performance of the theoretical results.

For further direction of research, it is interesting to consider real data analysis in
financial markets. Besides, the theoretical results presented in this paper can also be a
useful tool when establishing the complete and strong consistency for the estimators of
semiparametric regression models based on various types of dependent errors, which
was proposed by Engle et al. [5].
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