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Abstract
We study linear pencils of curves on normal surface singularities. Using the minimal
good resolution of the pencil, we describe the topological type of generic elements of
the pencil and characterize the behaviour of special elements. Furthermore, we show
that the critical locus associated to the pencil is linked to the special elements. This
gives a decomposition of the critical locus through the minimal good resolution and
as a consequence, some information on the topological type of the critical locus.

Keywords Normal surface singularity · Pencil · Generic fiber · Special fiber · Critical
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1 Introduction

Let (Z , z) be a complex analytic normal surface, and let π : (Z , z) → (C2, 0) be
a finite complex analytic morphism germ. We choose coordinates (u, v) in (C2, 0)
and denote f := u ◦ π and g := v ◦ π . We consider the meromorphic function
h := f /g defined in a punctured neighbourhood V of z in Z . It can be seen as a map
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692 F. Delgado, H. Maugendre

h : V → CP
1 defined by h(x) := ( f (x) : g(x)). For w = (w1 : w2) ∈ CP

1, the
closure of h−1(w) defines the curve w2 f − w1g = 0 on the surface (Z , z). The set
� := {w2 f − w1g | (w1 : w2) ∈ CP

1} is the pencil defined by f and g. Let denote
φw the element of the pencil � equal to w2 f − w1g. Its (non reduced) zero locus,
denoted by �w, is called the fiber defined by φw. Assume (Z , z) ⊂ (Cn, 0), then the
topological type of φw is the homeomorphism class of the pair (Bε ∩ Z , Bε ∩φ−1

w (0))
where Bε is the ball of C

n centered at z of radius ε small enough and the components
of φ−1

w (0) are pondered by the multiplicity of the irreducible components of φw. If φw

and φw′ have the same topological type, we also say that�w and�w′ are topologically
equivalent.

Such linear families of curves have been studied independently and through differ-
ent approaches for (Z , z) equal to (C2, 0) in [8,11,16]. In the general case (it means
(Z , z) is the germ of a normal complex analytic surface which is not smooth any-
more), Lê and Bondil give in [3] a definition of general elements of the pencil which
are characterized by the minimality of their Milnor number. In [2] Bondil gives an
algebraic μ-constant theorem for linear families of plane curves. Other results have
been obtained in the case where π is the restriction to (Z , z) of a linear projection of
(Cn, 0) onto (C2, 0) (see [1,4,18]). At last, the topology of the morphism π has been
studied in [13,14]. In [13], the authors define rational quotients which are topological
invariants of (π, u, v) and give different ways to compute them. In [14], F. Michel
presents another proof of the topological invariance of this set of rational numbers and
besides, she gives a decomposition of the critical locus of π in bunches linked to the
set of invariants.

Let ρ : (X , E) → (Z , z) be a good resolution of the singularity (Z , z). It is a
resolution of the singularity (Z , z) such that the exceptional divisor is a unionof smooth
projective curves with normal crossings. In particular three irreducible components of
the exceptional divisor do notmeet at the same point. The lifting h◦ρ is ameromorphic
function defined in a suitable neighbourhood of E in X but in a finite set of points.

A good resolution ρ of the pencil � is a good resolution of the singularity (Z , z) in
which h ◦ ρ is a morphism. A good resolution of the pencil � is said to be minimal if
and only if by the contraction of any rational component of self-intersection -1 of the
exceptional divisor we do not obtain a good resolution of � anymore. We will see in
Sect. 2 that there exists a unique minimal good resolution of �.

Let ρ : (Y , E) → (Z , z) be the minimal good resolution of the pencil �.

Definition An irreducible component Eα of E is called dicritical if the restriction of
̂h = h ◦ ρ to Eα is not constant. Let denote D the union of the dicritical components.

Definition We say that a subset 	 of E is a special zone if it is, either the closure of
a connected component of E \ D or a critical point of the restriction of̂h to D. In the
last case, P can be either a smooth point of D or a singular point of D. Let SZ(�)

denote the (finite) set of special zones.

Notice that, if 	 is a special zone then̂h|	 is constant.

Definition The set of special values of � is constituted of the values ̂h(	) for 	 ∈
SZ(�). A fiber associated to a special value is called a special fiber of �.
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Pencils and critical loci on normal surfaces 693

The other values ofCP
1 are called generic values for the pencil�. Afiber associated

to a generic value is called a generic fiber of �.

Notice that, a change of the set of generators ( f , g) of the pencil � is reflected by a
linear change of coordinates in CP

1 (a projectivity). Therefore, neither the definition
of a good resolution of the pencil nor the set of special zones depend on the pair of
functions of � chosen. Obviously, the concrete set of special values depends on the
pair of functions ( f , g).

We prove the following results.

Theorem 1 Let w,w′ be generic values for the pencil �, then the fibers �w and �w′
have the same topological type.

Moreover, if e ∈ CP
1 is a special value for the pencil �, then the fibers �w and

�e do not have the same topological type.

The aboveDefinitions and Theorem generalize some of the results contained in [11]
(see e.g. Theorem 4.1) where the authors study pencils on C

2. Moreover, we prove
the following characterization of the special fibers in terms of the minimal resolution,
which extends to the case of normal surfaces the second item of Theorems 1, 2, 3 in
[8] (there for pencils defined on C

2).

Theorem 2 Let ρ : (Y , E) → (Z , z) be the minimal good resolution of the pencil �,
	 ∈ SZ(�), and let e ∈ CP

1. Then, the strict transform of �e by ρ intersects 	 if
and only if �e is special and̂h(	) = e.

In a second part we are interested in understanding the behaviour of the critical
locus of the map π . We denote by Iz( , ) the local intersection multiplicity at z (see
Sect. 2.1). The following result generalizes the third item of Theorems 1, 2, 3 of [8].

Theorem 3 Let ρ : (Y , E) → (Z , z) be the minimal good resolution of �. For each
element 	 ∈ SZ(�) there exists an irreducible component of the critical locus C(π)

of π such that its strict transform by ρ intersects 	.
Moreover, for each branch 
 of C(π) there exists 	 ∈ SZ(�) such that the strict

transform of 
 by ρ intersects 	 and the value e = ̂h(	) is the unique one that
satisfies Iz(φe, 
) > Iz(φw, 
) for all w �= e.

A consequence of these results is Theorem 4:

Theorem 4 Let�e be a fiber of�. Then the three following properties are equivalent:

1. �e is a special fiber of �.
2. Iz(φe,C(π)) > minφ∈� Iz(φ,C(π)).
3. μ(φe) > minφ∈�μ(φ).

Remark Let ( f , g) be a pair of linear forms in such a way that π is a generic plane
projection of (Z , z) in the sense of Teissier (see [20]). Then � is a pencil of hyper-
plane sections of (Z , z) and the generic members of the pencil are exactly the generic
hyperplane sections among them. So, the pencil is resolved by the normalized blow-up
ψ : (X , E) → (Z , z) of the maximal ideal and the minimal good resolution of � is
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694 F. Delgado, H. Maugendre

just the minimal good resolution of (Z , z) which factors through ψ . In this case, the
branches of the critical locus C(π) (i.e. the polar curve) appear as curvettas in the
Nash modification N : (X ′, E ′) → (Z , z) of the surface. Thus, Theorem 3 is strongly
related with the configuration of the irreducible components of E and E ′. In a more
general context, if g is a generic linear form with respect to f , then the localization
of the branches of the polar curve is related with the relative Nash transform of f in
the same way.

The organization of the paper is as follows. In Sect. 2, once we have set some
preliminary results, we construct and study the minimal good resolution of �. In
Sect. 3, we prove Theorems 1 and 2 and in Sect. 4 we prove Theorems 3 and 4. To
finish, in Sect. 5, we present some examples.

2 Preliminary results and notations

Let (Z , z) be a normal surface singularity and let ρ : (X , E) → (Z , z) be a good
resolution of it. We denote {Eα, α ∈ G(ρ)} the set of irreducible components of the
exceptional divisor E . For α ∈ G(ρ) and for each holomorphic function f : (Z , z) →
(C, 0) let να( f )denote the vanishing order of f = f ◦ρ : X → C along the irreducible
exceptional curve Eα (να is just the divisorial valuation defined by Eα). The divisor
( f ) defined by f = f ◦ ρ on X could be written as

( f ) = ( ˜f ) +
∑

α∈G(ρ)

να( f )Eα ,

where the local part ( ˜f ) is the strict transform of the germ { f = 0}. For each β ∈ G(ρ)

one has the known Mumford formula (see [15]):

( f ) · Eβ = ( ˜f ) · Eβ +
∑

α

να( f )(Eα · Eβ) = 0 . (1)

(Here “·” stands for the intersection form on the smooth surface X ). Notice that the
intersection matrix (Eα · Eβ) is negative definite and so {να( f )} is the unique solution
of the linear system defined by Eq. (1).

2.1 Intersectionmultiplicity

Let C ⊂ (Z , z) be an irreducible germ of curve in (Z , z) and let f ∈ OZ ,z be a
function. Let ϕ : (C, 0) → (C, z) be a parametrization (uniformization) of (C, z),
then we define the intersection multiplicity of { f = 0} ⊂ Z and C at z ∈ C as
Iz( f ,C) = ordτ ( f ◦ϕ(τ)) (τ is the parameter inC). Notice that, forC fixed, Iz(−,C)

is the valuation definedby the irreducible germC . Obviously the above definition could
be extended by linearity to define the intersection multiplicity of a f with a (local)
divisor

∑k
i=1 niCi as Iz( f ,

∑

niCi ) = ∑

ni Iz( f ,Ci ).
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Pencils and critical loci on normal surfaces 695

Let ρ : (X , E) → (Z , z) be a good resolution of the normal singularity (Z , z) and
let E = ⋃

α∈G(ρ) Eα be the exceptional divisor. Let ˜C := ρ−1(C \ {z}) be the strict
transform of C by ρ. Then (see [15])

Iz( f ,C) = ( f ) · ˜C = ( ˜f ) · ˜C +
∑

α∈G(ρ)

να( f )(Eα · ˜C) .

Let us take now a good resolution ρ such that ˜C is smooth and transversal to E at
a smooth point P and also with the condition ( ˜f ) · ˜C = 0. This resolution could be
obtained by a finite number of blowing ups of points starting on (say) theminimal good
resolution of (Z , z). Let α(C) ∈ G(ρ) be such that Eα(C) is the (unique) component
of E with ˜C ∩ Eα(C) = P . Then one has Iz( f ,C) = να(C)( f ) = IP ( f ◦ ρ, ˜C). Here
IP (−,−) denotes the usual local intersection multiplicity of two germs at the smooth
local surface (X , P). Notice that ˜C is a curvetta at the point P ∈ Eα(C) (it means ˜C
is an irreducible smooth curve germ transverse to Eα(C) at P), ˜C is the normalization
of C and ρ|

˜C : ˜C → C is a uniformization of C .
Let f , g be analytic functions on (Z , z) and let � = 〈 f , g〉 = {φw = w2 f −

w1g | w = (w1 : w2) ∈ CP
1} be the pencil of analytic functions defined by f and

g. As in the case of plane branches (see [7]), one has the following easy and useful
result:

Proposition 1 Let C ⊂ (Z , z) be an irreducible germ of curve. Then there exists
a unique w0 ∈ CP

1 such that Iz(φw,C) is constant for all w ∈ CP
1 \ {w0} and

Iz(φw0 ,C) > Iz(φw,C).

Proof The statement is trivial taking into account that Iz(φ,C) is the order of the
series φ ◦ ϕ(τ). ��

2.2 Resolution of pencils

Let π = ( f , g) : (Z , z) → (C2, 0) be a finite complex analytic morphism germ,
let � = 〈 f , g〉 = {w2 f − w1g | w = (w1 : w2) ∈ CP

1} be the pencil of analytic
functions defined by f and g and let h = ( f /g) : V → CP

1 be the meromorphic
function defined by f /g in a suitable punctured neighbourhood of z ∈ Z .

A good resolution of ( f , g) is a good resolution ρ : (X , E) → (Z , z) of (Z , z)
such that the (reduced) divisor |( f g ◦ ρ)−1(0)| has normal crossings. Starting on the
minimal good resolution of (Z , z) it can be produced by a sequence of blowing-ups of
points in the corresponding smooth surface (resolving the singularities of the reduced
total transform of the curve { f g = 0}).

Let ρ : (X , E) → (Z , z) be a good resolution of (Z , z) and Eα an irreducible
component of E . The Hironaka quotient of ( f , g) on Eα is the following rational
number:

q(Eα) := να( f )

να(g)
.
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696 F. Delgado, H. Maugendre

If q(Eα) > 1 (resp. q(Eα) < 1) then the component Eα belongs to the zero divisor
(resp. pole divisor) of h ◦ ρ. Note that if Eα is a dicritical component of E then
q(Eα) = 1. However, there may exist irreducible components Eα of E which are
not dicritical and for which q(Eα) = 1, namely all the components for which the
restriction of h ◦ ρ on Eα is constant (and so is not dicritical) and it’s neither zero nor
infinity.

Proposition 2 There exists a (unique) minimal good resolution of �.

Proof Let ρ′ : (Y ′, E ′) → (Z , z) be the minimal good resolution of ( f , g). The
indetermination points of h ◦ ρ′ are the intersection points of irreducible components
Eα and Eβ of the total transform |( f g ◦ ρ′)−1(0)| for which one has q(Eα) > 1
and q(Eβ) < 1. Here, one of the components, Eα or Eβ , is allowed to be the strict
transform˜ξ of a branch ξ of { f = 0} (in such a case we put q(˜ξ) > 1) or {g = 0}
(respectively q(˜ξ) < 1). Let P be such an indetermination point. By blowing-up at
P one creates a divisor Eη of genus 0 and one has that νη( f ) = να( f ) + νβ( f )
and νη(g) = να(g) + νβ(g). (If Eβ is a branch ξ of { f = 0} of multiplicity r , we
have νβ( f ) = r and νβ(g) = 0. We use similar conventions for the case in which
Eβ is a branch of {g = 0}.) If q(Eη) = 1, then neither Eα ∩ Eη nor Eβ ∩ Eη is an
indetermination point and moreover Eη is a dicritical divisor. Else, if q(Eη) > 1 (resp.
q(Eη) < 1) then Eβ ∩ Eη (resp. Eα ∩ Eη) is an indetermination point.

As q(Eα) > 1 and q(Eβ) < 1 we have q(Eα) > q(Eη) > q(Eβ). So, by iterating
the process, after a finite number of blow-ups there does not subsist indetermination
points and so we have constructed a good resolution ρ′′ : (Y ′′, E ′′) → (Z , z) of �.

Now, to obtain a minimal good resolution of �, we have to contract some rational
components of self-intersection −1 of the exceptional divisor (see Theorem 5.9 of
[9]). By the above construction the new components (specially the last one which
is dicritical and with self-intersection −1) can not be contracted because in such a
case we have an indetermination point. As a consequence a minimal good resolution
of � is obtained from ρ′′ by iterated contractions of the rational component of self-
intersection−1 of the exceptional divisor which are not dicritical. Uniqueness follows
as in the case of the usual minimal resolution (see for example [5] th. 6.2 p. 86). ��

Let consider ρ : (Y , E) → (Z , z) the minimal good resolution of the pencil �

and ̂h = h ◦ ρ. For w ∈ CP
1 let ̂h−1(w) = ˜�w be the strict transform of the fiber

�w. For a dicritical component D of E , we will denote by deg(̂h|D) the degree of
the restriction of̂h to D,̂h|D : D → CP

1. Let recall that D denotes the union of the
dicritical components of E .

Proposition 3 Let w be a generic value for the pencil �, then:

(a) The resolution ρ is a good resolution of φw.
(b) ˜�w intersects E only at smooth points of D.
(c) If D ⊂ D is a dicritical component, then the number of intersection points of ˜�w

and D is equal to deg(̂h|D).

Moreover, the minimal good resolution of � is the minimal good resolution of any
pair of generic elements of �.
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Pencils and critical loci on normal surfaces 697

Proof By definition of a generic value, ˜�w meets the exceptional divisor E only at
smooth points of D. Let D ⊂ D be a dicritical component and P a point of ˜�w ∩ D.
Then, as P is not a critical point for̂h, ˜�w is smooth and transversal to D at P . This
implies also that

deg (̂h|D) =
∑

P∈D
IP (˜φw, D) .

So, one has deg(̂h|D) = #(˜�w ∩ D).
Now, let w′ be another generic value. Notice that the strict transforms of ˜�w and

�̃w′ intersect in the same number of points each dicritical divisor D, so both fibers
have the same number of branches, just

∑

D∈D deg(̂h|D). Moreover, ˜�w and �̃w′ do
not intersect D at the same points because ̂h is a morphism. As a consequence the
minimal good resolution of � is a good resolution of any pair of generic fibers. It
leaves to show that it is the minimal one.

In the minimal good resolution of � all the components of the exceptional divisor
that can be contracted (i.e. those with self-intersection−1) are dicritical (see the proof
of Proposition 2). But contracting a dicritical component we create an indetermination
point. Consequently, the minimal good resolution of� is the minimal good resolution
of the pair (φw, φw′). ��

2.3 Hironaka quotients

In 2.2 we have defined the Hironaka quotient of ( f , g) on an irreducible component
Eα of the exceptional divisor of a good resolution of (Z , z). In the same way we can
define the Hironaka quotient of (φw, φw′) on Eα for any pair (φw, φw′) of elements
of � = 〈 f , g〉. It is the rational number

qw
w′(Eα) := να(φw)

να(φw′)
.

In this way q(Eα) = q0∞(Eα) (here 0 = (0 : 1) ∈ CP
1, ∞ = (1 : 0) ∈ CP

1) but to
simplify the notations we will still write q(Eα) for the Hironaka quotient of ( f , g).

Notice that an irreducible component Eα of E is dicritical if and only if qw
w′(Eα) =

1 for any pair (w,w′) of elements of CP
1. Indeed, if for some (w,w′) we have

qw
w′(Eα) > 1 (resp. qw

w′(Eα) < 1) then Eα lies in the zero locus of φw (resp. φw′ ). So,
Eα is not dicritical. Conversely, if Eα is not dicritical then there exists w such that
qw
w′(Eα) > 1, for any w′ �= w.
As a consequence of Proposition 3 we have the following result:

Corollary 1 The Hironaka quotient of any pair of generic elements of � associated to
any irreducible component of the exceptional divisor of the minimal good resolution
of � is equal to one.

Proof Let w,w′ ∈ CP
1 be a pair of generic values of �. If D ⊂ D is a dicritical

component, then (˜φw) · D = (˜φw′) · D = deg(̂h|D) (see Proposition 3). On the other
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698 F. Delgado, H. Maugendre

hand, if Eβ is a non-dicritical component of E then one has (˜φw)·Eβ = (˜φw′)·Eβ = 0.
Now, the system of linear equations given by theMumford formula (1) at the beginning
of Sect. 2 is the same for φw and φw′ and so the solutions {να(φw)} and {να(φw′)} are
also the same. Thus, να(φw) = να(φw′) and qw

w′(Eα) = 1 for any α ∈ G(ρ). ��
Remark Let Eα be a non-dicritical component of the exceptional divisor of theminimal
good resolution of the pencil� and letC ⊂ (Z , z) be an irreducible curve such that its
strict transform ˜C is a curvetta at the point P of Eα . Assume that P = ˜C∩Eα does not
belong to the strict transform of any fiber � of �. Then, by Proposition 1, there exists
a unique e ∈ CP

1 such that Iz(φw,C) = να(φw) is constant for all w ∈ CP
1\{e} and

να(φe) > να(φw). Moreover, the above value e ∈ CP
1 must be a special value of �.

Let b : (ZI , EI ) → (Z , z) be the normalized blow-up of the ideal I = ( f , g).
In [2,3] an element φ ∈ I is defined to be general if it is superficial (it means that
its divisorial value is minimal for each irreducible component of EI ) and the strict
transform of � = {φ = 0} by b is smooth and transverse to the exceptional divisor at
smooth points. (See definition 2.1 of [2].) Proposition 2.2 of [2] allows to characterize
general elements in terms of any good resolution of ZI , in particular one can use a
good resolution ρ : (X , E) → (Z , z) of the pencil �. In these terms one has that
φ ∈ � is general if for each α ∈ G(ρ)

να(φ) = να(I ) = min
ψ∈I {να(ψ)} = min

ψ∈�
{να(ψ)}

and, moreover, the strict transform of� by ρ is smooth and transversal to E . By using
the definition of the Milnor number of a germ of curve given in [6], from Theorems 1
and 2 of [3] one has that φ ∈ � is general if and only if

μ(φ) = μ(I ) := min
ψ∈I {μ(ψ)} = min

ψ∈�
{μ(ψ)} .

Using Proposition 3 and the above results about Hironaka quotients we have that
�w is a generic fiber if and only if φw is general. Moreover, one has also thatμ(φw) =
minφ∈�{μ(φ)} if and only if φw is generic, and therefore μ(φw0) > minφ∈�{μ(φ)} if
and only if w0 is a special value of �. This is the equivalence of 1 and 3 in Theorem
4.

3 Topology of special fibers

3.1 Dual graph and topology

Assume (Z , z) ⊂ (Cn, 0) and let M := Z ∩ S2n−1
ε where S2n−1

ε is the boundary of
the small ball Bε of radius ε of C

n centered at z. The manifold M is called the link
(see [15]) of the singularity (Z , z).

Let φw be an element of � and Kφw := φ−1
w (0) ∩ M . The multilink Kφw of φw is

the oriented link Kφw weighted by the multiplicities of the irreducible components of
φw. The topological type of φw is given by the isotopy class ofKφw (see [14] Sect. 5).

123



Pencils and critical loci on normal surfaces 699

Let ρw : (X , E) → (Z , z) be the minimal good resolution of (Z , z) such that the
divisor (φw ◦ ρw) has normal crossings. From Neumann (see [17]), the topology of
φw determines the minimal good resolution ρw, where the irreducible components
of the strict transform of �w by ρw are weighted with their multiplicity and the
irreducible components of the exceptional divisor by their self-intersection and genus.
Conversely, (see [13,21]) as the intersection matrix (Eα · Eβ)α,β∈G(ρw) is negative
definite (so invertible) this implies that the linear system associated to the Mumford
formulas (1) admits a unique solution, namely the set {να(φw), α ∈ G(ρw)}. As a
direct consequence, the divisor (φw) (see Sect. 2) is completely determined on X from
the set {(˜φw) · Eα | α ∈ G(ρw)} and so from the minimal good resolution ρw.

Let ρ : (X , E) → (Z , z) be a good resolution of the normal surface singularity
(Z , z) and let E = ⋃

α∈G(ρ) Eα be its exceptional divisor. It is useful to encode the
information of the resolution ρ by means of the so called dual graph of ρ. The set
of vertices of this graph is the set G(ρ), each vertex α is weighted by (α, E2

α, g(Eα))

where E2
α is the self-intersection of Eα , and g(Eα) its genus. An intersection point

between Eα and Eβ is represented by an edge linking the vertices α and β.
If we take ρ as a good resolution of the local curve C = ∑�

i=1 niCi (in particular if
C = {ϕ = 0} for some function ϕ) one adds an arrow for each irreducible component
Ci of C weighted by the multiplicity ni . In the case in which we deal with a good
resolution of a pair of functions ( f , g), in the graph of { f g = 0} one marks with
different colors the arrows corresponding to branches of { f = 0} and those of {g = 0}
(another possibility is to use different kinds ofmarks, say for example arrows for f and
stars for g). The sharp extremities of the arrows are considered as somekind of special
vertices of the graph. The notations G(ρ), G(ρ, ϕ) and G(ρ, f , g) will be used for the
dual graph in each situation. Note that a good resolution ρ of the pencil � = 〈 f , g〉
is encoded by the dual graph G(ρ, φw, φw′) for a pair of generic functions (φw, φw′).

Following Neumann, one has:
Statement The fibers �w and �w′ are topologically equivalent if and only if the

graphs G(ρw, φw) and G(ρw′ , φw′) are the same.
Let ρ : (X , E) → (Z , z) be a good resolution of ( f , g) and let Eα be an irreducible

component of E . Let
◦
Eα denote the set of smooth points of Eα in the reduced total

transform |( f g ◦ ρ)−1(0)|. An irreducible component Eα of E (or its corresponding

vertex α in G(ρ, f , g)) is a nodal component if χ(
◦
Eα) < 0, where χ is the Euler

characteristic. Note that χ(
◦
Eα) is equal to 2 − 2g(Eα) − v(α), where v(α) is the

number of intersection points of Eα with other components of the total transform of
{ f g = 0}. Thus, the nodal components are all the rational ones that meet at least
three other components of the total transform and all the non-rational irreducible
components. We say that the irreducible component Eα (or its corresponding vertex

in G(ρ, f , g)) is an end when χ(
◦
Eα) = 1. Obviously Eα is an end if and only if Eα

is rational and meets exactly one other component of the exceptional divisor.
The neighbouring-set of Eα in X is the set constituted of Eα union with the irre-

ducible components of the exceptional divisor and of the strict transform of { f g = 0}
that intersect Eα . We denote it Ng(Eα), thus Ng(Eα) = ⋃

Eβ∩Eα �=∅ Eβ .
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A chain of length r , r ≥ 3, in E is a finite set of irreducible components
{Eα1 , . . . , Eαr } such that, for 2 ≤ i ≤ r − 1:

χ(
◦
Eαi ) = 0 and Ng(Eαi ) = Eαi−1 ∪ Eαi ∪ Eαi+1 .

Notice that
⋃r

i=1 Eαi is connected and the strict transform of { f g = 0} does not
intersect Eα2 ∪ . . . ∪ Eαr−1 .

A cycle of length r , r ≥ 3, in E is a chain such that Ng(Eαr ) = Eαr−1 ∪ Eαr ∪ Eα1 .
A cycle of length 2 in E is a connected part of E constituted by two irreducible

components Eα1 , Eα2 such that χ(
◦

Eα2) = 0 and Ng(Eα2) = Eα1 ∪ Eα2 .

Remark Above definitions and terminology could also be stated in terms of the dual
graph G(ρ, f , g) and, in some sense, the names used are more natural there. Here we
have chosen to do so in terms of the exceptional divisor for reasons of simplicity in
the next proofs, however the dual graph provides an essential and synthetic guide to
visualize all the elements involved in a simple way (see e.g. the examples in Sect. 5).

Nodal components are called rupture components in several papers as an analogy
to the terminology used in the case of plane curves. This is the case in [13] which is
an essential reference in Sect. 4.

Proposition 4 Let ρ : (X , E) → (Z , z) be a good resolution of ( f , g). Let Eα be
an irreducible component of the exceptional divisor such that the strict transform of
{ f g = 0} does not intersect Eα . Then there exists Eβ ⊂ Ng(Eα) such that q(Eβ) >

q(Eα) if and only if there exists Eγ ⊂ Ng(Eα) such that q(Eγ ) < q(Eα).
Moreover, if {Eα1 , . . . , Eαr }, r ≥ 3, is a chain, then one of the following facts is

true:

• q(Eαi ) < q(Eαi+1) for 1 ≤ i ≤ r − 1.
• q(Eαi ) > q(Eαi+1) for 1 ≤ i ≤ r − 1.
• q(Eαi ) is constant for 1 ≤ i ≤ r .

In particular, if Eαr is an end, then q(Eαi ) is constant for 1 ≤ i ≤ r and if
{Eα1 , . . . , Eαr } is a cycle, then q(Eαi ) is constant for 1 ≤ i ≤ r .

The result previously stated is a direct generalization of Proposition 1 and Corollary
1 of [8] and the proof is similar. However, here the framework and the notations are
slightly different. As Proposition 4 is also a key result in the remaining proofs of this
paper, we will give an outline of the proof here.

Proof By using Eq. (1) for the functions f and g with respect to the same divisor Eα

we have:
∑

Eη⊂Ng(Eα),η �=α

νη( f )(Eη · Eα) = (−E2
α) να( f )

∑

Eη⊂Ng(Eα),η �=α

νη(g)(Eη · Eα) = (−E2
α) να(g) .

(2)

Let suppose that q(Eη) ≥ q(Eα) for each Eη ⊂ Ng(Eα). This condition is equiv-
alent to: (Eη · Eα)νη( f )να(g) ≥ (Eη · Eα)να( f )νη(g) . As q(Eβ) > q(Eα), we
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obtain:

να(g)
∑

Eη⊂Ng(Eα),η �=α

(Eη · Eα)νη( f ) > να( f )
∑

Eη⊂Ng(Eα),η �=α

(Eη · Eα)νη(g) .

However, by using Eq. (2), one can see that both sides of the above inequality are
equal to (−E2

α)να( f )να(g) and thus, we reach a contradiction. ��
The other statements of the Proposition are easy consequences of this result.

3.2 Proof of Theorems 1 and 2

Let ρ : (Y , E) → (Z , z) be the minimal good resolution of the pencil �,̂h = h ◦ ρ.
Proposition 3, together with the above Statement, gives:

Corollary 2 Let w,w′ ∈ CP
1 be generic values of �. Then, the fibers �w and �w′

are topologically equivalent.

Thus, in order to finish the proof of Theorem 1, it only remains to show that a
special fiber �e is not topologically equivalent to a generic one.

Let 	 be an element of SZ(�) and e = ̂h(	). We denote by �e the fiber of �

associated to e and by ˜�e its strict transform by ρ. The remaining part of Theorems 1
and 2 are direct consequences of the three following lemmas, one for each possibility
of 	. Unless otherwise specified, w denotes a generic value of �.

Lemma 1 If e is the special value of � associated to a connected component 	 of
E\D, then the strict transform of �e by ρ intersects 	.

Proof Let assume that ˜�e ∩ 	 = ∅. Notice that, if we enlarge ρ (by additional blow-
ups) in order to have a good resolution of �e and �, then the connected set 	 remains
unchanged. So, we can assume that ρ is also a resolution of �e.

For any component Eα ⊂ 	, we have qew(Eα) > 1. Let Eβ be an irreducible
component of 	 such that qew(Eβ) ≥ qew(Eα) for any Eα ⊂ 	 and let 	′ be the
maximal connected subset of E such that Eβ ⊂ 	′ and (qew)|	′ is constant and equal
to qew(Eβ). Notice that Eβ ⊂ 	′ ⊂ 	 because qew(Eα) = 1 for any Eα such that
Eα ∩	 �= ∅ and Eα �⊂ 	 (in fact such an Eα is a dicritical divisor). Now, let Eγ ⊂ 	′
be such that Ng(Eγ ) �⊂ 	′. Let Eα ⊂ Ng(Eγ ) be such that Eα �⊂ 	′ then, one has
qew(Eβ) > qew(Eα) > 1 if Eα ⊂ 	 and qew(Eβ) > qew(Eα) = 1 otherwise. However,
being 	′ ⊂ 	, this contradicts Proposition 4 for the irreducible component Eγ .

As a consequence ˜�e ∩ 	 �= ∅ and so �e can not be topologically equivalent to
�w for a generic value w. ��
Lemma 2 If e is the special value of� associated to a smooth point P of the dicritical
component D ⊂ D which is a critical point of ̂h, then the strict transform ˜�e of �e

by ρ intersects D at P. Moreover, ˜�e cannot be smooth and transversal to D at P.

Proof Blowing-up at P we create a divisor Eα . Aŝh(P) = e, then P lies in the zero
locus of (φe/φw) ◦ ρ for any value w �= e and so we have qew(Eα) > 1. Moreover, as
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D is a dicritical component, then qew(D) = 1. Now, if we assume that P /∈ ˜�e then
one can use Proposition 4 for the new divisor Eα and reach a contradiction.

Assume that ˜�e is smooth and transversal to D at the point P . In this case we
can choose local coordinates {u, v} on Y at P in such a way that ˜�e = {v = 0} and
D = {u = 0} on a neighbourhood V of P . So, the function φe◦ρ is uav on V and, for a
generic valuew,φw◦ρ is ubη(u, v) for a unit η. Note that a = νD(φe) = νD(φw) = b,
being D dicritical, and so the expression of̂h at P is vη(u, v)−1. Now, the restriction
of (φe/φw) ◦ ρ to D is given locally at P as the map v �→ v. Thus, the point P is not
a critical (ramified) point of̂h|D : D → CP

1.
As a consequence, ˜�e is either not smooth or tangent to D at P , in particular �e

can not be topologically equivalent to �w for a generic value w. ��
Lemma 3 If e is the special value of � associated to an intersection point P between
two irreducible components of D, then the strict transform of �e by ρ intersects D at
P.

Proof Let P = Eα1 ∩ Eα2 such that Eα1 and Eα2 are dicritical components. Let us
assume that P /∈ ˜�e. Blowing-up at P we create a divisor Eα satisfying {Eα1 ∪
Eα ∪ Eα2} = Ng(Eα). As qew(Eα1) = qew(Eα2) = 1 and qew(Eα) > 1, we reach a
contradiction with Proposition 4.

As a consequence, �e is not resolved by ρ and so could not be topologically
equivalent to a generic fiber �w. ��

4 Behaviour of the critical locus

Let π = ( f , g) : (Z , z) → (C2, 0) be a finite complex analytic morphism. Following
Teissier [19], the critical locus of π is the analytic subspace defined by the zeroth
Fitting ideal F0(�π) of the module �π of relative differentials. The critical locus
can have embedded components, however, we are only interested in the components
of dimension one. We denote by C(π) the divisorial part of the critical set with its
non-reduced structure (i.e. with its multiplicity) and we refer to C(π) as the critical
locus of π . Note that, out of the singular point z ∈ Z ,C(π) is defined by the vanishing
of the jacobian determinant J ( f , g). For a different pair of functions f ′, g′ ∈ �, one
has J ( f ′, g′) = aJ ( f , g) for some a ∈ C

∗ (a is just the determinant of the linear
change between both basis). As a consequence, C(π) depends on � and not on the
pair of functions of � fixed to define the corresponding finite morphism. If we denote
by 
k , (resp. nk), k = 1, . . . , �, the irreducible components (branches) of C(π) (resp.
their multiplicity) then C(π) is the local (Weil) divisor C(π) = ∑�

k=1 nk
k .
Before proving Theorems 3 and 4, let first recall two results from [13,14].
Let (φw, φw′) be any pair of germs of the pencil�, let ρ′ : (Y ′, E ′) → (Z , z) be the

minimal good resolution of (φw, φw′), and let
(w,w′) := ⋃

k∈K 
k, K ⊂ {1, . . . , �}
denote the curve consisting of the irreducible components of C(π) which are not
components of {φwφw′ = 0}. Let Zr ⊂ E ′ be the set of points P ∈ E ′ such that, for
any irreducible exceptional component Eα with P ∈ Eα , one has qw

w′(Eα) = r . The
set Zr is called the r -zone of E ′. A connected component of Zr which contains at least
one nodal component is called an r -nodal zone. Then from [13] we have:

123



Pencils and critical loci on normal surfaces 703

Theorem A The set

{

Iz(φw, 
k)

Iz(φw′ , 
k)
, k ∈ K

}

is equal to the set of Hironaka quotients

of (φw, φw′) on the nodal components of E ′.

In [14] a repartition in bunches of the branches of 
(w,w′) is given as follows:

Theorem B The intersection of the strict transform of 
(w,w′) with a connected
component of Zr is not empty if and only if it is an r-nodal zone. Moreover, if 
 is an
irreducible component of 
(w,w′) whose strict transform intersects an r-nodal zone,

then
Iz(φw, 
)

Iz(φw′ , 
)
= r .

Remark Notice that a direct consequence of these theorems is the following: let P be
a point that does not belong to a Zr for any r , then the strict transform of 
(w,w′)
by ρ′ does not go through P . Indeed, in this case P is the intersection point between
two irreducible components of E ′ with distinct Hironaka quotient. Let suppose that
there exists an irreducible component 
 of 
(w,w′), such that its strict transform
intersects the exceptional diviosr at P . Then, blowing-up at P til the strict transform

of 
 intersects the exceptional divisor at a smooth point, we obtain, either
Iz(φw, 
)

Iz(φw′ , 
)
does not belong to the set of Hironaka quotients of (φw, φw′) on the nodal components

of E ′, which contradicts Theroem A, or
Iz(φw, 
)

Iz(φw′ , 
)
is equal to a Hironaka quotient

of (φw, φw′) but the strict transform of 
 intersects the exceptional divisor in a zone
which is not an r -nodal zone. This contradicts Theorem B.

The following Lemma treats the case of irreducible components of the critical locus
which are also components of a fiber.

Lemma 4 Let �e = ∑t
i=1 riξi , where ξ1, . . . , ξt are the irreducible components of

the fiber �e, ξi �= ξ j if i �= j . Then, for i = 1, . . . , t , one has ri > 1 if and only if ξi
is an irreducible component of C(π).

Proof Let ξ be an irreducible component of a fiber �e. Let w ∈ CP
1 be a generic

value and let ρ′ : (Y ′, E ′) → (Z , z) be the minimal good resolution of (φe, φw). Let
˜ξ be the strict transform of ξ by ρ′ and let P be the intersection point of˜ξ with the
exceptional divisor E ′, P = ˜ξ ∩ Eα = ˜ξ ∩ E ′. We can choose a local system of
coordinates (u, v) in a neighbourhood U ⊂ Y ′ of P = (0, 0) such that u = 0 is an
equation of Eα , v = 0 is an equation of˜ξ and the equation of the total transform �e

of �e at P is uavk , where a = να(φe) and k is the multiplicity of the branch ξ in �e.
On the other hand, the equation of�w at P is ubη(u, v), with b = να(φw) and η(u, v)

being a unit. So, the expression of (φe/φw) ◦ ρ at P ∈ U is ua−bvk(η(u, v))−1.
Let first suppose that ξ belongs to C(π). Let Q be a point of ˜ξ\{P}, say Q has

local coordinates (u0, 0). The restriction of̂h to a small disc D(u0, 0) centered at Q in
u = u0 is vkη0(u0, v)with η0(u0, v) a unit and k > 1 because ξ lies in the ramification
locus. So, as k is the multiplicity of ξ in �e, ξ is non-reduced.

Conversely, if ξ is an irreducible component of a fiber �e which is not reduced,
the multiplicity k of ξ in �e satisfies k > 1. Moreover the local equation of̂h on any
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small disc D(t, 0) centered at any point of local coordinates (t, 0) in U is vkη(t, v)

with η(t, v) a unit. As k > 1, each point (t, 0) is a ramification point and so˜ξ lies in
the ramification locus. Hence, ξ is an irreducible component of C(π). ��

4.1 Proof of Theorem 3 for singular points ofD and critical points of the
restriction of̂h toD

Hereafter, let ρ : (Y , E) → (Z , z) denote the minimal good resolution of � and D
the dicritical locus of E .

Proposition 5 Let P ∈ D be such that P /∈ E\D. Then, P is a singular point of
D or a critical point of ̂h|D if and only if there exists an irreducible component

 of C(π) whose strict transform intersects D at P. Moreover, if ̂h(P) = e, then
Iz(φe, 
) > Iz(φw, 
) for any w ∈ CP

1, w �= e.

Proof Let assume that there exists an irreducible component 
 of C(π) whose strict
transform intersects D at P and let e = ̂h(P). If 
 is a branch of �e then, by the
above Lemma, it must be a multiple component and, as a consequence, the point P is
a critical point of̂h|D.

So, let consider the case in which 
 is not a branch of �e and assume that P is not
a singular point of D, i.e. P is a smooth point of D in the exceptional divisor E . Let
D denote the irreducible component of D such that P ∈ D.

If the strict transform ˜�e of �e at P has normal crossings withD, then there exists
an irreducible branch ξ of �e such that its strict transform˜ξ coincides with (˜�e)P ,
i.e.˜ξ is smooth, transversal to D and ξ is not a multiple branch of�e by Lemma 4. By
Theorem B there exists a r -nodal zone R in the minimal good resolution of (φe, φw)

(here w is assumed to be a generic value) such that the strict transform of 
 intersects
R and moreover, Iz(φe, 
)/Iz(φw, 
) = r with r > 1, because P ∈ ˜
 ∩ ˜�e. Taking
into account that ˜�e is smooth and transversal to the dicritical divisor D, then one has
that P = ˜
 ∩ E ⊂ D ⊂ R and so, by Theorem A,

Iz(φe, 
)

Iz(φw, 
)
= qew(D) = νD(φe)

νD(φw)
.

However, this is impossible because the last quotient is equal to 1, being D dicritical.
Thus, as a consequence, (˜�e)P must be singular or tangent to D. In both cases P is a
critical point of̂h|D (i.e. φe is a special function of �). ��

Conversely, let P be a singular point ofD or a smooth point ofD which is a critical
point of ̂h|D and let e = ̂h(P), then from Theorem 2, �e is a special fiber of �.
If the irreducible component of ˜�e that intersects D at P is non-reduced, then from
Lemma 4 we have finished. Thus, we assume that ˜�e is reduced at P .

Before all, note that ˜�e has not normal crossings with E at P: if P is a singular
point ofD, then there are at least three components of the total transform intersecting
at P . Otherwise, if P is smooth on D then ˜�e is either singular or tangent to D.

Let w,w′ ∈ CP
1 be generic values and let ρ′ : (Y ′, E ′) → (Z , z) be the minimal

good resolution of {φwφw′φe = 0}. Note that ρ′ = ρ ◦ σ , where σ is a sequence of
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blowing-ups of points, each of them produces a new irreducible rational exceptional
component. In particular,	 = σ−1(P) ⊂ E ′ is a connected exceptional part and must
contain a nodal component Eα ⊂ E ′. Notice that no component of 	 is contracted
in the minimal good resolution ρ′′ : (Y ′′, E ′′) → (Z , z) of the pair (φe, φw); i.e.
	 ⊂ E ′′. As a consequence, Eα ⊂ E ′′ is also a nodal component of E ′′. Let R be the
corresponding nodal zone in E ′′ which contains Eα . Note that, for each Eβ ⊂ R ⊂ 	

one has r = qew(Eβ) = νβ(φe)/νβ(φw) > 1.
Now, Theorem B implies that there exists a branch 
 of C(π) such that its strict

transform by ρ′′ intersects 	 and also that

Iz(φe, 
)

Iz(φw, 
)
= να(φe)

να(φw)
= r > 1.

Taking into account that R ⊂ 	 and σ(	) = P , one has that the strict transform of

 by ρ intersects E at the point P and moreover Iz(φe, 
) > Iz(φw, 
). Note that
the above inequality is true for any irreducible component 
 of C(π) whose strict
transform by ρ intersectsD at P. Thus, the special fiber φe is the unique fiber with the
condition Iz(φe, 
) > minw Iz(φw, 
).

Remark Notice that, if {P} ⊂ D is an isolated special zone, ̂h(P) = e and 
 is the
corresponding irreducible component ofC(π) then, for any fibers�a and�a′ different
from �e we have Iz(φa, 
) = Iz(φa′, 
) (see Proposition 1).

4.2 Proof of Theorem 3 for the connected components of E\D

Let recall that ρ : (Y , E) → (Z , z) is the minimal good resolution of � and D the
dicritical locus of E . Let	be a connected component of E\D such that (h◦ρ)(	) = e.
Letw,w′ be generic values of� and let denote by ρ′ : (Y ′, E ′) → (Z , z) the minimal
good resolution of {φwφw′φe = 0}. Let τ : (Y ′, E ′) → (Y , E) denote the composition
of blowing-ups of points which produces Y ′ from (Y , E):

(Y ′, E ′) τ→ (Y , E)
ρ→ (Z , z) .

Lastly, let 	′ be the pull-back of 	 by τ . Note that 	′ is a connected component
of E ′\D′ because the dicritical locus D′ on E ′ is just the strict transform of D by τ .
We distinguish two cases, according to the existence of a nodal component Eα ⊂ 	′
(with respect to φw and φe).

Case 1 There exist a nodal component Eα , with Eα ⊂ 	′.
For each component Eβ ⊂ 	′ one has qw

w′(Eβ) = 1 and qew(Eβ) > 1. Let R be the
nodal zone of E ′ such that Eα ⊂ R. Then R ⊂ 	′ because qew is constant and > 1 on
R and qew(D) = 1 for any dicritical divisor, in particular for any dicritical D such that
D ∩ 	′ �= ∅.

Now, from Theorem B, there exists a branch 
 of the critical locus C(π) whose
strict transform by ρ′, denoted by ˜
, intersects R. As a consequence, the strict trans-
form of 
 by ρ, τ(˜
), intersects 	. Again Theorem B implies that qew(Eα) =
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Fig. 1 Graph in Case 2

Iz(φe, 
)/Iz(φw, 
) and hence, the special value e is the unique one such that
Iz(φe, 
) > Iz(φw′ , 
) for any generic value w′.

Case 2 There are no nodal components in 	′.
In this case one has that	′ = Eα1 ∪. . .∪Eαr and there exists a dicritical component

D ⊂ D′ such that {D = Eα0 , Eα1 , . . . , Eαr } is a chain and χ(
◦
Eαr ) ≥ 0. Now, note

that the strict transform ˜�e of �e by ρ′ intersects 	′ (see Theorem 2). Therefore,
the only way to avoid the existence of a nodal component with respect to φwφe is if
Eαr is an end (i.e. it is rational and is connected only with the previous one Eαr−1 )
and ˜�e intersects Eαr . Moreover, ˜�e with its reduced structure must be smooth and
transversal to Eαr . It means that the minimal good resolution of � is also a resolution
of the reduced irreducible component ξe of �e whose strict transform meets	 at Eαr .
Indeed, otherwise in order to resolve ξe, one has to blow-up at ξe ∩ Eαr and by this
process a nodal component is produced.

Lemma 5 Let v0, . . . , vr , e1, . . . , er be sequences of integers such that vi−1 = eivi −
vi+1 for i = 1, . . . , r − 1. Let q0, . . . , qr−1 ∈ Z be defined recursively as q0 = 1,
q1 = e1 and, for i ≥ 2, qi = eiqi−1−qi−2. Then, for i ≥ 1 one has gcd(qi , qi−1) = 1
and v0 = qivi − qi−1vi+1.

Proof Obviously gcd(q0, q1) = 1 and from the definition of qi , if gcd(qi−1, qi−2) = 1
then gcd(qi−1, qi ) = 1. The equality v0 = qivi − qi−1vi+1 is obvious for i = 1
and, by induction, using the equality vi−1 = eivi − vi+1 in the inductive hypothesis
v0 = qi−1vi−1 − qi−2vi , one has:

v0 = qi−1vi−1 − qi−2vi = qi−1(eivi − vi+1) − qi−2vi = qivi − qi−1vi+1 .

��
Now, the proof of the case 2 is a consequence of the following:

Proposition 6 The irreducible curve ξe is a branch of�e with multiplicity bigger than
1. As a consequence ξe is also a branch of C(π) and thus, C(π) intersects 	.

Proof Recall that w is a generic element of �. For the sake of simplicity let denote
vi = ναi (φw) and ei = −E2

αi
for i = 0, . . . , r . Then, using the formula

⎛

⎝(˜φw) +
∑

α∈G(ρ′)
να(φw)Eα

⎞

⎠ · Eαi = 0 (3)
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for i = 1, . . . , r one has that

v0 = e1v1 − v2

v1 = e2v2 − v3

· · ·
vr−2 = er−1vr−1 − vr

vr−1 = ervr

(4)

By Lemma 5 one has that v0 = qrvr . Moreover, taking into account that ei =
−E2

αi
≥ 2, one can easily prove that qr > qr−1 > · · · > q1 > q0 = 1.

Now, let consider the special fiber �e and write v′
i = ναi (φe) for i = 0, . . . , r .

Equations (3) applied for φe (instead of φw) gives a sequence of equalities v′
i−1 =

eiv′
i − v′

i+1, for i = 1, . . . , r − 1 (like in (4) above with v′
i instead of vi ) together with

the last one:

v′
r−1 = erv

′
r − (˜φe) · Eαr = erv

′
r − k .

Lemma 5 implies that v′
0 = qrv′

r − qr−1k. As Eα0 = D is a dicritical divisor, one has
that v′

0 = να0(φe) = να0(φw) = v0, i.e.

qrvr = qrv
′
r − qr−1k .

ByLemma5again, gcd(qr , qr−1) = 1and soqr divides k. In particular k = (˜φe)·Eσ >

1 and the irreducible germ ξe appears repeated k times in �e. ��

4.3 Special fibers and critical locus

Let C(π) = ∑�
i=1 ni
i be the decomposition of the critical locus in irreducible

components. For each i ∈ {1, . . . , �} the intersectionmultiplicity Iz(φ, 
i ) is constant,
except for the unique special value ε(
i )(= ε(i)) such that Iz(φε(i), 
i ) > Iz(φ, 
i ),
for φ �= φε(i). So, as in [8], one has a surjective map ε : B(C(π)) → Sp(�) from the
set of branches of the critical locus to the set of special values of �.

If w ∈ CP
1 is a generic value one has that

Iz(φw,C(π)) =
�

∑

i=1

ni Iz(φw, 
i ) = min{Iz(φ,C(π)) , φ ∈ �}

and, on the other hand, for a special value e ∈ CP
1 there is

Iz(φe,C(π)) =
�

∑

i=1

ni Iz(φe, 
i ) >

�
∑

i=1

ni Iz(φw, 
i ) = min{Iz(φ,C(π)) , φ ∈ �} .

As a consequence, one has the following result which gives the equivalence of items
1 and 2 in Theorem 4.

123



708 F. Delgado, H. Maugendre

Corollary 3 �e is a special fiber of � if and only if

Iz(φe,C(π)) > min {Iz(φ,C(π)), φ ∈ �} .

Remark As in [8], the map ε : B(C(π)) → Sp(�), defined above, can be factorized
through the set of special zones SZ(�) as ε = ̂h ◦ ψ :

B(C(π))
ψ→ SZ(�)

̂h→ Sp(�) .

The mapψ associates to the branch 
 the special zone	 such that the strict transform
of 
 in the minimal good resolution intersects 	. Obviously one can decompose the
branches of C(π) in bunches by means of ψ .

Let ρ′ : (Y ′, E ′) → (Z , z) be a good resolution of all the fibers of � (i.e. a good
resolution of the product of all the special fibers and a pair of generic ones). Let e
(resp.w) be a special value (resp. a generic one). An 1-nodal zone for the pair (φe, φw)

can be decomposed in some different zones when we use different special values. This
fact can be used to determine a finer decomposition in bunches of the branches of the
critical locus C(π). To do that, one can use the determination of all the nodal zones
in E ′ with respect to all the pairs (φe, φw), when e varies in the set of special values
and w is a fixed generic value.

5 Examples

As seen in Sect. 3.1, to the minimal good resolution ρ of the pencil �, one can
associate its dual graph G(ρ). The following examples illustrate Theorems 1, 2 and
3 in terms of the dual graph. To construct G(ρ), we follow the method of Laufer
described in [10,12] and also [13]. It consists, first, in establishing the graph of the
minimal embedded resolution of the discriminant curve, which is the image by π of
the critical locus C(π) of π . This graph is constructed as follows. To each irreducible
component E ′

i of the exceptional divisor of the minimal resolution of the discriminant
curve, we associate a vertex weighted by (i, (E ′

i )
2, v(E ′

i )), where (E ′
i )
2 is the self-

intersection of E ′
i and v(E ′

i ) is the valuation of the discriminant function along E ′
i .

An intersection point between two irreducibe components of the exceptional divisor is
represented by an edge linking the associated vertices. Second, from the dual graph of
the discriminant curve, we deduce the graph of the minimal good resolution of (Z , z)
and so the one of ρ, using in particular Propositions 2.6.1, 2.7.1 (examples 2 and 3)
3.6.1 and 3.7.1 (example 1) of [12]. As in Fig. 1 of Sect. 4.2, we use a different mark
for the vertices representing dicritical divisors.

5.1 Example 1

Let (Z , z) be defined by z3 = h(x, y) with h(x, y) = (y+ x2)(y− x2)(y+ 2x2)(x +
y2)(x − y2)(x + 2y2) and let π be the projection on the (x, y)-plane. In this way
(u, v) = (x, y), f = u ◦ π = x and g = v ◦ π = y.
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Fig. 2 Graph of the minimal resolution of the discriminant of π

Fig. 3 The graph of the minimal good resolution of (Z , z)

Fig. 4 The graph of the minimal good resolution of �

The discriminant curve of π is the curve h(u, v) = 0. The dual graph of its minimal
embedded resolution is represented in Fig. 2.

From Proposition 3.6.1 and 3.7.1 of [12] we deduce the graph of the minimal good
resolution of (Z , z) (see Fig. 3).

As the minimal embedded resolution of the discriminant curve h(u, v) = 0 of
π is also the minimal good resolution of the product uv(λu + μv)h(u, v) = 0, for
(λ : μ) ∈ CP

1\{(1 : 0), (0 : 1)}, from Propositions 3.6.1 and 3.7.1 of [12] we can
deduce the dual graph of the minimal good resolution of � (Fig. 4), the one of ( f , g)
and as a consequence the oneof theminimal good resolutionof (φwφw′ f g)−1(0)where
w and w′ are generic values of � (Fig. 5). Notice that the minimal good resolution of
� is also the minimal good resolution of ( f , g).

The dicritical components of E are E1
0 , E

2
0 , E

3
0 . We have SZ(�) = {	1,	2} with

	1 = {E1} and 	2 = {E2}. The map ( f /g) ◦ ρ has no critical point on D and D has
no singular point neither. The special fiber associated to 	1 is { f = 0} and the one
associated to 	2 is {g = 0}. We conclude that � admits two special elements f and
g; the special value associated to 	1 is (0 : 1) and the one associated to 	2 is (1 : 0).
The Hironaka quotients are q(E1) = 2 and q(E2) = 1/2.

Moreover, using the minimal resolution of the discriminant curve (see Fig. 2), we
deduce that, for each 	i , there exists three irreducible components of the reduced
critical locus of π whose strict transform intersects 	i .
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Fig. 5 Minimal good resolution of ( f , g)

5.2 Example 2

Let (Z , z) be the D6 singularity defined by the equation z2 = y(x2 + y4). The graph
of its minimal resolution is shown in Fig. 6.

On this surface we make two examples for two different projections (pencils).
Firstly, let π = ( f , g) : (Z , z) → (C2, 0) be defined by f (x, y, z) = u ◦ π = x and
g(x, y, z) = v ◦ π = y. The discriminant curve of π is the curve v(u2 + v4) = 0.
Notice that this projection is not a generic one because the image of the curve {g = 0}
is an irreducible component of the discriminant curve and the image of { f = 0} is
tangent to the discriminant curve.

Furthermore, using the minimal good resolution of the discriminant curve (Fig. 7)
and Proposition 2.6.1 and 2.7.1 of [12], we obtain that the minimal good resolution of
� is the one of (Z , z) and there exists a unique dicritical component E1: the divisorwith
weight (1,−2, 0). Thus, 	0 = {E0} and 	1 = E2 ∪ E3 ∪ E4 ∪ E5 (see Fig. 8 for the
notations) are two special zones. Moreover C(π) intersects the exceptional divisor at
E0, E4, E5 and so SZ(�) = {	0,	1}. The Hironaka quotients corresponding to each
vertex are:q(E0) = 1/2,q(E1) = 1,q(E2) = 3/2 andq(E3) = q(E4) = q(E5) = 2.

Fig. 6 The graph of the minimal good resolution of D6

Fig. 7 Graph of the minimal resolution of the discriminant of π
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Fig. 8 The graph of the minimal good resolution of �

Fig. 9 The graph of the minimal good resolution of ( f , g)

Fig. 10 The graph of the minimal good resolution of �

The connected component 	0 does not contain any nodal component and 	1 has
a nodal component with Hironaka quotient equal to 2. The special fiber associated to
	1 is { f = 0} whose strict transform meets 	1 at E3, and there are two irreducible
components of C(π) intersecting 	1 at E4 and E5. The special fiber of � associated
to 	0 is {g = 0} which is also a non reduced irreducible component of the critical
locus and intersects 	0 at E0. The minimal good resolution of the pencil � is also the
minimal good resolution of ( f , g), so the corresponding graph of the minimal good
resolution of f g = 0 is represented in Fig. 9.

Let us consider the morphism π = ( f , g) : (Z , z) → (C2, 0) defined on D6 by
f (x, y, z) = x + 2iy2 = u and g(x, y, z) = x2 + y3 = v. In this case the minimal
good resolution of (Z , z) coincides with the one of { f g = 0}. It is not the case of the
minimal good resolution of � whose graph of resolution is represented in Fig. 10.

There exists a unique dicritical component represented by E∗ and exactly one
special zone consisting of E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5. The Hironaka quotients of
( f , g) corresponding to each vertex are: q(E∗) = 1, q(E0) = q(E1) = q(E2) = 1/2,
q(E3) = q(E4) = q(E5) = 2/3.

In this case f is a generic element of the pencil � and g is the unique special
element of �.

The graph of the minimal good resolution of { f g = 0} is represented in Fig. 11.
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Fig. 11 The graph of the minimal good resolution of ( f , g)

5.3 Example 3

With this example, issued from [13], we illustrate the case where a special zone is a
singular point of the dicritical locus.

Let (Z , z) be defined by z2 = (x2 + y5)(y2 + x3) and let π = ( f , g) : (Z , z) →
(C2, 0) be the projection on the (x, y)-plane. The dual graph of theminimal embedded
resolution of the discriminant curve (u2 + v5)(v2 + u3) = 0 of π and the coordinate
axes is shown in Fig. 12. The arrows representing the strict transforms of the coordinate
axes are depicted by double-arrows.

The graph of the minimal good resolution of � is in Fig. 13. The components
E01 and E02 are dicritical. Thus, there exists two special zones 	0 and 	1 with
	0 = E11 ∪ E12 and 	1 = E01 ∩ E02 = {P} where P is the singular point of D.

Fig. 12 Graph of the minimal resolution of the discriminant of π and the coordinates axes

Fig. 13 The graph of the minimal good resolution of �
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Fig. 14 The graph of the minimal good resolution of ( f , g)

The special fibers associated to 	0 and 	1 are respectively { f = 0} and {g = 0}.
The graph of the minimal good resolution of ( f , g) is shown Fig. 14.

The Hironaka quotients of the rational components (of self-intersection−1) E2 and
E3 are respectively 2/3 and 5/2 and there exists two irreducible components of C(π)

whose strict transform intersects E2 and two others whose strict transform intersects
E3.

Acknowledgements We thank both referees for their observations that helped us to improve the redaction
of the paper. In particular, the remark at the end of the Introduction is mainly due to one of them.
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