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Abstract
We study the pointwise convergence to the initial data in a cone region for the frac-
tional Schrödinger operator Pt

a,γ with complex time. By stationary phase analysis, we
establish the maximal estimate for Pt

a,γ in a cone region. As a consequence of the
maximal estimate, the pointwise convergence holds through a standard argument. Our
results extend those obtained by Cho–Lee–Vargas (J Fourier Anal Appl 18:972–994,
2012) and Shiraki (arXiv:1903.02356v1) from the real value time to the complex value
time.

Keywords Pointwise convergence · Fractional Schrödinger operator · Maximal
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1 Introduction

We define the Schrödinger type operator Pt
a,γ as follows

Pt
a,γ f = eig(t)(−�)

a
2 f =

∫
R

f̂ (ξ)eixξ eit |ξ |a e−tγ |ξ |a dξ, (1.1)
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where g(t) = t + i tγ with t > 0, γ > 0 and a ≥ 1.
For γ = 1, (1.1) coincides with the solution of the Ginzburg-Landau equation(see

[3]).
For g(t) = t and a = 2, then (1.1) is the solution to the most basic and universal

form of the Schrödinger equation

{
i∂t u − �u = 0, (t, x) ∈ R × R

u(x, 0) = f (x), x ∈ R.
(1.2)

For (1.2), Carleson [2] put forward a question about the range of exponent s for the
Sobolev space Hs(R) such that for f ∈ Hs(R), there is

eit� f (x) → f (x) a. e. x ∈ R
n,

as the time t tends to 0. He proved the almost everywhere convergence for the exponent
s ≥ 1

4 in dimension one, which is sharp by the counterexamples given by Dahlberg
and Kenig [5].

For the operator Pt
a,γ , Sjölin [11,12] together with Soria studied the pointwise

convergence in R for the classical Schrödinger operator with complex time in the case
a = 2, and γ > 0. Later, using Kolmogrov–Selierstov–Plessner method, Bailey [1]
improved their results to the case a > 1.

This paper is devoted to the study of the pointwise convergence problem in R for
the operator Pt

a,γ along the non-tangential directions.
Let � be a compact region in R. We define

�x = {x + tθ : t ∈ (0, 1), θ ∈ �}, (1.3)

which is associated to the directions of the non-tangential convergence. And we study
the pointwise convergence to the initial data in the region �x for the Schrödinger type
operator Pt

a,γ , that is

lim
(y,t)→(x,0+)

y∈�x

Pt
a,γ f (y) = f (x), for a.e. x ∈ R. (1.4)

To do this, we first recall that the upper Minkowski dimension of � is defined by

β(�) = inf{r > 0 : lim sup
δ→0

N (�, δ)δr = 0},

where N (�, δ) is the minimal number of δ-intervals which cover �.
In R, Cho–Lee–Vargas [4] considered the non-tangential convergence for the oper-

ator eit� whose directions are determined by �, and they proved that non-tangential
convergence holds for s >

β(�)+1
4 . Shiraki [9] extended this result to the operator

eit(−�)
a
2 with a > 1. In R

n , by Sobolev embedding, it is easy to see that the non-
tangential pointwise convergence for eit� holds in the cone region�x , which is defined
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Pointwise convergence in the Cone region with complex time 391

by (1.3), if s > n
2 , and Sögren and Sjölin [10] proved that this result is sharp. They

showed that there exists a function f ∈ H
n
2 (Rn) such that

lim sup
(y,t)→(x,0)

|y−x |<ω(t),t>0

|eit� f (y)| = ∞, for x ∈ R
n,

where ω(t) is a strictly increasing function with ω(0) = 0.
In a more general case, we consider the non-tangential pointwise convergence

problem for Pt
a,γ defined by (1.1) with complex time. Our result is the following.

Theorem 1.1 Let � ⊂ R be a compact set, then

(i) let γ > 1, if

s >

⎧⎪⎨
⎪⎩

min
{ (β(�) + 1)a

4
(1 − 1

γ
),

β(�) + 1

4

}
, a > 1, (1.5)

min
{ (β(�) + 1)

2
(1 − 1

γ
),
1

2

}
, a = 1, (1.6)

we have

∥∥∥∥∥ sup
(t,θ)∈(0,1)×�

|Pt
a,γ f (x + tθ)|

∥∥∥∥∥
L2(B(0,1))

� ‖ f ‖Hs , for f ∈ Hs . (1.7)

(ii) for a ≥ 1, γ ∈ (0, 1], and 0 < a < 1, γ ∈ (0, a], the maximal estimate holds in
L p(R) for 1 < p ≤ ∞, that is,

∥∥∥∥∥ sup
(t,θ)∈(0,1)×�

|Pt
a,γ f (x + tθ)|

∥∥∥∥∥
L p(R)

� ‖ f ‖L p(R), for f ∈ L p(R). (1.8)

For p = 1, we have

∣∣∣∣∣
{
x ∈ R : sup

(t,θ)∈(0,1)×�

|Pt
a,γ f (x + tθ)| > λ

}∣∣∣∣∣ < C
‖ f ‖L1

λ
, (1.9)

for f ∈ L1(R), λ > 0.

Remark 1.1 For γ ≥ a
a−1 with a > 1, notice that the dispersion effect is stronger than

the dissipation effect arising from the operator Pt
a,γ , then by the same argument as in

Shiraki [9] one can obtain that the pointwise convergence holds for the operator Pt
a,γ

in the cone region for s >
β(�)+1

4 , which is a better result than s >
(β(�)+1)a

4 (1− 1
γ
).

Thus, for (1.5) in Theorem 1.1 (i), we just need to discuss the case for 1 < γ < a
a−1 .

The sharpness of the results in Theorem 1.1 is remained to be solved.
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392 J. Yuan et al.

The proof of Theorem1.1 (i) is based on some oscillatory estimates, the Littlewood–
Paley decomposition and the fact that the compact region � can be covered by a finite
number of intervals (see Sect. 3). Theorem 1.1 (ii) is proved by showing that the
maximal estimate for the operator Pt

a,γ along non-tangential direction is bounded by
the Hardy-Littlewood maximal functions.

As a direct consequence of this theorem, by standard arguments, we obtain the
pointwise convergence result for the operator Pt

a,γ .

Corollary 1.2 Let � ⊂ R be a compact set, then

(i) let γ > 1 and s be as in Theorem 1.1 (i), then we have for f ∈ Hs,

lim
(y,t)→(x,0+)

y−x∈t�
Pt
a,γ f (y) = f (x), for a.e. x ∈ R. (1.10)

(ii) for a ≥ 1 with γ ∈ (0, 1], and 0 < a < 1 with γ ∈ (0, a], for f (x) ∈ L p(R)

with 1 ≤ p < ∞, (1.10) holds.

Remark 1.2 (1) For a > 1, 0 < t < 1, if we set γ = ∞, then our results in Theo-
rem 1.1 and Corollary 1.2 coincide with those of Cho–Lee–Vargas [4] and Shiraki
[9].

(2) For a > 1, γ > 0, if we take � = {0}, then β(�) = 0 and the pointwise
convergence results for the operator Pt

a,γ coincide with the results of Sjölin–Soria
[11,12] and Bailey [1].

(3) For a = 1, 0 < t < 1, if we take γ = ∞ and � = {0}, then the corresponding
results in Theorem 1.1(i) and Corollary 1.2(i) coincide with those obtained by
Rogers and Villarroya via Littlewood–Paley decomposition and the Strichartz
inequality in [8], which are almost sharp up to the end point.

2 Preliminaries

In this section, we first give the proof of Theorem 1.1 (ii). Next we introduce some
useful tools for latter use.

2.1 Proof of Theorem 1.1 (ii)

For the proof of the Theorem 1.1 (ii), we need the kernel estimate for the operator
Pt
a,γ with 0 < γ ≤ 1.

Lemma 2.1 For a > 0 and 0 < γ ≤ 1, we have

∣∣∣∣
∫
R

eixξ eit |ξ |a e−tγ |ξ |a dξ
∣∣∣∣ � tγ

(t
γ
a + |x |)a+1

(2.1)

where x ∈ R and 0 < t < 1.
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Pointwise convergence in the Cone region with complex time 393

Proof Let

L(x, t) =
∫

eixξ eit
1−γ |ξ |a e−|ξ |a dξ,

then

LHS of (2.1) = t−
γ
a |L(t−

γ
a x, t)|.

Hence, it suffices to prove that

|L(x, t)| ≤ C min{1, |x |−a−1}. (2.2)

Since the finiteness of |L(x, t)| is trivial, we just consider the case |x | 	 1. By
integration by parts, we have

|L(x, t)| =
∣∣∣∣
∫

eixξ ei(t
1−γ +i)|ξ |a dξ

∣∣∣∣
= 1

|x |
∣∣∣∣
∫

i(t1−γ + i)a|ξ |a−2ξeixξ ei(t
1−γ +i)|ξ |a dξ

∣∣∣∣
� 1

|x |
∫

|ξ |< 1
|x |

(t1−γ + 1)|ξ |a−1e−|ξ |a dξ

+ 1

|x |

∣∣∣∣∣
∫

|ξ |> 1
|x |

(t1−γ + i)|ξ |a−2ξeixξ ei(t
1−γ +i)|ξ |a dξ

∣∣∣∣∣
≤ C |x |−1−a + |x |−1,

where

 =
∣∣∣∣∣
∫

|ξ |> 1
|x |

(t1−γ + i)|ξ |a−2ξeixξ ei(t
1−γ +i)|ξ |a dξ

∣∣∣∣∣ .

By integration by parts again, we can obtain

 � 1

|x |

∣∣∣∣∣i(t1−γ + i)|ξ |a−2ξeixξ ei(t
1−γ +i)|ξ |a

∣∣∣∣
∞

1/|x |

∣∣∣∣∣
+ 1

|x |

∣∣∣∣∣
∫

|ξ |> 1
|x |

eixξ (i(t1−γ + i)|ξ |a−2 + [i(t1−γ + i)]2|ξ |2a−2)ei(t
1−γ +i)|ξ |a dξ

∣∣∣∣∣
= M1 + M2.
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394 J. Yuan et al.

Since 0 < t < 1 and 0 < γ ≤ 1, then

t1−γ + 1 ≤ 2,

|(t1−γ + i)2| = |2i t1−γ + t2−2γ − 1| ≤ C .

Also note that |ξ |2ae−|ξ |a ≤ C . Then we have M1 � |x |−a, and

M2 � 1

|x |
∫

|ξ |> 1
|x |

(|ξ |a−2 + |ξ |2a−2)e−|ξ |a dξ ≤ |x |−a .

In conclusion, we have

|L(x, t)| � |x |−a−1.

The proof is completed.

�

Next we show that how we can prove Theorem 1.1 (ii) by Lemma 2.1.

Proof of Theorem 1.1 (ii) Since � ⊂ R is a compact set, then we have

sup
0<t<1
y−x∈t�

|Pt
a,γ f (y)| ≤ sup

0<t<1|y−x |<Ct

|Pt
a,γ f (y)|. (2.3)

For a fixed x ∈ R, set

�1
x = {(y, t) : 0 < t < 1, |y − x | < Ct};

�2
x = {(y, t) : 0 < t < 1, |y − x | < Ct

γ
a }.

Since γ ∈ (0, 1] with a ≥ 1, and γ ∈ (0, a] with 0 < a < 1, we have �1
x ⊂ �2

x .
Then by (2.3) and

sup
�1
x

|Pt
a,γ f (y)| ≤ sup

�2
x

|Pt
a,γ f (y)|, (2.4)

it is reduced to consider the maximal estimate for the operator Pt
a,γ on the region �2

x .

By Lemma 2.1, if 0 < γ ≤ min{a, 1}, then γ
a ≤ 1, and for |y − x | < Ct

γ
a with

0 < t < 1, we have

|Pt
a,γ f (y)| ≤

∫ ∣∣∣∣
∫

ei(y−z)ξ eit |ξ |a e−tγ |ξ |a dξ
∣∣∣∣ | f (z)| dz

�
∫

tγ

(t
γ
a + |y − z|)a+1

| f (z)| dz

≤
∫

|x−z|<2t
γ
a

tγ

(t
γ
a + |y − z|)a+1

| f (z)| dz
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Pointwise convergence in the Cone region with complex time 395

+
∞∑
k=1

∫
2k t

γ
a ≤|x−z|<2k+1t

γ
a

tγ

(t
γ
a + |y − z|)a+1

| f (z)| dz

≤
∫

|x−z|<2t
γ
a
t−

γ
a | f (z)| dz +

∞∑
k=1

2k+1

2(k−1)(a+1)

1

2k+1t
γ
a

×
∫

|x−z|<2k+1t
γ
a

| f (z)| dz

� M( f )(x) + 4
∞∑
k=1

2−(k−1)aM( f )(x)

� M( f )(x),

where M is the Hardy-Littlewood maximal operator.
Then for a > 0 and 0 < γ ≤ min{a, 1}, if 1 < p ≤ ∞, we have

∥∥∥∥∥∥∥∥
sup

0<t<1
|y−x |<t

γ
a

|Pt
a,γ f (y)|

∥∥∥∥∥∥∥∥
L p(R)

� ‖M( f )(x)‖L p(R) � ‖ f ‖L p(R); (2.5)

if p = 1, we have

∣∣∣∣∣∣∣∣

⎧⎪⎪⎨
⎪⎪⎩
x ∈ R : sup

0<t<1
|y−x |<t

γ
a

|Pt
a,γ f (y)| > λ

⎫⎪⎪⎬
⎪⎪⎭

∣∣∣∣∣∣∣∣
< C

‖ f ‖L1

λ
, (2.6)

where λ > 0.
Combining the estimates (2.3), (2.5) and (2.6), we obtain the result in Theorem 1.1

(ii) in this case.
The proof of Theorem 1.1 (ii) is finished. 
�

Remark 2.1 For γ ∈ (a, 1] with 0 < a < 1, we have �2
x ⊂ �1

x . In this case, we
cannot bound the maximal function sup�1

x
|Pt

a,γ f (y)| by sup�2
x
|Pt

a,γ f (y)|, then it
seems that the estimates (2.5) and (2.6) cannot be used to obtain the maximal estimate
in Theorem 1.1 for γ ∈ (a, 1] with 0 < a < 1.

2.2 Necessary tool

In order to prove Theorem 1.1 (i) in next section, we introduce the following two
useful lemmas.

The following lemma is crucial for the oscillatory integral estimate in the proof of
Theorem 1.1 (i) in Section 3.
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396 J. Yuan et al.

Lemma 2.2 (Van der Corput lemma, [13]) Suppose φ is real-valued and smooth in
(a, b), ψ is complex-valued and smooth, and that |φ(k)(x)| ≥ 1 for all x ∈ (a, b).
Then

∣∣∣
∫ b

a
eiλφ(x)ψ(x) dx

∣∣∣ ≤ ckλ
− 1

k

[
|ψ(b)| +

∫ b

a
|ψ ′(x)| dx

]
(2.7)

holds when

(i) k ≥ 2 or
(ii) k = 1 and φ′(x) is monotonic.
The bound ck is independent of φ and λ.

Next we introduce another useful lemma, which is associated to the maximal esti-
mate for the operator Pt

a,γ . It is easy to see that the lemma below is a result of the
Hardy–Littlewood–Sobolev inequality, which can be found in [7].

Lemma 2.3 For 1
2 < α < 1, we have

∣∣∣∣
∫∫

B(0,1)×B(0,1)

∫∫
[0,1]×[0,1]

f (x, t)g(x̃, t̃)|x− x̃ |−α dxdx̃dtdt̃

∣∣∣∣�‖ f ‖L2
x L

1
t
‖g‖L2

x L
1
t
.

(2.8)

Proof Let F(x) = ‖ f (x, ·)‖L1
t
and G(x̃) = ‖g(x̃, ·)‖L1

t
. Then, it is easy to see that

∣∣∣∣
∫∫

B(0,1)×B(0,1)

∫∫
[0,1]×[0,1]

f (x, t)g(x̃, t̃)|x − x̃ |−α dxdx̃dtdt̃

∣∣∣∣
≤

∫ 1

−1

∫ 1

−1
F(x)G(x̃)|x − x̃ |−α dxdx̃ .

By Hölder’s inequality and Hardy–Littlewood–Sobolev inequality (see [6]), we have

∫ 1

−1

∫ 1

−1
F(x)G(x̃)|x− x̃ |−α dxdx̃ ≤ ‖F‖L2

x (B(0,1))

∥∥∥∥
∫ 1

−1
G(x̃)|x− x̃ |−α dx̃

∥∥∥∥
L2
x (B(0,1))

� ‖F‖L2
x (B(0,1))‖G‖

L
2

3−2α
x (B(0,1))

� ‖F‖L2
x (B(0,1))‖G‖L2

x (B(0,1))

≤ ‖ f ‖L2
x L

1
t
‖g‖L2

x L
1
t
.

The proof is completed. 
�

3 Proof of Theorem 1.1 (i)

Take a function ψ(ξ) ∈ C∞
c (R) such that

supp ψ(ξ) ⊂ {ξ ∈ R : 1
2 ≤ |ξ | ≤ 2}, ψ(R) ⊂ [0, 1].
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Pointwise convergence in the Cone region with complex time 397

Let ψk(ξ) = ψ(
ξ

2k−1 ), and use ψ(ξ) to obtain the Littlewood–Paley decomposition,
that is

ϕ0(ξ) +
∑
k≥1

ψk(ξ) = 1,

where ϕ0(ξ) ∈ C∞
c (R) satisfies that

supp ϕ0(ξ) ⊂ [−1, 1], ϕ0(R) ⊂ [0, 1], ϕ0(ξ) = 1 on [− 1
2 ,

1
2 ].

We define the operator �k by

�̂0 f (ξ) = ϕ0(ξ) f̂ (ξ),

�̂k f (ξ) = ψk(ξ) f̂ (ξ), for k ≥ 1.

Let M� f (x) = sup{|Pt
a,γ f (x + tθ)| : t ∈ (0, 1), θ ∈ �}.

With the Littlewood–Paley decomposition, we have

‖M� f ‖L2(B(0,1)) ≤ ‖M��0 f ‖L2(B(0,1)) +
∑
k≥1

‖M��k f ‖L2(B(0,1)). (3.1)

For the first term in RHS above, it is easy to see that

‖M��0 f ‖L2(B(0,1)) �
∫

ϕ0| f̂ | dξ � ‖ f ‖L2 . (3.2)

Then we just need to deal with these terms ‖M��k f ‖L2(B(0,1)), k ≥ 1.
Let σ = a

2 (1− 1
γ
). Later wewill see that this parameter is associated to the structure

of the phase function φ(ξ) in (3.16) below and the corresponding oscillatory integral
estimate.

Since � is a compact set in R, without loss of generality, we can assume � ⊂
[−1, 1].

Let N (�, λ−σ ) denote the smallest numeber of λ−σ -intervals � j (λ) with
|� j (λ)| < λ−σ which cover �. Then for each λ > 0, we have

� =
N (�,λ−σ )⋃

j=1

� j (λ).

For a fixed k and x ∈ B(0, 1), we have by l2 ↪→ l∞

|M��k f (x)|2 ≤
N (�,2−kσ )∑

j=1

|M�k, j�k f (x)|2,
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398 J. Yuan et al.

where �k, j = � j (2k). Therefore we have

∑
k≥1

‖M��k f ‖L2(B(0,1)) ≤
∑
k≥1

⎛
⎝N (�,2−kσ )∑

j=1

‖M�k, j�k f ‖2L2(B(0,1))

⎞
⎠

1
2

. (3.3)

In order to estimate (3.3), we just need the following estimates.

Lemma 3.1 Assume a ≥ 1 and γ > 1. Let � be an interval with |�| < 2−kσ , then we
have

(1) for a > 1, γ ∈ (1, a
a−1 ),

‖M��k f ‖L2(B(0,1)) � 2k[
a
4 (1− 1

γ
)+ε]‖ f ‖L2 (3.4)

for all f ∈ L2 and 0 < ε  1.
(2) for a = 1, γ ∈ (1,∞),

‖M��k f ‖L2(B(0,1)) � 2k[
1
2 (1− 1

γ
)+ε]‖ f ‖L2 (3.5)

for all f ∈ L2 and 0 < ε  1.

We postpone the proof of the above lemma, and first look at that how we get our
results in Theorem 1.1 (i) by Lemma 3.1.

Since σ = a
2 (1 − 1

γ
), by the definition of the upper Minkowski dimension β(�),

for each ε > 0, there exists Cε such that for each k ≥ 1,

N (�, 2−kσ ) ≤ Cε2
kσ(β(�)+ε). (3.6)

Let

ψ̃(ξ) =
{
1, if 1

2 < |ξ | < 2,

0, if |ξ | < 1
4 or |ξ | > 4,

and set ψ̃k(ξ) = ψ̃(
ξ

2k−1 ) and the operator �̃k such that

̂̃
�k f = ψ̃k(ξ) f̂ (ξ), for k ≥ 1. (3.7)
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Pointwise convergence in the Cone region with complex time 399

For a > 1, by the estimate (3.4) in Lemma 3.1 and (3.6), we have

‖M��k f ‖2L2(B(0,1)) �
N (�,2−kσ )∑

j=1

‖M�k, j�k�̃k f ‖2L2(B(0,1))

�
N (�,2−kσ )∑

j=1

2k(
a
2 (1− 1

γ
)+ε)‖�̃k f ‖2L2

� 2−kε‖ f ‖2
H

(β(�)+1)a
4 (1− 1

γ )+ε
, (3.8)

then

∑
k≥1

‖M��k f ‖L2(B(0,1)) � ‖ f ‖
H

(β(�)+1)a
4 (1− 1

γ )+ε
. (3.9)

For a = 1, by the same argument as in (3.8), we obtain

∑
k≥1

‖M��k f ‖L2(B(0,1)) � ‖ f ‖
H

(β(�)+1)
2 (1− 1

γ )+ε
. (3.10)

Combining the estimates (3.1), (3.2), (3.3), (3.8) and (3.10), we obtain the results
of Theorem 1.1 (i).

Now we turn to the proof of Lemma 3.1.

Proof of Lemma 3.1 Let λ = 2k . Set

T f = χ(x, t, θ)

∫
R

ei(x+tθ)ξ eit |ξ |a e−tγ |ξ |aψ(
ξ
λ
) f (ξ) dξ,

where χ(x, t, θ) = χB(0,1)×[0,1]×�. It suffices to show

‖T f ‖L2
x L

∞
t L∞

θ
� λα(a,γ )+ε‖ f ‖L2 , (3.11)

where

α(a, γ ) =
{

a
4 (1 − 1

γ
), if a > 1, γ ∈ (1, a

a−1 );
1
2 (1 − 1

γ
), if a = 1, γ ∈ (1,∞).

(3.12)

Indeed, with (3.11) in hand, we get

‖M��k f ‖L2(B(0,1)) � ‖T f̂ ‖L2
x L

∞
t L∞

θ
� λα(a,γ )+ε‖ f̂ ‖L2 = λα(a,γ )+ε‖ f ‖L2 .

By duality, it is reduced to prove

‖T ∗F‖L2 � λα(a,γ )+ε‖F‖L2
x L

1
t L

1
θ
, (3.13)
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where

T ∗F = ψ(
ξ
λ
)

∫∫∫
e−i(x+tθ)ξ e−i t |ξ |a e−tγ |ξ |a F(x, t, θ)χ(x, t, θ) dxdtdθ.

Nextwe turn to look at (3.13).Wedenoteu = (x, t, θ) andU = B(0, 1)×(0, 1)×�.
By direct computation, we have

‖T ∗F‖2L2

= λ

∫
ψ(ξ)2

∫∫∫ ∫∫∫
eiλ(x−x̃+tθ−t̃ θ̃ )ξ eiλ

a(t−t̃)|ξ |a e−λa(tγ +t̃γ )|ξ |a

χ(x, t, θ)χ(x̃, t̃, θ̃ )F(x, t, θ)F(x̃, t̃, θ̃ ) dxdtdθdx̃dt̃dθ̃dξ

= λ

∫
U

∫
Ũ

χ(u)χ(ũ)F(u)F(ũ)Kλ(u, ũ) dudũ, (3.14)

where

Kλ =
∫

eiφ(λξ)e−λa(tγ +t̃γ )|ξ |aψ(ξ)2 dξ, (3.15)

φ(ξ) = (x − x̃ + tθ − t̃ θ̃ )ξ + (t − t̃)|ξ |a . (3.16)

3.1 Proof of Lemma 3.1 in the case a > 1

Split the integral (3.14) into three parts as follows

‖T ∗F‖2L2 = λ

3∑
m=1

∫∫
Vm

χ(u)χ(ũ)F(u)F(ũ)Kλ(u, ũ) dudũ �
3∑

m=1

Em,

where

V1 = {(u, ũ) ∈ U × Ũ : t + t̃ > λ
− a

γ
+ δ

γ },
V2 = {(u, ũ) ∈ U × Ũ : |x − x̃ | < λ

−[1− a
2 (1− 1

γ
)]+ε

, t, t̃ < λ
− a

γ
+ δ

γ },
V3 = {(u, ũ) ∈ U × Ũ : |x − x̃ | > λ

−[1− a
2 (1− 1

γ
)]+ε

, t, t̃ < λ
− a

γ
+ δ

γ },

with 0 < δ  ε. The decomposition of the integral region is associated to the structure
of the phase functionφ(ξ) in (3.16) and the corresponding oscillatory integral estimate.

To obtain the estimate (3.13), we just need to prove that

Em � λ
a
2 (1− 1

γ
)+ε‖F‖2

L2
x L

1
t L

1
θ

, for m = 1, 2, 3. (3.17)
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Step 1. Estimate for E1. Since t + t̃ > λ
− a

γ
+ δ

γ , then for ξ ∈ suppψ(ξ) ⊂ {ξ : 1
2 <

|ξ | < 2}, we have

e−λa(tγ +t̃γ )|ξ |−a
< e−λa(tγ +t̃γ )2−a �N (λa(tγ + t̃γ ))−N

≤ λ−δN < λ
−[1− a

2 (1− 1
γ

)]
, (3.18)

where we choose N ∈ N such that δN > 1 − a
2 (1 − 1

γ
).

By (3.18), we have

|Kλ(u, ũ)| ≤
∫

|ψ(ξ)2| dξ · e−λa(tγ +t̃γ )2−a � λ
−[1− a

2 (1− 1
γ

)]
.

Then

E1 ≤ λλ
−[1− a

2 (1− 1
γ

)]
∫∫

V1
χ(u)χ(ũ)F(u)F(ũ) dudũ � λ

a
2 (1− 1

γ
)‖F‖2

L2
x L

1
t L

1
θ

.

(3.19)

Step 2. Estimate for E2. Let σ̃ = 1 − a
2 (1 − 1

γ
). Since |Kλ(u, ũ)| < C , by the

definition of the set V2 and Young’s inequality, then we have

E2 � λ

∫
V2

χ(u)χ(ũ)F(u)F(ũ)χ[−λ−σ̃+ε ,λ−σ̃+ε ](x − x̃) dudũ

� λ

∫
‖F(x)‖L1

t L
1
θ
‖F(x̃)‖L1

t̃
L1

θ̃

χ[−λ−σ̃+ε ,λ−σ̃+ε ](x − x̃) dxdx̃

� λ1−σ̃+ε‖F‖2
L2
x L

1
t L

1
θ

� λ
a
2 (1− 1

γ
)+ε‖F‖2

L2
x L

1
t L

1
θ

.

Step 3. Estimate for E3. Since ∂ξφ = (x− x̃+ tθ − t̃ θ̃ )+a(t− t̃)|ξ |a−2ξ , in order
to bound |x − x̃ + tθ − t̃ θ̃ | from below and use Van der Corput lemma to estimate
Kλ, we further split the region V3 into several parts as follows

V31 = {(u, ũ) ∈ V3 : |x − x̃ | < 4|t − t̃ |};
V32 = {(u, ũ) ∈ V3 : 4|t − t̃ | < |x − x̃ |}.

Let

E3 j = λ

∫∫
V3 j

χ(u)χ(ũ)F(u)F(ũ)Kλ(u, ũ) dudũ, for j = 1, 2.

Then E3 = E31 + E32.
For the region V31, by the support of ψ(ξ), we have

|∂2ξ [φ(λξ)]| = |a(a − 1)|λa |t − t̃ ||ξ |a−2 � λa |x − x̃ |,
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then by Lemma 2.2 (i) and the inequality tγ + t̃γ � |t − t̃ |γ , we can get

|Kλ| � (λa |x − x̃ |)− 1
2

(∫
|(e−λa(tγ +t̃γ )|ξ |aψ2(ξ))′| dξ+‖e−λa(tγ +t̃γ )|ξ |aψ2(ξ)‖L∞

)

� (λa |x − x̃ |)− 1
2 e−λa(tγ +t̃γ )2−a

� (λa |x − x̃ |)− 1
2 λ−aβ |t − t̃ |−γβ

= λ− a
2−aβ |x − x̃ |− 1

2−γβ .

We take β = 1
2γ − ε, then by Lemma 2.3

E31 � λ1−
a
2−aβ

∫
|F(u)|χ(u)|F(ũ)|χ(ũ)|x − x̃ |− 1

2−γβ du dũ

� λ
a
2 (1− 1

γ
)+aε

∫
|F(u)|χ(u)|F(ũ)|χ(ũ)|x − x̃ |−1+γ ε du dũ

� λ
a
2 (1− 1

γ
)+aε‖F‖2

L2
x L

1
t L

1
θ

.

For the region V32, since

− a

γ
− σ = − a

γ
− a

2

(
1 − 1

γ

)
= −a

2

(
1 + 1

γ

)
< −1 + a

2

(
1 − 1

γ

)
,

then

|t | · |θ − θ̃ | <
1

4
λ

− a
γ

+ δ
γ λ−σ <

1

4
λ

−1+ a
2 (1− 1

γ
)+ε <

1

4
|x − x̃ |,

and

|tθ − t̃ θ̃ | ≤ |t ||θ − θ̃ | + |t − t̃ ||θ̃ | <
1

4
|x − x̃ | + 1

4
|x − x̃ | <

1

2
|x − x̃ |, (3.20)

where 0 < δ  ε.
These inequalities yield

|x − x̃ + tθ − t̃ θ̃ | ≥ |x − x̃ | − |tθ − t̃ θ̃ | >
1

2
|x − x̃ |.

Through a direct computation, we have the first order derivative for the phase
function for

∂ξ [φ(λξ)] = λ(x − x̃ + tθ − t̃ θ̃ ) + aλa(t − t̃)|ξ |a−2ξ.
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By stationary phase analysis, we split the integral Kλ(u, ũ) into two parts as follows

Kλ(u, ũ) =
∫
W1

eiφ(λξ)e−λa(tγ +t̃γ )|ξ |aψ(ξ)2 dξ

+
∫
W2

eiφ(λξ)e−λa(tγ +t̃γ )|ξ |aψ(ξ)2 dξ

= J1 + J2,

where

W1 = {ξ ∈ R : |x − x̃ + tθ − t̃ θ̃ | > 2a|t − t̃ ||λξ |a−1},
W2 = {ξ ∈ R : |x − x̃ + tθ − t̃ θ̃ | < 2a|t − t̃ ||λξ |a−1}.

For J1, since

|∂ξ [φ(λξ)]| ≥ λ|x − x̃ + tθ − t̃ θ̃ | − aλ|t − t̃ ||λξ |a−1

≥ 1

2
λ|x − x̃ + tθ − t̃ θ̃ | � λ|x − x̃ |

≥ λ
a
2 (1− 1

γ
)+ε

> 1

and ∂ξ [φ(λξ)] is monotonic with respect to ξ onW2, then by Lemma 2.2 (ii), we have

|J1| � (λ|x − x̃ |)−1 < (λ|x − x̃ |)−[1− a
2 (1− 1

γ
)]
. (3.21)

Notice that in (3.21), in order to keep 1
2 < 1− a

2 (1− 1
γ
) < 1, we need 1 < γ < a

a−1
for a > 1.

For J2, by suppψ(ξ) ⊂ { 12 < |ξ | < 2} and the definition of the set W2, it is easy
to see that

|t − t̃ | � λ1−a |x − x̃ + tθ − t̃ θ̃ | � λ1−a |x − x̃ |. (3.22)

Since

|∂2ξ [φ(λξ)]| = a(a − 1)λa |t − t̃ ||ξ |a−2 � λ|x − x̃ |

and

tγ + t̃γ � (t + t̃)γ > |t − t̃ |γ ,
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then by Lemma 2.2 (i) and the inequality (3.22), we can obtain

|J2| � (λ|x − x̃ |)− 1
2 (‖ψ2(ξ)e−λa(tγ +t̃γ )|ξ |a )‖L∞(W2)

+
∫
W2

|(ψ2(ξ)e−λa(tγ +t̃γ )|ξ |a )′|) dξ)

� (λ|x − x̃ |)− 1
2 e−λa(tγ +t̃γ )|2−2

� (λ|x − x̃ |)− 1
2 λ−aβ |t − t̃ |−γβ

� λ
− 1
2−aβ+(a−1)γβ |x − x̃ |− 1

2−γβ
,

where 0 < β = 1
2γ − ε, so

|J2| � λ
−1+ a

2 (1− 1
γ

)+[a−(a−1)γ ]ε |x − x̃ |−1+γ ε. (3.23)

From (3.21) and (3.23), we have by Lemma 2.3

E32 � λ
a
2 (1− 1

γ
)+ε

∫
V22

χ(u)χ(ũ)F(u)F(ũ)

(|x − x̃ |−[1− a
2 (1− 1

γ
)] + |x − x̃ |−1+γ ε) dudũ

� λ
a
2 (1− 1

γ
)+ε‖F‖2

L2
x L

1
t L

1
θ

.

Then by the estimates of E31 and E32, we have

E3 � λ
a
2 (1− 1

γ
)+ε‖F‖2

L2
x L

1
t L

1
θ

.

In conclusion, (3.17) has been proved.

3.2 Proof of Lemma 3.1 in the case a = 1

For a = 1, notice that |∂ξφ(ξ)| does not depend on the value of ξ but its direction,
which is different from the the case a > 1, thus we consider the case a = 1 alone.

In this case, rewrite the equalities (3.15) and (3.16) as follows

Kλ =
∫

eiφ(λξ)e−λ(tγ +t̃γ )|ξ |ψ(ξ)2 dξ, (3.24)

φ(ξ) = (x − x̃ + tθ − t̃ θ̃ )ξ + (t − t̃)|ξ |. (3.25)
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Split the integral (3.14) into three parts as follows

‖T ∗F‖2L2 = λ

3∑
m=1

∫∫
Vm

χ(u)χ(ũ)F(u)F(ũ)Kλ(u, ũ) dudũ =
3∑

m=1

Em,

where

V1 = {(u, ũ) ∈ U × Ũ : t + t̃ > λ
− 1

γ
+ δ

γ },
V2 = {(u, ũ) ∈ U × Ũ : |x − x̃ | < λ

− 1
γ

+ε
, t, t̃ < λ

− 1
γ

+ δ
γ },

V3 = {(u, ũ) ∈ U × Ũ : |x − x̃ | > λ
− 1

γ
+ε

, t, t̃ < λ
− 1

γ
+ δ

γ },

with 0 < δ  ε. The decomposition of the integral region is based on the fact that
∂2ξ φ(ξ) ≡ 0. We just need to prove that

Em � λ
1− 1

γ
+ε‖F‖2

L2
x L

1
t L

1
θ

, for m = 1, 2, 3. (3.26)

We will see that the estimate for E1 and E2 is similar to the corresponding terms
for a > 1, and the only different term we need to consider is E3, which shows the
difference of the property of the phase function for the cases a > 1 and a = 1.

Step 1. Estimate for E1. Since t + t̃ > λ
− 1

γ
+ δ

γ , then for ξ ∈ suppψ(ξ) ⊂ {ξ :
1
2 < |ξ | < 2}, we have

e−λ(tγ +t̃γ )|ξ |−1
< e−λ(tγ +t̃γ )2−1 �N (λ(tγ + t̃γ ))−N

≤ λ−δN < λ
− 1

γ , (3.27)

where we choose N ∈ N such that δN > 1
γ
. This implies that

Kλ(u, ũ) ≤
∫

|ψ(ξ)2| dξ · e−λ(tγ +t̃γ )2−1 � λ
− 1

γ .

Then

E1 ≤ λλ
− 1

γ

∫∫
V1

χ(u)χ(ũ)F(u)F(ũ) dudũ

� λ
1− 1

γ ‖F‖2
L2
x L

1
t L

1
θ

. (3.28)

Step 2. Estimate for E2. Since Kλ(u, ũ) < C , by the definition of the set V2 and
Young’s inequality, then we have
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E2 � λ

∫
V3

χ(u)χ(ũ)F(u)F(ũ)χ[−λ
− 1

γ +ε
,λ

− 1
γ +ε ](x − x̃) dudũ

� λ

∫
‖F(x)‖L1

t L
1
θ
‖F(x̃)‖L1

t̃
L1

θ̃

χ[−λ
− 1

γ +ε
,λ

− 1
γ +ε ](x − x̃) dxdx̃

� λ
1− 1

γ
+ε‖F‖2

L2
x L

1
t L

1
θ

.

Step 3. Estimate for E3. By the definition of the set V3, for (u, ũ) ∈ V3, we have

|x − x̃ | 	 (|t | + |t̃ |),

then

|x − x̃ + tθ − t̃ θ̃ | ≥ |x − x̃ | − |tθ − t̃ θ̃ | ≥ |x − x̃ | − (|t | + |t̃ |) � |x − x̃ |.

Since

|∂ξ [φ(λξ)]| ≥ λ|x − x̃ + tθ − t̃ θ̃ | − λ|t − t̃ |
� λ|x − x̃ + tθ − t̃ θ̃ | � λ|x − x̃ |
≥ λ

1− 1
γ

+ε
> 1,

by Lemma 2.2 (ii), we have

|Kλ| � (λ|x − x̃ |)−1 < (λ
1
γ |x − x̃ |)−1+ελ

−1+ 1
γ = λ

−1+ ε
γ |x − x̃ |−1+ε, (3.29)

where ε > 0 is small enough such that γ > 1 + ε. By this inequality, we have

E3 � λλ
−1+ ε

γ

∫
V2

χ(u)χ(ũ)F(u)F(ũ)|x − x̃ |−1+ε dudũ

� λ
1− 1

γ ‖F‖2
L2
x L

1
t L

1
θ

.

In conclusion, (3.26) has been proved. 
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