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Abstract
We study the question under which conditions the zero set of a (cross-) Wigner dis-
tribution W ( f , g) or a short-time Fourier transform is empty. This is the case when
both f and g are generalized Gaussians, but we will construct less obvious exam-
ples consisting of exponential functions and their convolutions. The results require
elements from the theory of totally positive functions, Bessel functions, and Hurwitz
polynomials. The question of zero-free Wigner distributions is also related to Hud-
son’s theorem for the positivity of the Wigner distribution and to Hardy’s uncertainty
principle. We then construct a class of step functions S so that the Wigner distribution
W ( f , 1(0,1)) always possesses a zero f ∈ S ∩ L p when p < ∞, but may be zero-
free for f ∈ S ∩ L∞. The examples show that the question of zeros of the Wigner
distribution may be quite subtle and relate to several branches of analysis.
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1 Introduction

The aim of this paper is to study the zero set of theWigner distribution of two functions
f , g ∈ L2(R),

W ( f , g)(z) =
∫
Rd

f (x + t
2 )ḡ(x − t

2 )e
−2π i〈ξ,t〉 dt, z = (x, ξ) ∈ R

2d . (1)

More precisely, we are investigating whether this zero set can be empty. Results here
directly extend to other phase-space representations to which the Wigner transform
is closely related. These include the ambiguity function and the short-time Fourier
transform Vg f (z) = 〈 f , π(z)g〉L2(Rd ), π(z)g(t) = e2iπ〈ξ,t〉g(t − x) for z = (x, ξ) ∈
R
2d (see Eq. 2).
The zero set of the short-time Fourier transform is important in the study of the

generalized Berezin quantization and the injectivity of a general Berezin transform.
The thesis of D. Bayer [5], partially published in [6], contains the following result
(under a mild condition on f , g ∈ L2(Rd)): If Vg f (z) �= 0 for all z ∈ R

2d , then the
mapping T → BT , with z → BT (z) = 〈T π(z)g, π(z) f 〉, is one-to-one on the space
of bounded operators on L2(Rd). The function (z, w) 	→ 〈T π(z)g, π(w) f 〉 may be
interpreted as a special integral kernel associated to the operator T . Bayer’s statement
asserts that T is uniquely determined by the diagonal of this kernel. The assertation
is relevant, because theorems of this type were known only in the context of complex
analysis, see, e.g. [10, Cor. 1.70]. Zero-free Wigner distributions occur prominently
in [22,24] in a similar context. It is therefore natural to ask for examples that satisfy
Bayer’s assumptions:

Question Determine (all) pairs ( f , g) such that W ( f , g) does not vanish.

Clearly, if f (t) = g(t) = e−π t2 is a Gaussian, then W ( f , g)(x, ξ) =
2de−2π(x2+ξ2) �= 0 everywhere. More generally, if q, q̃ are quadratic polynomials
over C such that f = e−q , g = e−q̃ ∈ L2(Rd) (generalized Gaussian), then the
Wigner distribution W ( f , g) is also zero-free. For a while, we have been unable to
produce other pairs ( f , g) for which W ( f , g) is zero-free which led us to believe that
such pairs might not exist. The aim of this paper is to show that our belief was false
by providing several examples of Wigner distributions without zeros. In doing so,
we explore several connections with other areas of analysis. We restrict our attention
mostly to the case d = 1. Although we cannot offer a coherent theory of zero-free
Wigner distributions, we feel that the above question is of interest in itself and war-
rants a deeper analysis. Part of the appeal of this problem comes from the connection
to different branches of analysis. In our quest for zero-free Wigner distributions we
touched the following topics in analysis.

(i) Total positivity: Most of our examples of zero-freeWigner distributions (or ambi-
guity functions) are obtained from the basic example of the one-sided exponential
function e−at1(0,∞)(t) by convolution. These happen to be totally positive func-
tions, as follows from the fundamental classification of totally positive functions
by Schoenberg [28]. However, not all totally positive functions possess a zero-
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Zeros of the Wigner distribution and the short-time… 725

free ambiguity function, as can be seen from the symmetric exponential function
e−a|x |.

(ii) Bessel functions and Hurwitz polynomials: The Wigner distribution of the func-
tions fn(t) = tne−t1(0,∞)(t) contains certain Bessel functions as a factor.
Moreover, to verify that the ambiguity function of fn is zero-free, one needs
to know that certain polynomials have all their zeros in the left half-plane, i.e.,
whether they are Hurwitz polynomials. We answer this question by recourse to
the classical properties of Bessel functions.

(iii) Hudson’s theorem: The non-vanishing of a Wigner distribution seems inherently
related to Hudson’s theorem which asserts that a Wigner distribution is non-
negative, if and only if both f and g are generalized Gaussians [15]. Indeed,
variations of the proof of Hudson’s theorem yield the following statement: If
Re W ( f , g) does not have any zeros, then f and g must be generalized Gaus-
sians. Similar statement holds for the imaginary part of W ( f , g). For all other
functions, the real and imaginary parts of the Wigner distribution must change
sign, so the zero sets contain some hypersurfaces and the question is when these
hypersurfaces do not intersect.

(iv) Poly-analytic functions: We also consider the case when both functions f and
g are finite linear combinations of Hermite functions. We are lead to investigate
the zeros of certain poly-analytic functions. Results of Balk [4] yield some hints
about the zero set in this case. However, this direction does not seem to lead
to new examples of zero-free Wigner distributions. We conjecture that no such
examples exist in the class of finite linear combinations of Hermite functions.

(v) Convexity and almost periodicity: As a last class of functions we consider pairs
f , g where one of the functions, say g, is a characteristic function of an interval.
We conjecture that for any choice of f ∈ L2(R) theWigner distribution W ( f , g)

has zeros. To support our conjecture we study the following particular case. Let
g = 1(0,1) and choose f to be a step function with discontinuities on Z∪ (α+Z)

for irrational α. If f ∈ L p for p < ∞, the Wigner distribution W ( f , 1(0,1))

must always have a zero. However, we will construct a delicate example of a step
function f in L∞ for which the corresponding Wigner distribution W ( f , 1(0,1))

does not have any zeros. This example shows that the non-existence of zeros
of the Wigner distribution may be quite subtle and may depend sensitively on
integrability or smoothness properties of the function classes considered. In this
part we use convexity and almost periodicity as tools.
The article is organized as follows: in Sect. 2 we collect some of the properties of
the Wigner distribution and the ambiguity function. We list examples we found
for which the Wigner distribution is zero-free in Sects. 3 and 4. In Sect. 5 we
study the connection of zero-free Wigner distributions to Hudson’s theorem.
Open questions and interesting connections of the problem to other areas of
analysis are discussed in Sects. 4–7. In Sect. 6 we consider f and g to be finite
linear combinations of Hermite functions and relate the corresponding Wigner
distribution to the theory of poly-analytic functions. Section 7 is devoted to the
case when g is the characteristic function of an interval.
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726 K. Gröchenig et al.

2 Some properties of theWigner transform

The Wigner transform is closely related to two other transforms in time-frequency
analysis. The first one is the short-time Fourier transform

Vg f (x, ξ) =
∫
Rd

f (t)g(t − x)e−2π i〈ξ,t〉 dt . (2)

A simple computation shows that

W ( f , g)(x, ξ) = e4π i〈x,ξ〉VIg f (2x, 2ξ) , (3)

with Ig(t) = g(−t). The second transform is the ambiguity function which is a
slighlty more symmetric version of the short-time Fourier transform

A( f , g) =
∫
Rd

f
(
t + x

2

)
g

(
t − x

2

)
e−2iπ〈ξ,t〉 dt .

These transforms are related by the formulas

A( f , g) = eiπ〈ξ,x〉V ( f , g) and A( f , g)(x, ξ) = 1
2W ( f , Ig)( x

2 ,
ξ
2 ).

Thus a pair ( f , g) for which A( f , g) does not vanish also provides a pair ( f , g)

for which the short-time Fourier transform and a pair ( f , Ig) for which the Wigner-
transform does not vanish.

Let us now list the invariance properties of the ambiguity function. To do so, we
recall that, for z = (x, ξ) ∈ R

2d , the phase-space shift of f ∈ L2(Rd) along z is
defined by π(z) f (t) = e2π i〈ξ,t〉 f (t − x). To every symplectic matrix A ∈ Sp (d, R)

one can then associate a unitary operator μ(A) acting on L2(Rd) such that

π(Az) = μ(A)π(z)μ(A)∗ ∀z ∈ R
2d . (4)

Hereμ(A) is determined only up to a phase factor and is called a metaplectic operator.
The existence of metaplectic operators follows already from the Stone-von Neumann
theorem [10, Thm. 1.50] and is all we need here. For the much deeper aspects of these
operators and the subtle construction of the metaplectic representation we refer to [10]
and the recent book [9]. For Theorem 5.4 we need the following formulas about the
interaction between the Wigner distribution and the metaplectic operators.

Lemma 2.1 Let f , g ∈ L2(Rd), w = (a, b), w′ = (a′, b′) ∈ R
2d , and A ∈ Sp (d, R).

Then for all z ∈ R
2d

W (π(w) f , π(w′)g)(z) = e2iπ〈w−w′,z〉+iπ〈b+b′,a−a′〉W ( f , g)

(
z − w + w′

2

)
(5)

W (μ(A) f , μ(A)g)(z) = W ( f , g)(A∗z) . (6)
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Zeros of the Wigner distribution and the short-time… 727

See [10], Prop. (1.92), for (5) (with slightly different normalizations), and [10],
Prop. (4.28), for (6), or the general references [9,12].

As a consequence, if W ( f , g) has no zeros, then the same is true for W (π(w) f ,

π(w′)g) and W (μ(A) f , μ(A)g). Thus every example of a zero-free Wigner distri-

bution yields a whole class of related examples. Note that when A = J =
(
0 −I
I 0

)
,

μ(A) f is the Fourier transform of f .
We will use a further property of the ambiguity function. For ξ ∈ R

d , let us write
Mξ f (t) = π(0, ξ) f (t) = e2iπ〈ξ,t〉 f (t). Then

A( f , g)(x, ξ) = (
M−ξ/2 f

) ∗ (
Mξ/2g∗)(x)

where g∗(t) = g(−t). As a consequence

A( f1 ∗ f2, g1 ∗ g2)(x, ξ) = (
A( f1, g1)(·, ξ) ∗1 A( f2, g2)(·, ξ)

)
(x)

:=
∫
Rd

A( f1, g1)(t, ξ)A( f2, g2)(x − t, ξ) dt . (7)

Finally we cite the version of Hardy’s uncertainty principle for the Wigner distri-
bution taken from [14].

Lemma 2.2 (i) If |W ( f , f )(z)| ≤ Ce−2π |z|2 = C ′W (h0, h0)(z) for all z ∈ R
2d ,

then f = ch0.
(ii) Let γ ∈ L2(Rd) be a generalized Gaussian and ψ ∈ L2(Rd). If W (ψ,ψ)(z) ≤

W (γ, γ )(z) for all z ∈ R
2d , then ψ = cγ .

Proof (i) is Hardy’s uncertainty principle for theWigner distribution as proved in [14]
(Lemma 3.3 and Remark 3.4).

(ii) follows from (i).We recall that every generalizedGaussianγ = eQ(x) ∈ L2(Rd)

with a quadratic polynomial Q can be written in the form γ = π(w)μ(A)h0, where
h0(x) = 2d/4e−π |x |2 is the normalized Gaussian, see e.g., [10], Prop. (4.73).

Let ψ0 ∈ L2(Rd) such that ψ = π(w)μ(A)ψ0. Using (5) and (6), we obtain

|W (ψ0, ψ0)(A∗(z − w))| = |W (ψ,ψ)(z)|
≤ CW (γ, γ )(z)=C ′W (h0, h0)(A∗(z − w)) z ∈R

2d .

By (i) this implies that ψ0 = ch0 and consequently ψ = cγ . ��

3 Examples

In this section we give several examples of pairs of functions in dimension 1 for which
the ambiguity function does not vanish.
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728 K. Gröchenig et al.

Example 1 The first example is the Gaussian function. Write γa(t) = e−aπ t2 with t ∈
R and a > 0. Then a direct, well known computation shows that, if Re (a),Re (b) > 0,

A(γa, γb) = (a + b)−1/2 exp
(

− π
abx2 + ξ2

a + b
+ i

a − b

a + b
xξ

)
(8)

so that A(γa, γb) does not vanish.
Using tensorisation and invariance properties of the Wigner distribution, it follows

that, if f , g ∈ L2(Rd) are generalized Gaussians f = e−q1 , g = e−q2 (for some
quadratic polynomial), then A( f , g) does not vanish on R

d .

A second family of examples is given by the one-sided exponential.

Example 2 For a > 0, let ηa(t) = e−at1(0,+∞)(t). Then, for a, b > 0

A(ηa, ηb)(x, ξ) = exp

(
−a − b

2
x − a + b

2
|x |

)
e−iπξ |x |

a + b + 2iπξ

= ηa,b(x)
e−iπξ |x |

a + b + 2iπξ
(9)

where ηa,b(x) = (b − a)−1 ηa ∗ Iηb(x) =
{

e−ax when x ≥ 0

ebx when x < 0
. See also [19]. In

particular,

A(ηa, ηa)(x, ξ) = e−(a+iπξ)|x |

2(a + iπξ)

does not have any zeros. Since A(I f , Ig)(x, ξ) = A( f , g)(−x,−ξ), the ambiguity
function of the one-sided exponential Iηb, b > 0, is

A(Iηb, Iηb)(x, ξ) = e−(b−iπξ)|x |

2(b − iπξ)
, (10)

and is also zero-free.
However, the ambiguity function A(ηa, Iηb)(x, ξ) = 0 for x ≤ 0, because in this

case t 	→ ηa(t + x/2) and t 	→ Iηb(t − x/2) have disjoint supports.

Example 3 Next we compute the ambiguity function of convolutions of exponentials
of the form f = ηa ∗ ηb or f = ηa ∗ Iηb for a, b > 0. For a compact formula we
write η−a = Iηa .

Lemma 3.1 Let a, b > 0, a �= b. Then

A(ηa ∗ η±b, ηa ∗ η±b)(x, ξ)

= 1

2(b2 − a2) + 4π i(±b − a)ξ

(e−(a+π iξ |x |)

a + π iξ
− e−(b±π iξ)|x |

b ± π iξ

)
. (11)

Furthermore, A(ηa ∗ η±b, ηa ∗ η±b) has no zeros.
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Zeros of the Wigner distribution and the short-time… 729

Proof To facilitate calculations, we set ψu(x) = e−u|x | for u ∈ C. Given a, b > 0 set
u = a + π iξ, v = b + π iξ . In this notation, (9) with a = b becomes

A(ηa, ηa)(x, ξ) = 1

2u
ψu(x) and A(η−b, η−b)(x, ξ) = 1

2v
ψv(x) .

To find the ambiguity function of f = ηa ∗ ηb, we use (7) and find that

A( f , f )(x, ξ) = ψu ∗ ψv(x)

4uv
. (12)

Then for x ≥ 0 we obtain

ψu ∗ ψv(x) =
∫ 0

−∞
eut−v(x−t) dt +

∫ x

0
e−ut−v(x−t) dt +

∫ +∞

x
e−ut+v(x−t) dt

= e−vx

u + v
+ e−ux − e−vx

v − u
+ e−ux

u + v

= e−ux
( 1

v + u
+ 1

v − u

)
+ e−vx

( 1

v + u
− 1

v − u

)

= 2

v2 − u2

(
ve−ux − ue−vx

)
.

Since ψu is even, so is ψu ∗ ψv , and then (12) yields

A( f , f )(x, ξ) = 1

2(v2 − u2)

(e−u|x |

u
− e−v|x |

v

)
, (13)

from which (11) follows by substituting the values for u and v.
For the case f = ηa ∗ η−b, according to (10) we only have to replace v by v in the

above derivation, whence (11) follows for f .
Now assume that A(ηa ∗ ηb, ηa ∗ ηb)(x, ξ) = 0. Since a �= b, the denominator

v2 − u2 �= 0 and (13) implies that

e−u|x |

u
= e−v|x |

v
, (14)

or

e(b−a)|x | = e(v−u)|x | = u

v
= a + π iξ

b + π iξ
.

For b > a, the left-hand side is greater than 1, whereas the modulus of the right-hand
side is less than 1, which is impossible. Thus A(ηa ∗ ηb, ηa ∗ ηb) does not have any
zeros. Likewise for the case b < a.

Similarly, if A(ηa ∗ η−b, ηa ∗ η−b)(x, ξ) = 0, then

e−u|x |

u
= e−v|x |

v
, (15)
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730 K. Gröchenig et al.

or

e(b−a−2π iξ)|x | = e(v−u)|x | = u

v
= a + π iξ

b − π iξ
. (16)

Again for b > a, the modulus of the left-hand side is greater than 1, whereas the
modulus of the right-hand side is less than 1, which is not possible. Thus A(ηa ∗
η−b, ηa ∗ η−b) does not have any zeros. ��

The case a = b and ηa ∗ηa = te−at1(0,∞) is treated below. The case of ηa ∗η−a =
e−a|x | is particularly interesting, as its Fourier transform is the Poisson kernel. In this
case (11) holds for ξ �= 0 and requires some easy modification for ξ = 0. If ξ �= 0,
then (16) turns into

e−2π iξ |x | = e(v−u)|x | = u

v
= a + π iξ

a − π iξ
.

This equation is solvable, and therefore the ambiguity function of e−a|x | must have
zeros. In Corollary 5.2 we will give a different explanation for this fact.

It is also possible to derive a formula for the ambiguity function of higher convolu-
tions of the form ηa1 ∗ ηa2 ∗ · · · ∗ ηan for distinct values of a j > 0. These expressions
are much more complicated, and the analysis of their zeros requires a separate inves-
tigation.

Example 4 Let a > 0 and f (t) = ηa ∗ ηa(t) = tηa(t). A direct computation shows
that

A( f , ηa)(x, ξ) = x1(0,+∞)(x)e−a(1+iπξ)x

2(a + iπξ)
+ e−a(1+iπξ)|x |

4(a + iπξ)2
.

Obviously, A( f , ηa)(x, ξ) can not vanish if x ≤ 0, while if x ≥ 0, it is enough to
notice that 2x(a + iπξ) + 1 can not vanish.

Example 5 Let γa,b(t) = exp(at − bet ), where a, b > 0, then γa,b ∈ L2(R) and
we claim that A(γa,b, γa,b) does not vanish. A straightforward computation (with the
substitution s = 2b cosh x

2 et ) shows that

A(γa,b, γa,b)(x, ξ) =
(
2b cosh

x

2

)−2a+2π iξ
∫ ∞

0
s2a−1−2π iξ e−sds

=
(
2b cosh

x

2

)−2a+2π iξ
�(2a − 2π iξ).

The gamma function is well defined in the right half-plane and does not have zeros,
so A(γa,b, γa,b) never vanishes. A similar computation shows that

A(γa,b, γc,d) = e(a−c)x/2(bex/2 + de−x/2)−(a+c)+2π iξ�(a + c − 2π iξ) ,

and it has no zeros either.
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One can now use the invariance properties of the ambiguity function to obtain
more examples. For instance, using the Fourier transform, one obtains the following
examples.

Example 6 Let us now write, for a �= 0, ca(t) = 1
a+2iπ t and note that ca is the Fourier

transform of ηa when a > 0. It follows that A(ca, cb) does not vanish for a, b > 0.
Furthermore, except for the Poisson kernel 1

a2+4π2t2
all rational functions of the form

ca(t)cb(±t) = 1
a+2iπ t

1
b±2iπ t possess a non-vanishing ambiguity function, because

they are the Fourier transform of ηa ∗ ηb or of ηa ∗ Iηb.

Outlook and context All functions in Examples 1–5 are totally positive functions or
related to such a function. A function g : R → R is called totally positive (or a Polya
frequency function), if for every choice of real numbers x1 < x2 < · · · < xn and
y1 < y2 < · · · < yn with n ∈ N the inequality

det
(
g(x j − yk)

)
j,k=1,...,n ≥ 0

holds. According to a fundamental characterization of Schoenberg [28] the Fourier
transform of a totally positive function in L1(R) can be factored as follows:

ĝ(ξ) = e−γπξ2e2π iδξ
∞∏
j=1

(1 + 2π iδ jξ)−1e2π iδ j ξ , (17)

with δ, δ j ∈ R, 0 ≤ γ , and
∑∞

j=1 δ2j < ∞. Clearly, every Gaussian γa(t) =
e−aπ t2 , a > 0, is totally positive, and the complex Gaussian e−(a+ib)π t2 is obtained
from γa by ametaplectic operator. InExamples 2 and 3wehave analyzed the ambiguity
function of the simplest totally positive functions, corresponding to the factorization
ĝ(ξ) = ∏L

j=1(1 + 2π iδ jξ)−1 for L = 1 and L = 2. These are just the functions

ηa , ηa ∗ ηb, ηa ∗ Iηb. By Schoenberg’s analysis [28, Sec. 18] the function eax−eax
for

a �= 0 occurring in Example 5 is also totally positive.
At this time the role of totally positive functions in the classification of zero-free

ambiguity functions remains unclear.Amongall explicit examples considered, only the
symmetric exponential e−a|x | has an ambiguity function with zeros. More generally,
the ambiguity function of every even totally positive function has a zero. See also
Corollary 5.2 below.

4 Totally positive functions and Hurwitz polynomials

In this section we study a different class of totally positive functions and its relation
to Bessel functions and Hurwitz polynomials. Let

fn(t) = tne−t1(0,∞)(t) = tnη1(t).
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732 K. Gröchenig et al.

This is a totally positive function with Fourier transform f̂ (ξ) = (1 + 2π iξ)−n [28]
and can also be written as n! η1 ∗ · · · ∗ η1 (n times). Its ambiguity function can be
explicitly calculated as follows. Let An be the polynomial of degree n defined by

An(z) =
n∑

k=0

(
n

k

)
(n + k)! zn−k . (18)

Lemma 4.1 The ambiguity function of fn(t) = tne−t1(0,∞)(t) is equal to

A( fn, fn)(x, ξ) = e−|x |(1+iπξ) 1

(2 + 2π iξ)2n+1 An
(|x |(2 + 2π iξ)

)
. (19)

Proof We rewrite the ambiguity function as follows:

A( fn, fn)(x, ξ) =
∫
R

(
t + x

2

)n
e−(t+x/2)1R+

(
t + x

2

)

× (
t − x

2

)n
e−(t−x/2)1R+(t − x

2 ) e−2π iξ t dt

=
∫ ∞

|x |/2
(
t + x

2

)n
(t − x

2

)n
e−(2+2π iξ)t dt ,

since we need both t > x/2 and t > −x/2. For x �= 0, we use the change of variables

u = t

|x | − 1

2

(so that t = |x |u + |x |/2) to rewrite the integral as

A( fn, fn)(x, ξ) = |x |2n+1
∫ ∞

0
un(u + 1)ne−(|x |u+|x |/2)(2+2π iξ) du

= e−|x |(1+π iξ)|x |2n+1
∫ ∞

0
un(u + 1)ne−u|x |(2+2π iξ) du .

The integral is just the Laplace transform of the polynomial

un(u + 1)n =
n∑

k=0

(
n

k

)
un+k

at ζ = |x |(2 + 2π iξ). Since L{uk}(z) = ∫ ∞
0 uke−uz du = k!z−k−1, we obtain

∫ ∞

0
un(u + 1)ne−uz du =

n∑
k=0

(
n

k

)
(n + k)! z−n−k−1 = z−2n−1An(z) .
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For x = 0, the ambiguity function is

A( fn, fn)(0, ξ) =
∫ ∞

0
t2ne−t(2+2π iξ) dt

= L{u2n}(2 + 2π iξ) = (2n)! (2 + 2π iξ)−2n−1 .

With ζ = |x |(2 + 2π iξ) and |x |2n+1ζ−2n−1 = (2 + 2π iξ)−2n−1, the final formula
for the ambiguity function on R

2 is

A( fn, fn)(x, ξ) = e−|x |(1+iπξ) 1

(2 + 2π iξ)2n+1 An
(|x |(2 + 2π iξ)

)
.

��

To show that the ambiguity function of f does not vanish, we need to know that
An has no zeros on the right half-plane. A polynomial whose roots all have negative
real part, is called a Hurwitz polynomial or a stable polynomial. For small n one can
check the stability of An directly. For larger n, one could check the stability of An

in principle with the Routh–Hurwitz criterion [11, pp. 225–230] and [29]. For this
purpose, we associate to a polynomial p(t) = a0tn + a1tn−1 + · · · + an , a0 > 0 the
n × n Hurwitz matrix

H = (a2 j−i )1≤i, j≤n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 a3 a5 a7 · · · 0
a0 a2 a4 a6 · · · 0
0 a1 a3 a5 · · · 0
0 a0 a2 a4 · · · 0
...

...
...

...
...

0 0 0 0 · · · an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(with the convention a j = 0 if j < 0 or j > n). Then p is a Hurwitz polynomial
if and only if all principal minors of H are positive [11, pp. 225–230]. This criterion
implies that the condition a j a j+1 − a j−1a j+2 > 0 is necessary for the stability
of p. On the other hand, there exists an optimal value γ > 0, γ ≈ 2.1479, such
that a j a j+1 > γ a j−1a j+2 is sufficient for p to be stable [20]. One can check that
the polynomials An satisfy the necessary condition, but fail to satisfy the sufficient
condition. The decisive hint comes from experimenting with Mathematica. It turns
out that

An(z) = π−1/2n!ez/2zn+1/2Kn+1/2
( z

2

)
, (20)

where Kν, ν ∈ R is the Macdonald function or the modified Bessel function of the
second kind [25,26,31]. For ν = n + 1/2 it is the Laurent polynomial

Kn+1/2(z) =
( π

2z

)1/2
e−z

n∑
k=0

(n + k)!
k!(n − k)! (2z)−k ,
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734 K. Gröchenig et al.

whence (20) follows immediately. One can also perform the change of variables s =
2t/|x | in the first computation of A( fn, fn) and directly obtain that

A( fn, fn)(x, ξ) =
∫ ∞

|x |/2
(
t + x

2

)n
(t − x

2

)n
e−(2+2π iξ)t dt

=
( |x |

2

)2n+1 ∫ ∞

1
(s2 − 1)ne−(1+π iξ)|x |s ds

= n!√
π

( |x |
(1 + π iξ)

)n+1/2

Kn+1/2(|x |(1 + π iξ))

Furthermore, for arbitrary ν ≥ 0, Kν has roots only when Re z < 0 [31, 15.7]. In view
of (20) An is therefore a Hurwitz polynomial [31].

By combining the accumulated knowledge about Bessel functions, we have there-
fore proved the following result.

Theorem 4.2 The polynomial An is a Hurwitz polynomial. Thus the ambiguity function
of fn(t) = tne−t1(0,∞)(t) does not have any zeros.

Using the invariance of the problem under metaplectic operators, we see that the
function cn

a(t) = 1
(a+2iπ t)n has a zero-free ambiguity function. This follows because

cn
a is the Fourier transform of xne−ax1(0,∞)(x) = ηa ∗ · · · ∗ ηa .

Remark 1 Martin Ehler proposed a different proof that An is a Hurwitz polynomial.
He observed that An can be interpreted as the hypergeometric function 1F1(n, 2n; z),
whose zeros are known to lie in the left halfplane.

5 Connection to Hudson’s theorem

We next discuss the connection of non-vanishing Wigner distributions to Hudson’s
theorem [15,18]. This theorem characterizes all non-negative Wigner distributions,
even in higher dimensions.

Theorem 5.1 (Hudson-Lieb) Let f , g ∈ L2(Rd). Then W ( f , g) ≥ 0, if and only if
f = cg for c > 0 and g is a generalized Gaussian. In this case W ( f , g)(x, ξ) > 0
for all x, ξ ∈ R.

As the connection to Hudson’s theorem is not accidental, it is instructive to review
its proof. For full details, we refer to [12,15,17], the cited bilinear version is due to
Lieb [23].

One first uses the convolution relation W ( f , f )∗W (g, g) = |Vg f |2 for theWigner

distribution. Using theGaussianwindow h0(t) = 2d/4e−π |t |2 withWigner distribution
W (h0, h0)(z) = 2de−2π |z|2 , we may translate the statement about the zeros of the
Wigner distribution into a statement about entire functions in the Bargmann-Fock
space. The Bargmann transform of f is defined to be

B f (z) = 2d/4e−π〈z,z〉/2
∫
Rd

f (t)e−π〈t,t〉e2π〈t,z〉 dt z ∈ C
d , (21)
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and it is connected to the short-time Fourier transform with respect to the Gaussian
h0 via

Vh0 f (z̄) = eπ i〈x,ξ〉 B f (z)e−π |z|2/2 . (22)

Here we identify the point (x, ξ) ∈ R
2d with z = x + iξ ∈ C

d . If W ( f , f ) ≥ 0, then
|Vh0 f (z)|2 = W ( f , f ) ∗ W (h0, h0)(z) > 0 for all z ∈ R

2d and therefore

|Vh0 f (z̄)|2 = |B f (z)|2e−π |z|2 �= 0 for all z ∈ C
d .

If Vh0 f (z) �= 0 for all z ∈ R
2d , then the entire function B f does not have zeros in

C
d and thus is of the form B f (z) = eh(z) for some entire function h. However, since

Vh0 f is bounded, it follows that |B f (z)| = eRe h(z) ≤ Ceπ |z|2/2. Thus Re h(z) ≤ C ′ +
π |z|2/2. By Carathéodory’s inequality h is then a quadratic polynomial. Inversion of
the Bargmann transform yields the conclusion that f must be a generalized Gaussian.

The connection between zero-freeWigner distributions and Hudson’s theorem now
becomes apparent.

Corollary 5.2 If f ∈ L2(Rd) and W ( f , f )(x, ξ) �= 0 for all x, ξ ∈ R, then f is
a non-zero multiple of a generalized Gaussian. Likewise, if VI f f (x, ξ) �= 0 for all
x, ξ ∈ R, then f is a generalized Gaussian.

Proof Assume that W ( f , f ) �= 0 everywhere. Since W ( f , f ) is real-valued, this
means that either W ( f , f )(z) > 0 for all z ∈ R

2 or W ( f , f )(z) < 0 for all z, in
which case W (− f , f ) > 0 everywhere. By Theorem 5.1 f must be a generalized
Gaussian. ��

Next we fix one of the functions and assume that g(t) = h0(t) = 2d/4e−π t2 is the
normalized Gaussian in R

d .

Proposition 5.3 If Vh0 f does not have any zero, then f is a generalized Gaussian.

Proof Since |Vh0 f (z̄)| = |B f (z)|e−π |z|2/2 by (21), the entire function B f does not
have zeros in C

d . The last part of the proof of Hudson’s theorem sketched above now
implies that f is a generalized Gaussian. ��

The standard polarization identity for the Wigner distribution now yields the fol-
lowing result on zeros of the real and imaginary parts of the Wigner distribution.

Theorem 5.4 Let f , g ∈ L2(Rd) and assume that the real part of W ( f , g) is never
zero, Re W ( f , g)(z) �= 0 for all z ∈ R

2d . Then f = aγ and g = bγ for a generalized
Gaussian γ and a, b ∈ C. Similarly, if ImW ( f , g)(z) �= 0 for all z ∈ R

2, then both
f and g are generalized Gaussians.

Proof The polarization identity states that

W ( f + g, f + g) − W ( f − g, f − g) = 4Re W ( f , g) .

123



736 K. Gröchenig et al.

Thus, if ReW ( f , g) does not have any zeros, then we must have either

W ( f + g, f + g)(z) > W ( f − g, f − g)(z)

or W ( f + g, f + g)(z) < W ( f − g, f − g)(z) ∀z ∈ R
2d . (23)

We only treat (23), the second case is obtained by replacing g by −g.
Proceeding as in the proof of Hudson’s theorem, we convolve W ( f ± g, f ± g)

with W (h0, h0)(z) = 2de−2π |z|2 . Since convolution with a positive function preserves
positivity, (23) implies the strict pointwise inequality

|Vh0( f + g)|2 = W ( f + g, f + g) ∗ W (h0, h0)

> W ( f − g, f − g) ∗ W (h0, h0) = |Vh0( f − g)|2 ≥ 0 .

By Proposition 5.3 f + g must be a generalized Gaussian f + g = γ.

Now, since W ( f − g, f − g) ≤ W (γ, γ ), Lemma 2.2 (ii) implies that f − g = cγ
for some c ∈ C. Solving for f and g we obtain that f = 1+c

2 γ and g = 1−c
2 γ , and

therefore both f and g are multiples of the same generalized Gaussian. ��

6 Polyanalytic functions

To find examples of zero-freeWigner distributions, one might fix a window function g
different from a Gaussian and see if every short-time Fourier transform Vg f possesses
at least one zero. We pursue this idea in dimension d = 1 for windows that are finite
linear combinations ofHermite functions. This line of thought connectswith the theory
of poly-analytic functions and raises some new questions.

Let g = ph0 where p is a polynomial and h0(t) = 21/4e−π t2 is the normalized
Gaussian on R. We can then write g as a finite linear combination of the Hermite
functions

g =
N∑

j=0

c j h j , (24)

where h j (t) = ν j eπ t2 d j

dt j (e
−2π t2) is the j-th Hermite function with normalization

ν j , such that ‖h j‖2 = 1. It is well known that the short-time Fourier transform with
respect to such a window is poly-analytic. To prepare the corresponding formulas, fix
n and first consider Vhn f . This short-time Fourier transform can be expressed with
the help of the Bargmann transform of f as follows, where z = x + iξ ∈ C

d :

Vhn f (x,−ξ) = 1√
πnn!eπ i xξ e−π |z|2/2

n∑
k=0

(
n

k

)
(−π z̄)n−k B f (k)(z) . (25)

See [8,13] for some early references of this formula. Now assume that the window is
of the form g = ∑N

n=0

√
πnn!cnhn and denote the associated polynomial by P(z) =∑N

n=0 cnzn . Then
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Vg f (z̄) = eπ i xξ e−π |z|2/2
N∑

n=0

cn

n∑
k=0

(
n

k

)
(−π z̄)n−k B f (k)(z)

= eπ i xξ e−π |z|2/2
N∑

k=0

1

k!
( N∑

n=k

cn
n!

(n − k)! (−π z̄)n−k
)

B f (k)(z)

= eπ i xξ e−π |z|2/2
N∑

k=0

1

k! B f (k)(z)P(k)(−π z) . (26)

From this explicit formula we see that the function F(z) = e−π i xξ eπ |z|2/2Vg f (z̄)
satisfies the diffential equation

∂ N+1

∂ z̄N+1 F = 0 . (27)

In the established terminology, F is poly-analytic of order N + 1 and F is a
version of the poly-analytic Bargmann transform of f [1,4,30]. Precisely given
g = ∑N

n=0

√
πnn!cnhn with associated polynomial P(z) = ∑

cnzn , we define the
poly-analytic Bargmann transform of f with respect to g to be

Bg f (z) =
N∑

k=0

1

k! B f (k)(z)P(k)(−π z) . (28)

Since d2

dzdz̄ = 1
4 is the standard Laplacian, (28) can also be written as

Bg f (z) =
N∑

k=0

1

k!4
−kk(B f (z)P(−π z)

)
.

The zero sets of poly-analytic functions are not well understood; in general they are
not discrete and are algebraic curves in C � R

2. The zero count is difficult even for
such simple equations as z̄ = P(z) for a given polynomial P [4,21].

We will use two known, non-trivial results about zeros of poly-analytic functions.

Theorem 6.1 (Balk) If F is poly-analytic and entire, such that its zero set is contained
in a bounded set, then F(z) = eh(z)Q(z, z̄) for some entire function h and some
poly-analytic polynomial Q(z, z̄).

See [2] and [27] for a proof. From this result we obtain the following reduction.

Proposition 6.2 Fix g = ph0 for some polynomial p. If Vg f does not have any zeros

in C, then f (x) = q(x)e−(a′x2+b′x+c′) for some polynomial q and a′, b′, c′ ∈
C,Re a′ > 0.

Proof If the zero set of Vg f is empty, then the zero set of the poly-analytic Bargmann
transform Bg f is also empty (and thus bounded). By Balk’s theorem Bg f factors
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into an entire function without zeros and a poly-analytic polynomial Q(z, z̄), i.e.,
Bg f (z) = eh(z)Q(z, z̄) for h entire. Consequently, by (26) we see that

Bg f (z) =
n∑

k=0

1

k! B f (k)(z)P(k)(−π z) = eh(z)Q(z, z̄) . (29)

Assume that P(z) = zn + O(zn−1) and Q(z, z̄) = ∑m
j=0 p j (z)z̄ j . Comparing the

highest term in z̄ in (29), we conclude that n = m and that

(−π)n B f (z) = eh(z) pn(z) .

Since B f is in the Bargmann-Fock space, it grows at most like eπ |z|2/2. We conclude
that Re h(z) ≤ c +π |z|2/2 and therefore h(z) must be a quadratic polynomial h(z) =
−(az2+bz+c) byCaratheodory’s theorem.We thus have B f (z) = e−(az2+bz+c) pn(z)
and

B f (iy)e−π y2/2 = Vh0 f (0,−y) =
∫
R

f (t)e−π t2e2π i t y dt

= (̂ f h0)(−y) = e−ay2−iby−c pn(iy) . (30)

Now observe that the inverse Fourier transform of the generalized Gaussian
e−ay2−iby−c is again a generalized Gaussian er(x), and the polynomial pn(iy) turns
into the differential operator pn( 1

2π
d

dx ). Consequently, f h0 = pn(
1
2π

d
dx )er(x) and

f (x) = q(x)e−(a′x2+b′x+c′)

for some polynomial q. ��
In general we cannot say more about the form of f . If however, f = qh0 with the

standardGaussianh0, thenwecan reduce theproblemof zero-freeWigner distributions
to a problem of polynomials of two variables by means of the fundamental theorem
of algebra for poly-analytic polynomials [3,4].

Theorem 6.3 (Balk) Let P(z, w) be a polynomial in two complex variables. If the
exact degree of the poly-analytic polynomial P(z, z̄) as a polynomial of two variables
exceeds the exact degree of P in one of these variables by a factor more than two, the
P has at least one zero.

In other words, let nz = degz P , nz̄ = degz̄ P , and s = deg P . If s > 2min(nz, nz̄),
then P has at least one zero. See [3,4] for the proof.

From this we deduce the following consequence.

Proposition 6.4 Assume that g = ph0 and f = qh0 for some polynomials p, q. If
Vg f does not have any zeros, then deg p = deg q.

In other words, if f and g are finite linear combinations of Hermite functions,
whose highest degrees differ, then the short-time Fourier transform Vg f must have a
zero.
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Proof Under the assumptions stated, B f is a polynomial Q and the poly-analytic
Bargmann transform is then (for N large enough)

Bg f (z) =
N∑

k=0

1

k! Q(k)(z)P(k)(−π z) (31)

is a poly-analytic polynomial. Here degz Bg f = deg Q, degz̄ Bg f = deg P , and
degBg f = deg P +deg Q. If deg P �= deg Q, then deg Bg f > 2min(deg P, deg Q),
and by the fundamental theorem of algebra Bg f must have a zero. ��

If the degree condition in the fundamental theorem is not satisfied, then a poly-
analytic polynomial may not have any zeros, for instance, the polynomial p(z, z̄) =
1 + zz̄ does not have any zeros. Note, however, that the poly-analytic polynomials
arising in Proposition 6.4 have a very special structure.

Let us consider the simple example of degree 1 polynomials. It is enough to consider
P(z) = −z + πb and Q(z) = z + a with a, b ∈ C. Then we are looking for a root of
the polynomial

Q(z)P(−π z) + Q′(z)P ′(−π z) = π(z + a)(z + b) − 1.

Write ζ = √
π(z + a) and c = √

π(b − a), the equation becomes ζ(ζ + c) = 1.
Writing c in polar coordinates c = ρeiθ and a further change of variable ζ = ξe−iθ

yields the equation ξ(ξ +ρ) = 1 with ρ ≥ 0. This equation has at least two real roots,

namely −ρ±
√

ρ2+4
2 . This proves the following.

Proposition 6.5 If both f and g are linear combinations of h0, h1, then W ( f , g) has
a zero, unless f , g are both multiples of h0.

In general, Bg f may bewritten as a linear combination of various Laguerre polyno-
mials or complex Hermite polynomials, see [10] or [16]. Thus Bg f has a very special
structure. One may therefore hope to prove the existence of a zero for the special
poly-analytic polynomials of the form Bg f . Another simple example is constructed
as follows: if f = ph0 for some polynomial p of degree at least 1 and g = I f (i.e.,
g(x) = f (−x) = p(−x)h0(x)), then |VI f f (2z)| = W ( f , f ). The corresponding
poly-analytic polynomial BI f f then has a zero by Hudson’s theorem, although Balk’s
fundamental theorem of algebra does not apply.

7 An example for bounded functions: the short-time Fourier
transformwith a rectangular window

We next study a class of examples in which the decay properties are critical for the
existence or non-existence of zeros of the short-time Fourier transform. For this pur-
pose, we investigate the short-time Fourier transform of carefully constructed step
functions. We consider the window χ = 1(0,1) and step functions with discontinuities
on the union Z ∪ (α + Z) for irrational α. We will need a simple lemma first.
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Lemma 7.1 Let 0 = a1 < a2 < · · · < an < an+1 = 1 and either c1 > c2 > · · · >

cn > 0 or 0 < c1 < c2 < · · · < cn. Define f on (0, 1) by

f (x) =
n∑

k=1

ck1(ak ,ak+1).

Then there exists ξ ∈ R such that

∫ 1

0
f (x)e−2π i xξ dx = 0

if and only if a2, . . . , an ∈ Q.

Proof It is enough to consider the case when c j is strictly decreasing. The case of
increasing c j ’s reduces to this case by changing f (t) into f (1 − t). For ξ = 0 we
obtain

∫ 1

0
f (x)e−2π i xξ dx =

∫ 1

0
f (x) dx =

n∑
k=1

ck(ak+1 − ak) > 0 .

For ξ �= 0 we set I (ξ) = 2π iξ
∫ 1
0 f (x)e2π i xξ dx = 2π iξ f̂ (−ξ). Then

I (ξ) = 2π iξ
∫ 1

0
f (x)e2π i xξ dx =

n∑
k=1

ck(e
2π iak+1ξ − e2π iakξ )

= −c1 +
n∑

k=2

(ck−1 − ck)e
2π iakξ + cne2π iξ

= c1

(
n∑

k=2

ck−1 − ck

c1
e2π iakξ + cn

c1
e2π iξ − 1

)
.

Thus f̂ (−ξ) = (2π iξ)−1 I (ξ) = 0, if and only if

n∑
k=2

ck−1 − ck

c1
e2π iakξ + cn

c1
e2π iξ = 1 . (32)

Since |e2π iakξ | = 1 and

n∑
k=2

ck−1 − ck

c1
+ cn

c1
= 1

with positive terms, (32) is a convex linear combination of points in the unit disc of
C.

123



Zeros of the Wigner distribution and the short-time… 741

As 1 is an extreme point of the unit disc, (32) holds if and only if it is a convex
combination of 1’s. Therefore, I (ξ) = 0 if and only if e2π iakξ = 1, k = 2, . . . , n, and
e2π iξ = 1. This implies that ξ ∈ Z\{0} and akξ ∈ Z\{0}, k = 2, . . . , n. Thus, if one
of the ak’s is irrational, then f̂ (ξ) �= 0 for all ξ �= 0. Conversely, if all ak ∈ Q, write
ak = pk/qk , pk, qk ∈ Z and take ξ = q1q2 · · · qn then I (ξ) = 0. Note that this is true
whatever the ck’s are. ��

The case ck+1 = ck does not need to be considered, as this amounts to remove
ak+1.

The proof of Lemma 7.1 no longer works when the sequence ck is not monotonic.
Instead we prove the following.

Lemma 7.2 Let α ∈ (0, 1)\Q and 0 < b, c < d. For each a ∈ (0, 1 − α) we define

fa(t) = b1(0,a) + d1(a,a+α) + c1(a+α,1).

Then there exists a ∈ (0, 1 − α) and ξ ∈ R, such that f̂a(ξ) = 0.

Proof We may assume without loss of generality that d = 1 and 0 < b, c < 1.
For ξ �= 0 we use again I (ξ) = 2π iξ f̂ (−ξ). The computation shows that

I (ξ) = b
(
e2π iaξ − 1

) + (
e2π i(a+α)ξ − e2π iaξ

) + c
(
e2π iξ − e2π i(a+α)ξ

)
= e2π iaξ

(
(1 − c)e2π iαξ − (1 − b)

) + ce2π iξ − b.

We proceed in two steps. The first step consists in determining a set of ξ ’s inde-
pendent of a for which I (ξ) may be 0. Indeed, note that, if I (ξ) = 0, then

∣∣(1 − c)e−2π iαξ − (1 − b)
∣∣2 = ∣∣ce−2π iξ − b

∣∣2 (33)

or (1 − c)2 + (1 − b)2 − 2(1 − c)(1 − b) cos 2παξ = c2 + b2 − 2bc cos 2πξ . We
obtain that I (ξ) = 0 implies the identity

1 − b − c = (1 − b − c + bc) cos 2παξ − bc cos 2πξ. (34)

Let M = (1 − b)(1 − c) + bc = 1 − b − c + 2bc. Clearly 1 − b − c < M and
M + 1− b − c = 2(1− b)(1− c) > 0, thus |1− b − c| < M . Consider the function
ψ(ξ) = (1 − b − c + bc) cos 2παξ − bc cos 2πξ . Clearly, |ψ(ξ)| ≤ M , and more
importantly, since α /∈ Q, ψ is almost periodic and takes every value in (−M, M)

infinitely often.More precisely, for each t ∈ (−M, M) there exists a uniformly discrete
set�t such that, for every ξ ∈ �t , (1−b−c+bc) cos 2παξ−bc cos 2πξ = t (see, e.g.,
[7]). Let� := �1−b−c = {ξ ∈ R : (1−b−c+bc) cos 2παξ−bc cos 2πξ = 1−b−c}.

Further, note that if, for some ξ ∈ �wehad (1−c)e2π iαξ −(1−b) = b−ce2π iξ = 0
then b = |b| = |ce2π iξ | = c. Further e2π iξ = 1 and then (1− c)e2π iαξ − (1− b) = 0
reduces to e2π iαξ = 1 which is impossible as α /∈ Q.
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Therefore, for ξ ∈ � we must have |(1− c)e2π iαξ − (1− b)| = |b − ce2π iξ | �= 0.
Thus there exists θξ ∈ (0, 2π ] such that

b − ce2π iξ

(1 − c)e2π iαξ − (1 − b)
= eiθξ .

In the second step we find an appropriate value for a as follows: As � is discrete
and infinite, � contains arbitrarily large ξ ’s, and there exists ξ such that a := θξ /ξ ∈
(0, 1 − α) and then

b − ce2π iξ

(1 − c)e2π iαξ − (1 − b)
= eiθξ = e2π iaξ .

It follows that I (ξ) = 0 thus f̂a(ξ) = 0. ��
The following result shows that the construction of zero-free Wigner distributions

with χ = 1(0,1) might be rather delicate. We assume that f is a step function with
jumps on Z ∪ (α + Z) for α /∈ Q, then every short-time Fourier transform Vg f with
f ∈ L2(R) possesses a zero. However, if we “slightly” enlarge the function space
and also consider bounded step functions, then we can produce a zero-free short-time
Fourier transform Vg f .

Theorem 7.3 Let (ck)k∈Z ⊂ R be a bounded positive sequence. Let α ∈ (0, 1)\Q and
define the sequence (ak) by a2k = k, a2k+1 = k + α. Let χ = 1(0,1) and

ϕ =
∑
k∈Z

ck1(ak ,ak+1). (35)

(i) If (ck)k∈Z is monotonic, then ϕ ∈ L∞(R) and Vχ f never vanishes.
(ii) If ϕ∈ L p(R) for 1≤ p < ∞, then there exists (x, ξ)∈R

2 such that Vχ f (x, ξ)=0.

Proof Clearly, for 1 ≤ p ≤ ∞, ϕ ∈ L p(R), if and only if (ck) ∈ �p(Z). We write

ϕ =
∑
k∈Z

(
c2k1(k,k+α) + c2k+11(k+α,k+1)

)
.

Then the function ϕ(t)χ(t −x) is a step function consisting of three terms. To describe
the correct terms, we write x = j + u with j ∈ Z and u ∈ [0, 1) and distinguish two
cases.

Case 1. If u ∈ [0, α), then

Vχϕ(x, ξ)

=
∫
R

(
c2 j1( j+u, j+α)(t) + c2 j+11( j+α, j+1)(t) + c2 j+21( j+1, j+1+u)(t)

)
e−2π i tξ dt
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= e−2π i( j+u)ξ

∫ 1

0

(
c2 j1(0,α−u)(t) + c2 j+11(α−u,1−u)(t)

+c2 j+21(1−u,1)(t)
)
e−2π i tξ dt . (36)

We observe right away that at least one of the endpoints α − u or 1 − u must be
irrational, since α /∈ Q.

Case 2. If u ∈ [α, 1), then

Vχϕ(x, ξ)

=
∫
R

(
c2 j+11( j+u, j+1)(t) + c2 j+21( j+1, j+1+α)(t) + c2 j+21( j+1+α, j+1+u)(t)

)
e−2π iξ t dt

= e−2π iξ( j+u)

∫ 1

0

(
c2 j+11(0,1−u)(t) + c2 j+21(1−u,1−u+α)(t) + c2 j+31(1−u+α,1)(t)

)
e−2π i tξ dt .

(37)

Again, at least one of the endpoints 1 − u and 1 − u + α must be irrational, because
α /∈ Q.

Proof of (i): If the coefficient sequence (c j ) is monotonic, then Lemma 7.1 is
applicable, and we conclude that Vχϕ(x, ξ) �= 0 for all ξ ∈ R and all x ∈ R.

Proof of (ii): Assume now that ϕ ∈ L p(R) for p < ∞, then (c j ) ∈ �p can-
not be monotonic. Thus there exists j0 such that either c2 j0 , c2 j0+2 < c2 j0+1 or
c2 j0+1, c2 j0+3 < c2 j0+2. In the former case we choose x = j0 + u for u ∈ (0, α)

(to be determined in a moment) and we work with (36). In the latter case we choose
x = j0 + u for u ∈ (α, 1) and work with (37). In both cases the length of the middle
interval (α − u, 1− u) and (1− u, 1− u + α) is irrational. According to Lemma 7.2,
there exists suitable u and ξ ∈ R such that Vχϕ( j0 + u, ξ) = 0. ��
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