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Abstract
LetM be a von Neumann algebra with a normal semifinite faithful trace τ . We prove
that every continuous m-homogeneous polynomial P from L p(M , τ ), with 0 < p <

∞, into each topological linear space X with the property that P(x+y) = P(x)+P(y)
whenever x and y are mutually orthogonal positive elements of L p(M , τ ) can be
represented in the form P(x) = Φ(xm) (x ∈ L p(M , τ )) for some continuous linear
map Φ : L p/m(M , τ ) → X .

Keywords Non-commutative L p-space · Schatten classes · Orthogonally additive
polynomial
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1 Introduction

In [16], the author succeeded in providing a useful representation of the orthogonally
additive homogeneous polynomials on the spaces L p([0, 1]) and �p with 1 ≤ p < ∞.
In [12] (see also [6]), the authors obtained a similar representation for the space
C(K ), for a compact Hausdorff space K . These results were generalized to Banach
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lattices [4] and Riesz spaces [9]. Further, the problem of representing the orthogonally
additive homogeneous polynomials has been also considered in the context of Banach
function algebras [1,19] and non-commutative Banach algebras [2,3,11]. Notably, [11]
can be thought of as the natural non-commutative analogue of the representation of
orthogonally additive polynomials onC(K )-spaces, and the purpose to this paper is to
extend the results of [16] on the representation of orthogonally additive homogeneous
polynomials on L p-spaces to the non-commutative L p-spaces.

The non-commutative L p-spaces that we consider are those associated with a von
Neumann algebra M equipped with a normal semifinite faithful trace τ . From now
on, S(M , τ ) stands for the linear span of the positive elements x of M such that
τ
(
supp(x)

)
< ∞; here supp(x) stands for the support of x . Then S(M , τ ) is a ∗-

subalgebra of M with the property that |x |p ∈ S(M , τ ) for each x ∈ S(M , τ )

and each 0 < p < ∞. For 0 < p < ∞, we define ‖ · ‖p : S(M , τ ) → R by
‖x‖p = τ(|x |p)1/p (x ∈ S(M , τ )). Then ‖ · ‖p is a norm or a p-norm according
to 1 ≤ p < ∞ or 0 < p < 1, and the space L p(M , τ ) can be defined as the
completion of S(M , τ )with respect to ‖ ·‖p. Nevertheless, for our purposes here, it is
important to realize the elements of L p(M , τ ) as measurable operators. Specifically,
the set L0(M , τ ) of measurable closed densely defined operators affiliated toM is a
topological ∗-algebra with respect to the strong sum, the strong product, the adjoint
operation, and the topology of the convergence in measure. The algebraM is a dense
∗-subalgebra of L0(M , τ ), the trace τ extends to the positive cone of L0(M , τ ) in a
natural way, and we can define

‖x‖p = τ
(|x |p)1/p (x ∈ L0(M , τ )),

L p(M , τ ) = {
x ∈ L0(M , τ ) : ‖x‖p < ∞}

.

Also we set L∞(M , τ ) = M (with ‖ · ‖∞ := ‖ · ‖, the operator norm). Operators
x, y ∈ L0(M , τ ) are mutually orthogonal, written x ⊥ y, if xy∗ = y∗x = 0. This
condition is equivalent to requiring that x and y have mutually orthogonal left, and
right, supports. Further, for x, y ∈ L p(M , τ ) with 0 < p < ∞, the condition x ⊥ y
implies that ‖x + y‖p

p = ‖x‖p
p + ‖y‖p

p, and conversely, if ‖x ± y‖p
p = ‖x‖p

p + ‖y‖p
p

and p 	= 2, then x ⊥ y (see [14, Fact 1.3]). The orthogonal additivity considered in
[16] for the spaces L p([0, 1]) and �p can of course equally well be considered for the
space L p(M , τ ). Let P be a map from L p(M , τ ) into a linear space X . Then P is:

(i) orthogonally additive on a subset S of L p(M , τ ) if

x, y ∈ S , x ⊥ y = 0 ⇒ P(x + y) = P(x) + P(y);

(ii) anm-homogeneous polynomial if there exists anm-linearmapϕ from L p(M , τ )m

into X such that

P(x) = ϕ (x, . . . , x) (x ∈ L p(M , τ )).

Here and subsequently,m ∈ N is fixedwithm ≥ 2 and the superscriptm stands for
them-foldCartesianproduct. Such amap is unique if it is required to be symmetric.
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Orthogonally additive polynomials 837

Further, in the case where X is a topological linear space, the polynomial P is
continuous if and only if the symmetric m-linear map ϕ associated with P is
continuous.

Given a continuous linear map Φ : L p/m(M , τ ) → X , where X is an arbitrary topo-
logical linear space, the map PΦ : L p(M , τ ) → X defined by

PΦ(x) = Φ(xm) (x ∈ L p(M , τ ))

is a natural example of a continuous m-homogeneous polynomial which is orthogo-
nally additive on L p(M , τ )sa (Theorem 4), and we will prove that every continuous
m-homogeneous polynomialwhich is orthogonally additive on L p(M , τ )sa is actually
of this special form (Theorem 5). Here and subsequently, the subscripts “sa” and+ are
used to denote the self-adjoint and the positive parts of a given subset of L0(M , τ ),
respectively.

We require a few remarks about the setting of our present work. Throughout the
paper we are concerned with m-homogeneous polynomials on the space L p(M , τ )

with 0 < p, and thus one might wish to consider polynomials with values in the
space Lq(M , τ ), especially with q ≤ p. Further, in the case case where p/m < 1
and the von Neumann algebra M has no minimal projections, there are no non-zero
continuous linear functionals on L p/m(M , τ ); since one should like to have non-
trivial “orthogonally additive” polynomials on L p(M , τ ), some weakening of the
normability must be allowed to the range space (see Corollary 2). For these reasons,
throughout the paper, X will be a (complex and Hausdorff) topological linear space.
In the case where the von Neumann algebra M is commutative, the prototypical
polynomials PΦ mentioned above are easily seen to be orthogonally additive on the
whole domain. In contrast, we will point out in Propositions 1 and 3 that this is not the
case for the von Neumann algebraB(H) of all bounded operators on a Hilbert space
H whenever dim H ≥ 2.

We assume a basic knowledge of C∗-algebras and von Neumann algebras, tracial
non-commutative L p-spaces, and polynomials on topological linear spaces. For the
relevant background material concerning these topics, see [5,7,8,10,13,17,18].

2 C∗-algebras and von Neumann algebras

Our approach to the problem of representing the orthogonally additive homogeneous
polynomials on the non-commutative L p-spaces relies on the representation of those
polynomials on the von Neumann algebras.

Recall that two elements x and y of a C∗-algebra A are mutually orthogonal if
xy∗ = y∗x = 0, in which case the identity ‖x + y‖ = max{‖x‖, ‖y‖} holds. The
reader should be aware that we have chosen the standard definition of orthogonality
in the setting of non-commutative L p-spaces. This definition is slightly different from
the one used in [11], which is the standard one in the setting of Banach algebras. In
[11] the orthogonality of two elements x and y is defined by the relation xy = yx = 0,
and, further, the orthogonally additive polynomials on the self-adjoint part of a C∗-
algebra are automatically orthogonally additive on the whole algebra. The important
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838 J. Alaminos et al.

point to note here is that both the definitions of orthogonality agree on the self-adjoint
part of the C∗-algebra. Thus, for a polynomial on a C∗-algebra, the property of being
orthogonally additive on the self-adjoint part according to our definition is the same as
being orthogonally additive according to [11]. Nevertheless, in contrast to [11], there
are no non-zero orthogonally additive polynomials from the von Neumann algebra
B(H) into any topological Banach space according to our definition (Proposition 1).

Suppose that A is a linear space with an involution ∗. Recall that for a linear
functional Φ : A → C, the map Φ∗ : A → C defined by Φ∗(x) = Φ(x∗) (x ∈
A ) is a linear functional, and Φ is said to be hermitian if Φ∗ = Φ. Similarly, for
an m-homogeneous polynomial P : A → C, the map P∗ : A → C defined by
P∗(x) = P(x∗) (x ∈ A ) is anm-homogeneous polynomial, and we call P hermitian
if P∗ = P .

Lemma 1 Let X and Y be linear spaces, and let P : X → Y be an m-homogeneous
polynomial. Suppose that P vanishes on a convex set C ⊂ X. Then P vanishes on the
linear span of C.

Proof Set x1, x2, x3, x4 ∈ C . Let η : Y → C be a linear functional, and define
f : C4 → C by

f (α1, α2, α3, α4) = η
(
P(α1x1 + α2x2 + α3x3 + αx4)

)
(α1, α2, α3, α4 ∈ C).

Then f is a complex polynomial function in four complex variables that vanishes on
the set

{
(ρ1, ρ2, ρ3, ρ4) ∈ R

4 : 0 ≤ ρ1, ρ2, ρ3, ρ4, ρ1 + ρ2 + ρ3 + ρ4 = 1
}
.

This implies that f is identically equal to 0 on C4, and, in particular,

η
(
P(ρ1x1 − ρ2x2 + iρ3x3 − iρ4x4)

) = f (ρ1,−ρ2, iρ3,−iρ4) = 0

for all ρ1, ρ2, ρ3, ρ4 ≥ 0. Since this identity holds for each linear functional η, it may
be concluded that P(ρ1x1 − ρ2x2 + iρ3x3 − iρ4x4) = 0 for all ρ1, ρ2, ρ3, ρ4 ≥ 0.
Thus P vanishes on the set

{
ρ1x1 − ρ2x2 + iρ3x3 − iρ4x4 : ρ j ≥ 0, x j ∈ C ( j = 1, 2, 3, 4)

}
,

which is exactly the linear span of the set C . 
�
Theorem 1 Let A be a C∗-algebra, let X be a topological linear space, and let
Φ : A → X be a continuous linear map. Then:

(i) the map PΦ : A → X defined by PΦ(x) = Φ(xm) (x ∈ A ) is a continuous
m-homogeneous polynomial which is orthogonally additive on Asa;

(ii) the polynomial PΦ is uniquely specified by the map Φ.

Suppose, further, that X is a q-normed space, 0 < q ≤ 1. Then:
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Orthogonally additive polynomials 839

(iii) 2−1/q‖Φ‖ ≤ ‖PΦ‖ ≤ ‖Φ‖.
Moreover, in the case where X = C,

(iv) the functional Φ is hermitian if and only if the polynomial PΦ is hermitian, in
which case ‖PΦ‖ = ‖Φ‖.

Proof (i) It is clear that the map PΦ is continuous and that PΦ is the m-homogeneous
polynomial associated with the symmetric m-linear map ϕ : A m → X defined by

ϕ(x1, . . . , xm) = 1

m!
∑

σ∈Sm

Φ
(
xσ(1) · · · xσ(m)

)
(x1, . . . , xm ∈ A );

here and subsequently, we write Sm for the symmetric group of order m.
Suppose that x, y ∈ Asa are such that x ⊥ y. Then xy = yx = 0, and so

(x + y)m = xm + ym , which gives

PΦ(x + y) = Φ
(
(x + y)m

) = Φ
(
xm + ym

) = Φ
(
xm

) + Φ
(
ym

) = PΦ(x) + PΦ(y).

(ii) Assume that 
 : A → X is a linear map with the property that P
 = PΦ . If
x ∈ A+, then

Φ(x) = Φ
(
(x1/m)m

) = P(x1/m) = 

(
(x1/m)m

) = 
(x).

By linearity we also get 
(x) = Φ(x) for each x ∈ A .
(iii) Next, assume that X is a q-normed space. For each x ∈ A , we have

‖PΦ(x)‖ = ‖Φ(xm)‖ ≤ ‖Φ‖‖xm‖ ≤ ‖Φ‖‖x‖m,

which implies that ‖PΦ‖ ≤ ‖Φ‖. Now take x ∈ A , and let ω ∈ C with ωm = −1.
Then x = �x + i�x , where

�x = 1

2
(x∗ + x), �x = i

2
(x∗ − x) ∈ Asa,

and, further, ‖�x‖, ‖�x‖ ≤ ‖x‖. Moreover, �x = x1 − x2 and �x = x3 − x4, where
x1, x2, x3, x4 ∈ A+, x1 ⊥ x2, and x3 ⊥ x4. Since x1 ⊥ x2 and x3 ⊥ x4, it follows
that x1/m1 ⊥ x1/m2 and x1/m3 ⊥ x1/m4 . Consequently,

‖�x‖ = max
{‖x1‖, ‖x2‖

}
,

‖�x‖ = max
{‖x3‖, ‖x4‖

}
,

(1)

and

∥∥x1/m1 + ωx1/m2

∥∥ = max
{∥∥x1/m1

∥∥,
∥∥x1/m2

∥∥}
,

∥∥x1/m3 + ωx1/m4

∥∥ = max
{∥∥x1/m3

∥∥,
∥∥x1/m4

∥∥}
.

(2)
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Since

∥
∥x1/m1

∥
∥ = ‖x1‖1/m,

∥
∥x1/m2

∥
∥ = ‖x2‖1/m,

∥
∥x1/m3

∥
∥ = ‖x3‖1/m,

∥
∥x1/m4

∥
∥ = ‖x4‖1/m,

it follows, from (1) and (2), that

∥∥x1/m1 + ωx1/m2

∥∥m = max
{‖x1‖, ‖x2‖

} = ‖�x‖,
∥∥x1/m3 + ωx1/m4

∥∥m = max
{‖x3‖, ‖x4‖

} = ‖�x‖.
(3)

On the other hand, we have

(
x1/m1 + ωx1/m2

)m = x1 − x2 = �x,
(
x1/m3 + ωx1/m4

)m = x3 − x4 = �x,

and so

Φ(x) = Φ(�x) + iΦ(�x) = Φ
((
x1/m1 + ωx1/m2

)m) + iΦ
((
x1/m3 + ωx1/m4

)m)

= PΦ

(
x1/m1 + ωx1/m2

) + i PΦ

(
x1/m3 + ωx1/m4

)
.

Hence, by (3),

‖Φ(x)‖q ≤ ∥∥PΦ

(
x1/m1 + ωx1/m2

)∥∥q + ∥∥PΦ

(
x1/m3 + ωx1/m4

)∥∥q

≤ ‖PΦ‖q∥∥x1/m1 + ωx1/m2

∥∥mq + ‖PΦ‖q∥∥x1/m3 + ωx1/m4

∥∥mq

= ‖PΦ‖q (‖�x‖q + ‖�x‖q)
≤ ‖PΦ‖q2‖x‖q .

This clearly forces ‖Φ‖ ≤ 21/q‖PΦ‖, as claimed.
(iv) It is straightforward to check that P∗

Φ = PΦ∗ . Consequently, if Φ is hermitian,
then P∗

Φ = PΦ∗ = PΦ so that PΦ is hermitian. Conversely, if PΦ is hermitian, then
PΦ∗ = P∗

Φ = PΦ and (ii) implies that Φ∗ = Φ. Finally, assume that Φ is a hermitian
functional. For the calculation of ‖PΦ‖ it suffices to check that ‖Φ‖ ≤ ‖PΦ‖. For this
purpose, let ε ∈ R

+, and choose x ∈ A such that ‖x‖ = 1 and ‖Φ‖ − ε < |Φ(x)|.
We take α ∈ C with |α| = 1 and |Φ(x)| = αΦ(x), so that

‖Φ‖ − ε < |Φ(x)| = Φ(αx) = Φ(αx) = Φ
(
(αx)∗

)
.

Note that ‖�(αx)‖ ≤ 1 and ‖Φ‖− ε < Φ(�(αx)). Now we consider the decomposi-
tion �(αx) = x1 − x2 with x1, x2 ∈ A+ and x1 ⊥ x2 and take ω ∈ C with ωm = −1.
As in (3), we see that

∥∥x1/m1 + ωx1/m2

∥∥ = ‖�(αx)‖1/m ≤ 1. Moreover, we have

PΦ

(
x1/m1 + ωx1/m2

) = Φ
((
x1/m1 + ωx1/m2

)m) = Φ(�(αx)),

which gives ‖Φ‖ − ε < ‖PΦ‖. 
�
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Orthogonally additive polynomials 841

Lemma 2 LetA be aC∗-algebra, letR be a ∗-subalgebra ofA , let X be a topological
linear space, and let Φ : R → X be a linear map. Suppose that the polynomial
P : R → X defined by P(x) = Φ(xm) (x ∈ R) is continuous and that R satisfies
the following conditions:

(i) |x | ∈ R for each x ∈ Rsa;
(ii) x1/m ∈ R for each x ∈ R+.

Then Φ is continuous.

Proof Let U be a neighbourhood of 0 in X . Let V be a balanced neighbourhood of
0 in X with V + V + V + V ⊂ U . The set P−1(V ) is a neighbourhood of 0 in R,
which implies that there exists r ∈ R

+ such that P(x) ∈ V whenever x ∈ R and
‖x‖ < r . Take x ∈ R with ‖x‖ < rm . Since R is a ∗-subalgebra of A , we see
that �x,�x ∈ Rsa. We write �x = x1 − x2 and �x = x3 − x4, as in the proof of
Theorem 1, where, on account of the condition (i),

x1 = 1
2

(|�x | + �x
) ∈ R+, x2 = 1

2

(|�x | − �x
) ∈ R+,

x3 = 1
2

(|�x | + �x) ∈ R+, x4 = 1
2

(|�x | − �x) ∈ R+.

For each j ∈ {1, 2, 3, 4}, condition (ii) gives x1/mj ∈ R, and, further, we have

‖x1/mj

∥∥ = ‖x j‖1/m ≤ ‖x‖1/m < r . Hence

Φ(x) = Φ
((
x1/m1

)m − (
x1/m2

)m + i
(
x1/m3

)m − i
(
x1/m4

)m)

= Φ
((
x1/m1

)m) − Φ
((
x1/m2

)m) + iΦ
((
x1/m3

)m) − iΦ
((
x1/m4

)m)

= P
(
x1/m1

) − P
(
x1/m2

) + i P
(
x1/m3

) − i P
(
x1/m4

) ∈ V + V + V + V ⊂ U ,

which establishes the continuity of Φ. 
�
Theorem 2 LetA be a C∗-algebra, let X be a locally convex space, and let P : A →
X be a continuous m-homogeneous polynomial. Then the following conditions are
equivalent:

(i) there exists a continuous linear map Φ : A → X such that P(x) = Φ(xm)

(x ∈ A );
(ii) the polynomial P is orthogonally additive on Asa;
(iii) the polynomial P is orthogonally additive on A+.

If the conditions are satisfied, then the map Φ is unique.

Proof Theorem 1 gives (i)⇒(ii), and obviously (ii)⇒(iii). The task is now to prove
that (iii)⇒(i).

Suppose that (iii) holds. For each continuous linear functional η : X → C, set
Pη = η ◦ P . Then Pη is a complex-valued continuous m-homogeneous polynomial.
We claim that Pη is orthogonally additive on Asa. Take x, y ∈ Asa with x ⊥ y. Then
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842 J. Alaminos et al.

we can write x = x+ − x− and y = y+ − y− with x+, x−, y+, y− ∈ A+ mutually
orthogonal. Define f : C2 → C by

f (α, β)= Pη(x+ + αx−+y+ + β y−)−Pη(x++αx−)−Pη(y++β y−) (α, β ∈ C
2).

Then f is a complex polynomial function in two complex variables. If α, β ∈ R
+,

then x+ + αx−, y+ + β y− ∈ A+ are mutually orthogonal, and so, by hypothesis,
P(x+ + αx− + y+ + β y−) = P(x+ + αx−) + P(y+ + β y−). This shows that
f (α, β) = 0. Since f vanishes on R+ ×R

+, it follows that f vanishes on C2, which,
in particular, implies

Pη(x + y) − Pη(x) − Pη(y) = f (−1,−1) = 0.

Having proved that Pη is orthogonally additive onAsa we can apply [11, Theorem 2.8]
to obtain a unique continuous linear functional Φη on A such that

η
(
P(x)

) = Φη(x
m) (x ∈ A ). (4)

Each x ∈ A can be written in the form xm1 +· · ·+ xmk for suitable x1, . . . , xk ∈ A ,
and we define

Φ(x) =
k∑

j=1

P(x j ).

Our next goal is to show thatΦ is well-defined. Suppose that x1, . . . , xk ∈ A are such
that xm1 + · · · + xmk = 0. For each continuous linear functional η on X , (4) gives

η

⎛

⎝
k∑

j=1

P(x j )

⎞

⎠ =
k∑

j=1

η
(
P(x j )

) =
k∑

j=1

Φη(x
m
j ) = Φη

⎛

⎝
k∑

j=1

xmj

⎞

⎠ = 0.

Since X is locally convex, we conclude that
∑k

j=1 P(x j ) = 0.
It is a simple matter to check that Φ is linear and, by definition, P(x) = Φ(xm)

(x ∈ A ). The continuity of Φ then follows from Lemma 2.
The uniqueness of the map Φ follows from Theorem 1(ii). 
�
The assumption that the space X be locally convex can be removed by requiring

that theC∗-algebraA be sufficiently rich in projections. The real rank zero is the most
important existence of projections property in the theory of C∗-algebras. We refer the
reader to [5, Section V.3.2] and [7, Section V.7] for the basic properties and examples
of C∗-algebras of real rank zero. This class of C∗-algebras contains the von Neumann
algebras and the C∗-algebras K (H) of all compact operators on any Hilbert space
H . Let us remark that every C∗-algebra of real rank zero has an approximate unit of
projections (but not necessarily increasing).
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Theorem 3 Let A be a C∗-algebra of real rank zero, let X be a topological linear
space, and let P : A → X be a continuous m-homogeneous polynomial. Suppose that
A has an increasing approximate unit of projections. Then the following conditions
are equivalent:

(i) there exists a continuous linear map Φ : A → X such that P(x) = Φ(xm)

(x ∈ A );
(ii) the polynomial P is orthogonally additive on Asa;
(iii) the polynomial P is orthogonally additive on A+.
If the conditions are satisfied, then the map Φ is unique.

Proof Theorem 1 gives (i)⇒(ii), and it is clear that (ii)⇒(iii). We will henceforth
prove that (iii)⇒(i).

We first note that such a map Φ is necessarily unique, because of Theorem 1(ii).
Suppose that (iii) holds and that A is unital. Let ϕ : A m → X be the symmetric

m-linear map associated with P and define Φ : A → X by

Φ(x) = ϕ(x, 1, . . . , 1) (x ∈ A ).

Let Q : A → X be the m-homogeneous polynomial defined by

Q(x) = Φ(xm) (x ∈ A ).

We will prove that P = Q. On account of Lemma 1, it suffices to show that P(x) =
Q(x) for each x ∈ Asa.

First, consider the case where x ∈ Asa has finite spectrum, say {ρ1, . . . , ρk} ⊂ R.
This implies that x can be written in the form

x =
k∑

j=1

ρ j e j ,

where e1, . . . , ek ∈ A aremutually orthogonal projections (specifically, the projection
e j is defined by using the continuous functional calculus for x by e j = χ{ρ j }(x) for
each j ∈ {1, . . . , k}). We also set e0 = 1 − (e1 + · · · + ek), so that the projections
e0, e1, . . . , ek are mutually orthogonal, and ρ0 = 0. We claim that if j1, . . . , jm ∈
{0, . . . , k} and jl 	= jl ′ for some l, l ′ ∈ {1, . . . ,m}, then

ϕ(e j1 , . . . , e jm ) = 0. (5)

Let Λ1 ={
n ∈ {1, . . . ,m} : jn = jl

}
and Λ2 ={

n ∈ {1, . . . ,m} : jn 	= jl
}
. For

each α1, . . . , αm ∈ R
+, the elements

∑
n∈Λ1

αne jn and
∑

n∈Λ2
αne jn are positive and

mutually orthogonal, so that the orthogonal additivity of P on A+ gives

P

(
m∑

n=1

αne jn

)

= P

⎛

⎝
∑

n∈Λ1

αne jn

⎞

⎠ + P

⎛

⎝
∑

n∈Λ2

αne jn

⎞

⎠ .
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This implies that, for each linear functional η : X → C, the function f : Cm → C

defined by

f (α1, . . . , αm) = η

⎛

⎝P

(
m∑

n=1

αne jn

)

− P

⎛

⎝
∑

n∈Λ1

αne jn

⎞

⎠ − P

⎛

⎝
∑

n∈Λ2

αne jn

⎞

⎠

⎞

⎠ ,

for all α1, . . . , αm ∈ C, is a complex polynomial function in m complex variables
vanishing in

(
R

+)m . Therefore f vanishes on C
m . Moreover, we observe that the

coefficient of the monomial α1 · · · αm is given by n!η(
ϕ(e j1 , . . . , e jm )

)
, because both

Λ1 and Λ2 are different from {1, . . . ,m}. We thus get

n!η(
ϕ(e j1 , . . . , e jm )

) = 0.

Since this identity holds for each linear functional η, our claim follows. Property (5)
now leads to

P(x) = ϕ

⎛

⎝
k∑

j=1

ρ j e j , . . . ,
k∑

j=1

ρ j e j

⎞

⎠ =
k∑

j1,..., jm=1

ρ j1 · · · ρ jmϕ
(
e j1 , . . . , e jm

)

=
k∑

j=1

ρm
j ϕ

(
e j , . . . , e j

)

and

Q(x) =ϕ

⎛

⎝

⎛

⎝
k∑

j=0

ρ j e j

⎞

⎠

m

,

k∑

j=0

e j , . . . ,
k∑

j=0

e j

⎞

⎠=ϕ

⎛

⎝
k∑

j=0

ρm
j e j ,

k∑

j=0

e j , . . . ,
k∑

j=0

e j

⎞

⎠

=
k∑

j1,..., jm=0

ρm
j1ϕ

(
e j1 , . . . , e jm

) =
k∑

j=1

ρm
j ϕ

(
e j , . . . , e j

)
.

We thus get P(x) = Q(x).
Now suppose that x ∈ Asa is an arbitrary element. Since A has real rank zero, it

follows that there exists a sequence (xn) in Asa such that each xn has finite spectrum
and lim xn = x . On account of the above case, we have P(xn) = Q(xn) (n ∈ N), and
the continuity of both P and Q now yields P(x) = lim P(xn) = lim Q(xn) = Q(x),
as required.

We are now in a position to prove the non-unital case. By hypothesis, there exists an
increasing approximate unit of projections (eλ)λ∈Λ. For each λ ∈ Λ, setAλ = eλA eλ.
ThenAλ is a unitalC∗-algebra (with identity eλ) and has real rank zero (becauseAλ is
a hereditary C∗-subalgebra of A ). From what has previously been proved, it follows
that there exists a unique continuous linear map Φλ : Aλ → X such that

P(x) = Φλ(x
m) (x ∈ Aλ). (6)
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Define

R =
⋃

λ∈Λ

Aλ

and, for each x ∈ R, set

Φ(x) = Φλ(x),

where λ ∈ Λ is such that x ∈ Aλ. We will show that Φ is well-defined. Suppose
λ,μ ∈ Λ are such that x ∈ Aλ ∩ Aμ. Then there exists ν ∈ Λ with λ,μ ≤ ν. Since
the net (eλ)λ∈Λ is increasing, we see that eλ, eμ ≤ eν and thereforeAλ,Aμ ⊂ Aν . The
uniqueness of the representation of P on both Aλ and Aμ implies that Φν |Aλ

= Φλ

and Φν |Aμ
= Φμ, which implies that Φλ(x) = Φν(x) = Φμ(x). We now show that

R is a ∗-subalgebra of A and that Φ is linear. Take x, y ∈ R and α, β ∈ C. We take
λ,μ ∈ Λ such that x ∈ Aλ and y ∈ Aμ. Then x∗ ∈ Aλ ⊂ R. Now set ν ∈ Λ with
λ,μ ≤ ν. Hence x, y ∈ Aν , so that αx + β y, xy ∈ Aν ⊂ R, which shows that R is
a subalgebra of A . Further, we have

Φ(αx + β y) = Φν(αx + β y) = αΦν(x) + βΦν(y) = αΦ(x) + βΦ(y),

which shows that Φ is linear.
From (6) we deduce that P(x) = Φ(xm) for each x ∈ R.
Our next goal is to show that R satisfies the conditions of Lemma 2. If x ∈ Rsa

(x ∈ R+), then there exists λ ∈ Λ such that x ∈ (
Aλ

)
sa (x ∈ (

Aλ

)
+, respectively)

and therefore |x | ∈ Aλ ⊂ R (x1/m ∈ Aλ ⊂ R, respectively). Since the polynomial
P |R is continuous, Lemma 2 shows that the map Φ is continuous.

Since (eλ)λ∈Λ is an approximate unit, it follows thatR is dense inA , and hence that
the map Φ extends uniquely to a continuous linear map from A into the completion
of X . By abuse of notation we continue to write Φ for this extension. Since both P
and Φ are continuous, it may be concluded that P(x) = Φ(xm) for each x ∈ A . We
next prove that the image of Φ is actually contained in X . Of course, it suffices to
show that Φ takes A+ into X . If x ∈ A+, then

Φ(x) = Φ
((
x1/m

)m) = P
(
x1/m

) ∈ X ,

as required. 
�
Since every von Neumann algebra is unital and has real rank zero, Theorem 3

applies in this setting and gives the following.

Corollary 1 Let M be a von Neumann algebra, let X be a topological linear space,
and let P : M → X be a continuous m-homogeneous polynomial. Then the following
conditions are equivalent:

(i) there exists a continuous linear map Φ : M → X such that P(x) = Φ(xm)

(x ∈ M );
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(ii) the polynomial P is orthogonally additive onMsa;
(iii) the polynomial P is orthogonally additive onM+.
If the conditions are satisfied, then the map Φ is unique.

Proposition 1 Let H be a Hilbert space with dim H ≥ 2, let X be a topological linear
space, and let P : B(H) → X be a continuous m-homogeneous polynomial. Suppose
that P is orthogonally additive inB(H). Then P = 0.

Proof For each unitary v ∈ B(H), the map Pv : B(H) → X defined by

Pv(x) = P(vx) (x ∈ B(H))

is easily seen to be a continuousm-homogeneous polynomial that is orthogonally addi-
tive on B(H). In particular, Pv is orthogonally additive on B(H)sa, and Corollary 1
then gives a unique continuous linear map Φv : B(H) → X such that

P(vx) = Φv(x
m) (x ∈ B(H)).

We claim that, if e, e′ ∈ B(H) are equivalent projections with e ⊥ e′, then P(e) =
P(e′) = 0. Let u ∈ B(H) be a partial isometry such that u∗u = e and uu∗ = e′.
Then

∥∥∥u2
∥∥∥
4 =

∥∥∥(u2)∗u2
∥∥∥
2 =

∥∥∥∥
(
(u2)∗u2

)2∥∥∥∥ = ∥∥u∗ee′eu
∥∥ = 0,

which gives u2 = 0. From this we see that u ⊥ u∗, and therefore

P(vu + vu∗) = Pv(u + u∗) = Pv(u) + Pv(u
∗) = Φv

(
um

) + Φv

(
(u∗)m

) = 0. (7)

We now take ω ∈ C with ωm = −1, and define

v = 1 + u + u∗ − e − e′,
vω = 1 + ωu + u∗ − e − e′.

It is immediately seen that both v and vω are unitary, and so applying (7) (and using
the orthogonal additivity of P and that e ⊥ e′), we see that

0 = P(vu + vu∗) = P(e + e′) = P(e) + P(e′),
0 = P(vωu + vωu

∗) = P(e + ωe′) = P(e) + P(ωe′) = P(e) − P(e′).

By comparing both identities, we conclude that P(e) = P(e′) = 0, as claimed.
Our next objective is to prove that P(e) = 0 for each projection e ∈ B(H).

Suppose that e ∈ B(H) is a rank-one projection. Since dim H ≥ 2, it follows that
there exists an equivalent projection e′ such that e′ ⊥ e. Then it follows from the above
claim that P(e) = 0. Let e ∈ B(H) be a finite projection. Then there exist mutually
orthogonal projections e1, . . . , en such that e1 + · · · + en = e. Using the preceding

123



Orthogonally additive polynomials 847

observation and the orthogonal additivity of P weget P(e) = P(e1)+· · ·+P(en) = 0.
We now assume that e ∈ B(H) is an infinite projection. Then there exist mutually
orthogonal, equivalent projections e1 and e2 such that e1 + e2 = e. By the claim, we
have P(e) = P(e1) + P(e2) = 0.

We finally proceed to show that P = 0. By Lemma 1, it suffices to show that
P(x) = 0 for each x ∈ B(H)+. Suppose that x ∈ B(H)+ can be written in the form
x = ∑k

j=1 ρ j e j , where e1, . . . , ek ∈ B(H) are mutually orthogonal projections and

ρ1, . . . , ρk ∈ R
+. Then we have P(x) = ∑k

j=1 ρ j
m P(e j ) = 0. Now let x ∈ B(H)+

be an arbitrary element. From the spectral decomposition we deduce that there exists a
sequence (xn) inB(H)+ such that each xn is a positive linear combination ofmutually
orthogonal projections and lim xn = x . On account of the preceding observation,
P(xn) = 0 (n ∈ N), and the continuity of P implies that P(x) = lim P(xn) = 0, as
required. 
�

3 Non-commutative Lp-spaces

Before giving the next results we make the following preliminary remarks.
A fundamental fact for us is the behaviour of the product of L0(M , τ ) when

restricted to the L p-spaces. Specifically, if 0 < p, q, r ≤ ∞ are such that 1
p + 1

q = 1
r ,

then the Hölder inequality states that

x ∈ L p(M , τ ), y ∈ Lq(M , τ ) ⇒ xy ∈ Lr (M , τ ) and ‖xy‖r ≤ ‖x‖p‖y‖q . (8)

Suppose that x, y ∈ L p(M , τ )+, 0 < p < ∞, are mutually orthogonal and that
ω ∈ Cwith |ω| = 1. Then it is immediately seen that |x+ωy| = x+ y, and it follows,
by considering the spectral resolutions of x , y, and x + y, that (x + y)p = x p + y p.
Hence

‖x + ωy‖p
p = ‖x‖p

p + ‖y‖p
p. (9)

Each x ∈ L p(M , τ ) can be written in the form

x = x1 − x2 + i(x3 − x4), with x1, x2, x3, x4 ∈ L p(M , τ )+,

x1 ⊥ x2, x3 ⊥ x4,

‖x1‖p
p + ‖x2‖p

p = ‖x1 − x2‖p
p ≤ ‖x‖p

p,

‖x3‖p
p + ‖x4‖p

p = ‖x3 − x4‖p
p ≤ ‖x‖p

p.

(10)

Indeed, first we write x = �x + i�x , where

�x = 1

2
(x∗ + x), �x = i

2
(x∗ − x) ∈ L p(M , τ )sa,

and, since ‖x∗‖p = ‖x‖p, it follows that ‖�x‖p, ‖�x‖p ≤ ‖x‖p. Further, we take
the positive operators

x1= 1
2 (|�x | + �x) , x2= 1

2 (|�x | − �x) , x3= 1
2 (|�x | + �x) , x4= 1

2 (|�x | − �x) .
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Then x1, x2, x3, x4 ∈ L p(M , τ ), �x = x1 − x2 with x1 ⊥ x2, so that (9) gives

‖�x‖p
p = ‖x1‖p

p + ‖x2‖p
p,

and �x = x3 − x4 with x3 ⊥ x4, so that (9) gives

‖�x‖p
p = ‖x3‖p

p + ‖x4‖p
p.

Theorem 4 LetM be a von Neumann algebra with a normal semifinite faithful trace
τ , let X be a topological linear space, and let Φ : L p/m(M , τ ) → X be a continuous
linear map with 0 < p < ∞. Then:

(i) the map PΦ : L p(M , τ ) → X defined by PΦ(x) = Φ(xm) (x ∈ L p(M , τ ))

is a continuous m-homogeneous polynomial which is orthogonally additive on
L p(M , τ )sa;

(ii) the polynomial PΦ is uniquely specified by the map Φ.

Suppose, further, that X is a q-normed space, 0 < q ≤ 1. Then:

(iii) 2−1/q‖Φ‖ ≤ ‖PΦ‖ ≤ ‖Φ‖.
Moreover, in the case where X = C,

(iv) the functional Φ is hermitian if and only if the polynomial PΦ is hermitian, in
which case ‖PΦ‖ = ‖Φ‖.

Proof The proof of this result is similar to that establishing Theorem 1.
(i) It follows immediately from (8) that, for each x1, . . . , xm ∈ L p(M , τ ),

x1 · · · xm ∈ L p/m(M , τ ) and ‖x1 · · · xm‖p/m ≤ ‖x1‖p · · · ‖xm‖p. (11)

On the one hand, this clearly implies that the map PΦ is well-defined, on the other
hand, the map x �→ xm from L p(M , τ ) into L p/m(M , τ ) is continuous, and so
PΦ is continuous. Further, PΦ is the m-homogeneous polynomial associated with the
symmetric m-linear map ϕ : L p(M , τ )m → X defined by

ϕ(x1, . . . , xm) = 1

m!
∑

σ∈Sm

Φ
(
xσ(1) · · · xσ(m)

)
(x1, . . . , xm ∈ L p(M , τ )).

Suppose that x, y ∈ L p(M , τ )sa are such that x ⊥ y. Then xy = yx = 0, and so
(x + y)m = xm + ym , which gives

PΦ(x + y) = Φ
(
(x + y)m

) = Φ
(
xm + ym

) = Φ
(
xm

) + Φ
(
ym

) = PΦ(x) + PΦ(y).

(ii) Suppose that 
 : L p/m(M , τ ) → X is a linear map such that P
 = PΦ . For
each x ∈ L p/m(M , τ )+, we have x1/m ∈ L p(M , τ ) and
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Φ(x) = Φ
((
x1/m

)m) = P
(
x1/m

) = 

((
x1/m

)m) = 
(x).

By linearity we obtain Φ = 
.
(iii) Next, assume that X is a q-normed space. For each x ∈ L p(M , τ ), by (11),

we have

‖PΦ(x)‖ = ‖Φ(xm)‖ ≤ ‖Φ‖‖xm‖p/m ≤ ‖Φ‖‖x‖mp ,

which clearly implies that ‖PΦ‖ ≤ ‖Φ‖. Now take x ∈ L p/m(M , τ ), and take ω ∈ C

with ωm = −1. Write

x = �x + i�x = x1 − x2 + i(x3 − x4)

as in (10) (with p/m instead of p). Since x1 ⊥ x2 and x3 ⊥ x4, it follows that
x1/m1 ⊥ x1/m2 and x1/m3 ⊥ x1/m4 , so that (9) gives

‖�x‖p/m
p/m = ‖x1‖p/m

p/m + ‖x2‖p/m
p/m,

‖�x‖p/m
p/m = ‖x3‖p/m

p/m + ‖x4‖p/m
p/m,

(12)

and

∥∥x1/m1 + ωx1/m2

∥∥p
p = ∥∥x1/m1

∥∥p
p + ∥∥x1/m2

∥∥p
p,

∥∥x1/m3 + ωx1/m4

∥∥p
p = ∥∥x1/m3

∥∥p
p + ∥∥x1/m4

∥∥p
p.

(13)

Further, we have x1/m1 , x1/m2 , x1/m3 , x1/m4 ∈ L p(M , τ ) and

∥∥x1/m1

∥∥
p =‖x1‖1/mp/m,

∥∥x1/m2

∥∥
p=‖x2‖1/mp/m,

∥∥x1/m3

∥∥
p=‖x3‖1/mp/m,

∥∥x1/m4

∥∥
p=‖x4‖1/mp/m,

so that (12) and (13) give

∥
∥x1/m1 + ωx1/m2

∥
∥p
p = ‖�x‖p/m

p/m,

∥∥x1/m3 + ωx1/m4

∥∥p
p = ‖�x‖p/m

p/m .
(14)

On the other hand, we have

(
x1/m1 + ωx1/m2

)m = x1 − x2 = �x,
(
x1/m3 + ωx1/m4

)m = x3 − x4 = �x,

whence

Φ(x) = Φ(�x) + iΦ(�x) = Φ
((
x1/m1 + ωx1/m2

)m) + iΦ
((
x1/m3 + ωx1/m4

)m)

= PΦ

(
x1/m1 + ωx1/m2

) + i PΦ

(
x1/m3 + ωx1/m4

)
.
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Hence, by (14),

‖Φ(x)‖q ≤ ∥∥PΦ

(
x1/m1 + ωx1/m2

)∥∥q + ∥∥PΦ

(
x1/m3 + ωx1/m4

)∥∥q

≤ ‖PΦ‖q∥∥x1/m1 + ωx1/m2

∥∥mq
p + ‖PΦ‖q∥∥x1/m3 + ωx1/m4

∥∥mq
p

= ‖PΦ‖q (‖�x‖q + ‖�x‖q)
≤ ‖PΦ‖q2‖x‖q .

This clearly forces ‖Φ‖ ≤ 21/q‖PΦ‖, as claimed.
(iv) It is straightforward to check that P∗

Φ = PΦ∗ . From this deduce that Φ is
hermitian if and only if PΦ is hermitian as in the proof of Theorem 1(iv). Suppose
that Φ is a hermitian functional. By direct calculation, we see that PΦ is hermitian,
and it remains to prove that ‖PΦ‖ = ‖Φ‖. We only need to show that ‖Φ‖ ≤ ‖PΦ‖.
To this end, let ε ∈ R

+, and choose x ∈ L p/m(M , τ ) such that ‖x‖p/m = 1 and
‖Φ‖ − ε < |Φ(x)|. We take α ∈ C with |α| = 1 and |Φ(x)| = αΦ(x), so that

‖Φ‖ − ε < |Φ(x)| = Φ(αx) = Φ(αx) = Φ
(
(αx)∗

)
.

We see that �(αx) ∈ L p/m(M , τ )sa, ‖�(αx)‖p/m ≤ 1, and ‖Φ‖ − ε < Φ(�(αx)).
Now we consider the decomposition �(αx) = x1 − x2 as in (10) (with p/m instead
of p), and take ω ∈ C with ωm = −1. As in (14), we see that

∥∥x1/m1 + ωx1/m2

∥∥ =
‖�(αx)‖1/m ≤ 1. Moreover, we have

PΦ

(
x1/m1 + ωx1/m2

) = Φ
((
x1/m1 + ωx1/m2

)m) = Φ(�(αx)),

and so ‖Φ‖ − ε < ‖PΦ‖. 
�
Theorem 5 LetM be a von Neumann algebra with a normal semifinite faithful trace
τ , let X be a topological linear space, and let P : L p(M , τ ) → X be a continuous
m-homogeneous polynomial with 0 < p < ∞. Then the following conditions are
equivalent:

(i) there exists a continuous linear map Φ : L p/m(M , τ ) → X such that P(x) =
Φ(xm) (x ∈ L p(M , τ ));

(ii) the polynomial P is orthogonally additive on L p(M , τ )sa;
(iii) the polynomial P is orthogonally additive on S(M , τ )+.

If the conditions are satisfied, then the map Φ is unique.

Proof Theorem 4 shows that (i)⇒(ii), and it is obvious that (ii)⇒(iii). We proceed to
prove that (iii)⇒(i).

Suppose that (iii) holds. Let e ∈ M be a projection such that τ(e) < ∞, and
consider the von Neumann algebra Me = eM e. We claim that Me ⊂ S(M , τ ) and
that there exists a unique continuous linear map Φe : Me → X such that

P(x) = Φe(x
m) (x ∈ Me). (15)

123



Orthogonally additive polynomials 851

Set x ∈ Me, and write x = (x1 − x2) + i(x3 − x4) with x1, x2, x3, x4 ∈ Me+. Then
supp(x j ) ≤ e and therefore τ

(
supp(x j )

) ≤ τ(e) < ∞ ( j ∈ {1, 2, 3, 4}). This shows
that x j ∈ S(M , τ ) ( j ∈ {1, 2, 3, 4}), whence x ∈ S(M , τ ). Our next goal is to show
that the restriction P |Me is continuous (with respect to the norm that Me inherits as
a closed subspace of M ). Let x ∈ Me, and let U ⊂ X be a neighbourhood of P(x).
Since P is continuous, the set P−1(U ) is a neighbourhood of x in L p(M , τ ), which
implies that there exists r ∈ R

+ such that P(y) ∈ U whenever y ∈ L p(M , τ ) and
‖y − x‖p < r . If y ∈ Me is such that ‖y − x‖ < r/‖e‖p, then, from (8), we obtain

‖y − x‖p = ‖e(y − x)‖p ≤ ‖e‖p‖y − x‖ < r

and therefore P(y) ∈ U . Hence P |Me is continuous. Since, by hypothesis, the
polynomial P |Me is orthogonally additive on Me+, Corollary 1 states that there
exists a unique continuous linear map Φe : Me → X such that (15) holds.

For each x ∈ S(M , τ ), define

Φ(x) = Φe(x),

where e ∈ M is any projection such that

ex = xe = x and τ(e) < ∞. (16)

We will show that Φ is well-defined. For this purpose we first check that, if
x ∈ S(M , τ ), then there exists a projection e such that (16) holds. Indeed, we write
x = ∑k

j=1 α j x j with α1, . . . , αk ∈ C and x1, . . . , xk ∈ S(M , τ )+, and define e =
supp(x1) ∨ · · · ∨ supp(xk). Then ex = xe = x and τ(e) ≤ ∑k

j=1 τ
(
supp(x j )

)
< ∞,

as required. Suppose that x ∈ S(M , τ ) and that e1, e2 ∈ M are projections satisfy-
ing (16). Then the projection e = e1 ∨ e2 satisfies (16) and Me1,Me2 ⊂ Me. The
uniqueness of the representation (15) on bothMe1 andMe2 gives Φe |Me1

= Φe1 and
Φe |Me2

= Φe2 , which implies that Φe1(x) = Φe(x) = Φe2(x).
Wenowshow thatΦ is linear. Take x1, x2 ∈ S(M , τ ) andα, β ∈ C. Let e1, e2 ∈ M

be projections such that e j x j = x j e j = x j and τ(e j ) < ∞ ( j ∈ {1, 2}). Then the
projection e = e1 ∨ e2 satisfies

ex j = x j e = x j ( j ∈ {1, 2}),
e(αx1 + βx2) = (αx1 + βx2)e = αx1 + βx2,

and

τ(e) ≤ τ(e1) + τ(e2) < ∞.

Thus

Φ(x j ) = Φe(x j ) ( j ∈ {1, 2})
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and

Φ(αx1 + βx2) = Φe(αx1 + βx2) = αΦe(x1) + βΦe(x2) = αΦ(x1) + βΦ(x2).

We see from the definition of Φ that

P(x) = Φ(xm) (x ∈ S(M , τ )). (17)

Our next concern will be the continuity of Φ with respect to the norm ‖ · ‖p/m . Let
U be a neighbourhood of 0 in X . Let V be a balanced neighbourhood of 0 in X with
V + V + V + V ⊂ U . The set P−1(V ) is a neighbourhood of 0 in L p(M , τ ), which
implies that there exists r ∈ R

+ such that P(x) ∈ V whenever x ∈ L p(M , τ ) and
‖x‖p < r . Take x ∈ S(M , τ ) with ‖x‖p/m < rm , and write x = (x1 − x2) + i(x3 −
x4) as in (10) (with p/m instead of p). Then it is immediate to check that actually
x1, x2, x3, x4 ∈ S(M , τ )+ and, further, ‖x j‖p/m ≤ ‖x‖p/m ( j ∈ {1, 2, 3, 4}). For
each j ∈ {1, 2, 3, 4}, we have

∥∥x1/mj

∥∥
p = τ

(
x p/m
j

)1/p = (
τ
(
x p/m
j

)m/p)1/m = ‖x j‖p/m
1/m

≤ ‖x‖1/mp/m < r ,

whence

Φ(x) = Φ
((
x1/m1

)m − (
x1/m2

)m + i
(
x1/m3

)m − i
(
x1/m4

)m)

= Φ
((
x1/m1

)m)
− Φ

((
x1/m2

)m)
+ iΦ

((
x1/m3

)m)
− iΦ

((
x1/m4

)m)

= P
(
x1/m1

) − P
(
x1/m2

)

+ i P
(
x1/m3

) − i P
(
x1/m4

) ∈ V + V + V + V ⊂ U ,

which establishes the continuity ofΦ. Since S(M , τ ) is dense in L p/m(M , τ ), themap
Φ extends uniquely to a continuous linear map from L p/m(M , τ ) into the completion
of X . By abuse of notation we continue to writeΦ for this extension. Since both P and
Φ are continuous, (17) gives P(x) = Φ(xm) for each x ∈ L p(M ). The task is now
to show that the image of Φ is actually contained in X . Of course, it suffices to show
thatΦ takes L p/m(M , τ )+ into X . Let x ∈ L p/m(M , τ )+. Then x1/m ∈ L p(M , τ )+
and

Φ(x) = Φ
((
x1/m

)m) = P
(
x1/m

) ∈ X ,

as required.
The uniqueness of the map Φ is given by Theorem 4(ii). 
�
Let us note that the space of all continuous m-homogeneous polynomials from

L p(M , τ ) into any topological linear space X which are orthogonally additive on
S(M , τ )+ is sufficiently rich in the case where p/m ≥ 1, because of the existence of
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continuous linear functionals on L p/m(M , τ ). However, some restriction on the space
X must be imposedwhenwe consider the case p/m < 1 and the vonNeumann algebra
M has no minimal projections, because in this case the dual of L p/m(M , τ ) is trivial
([15]). In fact, there are no non-zero continuous linear maps from L p(M , τ ) into any
q-normed space X with q > p. We think that this property is probably well-known,
but we have not been able to find any reference, so that we next present a proof of this
result for completeness.

Proposition 2 Let M be a von Neumann algebra with a normal semifinite faithful
trace τ and with no minimal projections, let X be a q-normed space, 0 < q ≤ 1, and
let Φ : L p(M , τ ) → X be a continuous linear map with 0 < p < q. Then Φ = 0.

Proof The proof will be divided in a number of steps.
Our first step is to show that for each projection e0 ∈ M with τ(e0) < ∞ and each

0 ≤ ρ ≤ τ(e0), there exists a projection e ∈ M such that e ≤ e0 and τ(e) = ρ. Set

P1 = {
e ∈ M : e is a projection, e ≤ e0, τ (e) ≥ ρ

}
.

Note that e0 ∈ P1, so that P1 is non-empty. Let C be a chain in P1, and let
e′ = ∧e∈C e. Then e′ is a projection and e′ ≤ e0. For each e ∈ C , since τ(e0) < ∞, it
follows that τ(e0) − τ(e) = τ(e0 − e). From the normality of τ we now deduce that

τ(e0) − inf
e∈C

τ(e) = sup
e∈C

(
τ(e0) − τ(e)

) = sup
e∈C

τ(e0 − e)

= τ (∨e∈C (e0 − e)) = τ(e0 − e′).

Hence τ(e′) = infe∈C τ(e) ≥ ρ, which shows that e′ is a lower bound of C , and so,
by Zorn’s lemma, P1 has a minimal element, say e1. We now consider the set

P2 = {
e ∈ M : e is a projection, e ≤ e1, τ (e) ≤ ρ

}
.

Note that 0 ∈ P2, so that P2 is non-empty. Let C be a chain in P2, and let e′ =
∨e∈C e. Then e′ ≤ e1, and the normality of τ yields

τ(e′) = sup
e∈C

τ(e) ≤ ρ.

This implies that e′ is an upper bound of C , and so, by Zorn’s lemma, P2 has a
maximal element, say e2. Assume towards a contradiction that e1 	= e2. Since, by
hypothesis, M has no minimal projections, it follows that there exists a non-zero
projection e < e1 − e2. Since e ⊥ e2, we see that e2 + e is a projection. Further, we
have e2 < e2 + e < e1. The maximality of e2 implies that τ(e2 + e) > ρ, which
implies that e2 + e ∈ P1, contradicting the minimality of e1. Thus e1 = e2, and this
clearly implies that τ(e1) = τ(e2) = ρ.

Our next goal is to show that Φ(e0) = 0 for each projection e0 with τ(e0) < ∞.
From the previous step, it follows that there exists a projection e ≤ e0 with τ(e) =
1
2τ(e0). Set e′ = e0 − e. Then τ(e′) = 1

2τ(e0). Further,
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‖Φ(e0)‖q = ‖Φ(e) + Φ(e′)‖q ≤ ‖Φ(e)‖q + ‖Φ(e′)‖q ,

and therefore either ‖Φ(e)‖q ≥ 1
2‖Φ(e0)‖q or ‖Φ(e′)‖q ≥ 1

2‖Φ(e0)‖q . We define e1
to be any of the projections e, e′ for which the inequality holds. We thus get e1 ≤ e0,
τ(e1) = 1

2τ(e0), and ‖Φ(e1)‖ ≥ 2−1/q‖Φ(e0)‖. By repeating the process, we get a
decreasing sequence of projections (en) such that

τ(en) = 2−nτ(e0) and ‖Φ(en)‖ ≥ 2−n/q‖Φ(e0)‖ (n ∈ N).

Then

∥∥2n/qen
∥∥
p = 2n/qτ(en)

1/p = 2n(1/q−1/p)τ (e0)
1/p,

which converges to zero, because p < q. Since Φ is continuous and ‖Φ(e0)‖ ≤∥∥Φ
(
2n/qen

)∥∥
p (n ∈ N), it may be concluded that Φ(e0) = 0, as claimed.

Our next concern is to show that Φ vanishes on S(M , τ ). Of course, it suffices to
show that Φ vanishes on S(M , τ )+. Take x ∈ S(M , τ )+, and let e = supp(x), so
that τ(e) < ∞. The spectral decomposition implies that there exists a sequence (xn)
in M+ such that lim xn = x with respect to the operator norm and each xn is of the
form xn = ∑k

j=1 ρ j e j , where ρ1, . . . , ρk ∈ R
+ and e1, . . . , ek ∈ M are mutually

orthogonal projections with e j e = ee j = e j ( j ∈ {1, . . . , k}). From the previous step,
we conclude that Φ(xn) = 0 (n ∈ N). Further, from (8) we deduce that

‖x − xn‖p = ‖e(x − xn)‖p ≤ ‖e‖p‖x − xn‖ → 0,

and the continuity of Φ implies that Φ(x) = 0, as required.
Finally, since S(M , τ ) is dense in L p(M , τ ) and Φ is continuous, it may be

concluded that Φ = 0. 
�
Corollary 2 LetM be a von Neumann algebra with a normal semifinite faithful trace
τ and with no minimal projections, let X be a q-normed space, 0 < q ≤ 1, and let
P : L p(M , τ ) → X be a continuousm-homogeneous polynomial with 0 < p/m < q.
Suppose that P is orthogonally additive on S(M , τ )+. Then P = 0.

Proof This is a straightforward consequence of Theorem 5 and Proposition 2. 
�
We now turn our attention to the complex-valued polynomials. In this setting the

representation given in Theorem 5 has a particularly significant integral form, because
of the well-known representation of the dual of the L p-spaces. The trace gives rise to
a distinguished contractive positive linear functional on L1(M , τ ), still denoted by τ .
By (8), if 1

p + 1
q = 1, for each ζ ∈ Lq(M , τ ), the formula

Φζ (x) = τ(ζ x) (x ∈ L p(M , τ )) (18)

defines a continuous linear functional on L p(M , τ ). Further, in the case where 1 ≤
p < ∞, the map ζ �→ Φζ is an isometric isomorphism from Lq(M , τ ) onto the dual
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space of L p(M , τ ). It is immediate to see that Φ∗
ζ = Φζ ∗ , so that Φζ is hermitian if

and only if ζ is self-adjoint.

Corollary 3 LetM be a von Neumann algebra with a normal semifinite faithful trace
τ , and let P : L p(M , τ ) → C be a continuous m-homogeneous polynomial with
m ≤ p < ∞. Then the following conditions are equivalent:

(i) there exists ζ ∈ Lr (M , τ ) such that P(x) = τ(ζ xm) (x ∈ L p(M , τ )), where
r = p/(p − m) (with the convention that p/0 = ∞);

(ii) the polynomial P is orthogonally additive on L p(M , τ )sa;
(iii) the polynomial P is orthogonally additive on S(M , τ )+.
If the conditions are satisfied, then ζ is unique and ‖P‖ ≤ ‖ζ‖r ≤ 2‖P‖; moreover,
if P is hermitian, then ζ is self-adjoint and ‖ζ‖r = ‖P‖.
Proof This follows from Theorems 4 and 5. 
�

Let H be a Hilbert space. We denote by Tr the usual trace on the von Neumann
algebra B(H). Then L p(B(H),Tr), with 0 < p < ∞, is the Schatten class S p(H).
In the case where 0 < p < q, we have S p(H) ⊂ Sq(H) ⊂ K (H) and ‖x‖ ≤
‖x‖q ≤ ‖x‖p (x ∈ S p(H)). It is clear that S(B(H),Tr) = F (H), the two-sided
ideal ofB(H) consisting of the finite-rank operators. Thus, the following result is an
immediate consequence of Corollary 3.

Corollary 4 Let H be a Hilbert space, and let P : S p(H) → C be a continuous
m-homogeneous polynomial with m < p < ∞. Then the following conditions are
equivalent:

(i) there exists ζ ∈ Sr (H) such that P(x) = Tr(ζ xm) (x ∈ S p(H)), where r =
p/(p − m);

(ii) the polynomial P is orthogonally additive on S p(H)sa;
(iii) the polynomial P is orthogonally additive onF (H)+.
If the conditions are satisfied, then ζ is unique and ‖P‖ ≤ ‖ζ‖r ≤ 2‖P‖; moreover,
if P is hermitian, then ζ is self-adjoint and ‖ζ‖r = ‖P‖.
Corollary 5 Let H be a Hilbert space, and let P : K (H) → C be a continuous
m-homogeneous polynomial. Then the following conditions are equivalent:

(i) there exists ζ ∈ S1(H) such that P(x) = Tr(ζ xm) (x ∈ K (H));
(ii) the polynomial P is orthogonally additive onK (H)sa;
(iii) the polynomial P is orthogonally additive onF (H)+.
If the conditions are satisfied, then ζ is unique and ‖P‖ ≤ ‖ζ‖1 ≤ 2‖P‖; moreover,
if P is hermitian, then ζ is self-adjoint and ‖ζ‖1 = ‖P‖.
Proof In order to prove the equivalence of the conditions we are reduced to prove that
(iii)⇒(i). Suppose that (iii) holds. Let x, y ∈ K (H)+ such that x ⊥ y. From the
spectral decomposition of both x and y we deduce that there exist sequences (xn) and
(yn) inF (H)+ such that lim xn = x , lim yn = y, and xm ⊥ yn (m, n ∈ N). Then

P(x + y) = lim P(xn + yn) = lim
(
P(xn) + P(yn)

) = P(x) + P(y).
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This shows that P is orthogonally additive onK (H)+. Since the C∗-algebraK (H)

has real rank zero and the net consisting of all finite-rank projections is an increasing
approximate unit, Theorem 3 applies and gives a continuous linear functional Φ on
K (H) such that P(x) = Φ(xm) (x ∈ K (H)). It iswell-known that themap ζ �→ Φζ ,
as defined in (18), gives an isometric isomorphism from S1(H) onto the dual of
K (H), so that there exists ζ ∈ S1(H) such that Φ(x) = Tr(ζ x) (x ∈ K (H)) and
‖ζ‖1 = ‖Φ‖. Thus we obtain (i). The additional properties of the result follow from
Theorem 1. 
�
Corollary 6 Let H be a Hilbert space, and let P : S p(H) → C be a continuous
m-homogeneous polynomial with 0 < p ≤ m. Then the following conditions are
equivalent:

(i) there exists ζ ∈ B(H) such that P(x) = Tr(ζ xm) (x ∈ S p(H));
(ii) the polynomial P is orthogonally additive on S p(H)sa;
(iii) the polynomial P is orthogonally additive onF (H)+.
If the conditions are satisfied, then ζ is unique and ‖P‖ ≤ ‖ζ‖ ≤ 2‖P‖; moreover, if
P is hermitian, then ζ is self-adjoint and ‖ζ‖ = ‖P‖.
Proof By Theorems 4 and 5, it suffices to show that the map ζ �→ Φζ , as defined
in (18), gives isometric isomorphism from B(H) onto the dual of S p/m(H). This is
probably well-known, but we are not aware of any reference. Consequently, it may be
helpful to include a proof of this fact. If ζ ∈ B(H) and x ∈ S p/m(H), then, by (8),
ζ x ∈ S p/m(H), so that ζ x ∈ S1(H) and

∥∥Tr(ζ x)
∥∥ ≤ ‖ζ x‖1 ≤ ‖ζ‖‖x‖1 ≤ ‖ζ‖‖x‖p/m,

which shows that Φζ is a continuous linear functional on S p/m(H)with ‖Φζ ‖ ≤ ‖ζ‖.
Conversely, assume that Φ is a continuous linear functional on S p/m(H). For each
ξ, η ∈ H , let ξ ⊗ η ∈ F (H) defined by

(
ξ ⊗ η

)
(ψ) = 〈ψ |η〉ξ (ψ ∈ H),

and define ϕ : H × H → C by

ϕ(ξ, η) = Φ(ξ ⊗ η) (ξ, η ∈ H).

It is easily checked that ϕ is a continuous sesquilinear functional with ‖ϕ‖ ≤ ‖Φ‖.
Therefore there exists ζ ∈ B(H) such that 〈ζ(ξ)|η〉 = ϕ(ξ, η) for all ξ, η ∈ H and
‖ζ‖ ≤ ‖Φ‖. The former condition implies that

Φζ (ξ ⊗ η) = Tr(ζ ξ ⊗ η) = 〈ζ(ξ)|η〉 = ϕ(ξ, η) = Φ(ξ ⊗ η)

for all ξ, η ∈ H ,which givesΦζ (x) = Φ(x) for each x ∈ F (H). SinceF (H) is dense
in S p/m(H), it follows that Φζ = Φ. Further, we have ‖ζ‖ ≤ ‖Φ‖ = ‖Φζ ‖ ≤ ‖ζ‖.
Finally, it is immediate to see that Φ∗

ζ = Φζ ∗ , so that Φζ is hermitian if and only if ζ

is self-adjoint. 
�
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Proposition 3 Let H be a Hilbert space with dim H ≥ 2, let X be a topological linear
space, and let P : S p(H) → X be a continuous m-homogeneous polynomial with
0 < p < ∞. Suppose that P is orthogonally additive on S p(H). Then P = 0.

Proof Since F (H) is dense in S p(H) and P is continuous, it suffices to prove that
P vanishes on F (H). On account of Lemma 1, we are also reduced to prove that P
vanishes onF (H)sa. We continue to use the notation ξ ⊗ η which was introduced in
the proof of Corollary 6.

Let x ∈ F (H)sa. Then x = ∑k
j=1 α jξ j ⊗ ξ j , where k ≥ 2, α1, . . . , αk ∈ R, and

{ξ1, . . . , ξk} is an orthonormal subset of H . It is clear that the subalgebraM ofB(H)

generated by
{
ξi ⊗ξ j : i, j ∈ {1, . . . , k}} is contained inF (H) and it is ∗-isomorphic

to the von Neumann algebraB(K ), where K is the linear span of the set {ξ1, . . . , ξk}.
By Proposition 1, P |M= 0, and therefore P(x) = 0. We thus get P |F (H)sa= 0, as
required. 
�
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