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Abstract

We establish estimates for the Lebesgue parameters of the Chebyshev weak threshold-
ing greedy algorithm in the case of general bases in Banach spaces. These generalize
and slightly improve earlier results in Dilworth et al. (Rev Mat Complut 28(2):393—
409, 2015), and are complemented with examples showing the optimality of the
bounds. Our results also clarify certain bounds recently announced in Shao and Ye (J
Inequal Appl 2018(1):102, 2018), and answer some questions left open in that paper.
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1 Introduction

Let X be a Banach space over K = R or C, let X* be its dual space, and consider a

system {e,, e;}>° | C X x X* with the following properties:

(@) 0 <inf,{[le.ll, lle; I} < sup,{llexll, lle;ll} < oo
(b) e’ (ey) = 8y,m, foralln,m > 1
(c) X =span{e, : n € N}
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() X* = spanfe; :n e N}” .

Under these conditions % = {e,},° | is called a seminormalized Markushevich
basis for X (or M-basis for short), with dual system {e;;}7° ;. Sometimes we shall
consider the following special cases

(e) A is aSchauder basis if Kj, :== supy ||Sy|| < oo, where Syx := 2111\1:1 er(x)e,
is the N-th partial sum operator

(f) #is a Cesaro basis if supy | Fy|| < oo, where Fy 1= % Ziv:l Sy is the N-th
(C,1)-Cesaro operator. In this case we use the constant

B= maX{Sup IEN, sup 1T — FN”}- (1.1)
N N

For the latter terminology, see e.g. [21, Def. III.11.1]. With every x € X, we shall
associate the formal series x ~ Ziil e (x)e,, where a)-c) imply that lim,, e (x) = 0.
As usual, we denote suppx = {n € N : e} (x) # 0}.

We recall standard notions about (weak) greedy algorithms; see e.g. the texts [23,25]
for details and historical background. Fix ¢ € (0, 1]. We say that A is a t-greedy set
for x of order m, denoted A € G(x, m, t), if |A| = m and

in |e* >t *(x)]. 1.2
;nel;‘llen(x)l_ r;lg}len(x)l (1.2)

A t-greedy operator of order m is any mapping ¢/, : X — X which at each x € X
takes the form

Gl (x) =) ei(x)e,, forsomeset A=A(x, %)) € G(x.m.1).

neA

We write G, for the set of all #-greedy operators of order m. The approximation
scheme which assigns a sequence {¢, (x)}*°_, to each vector x € X is called a Weak
Thresholding Greedy Algorithm (WTGA), see [16,24]. When r = 1 one just says
Thresholding Greedy Algorithm (TGA), and drops the super-index ¢, thatis 4} = %,,,
etc.

It is standard to quantify the efficiency of these algorithms, among all possible
m-term approximations, in terms of Lebesgue-type inequalities. That is, for each m =
1,2, ..., we look for the smallest constant Lin such that

lx =4 ()| <Liom(x), YxeX, V¥ G, (1.3)
where

oy (x) = inf { ”x =3 e,

neB

by €K, |B| < m}

We call the number L}, the Lebesgue parameter associated with the WTGA, and we
just write L,,, when# = 1. We refer to [25, Chapter 3] for a survey on such inequalities,
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and to[1,5,6,10,12,26] for recent results. It is known that Lﬁn = O(1) holds for a fixed
t if and only if it holds for all ¢ € (0, 1], and if and only if £ is unconditional and
democratic; see [15] and [23, Thm. 1.39]. In this special case 4 is called a greedy
basis.

In this paper we shall be interested in Chebyshev thresholding greedy algorithms.
These were introduced by Dilworth et al. [8, §3], as an enhancement of the TGA. Here,
we use the weak version considered in [10]. Namely, for fixed ¢ € (0, 1] we say that
¢8!, : X — Xis a Chebyshev t-greedy operator of order m if for every x € X there
isaset A = A(x, E‘:@in) € G(x,m,t) such that supp(’j@in (x) C A and moreover

x—Zanen aneK}.

neA
Finally, we define the weak Chebyshevian Lebesgue parameter Lf,?’t as the smallest
constant such that

[x — €& (x)| = min i

Ix — €8, ()l < LMo, (x), VxeX, Vs, e G,

where Gcmh’t is the collection of all Chebyshev ¢-greedy ogerators of order m. As before,
when ¢ = 1 we shall omit the index ¢, that is Lf,f‘ =L o1

When Lf,i1 = O(1) the system 4 is called semi-greedy; see [8]. We remark that the
first author recently established that a Schauder basis Z is semi-greedy if and only if
is quasi-greedy and democratic; see [3].

In this paper we shall be interested in quantitative bounds of L,C,?’l in terms of the
quasi-greedy and democracy parameters of a general M-basis Z. Earlier bounds were
obtained by Dilworth etal. [10] when # is a quasi-greedy basis, and very recently, some
improvements were also announced by Shao and Ye [19, Theorem 3.5]. Unfortunately,
various arguments in the last paper seem not to be correct, so one of our goals here
is to give precise statements and proofs for the results in [19], and also settle some of
the questions which are left open there.

To state our results, we recall the definitions of the involved parameters. Given a
finite set A C N, we shall use the following standard notation for the indicator sums:

14 = Zen and 1.4 = anen, eeY
neaA neA
where Y is the set of all € = {¢,,}, C K with |g,;| = 1. Similarly, we write
Py(x) =) eh(x)en.

neA

The relevant parameters for this paper are the following:
e Conditionality parameters:

kpy := sup [|[Pall and k5, = sup |[I — Pal.

[Al<m [Al<m
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e Quasi-greedy parameters:

gm =  sup 1% and g, :=  sup 11— %ll.

fngGk,kfm fngGk,kSm

Below we shall also use the variant

8m = sup 19 — g/”»
=%
GeGy, k<m

where 4’ < ¢ means that A(x,¥4’) C A(x, %) for all x; see [3].
e Super-democracy parameters:

- [1eall ~d [Teall
m = sup —— and [, = sup —_—
1A1=B|<m 118l |A|=|B|<m, AnB=¢ 1Bl
lel=lnl=1 lel=Inl=1

e Quasi-greedy parameters for constant coefficients (see [5, (3.11)])

Ll

lel=1  IMeall
BCA, |A|l<m

Ym =

Note that y,,, < g < &u < 2gm, but in general y,, may be much smaller than g,,;
see e.g. [5, §5.5]. Likewise, in §5 below we show that ﬂ,dn may be much smaller than
[, except for Schauder bases, where both quantities turn out to be equivalent; see
Theorem 5.2.

Our first result is a general upper bound, which improves and extends [19, Theorem
2.4].

Theorem 1.1 Let 9 be an M-basis in X, and let R = sup,, ; le;lille;ll. Then,
LM <14+ (1+3)&m, VYmeN, re(,1] (1.4)

Moreover, there exists a pair (X, %) where the equality is attained for all m and t.

The second result is a slight generalization of [ 10, Theorem 4.1], and gives a correct
version of [19, Theorem 3.5].

Theorem 1.2 Let B be an M-basis in X. Then, forallm > 1 andt € (0, 1],
ch,t c 2 ~ ~ ~ ~d
Lm' S me + ; min { EmMm » J/ngzml“l'm } (15)

Our next result concerns lower bounds for Lcmh’t, for which we need to introduce
weaker versions of the democracy parameters with an additional separation condition.
For two finite sets A, B C N and ¢ > 1, the notation A > ¢B will stand for min A >
cmax B.
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e Given an integer ¢ > 2, we define

ﬂm,c =

1
u {||||18A|||| :lel=Inl=1, |A|=|B|<m withA>cBorB>cA}. (1.6)
nB

Theorem 1.3 If % is a Cesaro basis in X with constant B, then for every ¢ > 2

1 c—1
ch,t
m ztl‘ﬁc—k_lﬁm’c’ VvmeN, te(,1]
We shall also establish, in Theorem 3.10 below, a similar lower bound valid for
more general M-bases (not necessarily of Cesaro type), in terms of a new parameter
0,, which is invariant under rearrangements of %.

Remark 1.4 One may compare the bounds for LCW'f above with those for L,, given in

[5]
(D Ly < 14+38m,  (2) Ly <kS,, + &ujim, and (3) Ly, > 2,

which illustrate a slightly better behavior of the Chebishev TGA. Observe that one
also has the trivial inequalities

ch,t t ¢ y ch,t
L, <L, <k, L,"".

Indeed, L;{l’t < L!, is direct by definition, while L!, < k,%Lﬁ?’l can be proved as
follows: take x € X and let A = supp#/, (x). Pick a Chebyshev greedy operator €&’
such that supp€®!, (x) = A. Then

Ix =%, () = I = Po)x]| = |(I = Pa)(x — €&, ) < ky,llx — €&, (0],

soLl, <k, Li™. Hence, when 2 is unconditional then L! ~ Lo However for all
conditional quasi-greedy and democratic bases we have L%1 = 0(1),butL,, - oo.

The paper is organized as follows. Section 2 is devoted to preliminary lemmas. In
Sect. 3 we prove Theorems 1.1, 1.2 and 1.3, and also establish the more general lower
bound in Theorem 3.10, giving various situations in which it applies. Section 4 is
devoted to examples illustrating the optimality of the results; in particular, an optimal
bound of L%1 for the trigonometric system in L'(T), settling a question left open in
[19]. In Sect. 5 we investigate the equivalence between ﬂ‘,fl and [i,, and show Theorem
5.2. Finally, in Sect. 6 we study the convergence of €&, (x) and ¥, (x) to x, pointing
out the role of a strong M-basis assumption for such results.
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2 Preliminary results

We recall some basic concepts and results that will be used later in the paper; see [5,8].
For each o > 0 we define the o-truncation of a scalar y € K as

Ty(y) = asigny if |y > o, and Tu(y) =y if |y| <oa.

We extend T, to an operator in X by formally assigning T, (x) ~ Zfzil Ta (el (x))e,,
that is

To(x) :=algp, ) + (I — Ppy) (%),

where Ay (x) = {n : |e}(x)| > o} and ¢ = {sign (e} (x))}. Of course, this operator is
well defined since A, (x) is a finite set. In [5] we can find the following result:

Lemma 2.1 [5, Lemma 2.5] For all @ > 0 and x € X, we have
1w ) < gl o111
We also need a well known property from [8,9], formulated as follows.

Lemma2.2 [5, Lemma 2.3] If x € X and ¢ = {sign (e};(x))}, then

gleig le, Iecll < gigllxll, VG € G(x,m, 1). (2.1

The following version of (2.1), valid even if G is not greedy, improves [10, Lemma
2.2].

Lemma23 Let x € X and ¢ = {sign (e} (x))}. For every set finite A C N, if « =
min, ey |€)(x)|, then

allleall < YaUr.w)| &laua.illx|l, (2.2)
where Ay (x) = {n : |e}(x)| > a}.
Proof. Call G = A U A,(x), and notice that it is a greedy set for x. Then,
a|[leall < @Gl < viG 86 lIxll,

using (2.1) in the last step. O

Remark 2.4 The following is a variant of (2.2) with a different constant
min |e, (x)| [[1eall < kja llx]l. (2.3)
neA

A similar proof as the one in Lemma 2.3 can be seen in [4, Proposition 2.5].
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Finally, we need the following elementary result, which follows directly from the
convexity of the norm; see e.g [25, p. 108] (or [5, Lemma 2.7] if K = C).

Lemma 2.5 For all finite sets A C N and scalars a, € K it holds

E an€,

2 < max fa,| sup [Lea]-

3 Proof of the main results

3.1 Proof of Theorem 1.1

Let x € X and €8/, € Gf,l,” be a fixed Chebyshev 7-greedy operator. Let A =
A(x, Q@fn) € G(x,m,t).Pickany z = ) bpe, such that |B| = m. By definition
of the Chebyshev operators,

neB

Ilx — €&, () < llx = Pans )l < IPRAG) + lx — Pp(x)].

On the one hand, using (1.2),

1 1
IPRACON = suplleall D [l = Zsupllenll D lejx —2)| = &mllx =z
jeB\A JEA\B

On the other hand, using the inequality (3.9) of [5],
Ilx = Pl = I — Pp)(x — 2)|| < ky,llx —zll < (1 + Km)[lx — z]|.

Hence, L™ < 1 + (1+ %) fm. Finally, the fact that the equality in (1.4) can be
attained is witnessed by Examples 4.1 and 4.2 below.

3.2 Proof of Theorem 1.2
The scheme of the proof follows the lines in [8, Theorem 3.2] and [10, Theorem 4.1],
with some additional simplifications introduced in [5].

Given x € X and €&/, € GI let A = Alx, ¢8') € G(x,m,1). Pick any
2 =) ,cp bnen such that | B| = m. By definition of the Chebyshev operators,

lx — €&, ()l < llx = pll, forany p= 3 anen. 3.1)

neA

We make the selection of p suggested in [8]. Namely, if o = max,¢4 |€);(x)[, we let
p = Pa(x) — Pa(To(x — 2)).
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702 P. M. Berna et al.

It is easily verified that

x—=p=(—-Py)(x - Ty(x —2)) + To(x — 2)
= Ppa(x — To(x —2)) + To(x — 2). (3.2)

Since Ag(x —z) ={n : |e}i(x —z)| > o} C AU B, then Lemma 2.1 gives
[Tax = 2)|| < 85, llx — 2. (3.3)

Next we treat the first term in (3.2). Observe that max, e g\ 4 |} (x — Ty (x —2))| < 2a,
so Lemma 2.5 gives

| Pova(x — Talx — 2)| < 2o sup L
El=
2

=7 i, le,(r —2)] sup |t = . (3.4)

At this point we have two possible approaches. Let 1, = sign [e}(x — z)]. In the first
approach we pick a greedy set I' € G(x — z, |[A\B], 1), and control (3.4) by

2. - 2. .
() < = minles(x —2)| fm [Lyr| < = fm Emllx — zll, (3.5
t nel t

using Lemma 2.2 in the last step. In the second approach, we argue as follows

[\

— min |e}
neA\B

i 2
t =l gy [Lns | < 7 vam o iy Ix =2l 3.6)

(%) =

using in the last step Lemma 2.3 and the fact that, if § = mina\ g |e}; (x — )|, then the
set (A\B)U {n : |e}(x —2)| > 8} C AU B and hence has cardinality < 2m.
We can now combine the estimates displayed in (3.1)—(3.6) and obtain

t c 2 s = ~d
Ix = €84, 0Nl = [g5, + T min { Gt . Yooy }] 1x = 21l
which after taking the infimum over all z establishes Theorem 1.2. O
Remark 3.1 In [19, Theorem 3.5] a stronger inequality is stated (for 7 = 1), namely
Lot < g8, 4 28m i 3.7)

The proof, however, seems to contain a gap, and a missing factor k;,, should also appear
in the last summand. Nevertheless, it is still fair to ask whether the inequality (3.7)
asserted in [19] may be true with a different proof.
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Remark 3.2 Using Remark 2.4 in place of Lemma 2.3 in (3.6) above leads to an
alternative and slightly simpler estimate

ch,r 2
LM < gf + = kmum. (3.8)

However, this would not be as efficient as (1.5) when £ is quasi-greedy and condi-
tional.

Remark 3.3 When 4 is quasi-greedy with constant q = sup,, g, < oo, then Theorem
1.2 implies the following

L < q+ 4171 2 .
This is a slight improvement with respect to [10, Theorem 4.1].
3.3 Proof of Theorem 1.3

Recall that Sy = Y-V, e*(-)e, and

—1
> er(x)e,.

For M > N we define the operators (of de la Vallée-Poussin type)

1 N N
Fy@ =~ S0=) (1-
NS =1

M
Vnm(x) = M N Fpy(x) — M N

:Ze(x)en—i— Z ( #) e, (39)

n=N+1

Fn(x)

In particular, observe that, for g as in (1.1) we have

M+ N
max { |V mll. 11 = V.ml} < B. (3.10)

~ M-N

We next prove that, if ¢ > 2, then for all A, B C N such that B > cA with |A| =
|B| < m it holds

pehs 5 L €= 1 [Heall
" T B e+ 1 sl

Vel = In| = 1. (3.11)

Pick any set C > B such that |[B U C| = m, and let
x =14 +11,p +1tlc.
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704 P. M. Berna et al.

Then B U C € G(x, m, t), and hence there is a Chebyshev 7-greedy operator so that

X —COL () =Tea+ Y anen.
neBUC

for some scalars a, € K. Clearly,
Ix — €&, ()| < LMo (x) < LM [t1,5]),

using z = 1g4 + t1¢ an m-term approximant. On the other hand, let N = max A.
Since min B U C > ¢N, then (3.9) yields

VN, en(x — €8 (x)) = 1e4.
Therefore, (3.10) implies that

IVi.on(x = €8, )l c—1

lx — €&, (x)]| = > [1eall-
" IVaenl c+Dp "
We have therefore proved (3.11).
We next show that when |A| = |B| < m satisfy A > ¢B then
I c—1 |14l
L > - , Viel=n=1. 3.12
m = l,32 c+1 ”1713” &l 0] ( )

This together with (3.11) is enough to establish Theorem 1.3. We shall actually show
a slightly stronger result:

Lemma3.4 Let |A| = |B| < mandlety € X be such that |yl := sup,, |e;(y)] <1
and A > c(B U suppy). Then

1 c—1 Ll

LCh,t > ,
" tB* ¢+ 1 115 + vl

Ylel = |n| = 1. (3.13)

Observe that the case y = 0 in (3.13) yields (3.12). We now show (3.13). Pick a
large integer A > 1 and a set C > AA such that |BU C| = m. Let

x=1ga+ty+1tlp +tlc.

As before, BUC € G(x, m, t), and hence for some Chebyshev ¢-greedy operator we
have

X = €8, () =Lea+1y+ ) anen,
neBUC
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for suitable scalars a,, € K. Choosing 1.4 + t1¢ as m-term approximant of x we see
that

Ix — €8, (0l < L0, (x) < L1 1,5 + ).
On the other hand, calling N = max(B U suppy) and L = max A we have
(I — Vy.en) o Voo (x — €8}, (x)) = 1ea
Thus,

1 —1 A—1
It — €8l (1)) > [Loal — 1ol
17— Vaen1Veozl — @+ DB G+ DB

Therefore we obtain

Il c—1Ar—1 |Lgal
B2 c+1a+1 |15+l

ch,t
L, >

which letting A — oo yields (3.13). This completes the proof of Lemma 3.4, and
hence of Theorem 1.3.

Remark 3.5 When % is a Schauder basis, a similar proof gives the following lower
bound, which is also obtained in [19, Theorem 2.2]

e o 1 { ILeal

= su |A|=|B|:m,A>BorB>A,|e|:|;7|:1}_
" T Kp+ Dt Ll

The statement for Cesaro bases, however, will be needed for the applications in §4.3.

3.4 Lower bounds for general M-bases

Observe that
1 1
Ve = sup U.(A), where U.(A) = sup max { I SA”, 151 }
|A|<m B : |Bl=lA| 1180 [1eall

B>cA

eneY
We consider a new parameter

Uy = sup inf U.(A). (3.14)

[Al<m ¢zl

We remark that, unlike ¥, ., the parameter 9%,, depends on {e, }20:1 but not on the

reorderings of the system. We shall give a lower bound for L,C,?” in terms of ¥, in a
less restrictive situation than the Cesaro basis assumption on {e, }7° ;.
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Given p > 1, we say that {e,};° | is p-admissible if the following holds: for each

finite set A C N, there exists no = no(A) > max A such that, for all sets B with
min B > ng and |B| < |A],

danes| <p | D owen|. Ya,eK (3.15)
neA neAUB
Observe that (3.15) implies that
e <o+ | Y anen|. Ve €K (3.16)
neB neAUB

This condition is clearly satisfied by all Schauder and Cesaro bases (with p = K, or
p > B), but we shall see below that it also holds in more general situations.

Proposition 3.6 Let {e,, e;} " | be an M-basis such that {e,}.° | is p-admissible. Then

0
Lhi> " ymeN, te(01]. 3.17
T (p+ Dt ©-1 G-17

Proof. Fix A C Nsuchthat|A| < m.Choose C disjoint with A such that | AUC| = m.
Letng = no(A U C) be as in the above definition, so that ng is larger than max AU C.
Pick any B with min B > ng and |B| = |A|, and any ¢,n € Y. Let x = t1.4 +
t1c +1,p. Then AU C € G(x,m,t), and there is a Chebyshev ¢-greedy operator
with €&’ (x) supported in A U C. Thus,

e — €8, (0]l < L 0, (1) < LM [lx — (Lys +11e) | = L [ Leall.

On the other hand, using the property in (3.16) one obtains

15l
—o® > — .
[lx m (O = o1
Thus,
SR S 071

" T (p+ Dr | Leal”
We now assume additionally that min B > ng + m, and pick D C [ng, no +m — 1]

such that |B| + |D| =m.Lety = 1.4 +t1,;p +t1p. Then BU D € G(y, m, t) and
a similar reasoning gives

[Leall
—E <y — €L, I S LgM om(y) < Lyt ¢ [1,5]l.
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Thus,

pehe o L {||1nB||’ ||1€A||}’
" S o0 el sl

and taking the supremum over all |B| = |A| with B > (ng + m)A and alle,n € Y,
we see that

Ll(,:rll’l,t > ﬂno+m(A) > infczl ﬁc(A)
(p+ Dt (p+ Dt

Finally, a supremum over all |A| < m leads to (3.17). O

We now give some general conditions in {e,, e}
admissibility holds. We recall a few standard definitions; see e.g. [13]. We use the
notation [e;,],e4 = Span {e,},ca, for A C N. A sequence {e,}°° | is weakly null if

}u2; and X under which p-

lim x*(e,) =0, Vx*eX*
n—od
Given a subset ¥ C X*, we shall say that {e,}>° | is Y-null if
lim y(e,) =0, VyeY.
n—oQ
Given k € (0, 1], we say that a set Y C X* is x-norming whenever

sup x*(x)| > kx|, YxeX
x*eY, [x*|<1

We finally introduce a new abstract definition.

Definition 3.7 We say that a biorthogonal system {e,, ;}7° | C X x X* satisfies the
property & (k), for some 0 < « < 1, if the sequence {||e]; | e,}>° ; C Xis Y-null, for
some subset ¥ C X* which is k-norming.

We remark that in every separable Banach space X there exists an M-basis
{4, €;}°° | with the property &(1); see e.g. [21, Theorem I11.8.5].! Other examples
are given in Remark 3.9 below.

Proposition 3.8 Let {e,, €;:}°° | be a biorthogonal system in X x X* with the property
P (k). Then {e,};2 | is p-admissible for every p > 1/k.

Proof. Let Y C X* be the x-norming set from Definition 3.7. Consider a finite set
A C N with say |A| = m and denote

E :=[e;lnca.

I The M-basis constructed in [21] satisfies that Y = [e}],cn is 1-norming and sup,, <y llex | llef]| < oo.
But the latter easily implies that {||e};|| e;},>1 is Y-null.
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Given ¢ > 0, one can find a finite set S C Y N {x™ € X* : ||x*|| = 1} so that

max [x*(e)| > (1 —e)k|e], VecE. (3.18)
x*eS§

Indeed, it suffices to verify the above inequality for e of norm 1. Pick an ek /2-net
(zk),ivzl in the unit sphere of E. For any k find a norm one zj € Y so that |z; (zx)| >
(1 —&/2)k. We claim that § = {z} : 1 < k < N} has the desired properties. To see
this, pick a norm one e € E, and find k with ||e — zx|| < ek /2. Then

max [x*(e)] = 177(e)] = 5 @)l — lle = 2l = (1 = e/2) — e/2 = (1 = e)x.

Next, since the sequence {||e}|| e,} is Y-null, for each § > 0 we can find an integer
nop > max A so that

max [x"(e,)| lle, | <—, Vn>nyg.
x*eS§ m
Pick any B of cardinality m with min B > n(, and let

G .= [en]neB~

For f =3, pei(f)e, € G, we have

* * *
max [x* ()] < e Z [x* (e e I FIIl < dxll flI (3.19)
neB
We claim that
(1 —¢e—9%)«
le+ fll = ————— |lell, forany e € E, f € G. (3.20)
1+ 6k

To show this, we fix y > 0 (to be chosen later), and assume firstthat || f|| > (14y)]le]l.
Then,

le+ fI = NFI—llell = ylell.
Next assume that || f|| < (1 4+ y)lle], then using (3.18) and (3.19) we obtain that
e+ fII = max Ix*(e+ Nl = (A —=e)kllell = skl fIl > (1 =& =81+ y)«lel.

We now choose y sothaty = (1 —e — 8(1 + y))«, that is,

_(I—e—¥)k
- 14 0k

’
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which shows the claim in (3.20). Now, given p > 1/k, we may pick § = ¢ sufficiently
small so that the above number y > 1/p. Then, (3.20) becomes

1
le+ fll = ; llell, forany e € [e;]lnea, [ € [enlnen,

for all B with min B > ng and |B| = |A| = m. Thus, {e,} > | is p-admissible. O

Remark 3.9 We give some more examples where property &2 (k) holds.

(1) If the sequence {||e}; || e,}52, is weakly null then £(1) holds (since ¥ = X* is
always 1-norming).

2) If {en}fj‘;1 is a Schauder basis then & (k) holds with k = 1/K}; see [20, Theorems
1.3.1 and I.12.2].

(3) Let X = C(K), where K is a compact Hausdorff set, and let « be a Radon
probability measure in K with suppu = K. Let {e,}° ; be a complete system in

n=1
X which is orthonormal with respect to o and uniformly bounded, that is,

/ enendi =6,m and sup|e,lle < 00.
K n

Then {e, }7° | has the property (1) in X = C(K). Indeed, the sequence {e, } > |
is L1(u)-nullin X, while Y = L (w) is 1-norming in X (since the natural embed-
ding of C(K) into L~ () is isometric). Specific examples are the trigonometric
system in C[0, 1] (in the real or complex case), as well as certain polygonal ver-
sions of the Walsh system [7,17,27], or any reorderings of them (which may cease
to be Cesaro bases).

(4) As a dual of the previous, if X = L!(u) then every system {e,}72, asin (3) is
weakly null, and hence case (1) applies.

(5) If {e,, e;}° | is an M-basis such that

e

neA

@(m) := sup = o(m), as m — o0,

[Al<m

then {e,};° ; is weakly null (and in particular, &(1) holds). Indeed, first note that
also @(m) = sup{||1,all : |A| < m, |n| = 1} = o(m). Assume that the system
is not weakly null. Then there exist a norm one x* € X* and 9 > 0 so that the
set A = {n € N: |x*(e,)| > &} is infinite. For every m > 1, pickaset F C A

with | F| = m and let n, = sign[x*(e,)]; then

nekl

contradicting our assumption.

=Y Ix*(e)| = meo,

neF

@(m) = 5| =

Finally, as a consequence of Propositions 3.6 and 3.8 one obtains
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Theorem 3.10 Let {e,, €;;}°° | be a seminormalized M-basis with the property & (k).
Then, if Uy, is as in (3.14), we have

K0
ch,t > m

N 0, 1]. 3.21
m 2T meN, te,1] ( )

4 Examples

The first two examples are variants of those in [5, §5.1] and [6, §8.1].

4.1 Example 4.1: the summing basis

Let X be the closure of the set of all finite sequences a = (a,), € coo with the norm

llall = sup
m

m
E a| .
n=1

The canonical system % = {e,};° is a Schauder basis in X with K, = 1 and
llexll = 1foralln. Also, |lej|| =1, [le}|| =2if n > 2, so & = 2 in Theorem 1.1; see
[5, §5.1]. We now show that, for this example of (X, %), the bound of Theorem 1.1
is sharp. As in [5, §5.1], we consider the element:

where we have m blocks of (%, %, %) and m blocks of (— 1, 1). Picking A = {n : x, =

— 1} as a ¢t-greedy set of x, we see that
[x — €& (x)|| = min

111 R O T Lo
st HPEE SR SRR sar, Lyaz, 1, ..., dm, 1, U, ...,

2
111 IR IR e
Yoy oy )| T T T Ty

On the other hand,

o (x) < Hx - #(o, 1,0.....0.1,0:0, )H

1 1 1 11 |
:H("’_l"v--w-’—l»-:—;—1,1,...,—1,1,0...,>H=—.
2 2 2 272 >

Hence, Ly > 1+ 2(1 + 1ym and we conclude that Ly = 1+ 2(1 4 Lym by
Theorem 1.1. As a consequence, observe that in this case ¢(’5ﬁn (x) =0.
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Remark 4.1 The above example strengthens [19, Theorem 2.4], where the authors are
only able to show that 1 +4m < LM < 1 4 6m.

4.2 Example 4.2: the difference basis
Let {e,} 2 | be the canonical basis in ¢1(N) and define the elements

yi=¢e€, yp=¢€, —€._1, n=2,3,...

The new system % = {y,}°", is called the difference basis of £'. We recall some

basic properties used in [6, §8.1]. If (b,), € cop then

o o
anyn :Z“?n — byl
n=1 n=1
Also, % is a monotone basis with [|yi|| = 1, |y, = 2 ifn > 2, and |ly;i|| = 1 for

all n > 1 (in fact, the dual system corresponds to the summing basis). So, & = 2 and
Theorem 1.1 gives LC T<1420+ %)m for all ¢ € (0, 1]. To show the equality we
consider the vector x = ), b,y, with coefficients (b,) given by

1 1
(1,1,1,—;,1,...,1,1,—7,1,0,...,>,

where the block (1 1 1) is repeated m times. [f we take I' = {2, 6, ..., 4m —2}

k t K
as a t-greedy set for x of cardinality m, then

Ir = €8, ()l = inf |x— Zamu 2

J]l

—1 —1
= lnf H(ll al,l,7,1,...,1—am,l,T,l,O,...,>H

(“./

1 1
= inf 2Z|aj|+2m<1+;>+1=2m(1+?>+1,

(aJ Jj=1 le

Hence, in this case we also have €&/, (x) = 0. On the other hand

om(x) < x4+ (141 Zy4]||—||(1 1,1,1,1,...,1,1,1,1,0,.. )| = 1.

This shows that Liy™ = 1+ 2(1 + Lym.
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4.3 Example 4.3: the trigonometric system in LP (T)

Consider = {€/"*},cz in LP(T) for 1 < p < oo, and in C(T) if p = oo. In [22],
Temlyakov showed that

1_1 ‘L_l‘
c,,m‘l’ 2| <L, <14+3mlr 2l

for some ¢, > O and all 1 < p < oco. Adapting his argument, Shao and Ye have
recently established, in [19, Theorem 2.1], that for | < p < oo it also holds
L !53] @.1)
" . .

The case p = 1 is left as an open question, and only the estimate % < Lf,l‘ < Jm
is given; see [19, (2.24)]. Moreover, the proof of the case p = oo seems to contain
some gaps and may not be complete.

Here, we shall give a short proof ensuring the validity of (4.1) in the full range
1 < p < oo, with a reasoning similar to [5, §5.4]. More precisely, we shall prove the

following.

Proposition 4.2 Let 1 < p < oo. Then there exists c;, > 0 such that

1 1
L > e, mls 2 YmeN, re 1] (4.2)

We remark that in the cases p = 1 and p = oo the trigonometric system is not a
Schauder basis, but it is a Cesaro basis.2 So we may use the lower bounds in Theorem

1.3, namely

_ 1ca
L > c,t ! sup sup u 4.3)
Aj=IBl<m_lel=ni=1 [TyBll
A>2B or B>2A

e Case | < p < 2. Assume thatm = 2¢ 4+ 1 or 2¢ + 2 (that is, £ = I_'”T_IJ). We
choose B = {— ¢, ..., ¢}, sothat 13 = D, is the £th Dirichlet kernel, and hence

-1
11sll, = I1DellLr(ry ®m 7.

Next we take a lacunary set A = {2j 2 jo < J < jo+2¢£}, so that

1Lall, ~ /m, 4.4)
and where jj is chosen such that 2J0 > m, and hence A > 2B. Then, (4.3) implies

1/2
Lt > flm/
m = *Pp

_1
m P

2 We equip 4 with its natural ordering {1, ol omix Q2ix p=2ix 3
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e Case 2 < p < oo. The same proof works in this case, just reversing the roles of
A and B.

e Case p = oo. We replace the lacunary set by a Rudin-Shapiro polynomial of the
form

21
R(x)=e™N* Y e, with g, € (£ 1},
n=0

where L is such that 2L < m < 2L+1; see e.g. [14, p. 33]. Then, R = 1,5 with
B=N+{0,1,...,2 — 1} and

11e8lloo = IRl oo () & /m.
If we pick N > 2- 2L then B > 2A with A = {£ 1, ..., + (2L — 1)}. Finally,
Talloo = 1Dz _y — () & m.

So, (4.3) implies the desired bound.
e Case p = 1. We use the lower bound in Lemma 3.4, namely

LAl

LCh,f Z C/1 t71 ,
" 15 + yll

(4.5)

forall |A| = |B| < mandall y such that A > 2(B Usuppy) and sup,, [e}(y)| < 1.
As before, let m = 2¢ + 1 or 2¢ + 2, and choose the same sets A and B as in the
case 1 < p < 2. Next choose y so that the vector

Ve=1p +y
is a de la Vallée-Poussin kernel as in [14, p. 15]. Then, the Fourier coeffients e} (y)
have modulus < I and are supportedin {n : £ < |n| <2€+ 1}, so the condition
A > 2(B U suppy) holds if 2/0 > 2m + 1. Finally,
1z + yli = IVellprery) <3,

so the bound L,C,?" > t_lﬂ follows from (4.5).

1
Remark 4.3 Using the trivial upper bound Lf,?’t <Ll < t~'mlv 7‘, we conclude

that LS ~ =1/

t
1_1 "
» 72 forall 1 < p < o0.

i y d
5 Comparison between up, and u5,
In this section we compare the democracy constants i, and ﬁfn defined in §1 above.
Let us first note that

il < fim < (18)° (5.1)
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and
i < fim < (14 260 ymitd, (5.2)

where k = 1 or 2 depending if K = R or C. Indeed, the left inequality in (5.1) is
immediate by definition, and the right one follows from

11,81 11,8l Il .
17 =t < (Rd)?%,
Leall el N1eall

for any |A| = |B| < m and any C disjoint with A U B with |C| = |A| = |B|.
Concerning the right inequality in (5.2), we use that if |A| = |B| < m then

Meall <||16(A\B)||+||18(AOB)||< Mecavmyl  Mecansl

~d
< < < Vm 3y, + 2KV,
11,51 11,51 "Bl 11,5 e "

using in the last step [5, Lemma 3.3]. From (5.2) we see that f,, ~ [Lfn when 4 is
quasi-greedy for constant coefficients.

In the next subsection we shall show that fi,, ~ [Lﬁl for all Schauder bases, a result
which seems new in the literature.

5.1 Equivalence for Schauder bases

We begin with a simple observation.

Lemma 5.1
d 1y8l
Ly, = sup m |IB| <|Al<m, ANB=@, le|=In|=1;. 5.3)
cA

Proof. Let |¢] = |n] = 1 and |B| < |A] < m with A N B = (). We must show that
11,81l/11eall < ﬁi. Pick any set C disjoint with A U B such that |B| 4+ |C| = |A].
We now use the elementary inequality

X+y x-—y

2+2

x|l = < max{|lx + yll, lx — yll}, (5.4)
| |

with x = 1,3 and y = 1¢. Let o’ € Y be such that ’|p = n|p and n'|c = +£1,
according to the sign that reaches the maximum in (5.4). Then [[1, 5]l < [I1,/Buc)ll <
A 114, and the result follows. O

Theorem 5.2 If K}, is the basis constant and » = sup,, ||ey;||[|e, ||, then
fim < 2(Kp + Dl + 5 K. (5.5)
Proof. Let |A| = |B| < m, and |¢| = |5| = 1. Then

||1nB||<||117(B\A)|| 1L, Bnayll
Teall = [eall 1eall

=1+1I
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Lemma 5.1 implies [ < ,&fn. We now bound /7. Pick an integer ng such that A; =
fne A : n<np}and Ay = A\ A satisfy

Al—1
|A1] = |Aa] (if |A]iseven),or |A{| = | |2 = |Az| — 1 (if|A]|is odd).
Then
11 < I1yBrapll | I1LyBnayll
[Teall [Teall
I1yBayl 11yBAy) I
<(Kp+1) Ky =11+ 1D,
[1ea, |l [1ea,ll

using in the second line the basis constant bound for the denominator. Since |[BNA|| <
|A1] < ]A2|, we see that

1L < (Kp+ 1)l
On the other hand, picking any number n; € B N Ay, and using |le; |14l >

e (1c4)| = 1, we see that

1L <K, 1Ly BnAN ) I

< + Kpllew, llef, || < Kpiid, + 5K,
”18.41 ”

the last bound due to |B N Ax\{n1}| < |A2] — 1 < |A{| and Lemma 5.1. Putting
together the previous bounds easily leads to (5.5). i

Remark 5.3 A similar argument shows the equivalence of the standard (unsigned)
democracy parameters

1 1
o = sup Il and pl = su [ B||. 5.6)
[Al=|B|<m 114l 1Al=1B]<m [1all
ANB=0
Indeed, in this case, the analog of (5.3) takes the weaker form
15]]
T < Ky, (5.7)

1B|<|Al<m 1Al —
ANB=p

Then, (5.7) and the same proof we gave for Theorem 5.2 (with n = & = 1) leads to
tm < 2(Kp + DKp ) + 2 Kp. (5.8)
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5.2 An example where [tm grows faster than [lﬂ,

The following example also seems to be new in the literature. As in (5.6), we denote
by wm, u% the democracy parameters corresponding to constant signs.

Theorem 5.4 There exists a Banach space X with an M-basis 9 such that

lim sup = limsup ———

— =o00, Ve>0.
m— 00 [M,dn]z_s m— 00 [le]

Proof. Let Ng = 1, and define recursively Ny = 22N'H, and N,i = N1+ + Ni—1.
Consider the blocks of integers
Sk ={Np+1,.... N+ Ni},
and denote the tail blocks by Ty = U;>¢4+1S;. Finally, let
M =1 (0))jes, : oj €{£1l} and Z o;j=0
JE€Sk

We define a real Banach space X as the closure of cop with the norm

el = max § Ilxlleo, supex sup [(Los,, x)|, supBi sup » Ix;l ¢,
k>1 oeMNMy k>1 SCTy ies
|SI=Nx !

where the weights o and B are chosen as follows:

—Nk—1 _

and B = —.

o =2
log, Nk N/ Ni

Observe that

o  Ni
N, =N;+---+ N1 <2Ny_| =2log,log, Ny and — = ———.
g 2 Be  log, Ni

N2
Claim1  jin, > piy, > &/ forall k > 1.
(log, Ni)+/1og, log, Ny

Proof. Pickany A C S;USky1suchthat |[A| = Ny and |ANSk| = |ANSky1] = Ni/2.
Then

Ni/2
logy Ny

I1all > ok Ni/2 =
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Next, pick B = Sk, so that |B| = |A| = Ny and

Mgl = max{ 1, ag-0, sup BuNn } = Bi_1Ni1 = /Ni_1 = /log, log, N.

n<k—1

Then > 11all/I15] > Ni/2 .
ez 1Al 1 2 G e

Claim2  pf <%, </Ni. forallk > 2.

Proof. Let A, B be any pair of disjoint sets with |[A| = |B| < Ng,andlet || = |n| = 1.
If |A| = |B| < «/ N, then the trivial bounds ||1.4]| < |A| and |1zl > 1 give

Meall _ e

ILyall —

So, it remains to consider the cases /Ny < |A| = |B| < N;. We split A into three
parts

Ag=ANSy, AL =ANT,, A_=AN[S1U...US81].

Then, we have the following upper bound

ILeall < max {1, supan|A—|, axlAol, supa,Ni, sup B, N, sup ulA| |
n<k n>k n>k

n<k

< max{ Ny, arlAol, BilA| }’

due to the elementary inequalities

sup, _x anlA_| < |[A_| < N;

Sup,, . &n Nk = o1 N = N2™Me <1
SUPy, <k BNy = \/Nk—l < Ng-1 = N]é
sup,> Bnl Al = Brl Al

Moreover, since Br|A| < min{B; Ny = ~/Nk, ar|A| }, we derive

I1eall < max{y/ Nk, ax|Aol} and [[Leall < max{Ng, ak|Al}. (5.9)

We now give a lower bound for ||1, g ||. The key estimate will rely on the following O

Lemma5.5 Let By = B N Sy and By = S\ Bo. Then

sup |(Los,, 1y8y)| > min{|Bol, |BS|}. (5.10)

oeNy
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Proof. If | By| < Ni/2, then we may select any o € 9 such that o|g, = n (which is
possible since |Bj| > |Bol), which gives

|(Lo s, 158y} = | Bol = min{|Bol, | Bg|}.

Assume now that | By| > Ny /2.Pickany S C By with|S| = |Bf| = Ny —|Bo|. Choose
v e {—1, 1}5 so that Yoies i + ZieBg v; = 0. Choose T € {—1, 1}50\S 50 that
ZieBO\S 7; = 0.Replacing t by —, if necessary, we may assume that ZieBO\S Tin; >
0. Finally, define o € 9% by setting

ols =nls. ol =vlgs. olBy\s = T|Bo\s-

Then,

(lose Lygo)l = Y 7+ Y, wmi = |S| = |BG| = min{|Bol, |Bjl}. O
ieS i€Bo\S

From the lemma and the definition of the norm we see that
1155l = max { 1, amin{|Bol, 1BG1), el B |- (5.11)

We shall finally combine the estimates in (5.9) and (5.11) to establish Claim 2. We
distinguish two cases

Case 1: min{|By|, | B§|} = |Bj|. Then, since Ayp C B, we see that
ak|Aol < akl Byl < 11,81l

and therefore the first estimate in (5.9) gives

[Leall Smax{ka, ”1”B||}§\/N7.
1yl 1yl

Case 2: min{|By|, | B§|} = |Bol. Then, (5.11) reduces to

|Bol + | B| |B| — |B-|
k = Bk 5

11,51l > max { ax|Bol, BelB+l} = B 2

> Bk|Bl/4,
since |B_| < N, < 4/Ni/2 < |B|/2,if k > 2. Also, the second bound in (5.9) reads
Meall < axlAl,

since N < 4/Ni/logy Nk = ax/Ni < ai|Al, if k > 2. Thus

Mol _ ewldl _don 4V _ o
L5l = BlBI/4 ~ B log Ni
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This establishes Claim 2.
From Claims 1 and 2 we now deduce that

pNe N2
[4%, 2=¢ ~ (log, Ni)y/log, log, Ny

and therefore

=1imsupM—N=oo. O

lim sup ——— —
912~ Nooo [R412°

N—oo LMnI7

6 Norm convergence of ¢®},x and ¥} x

In this section we search for conditions on % = {e,},° | under which it holds
lx — €&, (x)|| >0, VxeX 6.1)

In [19, Theorem 1.1] this convergence is asserted for every basis in X. Here we
investigate whether (6.1) may be true for a general M-basis, as defined in §1.

The solution to this question requires the notion of strong M-basis; see [21, Def
8.4]. We say that 4 is a strong M-basis if additionally to the conditions (a)—(d) in §1
it also holds

span {e,}nca = {x € X : suppx C A}, VACN. 6.2)

Clearly, all Schauder or Cesaro bases (in some ordering) are strong M-bases; see e.g.
[18] for further examples. However, there exist M-bases which are not strong M-bases,
see e.g. [21, p. 244], or [11]3 for seminormalized examples in Hilbert spaces.

Lemma 6.1 If A is an M-basis which is not a strong M-basis, then there exists an
xo € X such that, for all Chebyshev greedy operators €&,,,

lim inf [|xg — €&, (x0)|| > O. (6.3)
m—0o0

Proof. 1f & is not a strong M-basis there exists some set A C N (necessarily infinite)
and some x¢ € X with suppxo C A such that

§ = dist(xo, [en]4) > O.

Since supp€®,, xq is always a subset of A, this implies (6.3). O

3 We thank V. Kadets for kindly providing this reference.
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Remark 6.2 The above reasoning also implies that liminf,, ||[xo — %,x0] > O, for
all greedy operators %,,. In particular, if there exists a not strong M-basis with the
quasi-greedy condition
Cy = sup [%l < oo, (6.4)
5?,,,6(%,,

me

it will not occur that &, x converges to x for all x € X. This observation suggests that
in the characterization of quasi-greedy biorthogonal systems given in [28, Theorem
1] one may need to assume that Z is a strong M-basis, or else clarify if this property
could be a consequence of (6.4).4

Here we show that under the strong M-basis assumption, the conclusions of [19,
Theorem 1.1] (and also of “3 = 1” in [28, Theorem 1]) hold.

Proposition 6.3 If A is a strong M-basis then, for all Chebyshev t-greedy operators
ce!
lim [|x — €&, (x)| =0, VxeX (6.5)
m— 00

If additionally C, < oo, then for all t-greedy operators G},

lim ||x — 4. (x)| =0, VxeX (6.6)
m—0Q

Proof. Given x € X and ¢ > 0, by (6.2) there exists z = ), _p bse, such that
lx — z|| < e, for some finite set B C suppx. Let « = min,cp |e};(x)| and

Aog ={n : le;(x)| > al.

Since o > 0, this is a finite greedy set for x which contains B. Moreover, we claim
that

Ay Csupp@®! (x) =2 A, Vm > [Ayl. 6.7)
Indeed, if this was not the case there would exist ng € Aqg \A, and since A is a t-
greedy set for x, then min,e4 |e;(x)| > fle; (x)| > fa. So, A C Ao, which is a
contradiction since m = |A| > |Aq|. Therefore, (6.7) holds and hence

e = €&, (0l < llx = Y baeall <& V> [Asal.

neB

This establishes (6.5).

We now prove (6.6). Asabove, letz = ), _p b,e, with B C suppx and || x—z|| < e.
Performing if necessary a small perturbation in the b,’s, we may assume that b,, #
e’ (x) forall n € B. Let now

o) =min e (x)|, o =minle)(x —z)|, and « = min{a, a2} > 0.
neB neB

4 After this manuscript was completed, this question has been considered and settled in [2, Corollary 3.2].
There it is shown that a complete seminormalized biorthogonal system with the property (6.4) is necessarily
a strong M-basis.
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Consider the sets
A =1{n : lejx)| =ta}={n : |e(x—2)| > 1ral,

which for all ¢ € (0, 1] are greedy sets for both x and x — z, and contain B. We claim
that,

ifm > |1_\m| and A := supp%nz(x), then Ay CA and A e G(x —z,m,1).
B (6.8)
The assertion Ay C A is proved exactly as in (6.7). Next, we must show that

ifneA then |ef(x —z)| > ¢ max|ef(x —z)| = ¢ max|e}(x)|.
e, ( ) = k¢A|k( )| k¢A|k( )l

This is clear if n € A\B since e);(x — z) = €}(x), and A € G(x, m, t). On the other
hand, if n € B, then |e} (x — 2)| > an > & > Maxkeac |eZ (x)], the last inequality due
to Aq C A. Thus (6.8) holds true, and therefore

L) —z=Y ei(x—2)e = G (x —2),

neA
for some ¢!, € G!,. Thus,
19,0 — x|l = I =FDx =2 < L+ 19,1 e,

and the result follows from sup,, ||g;,£l | <A+4C,;/t)Cy, by [10, Lemma 2.1]. O

References

1. Albiac, F,, Ansorena, J.L.: Characterization of 1-almost greedy bases. Rev. Mat. Complut. 30(1), 13-24
(2017)
2. Albiac, F., Ansorena, J.L., Bernd, P., Wojtaszczyk, P.: Greedy approximation for biorthogonal systems
in quasi-Banach spaces (preprint) (2019). arXiv:1903.11651
3. Bernd, PM.: Equivalence between almost-greedy and semi-greedy bases. J. Math. Anal. Appl. 417,
218-225(2019)
4. Bernd, PM., Blasco, O.: Characterization of greedy bases in Banach spaces. J. Approx. Theory 215,
28-39 (2017)
5. Bernd, PM., Blasco, O., Garrigés, G.: Lebesgue inequalities for the greedy algorithm in general bases.
Rev. Mat. Complut. 30, 369-392 (2017)
6. Bernd, PM., Blasco, O., Garrigés, G., Herndndez, E., Oikhberg, T.: Embeddings and Lebesgue-type
inequalities for the greedy algorithm in Banach spaces. Constr. Approx. 48(3), 415-451 (2018)
7. Ciesielski, Z.: A bounded orthonormal system of polygonals. Stud. Math. 31, 339-346 (1968)
8. Dilworth, S.J., Kalton, N.J., Kutzarova, D.: On the existence of almost greedy bases in Banach spaces.
Stud. Math. 159(1), 67-101 (2003)
9. Dilworth, S.J., Kalton, N.J., Kutzarova, D., Temlyakov, V.N.: The thresholding greedy algorithm,
greedy bases, and duality. Constr. Approx. 19, 575-597 (2003)
10. Dilworth, S.J., Kutzarova, D., Oikhberg, T.: Lebesgue constants for the weak greedy algorithm. Rev.
Mat. Complut. 28(2), 393-409 (2015)
11. Dovbysh, L.N., Nikolskii, N.K., Sudakov, V.N.: How good can a nonhereditary family be? J. Sov.
Math. 34(6), 2050-2060 (1986)

@ Springer


http://arxiv.org/abs/1903.11651

722

P. M. Berna et al.

12.

14.
15.

16.

17.

18.

19.

20.

21.

23.

24.

25.

26.

27.
28.

Garrigés, G., Herndndez, E., Oikhberg, T.: Lebesgue-type inequalities for quasi-greedy bases. Constr.
Approx. 38(3), 447-470 (2013)

. Hajek, P, Montesinos Santalucfa, V., Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach

Spaces. Springer, Berlin (2008)

Katznelson, Y.: An Introduction to Harmonic Analysis, 2nd edn. Dover Publ Inc., New York (1976)
Konyagin, S.V., Temlyakov, V.N.: A remark on greedy approximation in Banach spaces. East. J.
Approx. 5, 365-379 (1999)

Konyagin, S.V., Temlyakov, V.N.: Greedy approximation with regard to bases and general minimal
systems. Serdica Math. J. 28, 305-328 (2002)

Ropela, S.: Properties of bounded orthogonal spline bases. In: Approximation Theory (Papers, VIth
Semester, Stefan Banach International Mathematics Center, Warsaw, 1975), vol. 4, Banach Center
Publ., Warsaw, pp. 197-205 (1979)

Ruckle, W.H.: On the classification of biorthogonal sequences. Can. J. Math. 26, 721-733 (1974)
Shao, C., Ye, P.: Lebesgue constants for Chebyshev thresholding greedy algorithms. J. Inequal. Appl.
2018(1), 102 (2018)

Singer, I.: Bases in Banach Spaces I. Springer, Berlin (1970)

Singer, I.: Bases in Banach Spaces II. Springer, Berlin (1981)

. Temlyakov, V.N.: Greedy algorithm and n-term trigonometric approximation. Const. Approx. 14, 569—

587 (1998)

Temlyakov, V.N.: Greedy Approximation. Cambridge University Press, Cambridge (2011)
Temlyakov, V.N.: The best m-term approximation and greedy algorithms. Adv. Comput. 8, 249-265
(1998)

Temlyakov, V.N.: Sparse approximation with bases. In: Tikhonov, S. (ed.) Advanced Courses in Math-
ematics. Springer, Berlin (2015)

Temlyakov, V.N., Yang, M., Ye, P.: Lebesgue-type inequalities for greedy approximation with respect
to quasi-greedy bases. East J. Approx. 17, 127-138 (2011)

Weisz, F.: On the Fejér means of bounded Ciesielski systems. Stud. Math. 146(3), 227-243 (2001)
Wojtaszczyk, P.: Greedy algorithm for general biorthogonal systems. J. Approx. Theory 107, 293-314
(2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and

institutional affiliations.

Affiliations

P. M. Berna'® - O. Blasco? - G. Garrigés? - E. Hernandez' - T. Oikhberg?

O. Blasco
oscar.blasco@uv.es

G. Garrigds
gustavo.garrigos @um.es

E. Herndndez
eugenio.hernandez @uam.es

T. Oikhberg
oikhberg @illinois.edu
Departamento de Matematicas, Universidad Auténoma de Madrid, 28049 Madrid, Spain

Departamento de Andlisis Matematico, Universidad de Valencia, Campus de Burjassot,
46100 Valencia, Spain

Departamento de Matematicas, Universidad de Murcia, 30100 Murcia, Spain

Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL 61807, USA

@ Springer


http://orcid.org/0000-0001-7685-0886

	Lebesgue inequalities for Chebyshev thresholding greedy algorithms
	Abstract
	1 Introduction
	2 Preliminary results
	3 Proof of the main results
	3.1 Proof of Theorem 1.1
	3.2 Proof of Theorem 1.2
	3.3 Proof of Theorem 1.3
	3.4 Lower bounds for general M-bases

	4 Examples
	4.1 Example 4.1: the summing basis
	4.2 Example 4.2: the difference basis
	4.3 Example 4.3: the trigonometric system in Lp(mathbbT)

	5 Comparison between tildeµm and tildeµdm 
	5.1 Equivalence for Schauder bases
	5.2 An example where tildeµm grows faster than tildeµdm

	6 Norm convergence of mathfrakCGtm x and mathcalGmt x
	References




