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Abstract
We establish estimates for the Lebesgue parameters of the Chebyshev weak threshold-
ing greedy algorithm in the case of general bases in Banach spaces. These generalize
and slightly improve earlier results in Dilworth et al. (Rev Mat Complut 28(2):393–
409, 2015), and are complemented with examples showing the optimality of the
bounds. Our results also clarify certain bounds recently announced in Shao and Ye (J
Inequal Appl 2018(1):102, 2018), and answer some questions left open in that paper.
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1 Introduction

Let X be a Banach space over K = R or C, let X
∗ be its dual space, and consider a

system {en, e∗
n}∞n=1 ⊂ X × X

∗ with the following properties:

(a) 0 < infn{‖en‖, ‖e∗
n‖} ≤ supn{‖en‖, ‖e∗

n‖} < ∞
(b) e∗

n(em) = δn,m , for all n, m ≥ 1
(c) X = span {en : n ∈ N}
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(d) X
∗ = span {e∗

n : n ∈ N}w∗
.

Under these conditions B = {en}∞n=1 is called a seminormalized Markushevich
basis for X (or M-basis for short), with dual system {e∗

n}∞n=1. Sometimes we shall
consider the following special cases

(e) B is a Schauder basis if Kb := supN ‖SN ‖ < ∞, where SN x := ∑N
n=1 e

∗
n(x)en

is the N -th partial sum operator
(f) B is a Cesàro basis if supN ‖FN ‖ < ∞, where FN := 1

N

∑N
n=1 Sn is the N -th

(C,1)-Cesàro operator. In this case we use the constant

β = max

{

sup
N

‖FN ‖, sup
N

‖I − FN ‖
}

. (1.1)

For the latter terminology, see e.g. [21, Def. III.11.1]. With every x ∈ X, we shall
associate the formal series x ∼ ∑∞

n=1 e
∗
n(x)en , where a)-c) imply that limn e∗

n(x) = 0.
As usual, we denote suppx = {n ∈ N : e∗

n(x) 
= 0}.
We recall standard notions about (weak) greedy algorithms; see e.g. the texts [23,25]

for details and historical background. Fix t ∈ (0, 1]. We say that A is a t-greedy set
for x of order m, denoted A ∈ G(x, m, t), if |A| = m and

min
n∈A

|e∗
n(x)| ≥ t · max

n /∈A
|e∗

n(x)|. (1.2)

A t-greedy operator of order m is any mapping G t
m : X → X which at each x ∈ X

takes the form

G t
m(x) =

∑

n∈A

e∗
n(x)en, for some set A = A(x,G t

m) ∈ G(x, m, t).

We write G
t
m for the set of all t-greedy operators of order m. The approximation

scheme which assigns a sequence {G t
m(x)}∞m=1 to each vector x ∈ X is called a Weak

Thresholding Greedy Algorithm (WTGA), see [16,24]. When t = 1 one just says
Thresholding Greedy Algorithm (TGA), and drops the super-index t , that isG 1

m = Gm ,
etc.

It is standard to quantify the efficiency of these algorithms, among all possible
m-term approximations, in terms of Lebesgue-type inequalities. That is, for each m =
1, 2, . . ., we look for the smallest constant Lt

m such that

‖x − G t
m(x)‖ ≤ Lt

mσm(x), ∀ x ∈ X, ∀ G t
m ∈ G

t
m, (1.3)

where

σm(x) := inf
{∥
∥
∥x −

∑

n∈B

bnen

∥
∥
∥ : bn ∈ K, |B| ≤ m

}
.

We call the number Lt
m the Lebesgue parameter associated with the WTGA, and we

just writeLm when t = 1.We refer to [25, Chapter 3] for a survey on such inequalities,
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Lebesgue inequalities for Chebyshev thresholding greedy… 697

and to [1,5,6,10,12,26] for recent results. It is known thatLt
m = O(1) holds for a fixed

t if and only if it holds for all t ∈ (0, 1], and if and only if B is unconditional and
democratic; see [15] and [23, Thm. 1.39]. In this special case B is called a greedy
basis.

In this paper we shall be interested in Chebyshev thresholding greedy algorithms.
These were introduced byDilworth et al. [8, §3], as an enhancement of the TGA. Here,
we use the weak version considered in [10]. Namely, for fixed t ∈ (0, 1] we say that
CGt

m : X → X is a Chebyshev t-greedy operator of order m if for every x ∈ X there
is a set A = A(x,CGt

m) ∈ G(x, m, t) such that suppCGt
m(x) ⊂ A and moreover

‖x − CGt
m(x)‖ = min

{∥
∥
∥
∥
∥

x −
∑

n∈A

anen

∥
∥
∥
∥
∥

: an ∈ K

}

.

Finally, we define the weak Chebyshevian Lebesgue parameter Lch,t
m as the smallest

constant such that

‖x − CGt
m(x)‖ ≤ Lch,t

m σm(x), ∀ x ∈ X, ∀ CGt
m ∈ G

ch,t
m ,

whereG
ch,t
m is the collection of all Chebyshev t-greedy operators of orderm. As before,

when t = 1 we shall omit the index t , that is Lch
m := Lch,1

m .
When Lch

m = O(1) the systemB is called semi-greedy; see [8]. We remark that the
first author recently established that a Schauder basisB is semi-greedy if and only if
is quasi-greedy and democratic; see [3].

In this paper we shall be interested in quantitative bounds of Lch,t
m in terms of the

quasi-greedy and democracy parameters of a general M-basisB. Earlier bounds were
obtainedbyDilworth et al. [10]whenB is a quasi-greedybasis, andvery recently, some
improvements were also announced by Shao andYe [19, Theorem 3.5]. Unfortunately,
various arguments in the last paper seem not to be correct, so one of our goals here
is to give precise statements and proofs for the results in [19], and also settle some of
the questions which are left open there.

To state our results, we recall the definitions of the involved parameters. Given a
finite set A ⊂ N, we shall use the following standard notation for the indicator sums:

1A =
∑

n∈A

en and 1εA =
∑

n∈A

εnen, ε ∈ ϒ

where ϒ is the set of all ε = {εn}n ⊂ K with |εn| = 1. Similarly, we write

PA(x) =
∑

n∈A

e∗
n(x)en .

The relevant parameters for this paper are the following:

• Conditionality parameters:

km := sup
|A|≤m

‖PA‖ and kc
m = sup

|A|≤m
‖I − PA‖.
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• Quasi-greedy parameters:

gm := sup
Gk∈Gk , k≤m

‖Gk‖ and gc
m := sup

Gk∈Gk , k≤m
‖I − Gk‖.

Below we shall also use the variant

g̃m := sup
G ′<G

G∈Gk , k≤m

‖G − G ′‖,

where G ′ < G means that A(x,G ′) ⊂ A(x,G ) for all x ; see [5].
• Super-democracy parameters:

μ̃m = sup
|A|=|B|≤m

|ε|=|η|=1

‖1εA‖
‖1ηB‖ and μ̃d

m = sup
|A|=|B|≤m, A∩B=∅

|ε|=|η|=1

‖1εA‖
‖1ηB‖ .

• Quasi-greedy parameters for constant coefficients (see [5, (3.11)])

γm = sup
|ε|=1

B⊂A, |A|≤m

‖1εB‖
‖1εA‖ .

Note that γm ≤ gm ≤ g̃m ≤ 2gm , but in general γm may be much smaller than gm ;
see e.g. [5, §5.5]. Likewise, in §5 below we show that μ̃d

m may be much smaller than
μ̃m , except for Schauder bases, where both quantities turn out to be equivalent; see
Theorem 5.2.

Our first result is a general upper bound, which improves and extends [19, Theorem
2.4].

Theorem 1.1 Let B be an M-basis in X, and let K = supn, j ‖e∗
n‖‖e j‖. Then,

Lch,t
m ≤ 1 + (

1 + 1
t

)
Km , ∀ m ∈ N, t ∈ (0, 1]. (1.4)

Moreover, there exists a pair (X,B) where the equality is attained for all m and t.

The second result is a slight generalization of [10, Theorem 4.1], and gives a correct
version of [19, Theorem 3.5].

Theorem 1.2 Let B be an M-basis in X. Then, for all m ≥ 1 and t ∈ (0, 1],

Lch,t
m ≤ gc

2m + 2

t
min

{
g̃mμ̃m , γ2m g̃2mμ̃d

m

}
. (1.5)

Our next result concerns lower bounds for Lch,t
m , for which we need to introduce

weaker versions of the democracy parameters with an additional separation condition.
For two finite sets A, B ⊂ N and c ≥ 1, the notation A > cB will stand for min A >

cmax B.
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• Given an integer c ≥ 2, we define

ϑm,c := sup

{ ‖1εA‖
‖1ηB‖ : |ε| = |η| = 1, |A| = |B| ≤ m with A > cB or B > cA

}

. (1.6)

Theorem 1.3 If B is a Cesàro basis in X with constant β, then for every c ≥ 2

Lch,t
m ≥ 1

tβ2

c − 1

c + 1
ϑm,c, ∀ m ∈ N, t ∈ (0, 1].

We shall also establish, in Theorem 3.10 below, a similar lower bound valid for
more general M-bases (not necessarily of Cesàro type), in terms of a new parameter
θm which is invariant under rearrangements ofB.

Remark 1.4 One may compare the bounds for Lch
m above with those for Lm given in

[5]

(1) Lm ≤ 1 + 3Km, (2) Lm ≤ kc
2m + g̃mμ̃m, and (3) Lm ≥ μ̃d

m,

which illustrate a slightly better behavior of the Chebishev TGA. Observe that one
also has the trivial inequalities

Lch,t
m ≤ Lt

m ≤ kc
m Lch,t

m .

Indeed, Lch,t
m ≤ Lt

m is direct by definition, while Lt
m ≤ kc

mL
ch,t
m can be proved as

follows: take x ∈ X and let A = suppG t
m(x). Pick a Chebyshev greedy operator CGt

m
such that suppCGt

m(x) = A. Then

‖x − G t
m(x)‖ = ‖(I − PA)x‖ = ‖(I − PA)(x − CGt

m(x))‖ ≤ kc
m‖x − CGt

m(x)‖,

so Lt
m ≤ kc

mL
ch,t
m . Hence, whenB is unconditional then Lt

m ≈ Lch,t
m . However for all

conditional quasi-greedy and democratic bases we have Lch
m = O(1), but Lm → ∞.

The paper is organized as follows. Section 2 is devoted to preliminary lemmas. In
Sect. 3 we prove Theorems 1.1, 1.2 and 1.3, and also establish the more general lower
bound in Theorem 3.10, giving various situations in which it applies. Section 4 is
devoted to examples illustrating the optimality of the results; in particular, an optimal
bound of Lch

m for the trigonometric system in L1(T), settling a question left open in
[19]. In Sect. 5 we investigate the equivalence between μ̃d

m and μ̃m and show Theorem
5.2. Finally, in Sect. 6 we study the convergence of CGm(x) and Gm(x) to x , pointing
out the role of a strong M-basis assumption for such results.
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2 Preliminary results

We recall some basic concepts and results that will be used later in the paper; see [5,8].
For each α > 0 we define the α-truncation of a scalar y ∈ K as

Tα(y) = α sign y if |y| ≥ α, and Tα(y) = y if |y| ≤ α.

We extend Tα to an operator in X by formally assigning Tα(x) ∼ ∑∞
n=1 Tα(e∗

n(x))en ,
that is

Tα(x) := α1ε�α(x) + (I − P�α(x))(x),

where �α(x) = {n : |e∗
n(x)| > α} and ε = {sign (e∗

n(x))}. Of course, this operator is
well defined since �α(x) is a finite set. In [5] we can find the following result:

Lemma 2.1 [5, Lemma 2.5] For all α > 0 and x ∈ X, we have

‖Tα(x)‖ ≤ gc
|�α(x)|‖x‖.

We also need a well known property from [8,9], formulated as follows.

Lemma 2.2 [5, Lemma 2.3] If x ∈ X and ε = {sign (e∗
n(x))}, then

min
n∈G

|e∗
n(x)|‖1εG‖ ≤ g̃|G|‖x‖, ∀G ∈ G(x, m, 1). (2.1)

The following version of (2.1), valid even if G is not greedy, improves [10, Lemma
2.2].

Lemma 2.3 Let x ∈ X and ε = {sign (e∗
n(x))}. For every set finite A ⊂ N, if α =

minn∈A |e∗
n(x)|, then

α‖1εA‖ ≤ γ|A∪�α(x)| g̃|A∪�α(x)|‖x‖, (2.2)

where �α(x) = {n : |e∗
n(x)| > α}.

Proof. Call G = A ∪ �α(x), and notice that it is a greedy set for x . Then,

α‖1εA‖ ≤ α γ|G|‖1εG‖ ≤ γ|G| g̃|G| ‖x‖,

using (2.1) in the last step.

Remark 2.4 The following is a variant of (2.2) with a different constant

min
n∈A

|e∗
n(x)| ‖1εA‖ ≤ k|A| ‖x‖. (2.3)

A similar proof as the one in Lemma 2.3 can be seen in [4, Proposition 2.5].
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Finally, we need the following elementary result, which follows directly from the
convexity of the norm; see e.g [25, p. 108] (or [5, Lemma 2.7] if K = C).

Lemma 2.5 For all finite sets A ⊂ N and scalars an ∈ K it holds

∥
∥
∥
∥
∥

∑

n∈A

anen

∥
∥
∥
∥
∥

≤ max
n∈A

|an| sup
|ε|=1

∥
∥1εA

∥
∥.

3 Proof of themain results

3.1 Proof of Theorem 1.1

Let x ∈ X and CGt
m ∈ G

ch,t
m be a fixed Chebyshev t-greedy operator. Let A =

A(x,CGt
m) ∈ G(x, m, t). Pick any z = ∑

n∈B bnen such that |B| = m. By definition
of the Chebyshev operators,

‖x − CGt
m(x)‖ ≤ ‖x − PA∩B(x)‖ ≤ ‖PB\A(x)‖ + ‖x − PB(x)‖.

On the one hand, using (1.2),

‖PB\A(x)‖ ≤ sup
n

‖en‖
∑

j∈B\A

|e∗j (x)| ≤ 1

t
sup

n
‖en‖

∑

j∈A\B

|e∗j (x − z)| ≤ 1

t
Km‖x − z‖.

On the other hand, using the inequality (3.9) of [5],

‖x − PB(x)‖ = ‖(I − PB)(x − z)‖ ≤ kc
m‖x − z‖ ≤ (1 + Km)‖x − z‖.

Hence, Lch,t
m ≤ 1 + (

1 + 1
t

)
Km. Finally, the fact that the equality in (1.4) can be

attained is witnessed by Examples 4.1 and 4.2 below.

3.2 Proof of Theorem 1.2

The scheme of the proof follows the lines in [8, Theorem 3.2] and [10, Theorem 4.1],
with some additional simplifications introduced in [5].

Given x ∈ X and CGt
m ∈ G

ch,t
m , let A = A(x,CGt

m) ∈ G(x, m, t). Pick any
z = ∑

n∈B bnen such that |B| = m. By definition of the Chebyshev operators,

‖x − CGt
m(x)‖ ≤ ‖x − p‖, for any p =

∑

n∈A

anen . (3.1)

We make the selection of p suggested in [8]. Namely, if α = maxn /∈A |e∗
n(x)|, we let

p = PA(x) − PA
(
Tα(x − z)

)
.
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702 P. M. Berná et al.

It is easily verified that

x − p = (I − PA)
(
x − Tα(x − z)

) + Tα(x − z)

= PB\A
(
x − Tα(x − z)

) + Tα(x − z). (3.2)

Since �α(x − z) = {n : |e∗
n(x − z)| > α} ⊂ A ∪ B, then Lemma 2.1 gives

∥
∥Tα(x − z)

∥
∥ ≤ gc

2m‖x − z‖. (3.3)

Next we treat the first term in (3.2). Observe that maxn∈B\A |e∗
n(x −Tα(x − z))| ≤ 2α,

so Lemma 2.5 gives

∥
∥PB\A

(
x − Tα(x − z)

)∥
∥ ≤ 2α sup

|ε|=1

∥
∥1ε(B\A)

∥
∥

≤ 2

t
min

n∈A\B
|e∗

n(x − z)| sup
|ε|=1

∥
∥1ε(B\A)

∥
∥ = (∗). (3.4)

At this point we have two possible approaches. Let ηn = sign [e∗
n(x − z)]. In the first

approach we pick a greedy set  ∈ G(x − z, |A\B|, 1), and control (3.4) by

(∗) ≤ 2

t
min
n∈

|e∗
n(x − z)| μ̃m

∥
∥1η

∥
∥ ≤ 2

t
μ̃m g̃m‖x − z‖, (3.5)

using Lemma 2.2 in the last step. In the second approach, we argue as follows

(∗) ≤ 2

t
min

n∈A\B
|e∗

n(x − z)| μ̃d
m

∥
∥1η(A\B)

∥
∥ ≤ 2

t
γ2m g̃2m μ̃d

m ‖x − z‖, (3.6)

using in the last step Lemma 2.3 and the fact that, if δ = minA\B |e∗
n(x − z)|, then the

set (A\B) ∪ {n : |e∗
n(x − z)| > δ} ⊂ A ∪ B and hence has cardinality ≤ 2m.

We can now combine the estimates displayed in (3.1)–(3.6) and obtain

‖x − CGt
m(x)‖ ≤ [

gc
2m + 2

t
min

{
g̃mμ̃m , γ2m g̃2mμ̃d

m

}] ‖x − z‖,

which after taking the infimum over all z establishes Theorem 1.2.

Remark 3.1 In [19, Theorem 3.5] a stronger inequality is stated (for t = 1), namely

Lch
m ≤ gc

2m + 2g̃mμ̃d
m . (3.7)

The proof, however, seems to contain a gap, and amissing factor kc
m should also appear

in the last summand. Nevertheless, it is still fair to ask whether the inequality (3.7)
asserted in [19] may be true with a different proof.
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Remark 3.2 Using Remark 2.4 in place of Lemma 2.3 in (3.6) above leads to an
alternative and slightly simpler estimate

Lch,t
m ≤ gc

2m + 2

t
kmμ̃d

m . (3.8)

However, this would not be as efficient as (1.5) when B is quasi-greedy and condi-
tional.

Remark 3.3 WhenB is quasi-greedy with constant q = supm gm < ∞, then Theorem
1.2 implies the following

Lch,t
m ≤ q + 4t−1 q2 μ̃d

m .

This is a slight improvement with respect to [10, Theorem 4.1].

3.3 Proof of Theorem 1.3

Recall that SN = ∑N
n=1 e

∗
n(·)en and

FN (x) = 1

N

N∑

n=1

Sn(x) =
N∑

n=1

(

1 − n − 1

N

)

e∗
n(x)en .

For M > N we define the operators (of de la Vallée-Poussin type)

VN ,M (x) = M

M − N
FM (x) − N

M − N
FN (x)

=
N∑

n=1

e∗
n(x)en +

M∑

n=N+1

(

1 − n − N − 1

M − N

)

e∗
n(x)en . (3.9)

In particular, observe that, for β as in (1.1) we have

max
{‖VN ,M‖, ‖I − VN ,M‖} ≤ M + N

M − N
β. (3.10)

We next prove that, if c ≥ 2, then for all A, B ⊂ N such that B > cA with |A| =
|B| ≤ m it holds

Lch,t
m ≥ 1

tβ

c − 1

c + 1

‖1εA‖
‖1ηB‖ , ∀ |ε| = |η| = 1. (3.11)

Pick any set C > B such that |B ∪ C | = m, and let

x = 1εA + t1ηB + t1C .
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704 P. M. Berná et al.

Then B ∪ C ∈ G(x, m, t), and hence there is a Chebyshev t-greedy operator so that

x − CGt
m(x) = 1εA +

∑

n∈B∪C

anen,

for some scalars an ∈ K. Clearly,

‖x − CGt
m(x)‖ ≤ Lch,t

m σm(x) ≤ Lch,t
m ‖t1ηB‖,

using z = 1εA + t1C an m-term approximant. On the other hand, let N = max A.
Since min B ∪ C > cN , then (3.9) yields

VN ,cN (x − CGt
m(x)) = 1εA.

Therefore, (3.10) implies that

‖x − CGt
m(x)‖ ≥ ‖VN ,cN (x − CGt

m(x))‖
‖VN ,cN ‖ ≥ c − 1

(c + 1)β
‖1εA‖.

We have therefore proved (3.11).
We next show that when |A| = |B| ≤ m satisfy A > cB then

Lch,t
m ≥ 1

tβ2

c − 1

c + 1

‖1εA‖
‖1ηB‖ , ∀ |ε| = |η| = 1. (3.12)

This together with (3.11) is enough to establish Theorem 1.3. We shall actually show
a slightly stronger result:

Lemma 3.4 Let |A| = |B| ≤ m and let y ∈ X be such that |y|∞ := supn |e∗
n(y)| ≤ 1

and A > c(B ·∪ suppy). Then

Lch,t
m ≥ 1

tβ2

c − 1

c + 1

‖1εA‖
‖1ηB + y‖ , ∀ |ε| = |η| = 1. (3.13)

Observe that the case y = 0 in (3.13) yields (3.12). We now show (3.13). Pick a
large integer λ > 1 and a set C > λA such that |B ∪ C | = m. Let

x = 1εA + t y + t1ηB + t1C .

As before, B ∪ C ∈ G(x, m, t), and hence for some Chebyshev t-greedy operator we
have

x − CGt
m(x) = 1εA + t y +

∑

n∈B∪C

anen,
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for suitable scalars an ∈ K. Choosing 1εA + t1C as m-term approximant of x we see
that

‖x − CGt
m(x)‖ ≤ Lch,t

m σm(x) ≤ Lch,t
m t ‖1ηB + y‖.

On the other hand, calling N = max(B ·∪ suppy) and L = max A we have

(I − VN ,cN ) ◦ VL,λL
(
x − CGt

m(x)
) = 1εA

Thus,

‖x − CGt
m(x)‖ ≥ ‖1εA‖

‖I − VN ,cN ‖‖VL,λL‖ ≥ c − 1

(c + 1)β

λ − 1

(λ + 1)β
‖1εA‖.

Therefore we obtain

Lch,t
m ≥ 1

tβ2

c − 1

c + 1

λ − 1

λ + 1

‖1εA‖
‖1ηB + y‖

which letting λ → ∞ yields (3.13). This completes the proof of Lemma 3.4, and
hence of Theorem 1.3.

Remark 3.5 When B is a Schauder basis, a similar proof gives the following lower
bound, which is also obtained in [19, Theorem 2.2]

Lch,t
m ≥ 1

(Kb + 1)t
sup

{ ‖1εA‖
‖1ηB‖ : |A| = |B| = m, A > B or B > A, |ε| = |η| = 1

}

.

The statement for Cesàro bases, however, will be needed for the applications in §4.3.

3.4 Lower bounds for general M-bases

Observe that

ϑm,c = sup
|A|≤m

ϑc(A), where ϑc(A) = sup
B : |B|=|A|

B>cA
ε,η∈ϒ

max

{ ‖1εA‖
‖1ηB‖ ,

‖1ηB‖
‖1εA‖

}

.

We consider a new parameter

ϑm = sup
|A|≤m

inf
c≥1

ϑc(A). (3.14)

We remark that, unlike ϑm,c, the parameter ϑm depends on {en}∞n=1 but not on the

reorderings of the system. We shall give a lower bound for Lch,t
m in terms of ϑm in a

less restrictive situation than the Cesàro basis assumption on {en}∞n=1.
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Given ρ ≥ 1, we say that {en}∞n=1 is ρ-admissible if the following holds: for each
finite set A ⊂ N, there exists n0 = n0(A) > max A such that, for all sets B with
min B ≥ n0 and |B| ≤ |A|,

∥
∥
∥
∥
∥

∑

n∈A

αnen

∥
∥
∥
∥
∥

≤ ρ

∥
∥
∥
∥
∥

∑

n∈A∪B

αnen

∥
∥
∥
∥
∥

, ∀ αn ∈ K. (3.15)

Observe that (3.15) implies that

∥
∥
∥
∥
∥

∑

n∈B

αnen

∥
∥
∥
∥
∥

≤ (ρ + 1)

∥
∥
∥
∥
∥

∑

n∈A∪B

αnen

∥
∥
∥
∥
∥

, ∀ αn ∈ K. (3.16)

This condition is clearly satisfied by all Schauder and Cesàro bases (with ρ = Kb or
ρ > β), but we shall see below that it also holds in more general situations.

Proposition 3.6 Let {en, e∗
n}∞n=1 be an M-basis such that {en}∞n=1 is ρ-admissible. Then

Lch,t
m ≥ ϑm

(ρ + 1)t
, ∀ m ∈ N, t ∈ (0, 1]. (3.17)

Proof. Fix A ⊂ N such that |A| ≤ m. ChooseC disjoint with A such that |A∪C | = m.
Let n0 = n0(A ∪ C) be as in the above definition, so that n0 is larger than max A ∪ C .
Pick any B with min B ≥ n0 and |B| = |A|, and any ε, η ∈ ϒ . Let x = t1εA +
t1C + 1ηB . Then A ∪ C ∈ G(x, m, t), and there is a Chebyshev t-greedy operator
with CGt

m(x) supported in A ∪ C . Thus,

‖x − CGt
m(x)‖ ≤ Lch,t

m σm(x) ≤ Lch,t
m ‖x − (1ηB + t1C )‖ = Lch,t

m t ‖1εA‖.

On the other hand, using the property in (3.16) one obtains

‖x − CGt
m(x)‖ ≥ ‖1ηB‖

ρ + 1
.

Thus,

Lch,t
m ≥ 1

(ρ + 1)t

‖1ηB‖
‖1εA‖ .

We now assume additionally that min B ≥ n0 + m, and pick D ⊂ [n0, n0 + m − 1]
such that |B| + |D| = m. Let y = 1εA + t1ηB + t1D . Then B ∪ D ∈ G(y, m, t) and
a similar reasoning gives

‖1εA‖
ρ

≤ ‖y − CGt
m(y)‖ ≤ Lch,t

m σm(y) ≤ Lch,t
m t ‖1ηB‖.
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Thus,

Lch,t
m ≥ 1

(ρ + 1)t
max

{‖1ηB‖
‖1εA‖ ,

‖1εA‖
‖1ηB‖

}

,

and taking the supremum over all |B| = |A| with B ≥ (n0 + m)A and all ε, η ∈ ϒ ,
we see that

Lch,t
m ≥ ϑn0+m(A)

(ρ + 1)t
≥ infc≥1 ϑc(A)

(ρ + 1)t
.

Finally, a supremum over all |A| ≤ m leads to (3.17).

We now give some general conditions in {en, e∗
n}∞n=1 and X under which ρ-

admissibility holds. We recall a few standard definitions; see e.g. [13]. We use the
notation [en]n∈A = span {en}n∈A, for A ⊂ N. A sequence {en}∞n=1 is weakly null if

lim
n→∞ x∗(en) = 0, ∀ x∗ ∈ X

∗.

Given a subset Y ⊂ X
∗, we shall say that {en}∞n=1 is Y -null if

lim
n→∞ y(en) = 0, ∀ y ∈ Y .

Given κ ∈ (0, 1], we say that a set Y ⊂ X
∗ is κ-norming whenever

sup
x∗∈Y ,‖x∗‖≤1

|x∗(x)| ≥ κ ‖x‖, ∀ x ∈ X.

We finally introduce a new abstract definition.

Definition 3.7 We say that a biorthogonal system {en, e∗
n}∞n=1 ⊂ X × X

∗ satisfies the
property P(κ), for some 0 < κ ≤ 1, if the sequence {‖e∗

n‖ en}∞n=1 ⊂ X is Y -null, for
some subset Y ⊂ X

∗ which is κ-norming.

We remark that in every separable Banach space X there exists an M-basis
{en, e∗

n}∞n=1 with the property P(1); see e.g. [21, Theorem III.8.5].1 Other examples
are given in Remark 3.9 below.

Proposition 3.8 Let {en, e∗
n}∞n=1 be a biorthogonal system in X×X

∗ with the property
P(κ). Then {en}∞n=1 is ρ-admissible for every ρ > 1/κ .

Proof. Let Y ⊂ X
∗ be the κ-norming set from Definition 3.7. Consider a finite set

A ⊂ N with say |A| = m and denote

E := [en]n∈A.

1 The M-basis constructed in [21] satisfies that Y = [e∗n ]n∈N is 1-norming and supn∈N ‖en‖ ‖e∗n‖ < ∞.
But the latter easily implies that {‖e∗n‖ en}n≥1 is Y -null.
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Given ε > 0, one can find a finite set S ⊂ Y ∩ {x∗ ∈ X
∗ : ‖x∗‖ = 1} so that

max
x∗∈S

|x∗(e)| ≥ (1 − ε)κ‖e‖, ∀ e ∈ E . (3.18)

Indeed, it suffices to verify the above inequality for e of norm 1. Pick an εκ/2-net
(zk)

N
k=1 in the unit sphere of E . For any k find a norm one z∗

k ∈ Y so that |z∗
k (zk)| >

(1 − ε/2)κ . We claim that S = {z∗
k : 1 ≤ k ≤ N } has the desired properties. To see

this, pick a norm one e ∈ E , and find k with ‖e − zk‖ ≤ εκ/2. Then

max
x∗∈S

|x∗(e)| ≥ |z∗
k (e)| ≥ |z∗

k (zk)| − ‖e − zk‖ ≥ (1 − ε/2)κ − εκ/2 = (1 − ε)κ.

Next, since the sequence {‖e∗
n‖ en} is Y -null, for each δ > 0 we can find an integer

n0 > max A so that

max
x∗∈S

|x∗(en)| ‖e∗
n‖ ≤ δκ

m
, ∀ n ≥ n0.

Pick any B of cardinality m with min B ≥ n0, and let

G := [en]n∈B .

For f = ∑
n∈B e∗

n( f )en ∈ G, we have

max
x∗∈S

|x∗( f )| ≤ max
x∗∈S

∑

n∈B

|x∗(en)| ‖e∗
n‖ ‖ f ‖ ≤ δκ‖ f ‖. (3.19)

We claim that

‖e + f ‖ ≥ (1 − ε − δ)κ

1 + δκ
‖e‖, for any e ∈ E, f ∈ G. (3.20)

To show this, we fix γ > 0 (to be chosen later), and assumefirst that ‖ f ‖ ≥ (1+γ )‖e‖.
Then,

‖e + f ‖ ≥ ‖ f ‖ − ‖e‖ ≥ γ ‖e‖.

Next assume that ‖ f ‖ < (1 + γ )‖e‖, then using (3.18) and (3.19) we obtain that

‖e + f ‖ ≥ max
x∗∈S

|x∗(e + f )| ≥ (1 − ε)κ‖e‖ − δκ‖ f ‖ > (1 − ε − δ(1 + γ ))κ‖e‖.

We now choose γ so that γ = (1 − ε − δ(1 + γ ))κ , that is,

γ = (1 − ε − δ)κ

1 + δκ
,
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which shows the claim in (3.20). Now, given ρ > 1/κ , we may pick δ = ε sufficiently
small so that the above number γ > 1/ρ. Then, (3.20) becomes

‖e + f ‖ ≥ 1

ρ
‖e‖, for any e ∈ [en]n∈A, f ∈ [en]n∈B,

for all B with min B ≥ n0 and |B| = |A| = m. Thus, {en}∞n=1 is ρ-admissible.

Remark 3.9 We give some more examples where propertyP(κ) holds.

(1) If the sequence {‖e∗
n‖ en}∞n=1 is weakly null then P(1) holds (since Y = X

∗ is
always 1-norming).

(2) If {en}∞n=1 is a Schauder basis thenP(κ) holdswith κ = 1/Kb; see [20, Theorems
I.3.1 and I.12.2].

(3) Let X = C(K ), where K is a compact Hausdorff set, and let μ be a Radon
probability measure in K with suppμ = K . Let {en}∞n=1 be a complete system in
X which is orthonormal with respect to μ and uniformly bounded, that is,

∫

K
enem dμ = δn,m and sup

n
‖en‖∞ < ∞.

Then {en}∞n=1 has the propertyP(1) in X = C(K ). Indeed, the sequence {en}∞n=1
is L1(μ)-null in X, while Y = L1(μ) is 1-norming in X (since the natural embed-
ding of C(K ) into L∞(μ) is isometric). Specific examples are the trigonometric
system in C[0, 1] (in the real or complex case), as well as certain polygonal ver-
sions of theWalsh system [7,17,27], or any reorderings of them (which may cease
to be Cesàro bases).

(4) As a dual of the previous, if X = L1(μ) then every system {en}∞n=1 as in (3) is
weakly null, and hence case (1) applies.

(5) If {en, e∗
n}∞n=1 is an M-basis such that

ϕ(m) := sup
|A|≤m

∥
∥
∥
∥
∥

∑

n∈A

en

∥
∥
∥
∥
∥

= o(m), as m → ∞,

then {en}∞n=1 is weakly null (and in particular,P(1) holds). Indeed, first note that
also ϕ̃(m) = sup{‖1ηA‖ : |A| ≤ m, |η| = 1} = o(m). Assume that the system
is not weakly null. Then there exist a norm one x∗ ∈ X

∗ and ε0 > 0 so that the
set A = {n ∈ N : |x∗(en)| ≥ ε0} is infinite. For every m ≥ 1, pick a set F ⊂ A
with |F | = m and let ηn = sign[x∗(en)]; then

ϕ̃(m) ≥ ‖1ηF‖ ≥
∣
∣
∣
∣
∣
x∗

(
∑

n∈F

ηnen

)∣
∣
∣
∣
∣
=
∑

n∈F

|x∗(en)| ≥ mε0,

contradicting our assumption.

Finally, as a consequence of Propositions 3.6 and 3.8 one obtains
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710 P. M. Berná et al.

Theorem 3.10 Let {en, e∗
n}∞n=1 be a seminormalized M-basis with the property P(κ).

Then, if ϑm is as in (3.14), we have

Lch,t
m ≥ κ ϑm

(κ + 1)t
, ∀ m ∈ N, t ∈ (0, 1]. (3.21)

4 Examples

The first two examples are variants of those in [5, §5.1] and [6, §8.1].

4.1 Example 4.1: the summing basis

Let X be the closure of the set of all finite sequences a = (an)n ∈ c00 with the norm

‖a‖ = sup
m

∣
∣
∣
∣
∣

m∑

n=1

an

∣
∣
∣
∣
∣
.

The canonical system B = {en}∞n=1 is a Schauder basis in X with Kb = 1 and
‖en‖ = 1 for all n. Also, ‖e∗

1‖ = 1, ‖e∗
n‖ = 2 if n ≥ 2, so K = 2 in Theorem 1.1; see

[5, §5.1]. We now show that, for this example of (X,B), the bound of Theorem 1.1
is sharp. As in [5, §5.1], we consider the element:

x =
⎛

⎝1

2
,
1

t
,
1

2︸ ︷︷ ︸
, . . . ,

1

2
,
1

t
,
1

2︸ ︷︷ ︸
; 1
2
;− 1, 1
︸ ︷︷ ︸

, . . . ,− 1, 1
︸ ︷︷ ︸

, 0, . . . ,

⎞

⎠ ,

where we have m blocks of
( 1
2 ,

1
t ,

1
2

)
and m blocks of (− 1, 1). Picking A = {n : xn =

− 1} as a t-greedy set of x , we see that

‖x − CGt
m(x)‖ = min

ai ,i=1,...,m

∥
∥
∥
∥

(
1

2
,
1

t
,
1

2
, . . . ,

1

2
,
1

t
,
1

2
; 1
2
; a1, 1, a2, 1, . . . , am , 1, 0, . . . ,

)∥
∥
∥
∥

≥
∥
∥
∥
∥

(
1

2
,
1

t
,
1

2
, . . . ,

1

2
,
1

t
,
1

2
; 1
2
; 0, . . . ,

)∥
∥
∥
∥ = m + m

t
+ 1

2
.

On the other hand,

σm(x) ≤
∥
∥
∥x − t + 1

t
(0, 1, 0, . . . , 0, 1, 0; 0, . . .)

∥
∥
∥

=
∥
∥
∥
(1

2
,− 1,

1

2
, . . . ,

1

2
,− 1,

1

2
; 1
2
;− 1, 1, . . . ,− 1, 1, 0 . . . ,

)∥
∥
∥ = 1

2
.

Hence, Lch,t
m ≥ 1 + 2(1 + 1

t )m and we conclude that Lch,t
m = 1 + 2(1 + 1

t )m by
Theorem 1.1. As a consequence, observe that in this case CGt

m(x) = 0.
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Remark 4.1 The above example strengthens [19, Theorem 2.4], where the authors are
only able to show that 1 + 4m ≤ Lch

m ≤ 1 + 6m.

4.2 Example 4.2: the difference basis

Let {en}∞n=1 be the canonical basis in �1(N) and define the elements

y1 = e1, yn = en − en−1, n = 2, 3, . . .

The new system B = {yn}∞n=1 is called the difference basis of �1. We recall some
basic properties used in [6, §8.1]. If (bn)n ∈ c00 then

∥
∥
∥
∥
∥

∞∑

n=1

bn yn

∥
∥
∥
∥
∥

=
∞∑

n=1

|bn − bn+1|.

Also, B is a monotone basis with ‖y1‖ = 1, ‖yn‖ = 2 if n ≥ 2, and ‖y∗
n‖ = 1 for

all n ≥ 1 (in fact, the dual system corresponds to the summing basis). So, K = 2 and
Theorem 1.1 gives Lch,t

m ≤ 1 + 2(1 + 1
t )m for all t ∈ (0, 1]. To show the equality we

consider the vector x = ∑
n bn yn with coefficients (bn) given by

(

1, 1, 1,− 1
t , 1︸ ︷︷ ︸

, . . . , 1, 1,− 1
t , 1︸ ︷︷ ︸

, 0, . . . ,

)

,

where the block
(
1, 1, − 1

t , 1
)
is repeated m times. If we take  = {2, 6, . . . , 4m − 2}

as a t-greedy set for x of cardinality m, then

‖x − CGt
m(x)‖ = inf

(a j )
m
j=1

∥
∥
∥
∥
∥
∥

x −
m∑

j=1

a j y4 j−2

∥
∥
∥
∥
∥
∥

= inf
(a j )

m
j=1

∥
∥
∥
∥

(

1, 1 − a1, 1,
−1

t
, 1, . . . , 1 − am, 1,

−1

t
, 1, 0, . . . ,

)∥
∥
∥
∥

= inf
(a j )

m
j=1

2
m∑

j=1

|a j | + 2m

(

1 + 1

t

)

+ 1 = 2m

(

1 + 1

t

)

+ 1.

Hence, in this case we also have CGt
m(x) = 0. On the other hand

σm(x) ≤ ∥
∥x + (

1 + 1
t

) m∑

j=1

y4 j
∥
∥ = ‖(1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 0, . . .)‖ = 1.

This shows that Lch,t
m = 1 + 2(1 + 1

t )m.
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4.3 Example 4.3: the trigonometric system in Lp(T)

Consider B = {einx }n∈Z in L p(T) for 1 ≤ p < ∞, and in C(T) if p = ∞. In [22],
Temlyakov showed that

cpm| 1p − 1
2 | ≤ Lm ≤ 1 + 3m

∣
∣
∣ 1p − 1

2

∣
∣
∣
,

for some cp > 0 and all 1 ≤ p ≤ ∞. Adapting his argument, Shao and Ye have
recently established, in [19, Theorem 2.1], that for 1 < p ≤ ∞ it also holds

Lch
m ≈ m| 1p − 1

2 |
. (4.1)

The case p = 1 is left as an open question, and only the estimate
√

m
ln(m)

� Lch
m � √

m
is given; see [19, (2.24)]. Moreover, the proof of the case p = ∞ seems to contain
some gaps and may not be complete.

Here, we shall give a short proof ensuring the validity of (4.1) in the full range
1 ≤ p ≤ ∞, with a reasoning similar to [5, §5.4]. More precisely, we shall prove the
following.

Proposition 4.2 Let 1 ≤ p ≤ ∞. Then there exists cp > 0 such that

Lch,t
m ≥ cp t−1 m| 1p − 1

2 |
, ∀ m ∈ N, t ∈ (0, 1]. (4.2)

We remark that in the cases p = 1 and p = ∞ the trigonometric system is not a
Schauder basis, but it is a Cesàro basis.2 So we may use the lower bounds in Theorem
1.3, namely

Lch,t
m ≥ c′

p t−1 sup
|A|=|B|≤m

A>2B or B>2A

sup
|ε|=|η|=1

‖1εA‖
‖1ηB‖ . (4.3)

• Case 1 < p ≤ 2. Assume that m = 2� + 1 or 2� + 2 (that is, � = �m−1
2 �). We

choose B = {− �, . . . , �}, so that 1B = D� is the �th Dirichlet kernel, and hence

‖1B‖p = ‖D�‖L p(T) ≈ m1− 1
p .

Next we take a lacunary set A = {2 j : j0 ≤ j ≤ j0 + 2�}, so that

‖1A‖p ≈ √
m, (4.4)

and where j0 is chosen such that 2 j0 ≥ m, and hence A > 2B. Then, (4.3) implies

Lch,t
m ≥ cp t−1 m1/2

m1− 1
p

= cp t−1 m

∣
∣
∣ 1p − 1

2

∣
∣
∣
.

2 We equipB with its natural ordering {1, eix , e−i x , e2i x , e−2i x , . . .}.
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• Case 2 ≤ p < ∞. The same proof works in this case, just reversing the roles of
A and B.

• Case p = ∞. We replace the lacunary set by a Rudin-Shapiro polynomial of the
form

R(x) = ei N x
2L−1∑

n=0

εneinx , with εn ∈ {± 1},

where L is such that 2L ≤ m < 2L+1; see e.g. [14, p. 33]. Then, R = 1εB with
B = N + {0, 1, . . . , 2L − 1} and

‖1εB‖∞ = ‖R‖L∞(T) ≈ √
m.

If we pick N ≥ 2 · 2L , then B > 2A with A = {± 1, . . . ,± (2L − 1)}. Finally,
‖1A‖∞ = ‖D2L−1 − 1‖L∞(T) ≈ m.

So, (4.3) implies the desired bound.
• Case p = 1. We use the lower bound in Lemma 3.4, namely

Lch,t
m ≥ c′

1 t−1 ‖1A‖
‖1B + y‖ , (4.5)

for all |A| = |B| ≤ m and all y such that A > 2(B ·∪ suppy) and supn |e∗
n(y)| ≤ 1.

As before, let m = 2� + 1 or 2� + 2, and choose the same sets A and B as in the
case 1 < p ≤ 2. Next choose y so that the vector

V� = 1B + y

is a de la Vallée-Poussin kernel as in [14, p. 15]. Then, the Fourier coeffients e∗
n(y)

have modulus ≤ 1 and are supported in {n : � < |n| ≤ 2�+ 1}, so the condition
A > 2(B ·∪ suppy) holds if 2 j0 ≥ 2m + 1. Finally,

‖1B + y‖1 = ‖V�‖L1(T) ≤ 3,

so the bound Lch,t
m � t−1√m follows from (4.5).

Remark 4.3 Using the trivial upper bound Lch,t
m ≤ Lt

m � t−1m| 1p − 1
2 |, we conclude

that Lch,t
m ≈ t−1m| 1p − 1

2 | for all 1 ≤ p ≤ ∞.

5 Comparison between �̃m and �̃d
m

In this section we compare the democracy constants μ̃m and μ̃d
m defined in §1 above.

Let us first note that
μ̃d

m ≤ μ̃m ≤ (μ̃d
m)2 (5.1)
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and
μ̃d

m ≤ μ̃m ≤ (1 + 2κ)γmμ̃d
m, (5.2)

where κ = 1 or 2 depending if K = R or C. Indeed, the left inequality in (5.1) is
immediate by definition, and the right one follows from

‖1ηB‖
‖1εA‖ = ‖1ηB‖

‖1C‖
‖1C‖
‖1εA‖ ≤ (μ̃d

m)2,

for any |A| = |B| ≤ m and any C disjoint with A ∪ B with |C | = |A| = |B|.
Concerning the right inequality in (5.2), we use that if |A| = |B| ≤ m then

‖1εA‖
‖1ηB‖ ≤ ‖1ε(A\B)‖ + ‖1ε(A∩B)‖

‖1ηB‖ ≤ γm
‖1ε(A\B)‖
‖1η(B\A)‖ + ‖1ε(A∩B)‖

‖1ηB‖ ≤ γm μ̃d
m + 2κγm,

using in the last step [5, Lemma 3.3]. From (5.2) we see that μ̃m ≈ μ̃d
m when B is

quasi-greedy for constant coefficients.
In the next subsection we shall show that μ̃m ≈ μ̃d

m for all Schauder bases, a result
which seems new in the literature.

5.1 Equivalence for Schauder bases

We begin with a simple observation.

Lemma 5.1

μ̃d
m = sup

{‖1ηB‖
‖1εA‖ : |B| ≤ |A| ≤ m, A ∩ B = ∅, |ε| = |η| = 1

}

. (5.3)

Proof. Let |ε| = |η| = 1 and |B| ≤ |A| ≤ m with A ∩ B = ∅. We must show that
‖1ηB‖/‖1εA‖ ≤ μ̃d

m . Pick any set C disjoint with A ∪ B such that |B| + |C | = |A|.
We now use the elementary inequality

‖x‖ =
∥
∥
∥

x + y

2
+ x − y

2

∥
∥
∥ ≤ max{‖x + y‖, ‖x − y‖}, (5.4)

with x = 1ηB and y = 1C . Let η′ ∈ ϒ be such that η′|B = η|B and η′|C = ±1,
according to the sign that reaches the maximum in (5.4). Then ‖1ηB‖ ≤ ‖1η′(B∪C)‖ ≤
μ̃d

m‖1εA‖, and the result follows.

Theorem 5.2 If Kb is the basis constant and κ = supn ‖e∗
n‖‖en‖, then

μ̃m ≤ 2(Kb + 1)μ̃d
m + κ Kb. (5.5)

Proof. Let |A| = |B| ≤ m, and |ε| = |η| = 1. Then

‖1ηB‖
‖1εA‖ ≤ ‖1η(B\A)‖

‖1εA‖ + ‖1η(B∩A)‖
‖1εA‖ = I + I I .
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Lemma 5.1 implies I ≤ μ̃d
m . We now bound I I . Pick an integer n0 such that A1 =

{n ∈ A : n ≤ n0} and A2 = A\A1 satisfy

|A1| = |A2| (if |A| is even), or |A1| = |A| − 1

2
= |A2| − 1 (if |A| is odd).

Then

I I ≤ ‖1η(B∩A1)‖
‖1εA‖ + ‖1η(B∩A2)‖

‖1εA‖
≤ (Kb + 1)

‖1η(B∩A1)‖
‖1εA2‖

+ Kb
‖1η(B∩A2)‖

‖1εA1‖
= I I1 + I I2,

using in the second line the basis constant bound for the denominator. Since |B∩ A1| ≤
|A1| ≤ |A2|, we see that

I I1 ≤ (Kb + 1)μ̃d
m .

On the other hand, picking any number n1 ∈ B ∩ A2, and using ‖e∗
n1‖‖1εA‖ ≥

|e∗
n1(1εA)| = 1, we see that

I I2 ≤ Kb
‖1η(B∩A2\{n1})‖

‖1εA1‖
+ Kb‖en1‖‖e∗

n1‖ ≤ Kbμ̃
d
m + κKb,

the last bound due to |B ∩ A2\{n1}| ≤ |A2| − 1 ≤ |A1| and Lemma 5.1. Putting
together the previous bounds easily leads to (5.5).

Remark 5.3 A similar argument shows the equivalence of the standard (unsigned)
democracy parameters

μm = sup
|A|=|B|≤m

‖1B‖
‖1A‖ and μd

m = sup
|A|=|B|≤m

A∩B=∅

‖1B‖
‖1A‖ . (5.6)

Indeed, in this case, the analog of (5.3) takes the weaker form

μd
m ≤ sup

|B|≤|A|≤m
A∩B=∅

‖1B‖
‖1A‖ ≤ Kbμ

d
m . (5.7)

Then, (5.7) and the same proof we gave for Theorem 5.2 (with η = ε ≡ 1) leads to

μm ≤ 2(Kb + 1)Kb μd
m + κ Kb. (5.8)
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5.2 An example where �̃m grows faster than �̃d
m

The following example also seems to be new in the literature. As in (5.6), we denote
by μm , μd

m the democracy parameters corresponding to constant signs.

Theorem 5.4 There exists a Banach space X with an M-basis B such that

lim sup
m→∞

μ̃m

[μ̃d
m]2−ε

= lim sup
m→∞

μm

[μd
m]2−ε

= ∞, ∀ ε > 0.

Proof. Let N0 = 1, and define recursively Nk = 22
Nk−1 , and N ′

k = N1 + · · · + Nk−1.
Consider the blocks of integers

Sk = {
N ′

k + 1, . . . , N ′
k + Nk

}
,

and denote the tail blocks by Tk = ∪ j≥k+1S j . Finally, let

Nk =
⎧
⎨

⎩
(σ j ) j∈Sk : σ j ∈ {± 1} and

∑

j∈Sk

σ j = 0

⎫
⎬

⎭
.

We define a real Banach space X as the closure of c00 with the norm

‖x‖ = max

⎧
⎪⎨

⎪⎩
‖x‖∞, sup

k≥1
αk sup

σ∈Nk

∣
∣〈1σ Sk , x〉∣∣, sup

k≥1
βk sup

S⊂Tk|S|=Nk

∑

j∈S

|x j |

⎫
⎪⎬

⎪⎭
,

where the weights αk and βk are chosen as follows:

αk = 2−Nk−1 = 1

log2 Nk
and βk = 1√

Nk
.

Observe that

N ′
k = N1 + · · · + Nk−1 ≤ 2Nk−1 = 2 log2 log2 Nk and

αk

βk
=

√
Nk

log2 Nk
.

Claim 1 μ̃Nk ≥ μNk ≥ Nk/2

(log2 Nk)
√
log2 log2 Nk

, for all k ≥ 1.

Proof. Pick any A ⊂ Sk ∪Sk+1 such that |A| = Nk and |A∩Sk | = |A∩Sk+1| = Nk/2.
Then

‖1A‖ ≥ αk Nk/2 = Nk/2

log2 Nk
.
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Next, pick B = Sk , so that |B| = |A| = Nk and

‖1B‖ = max
{
1, αk · 0, sup

n≤k−1
βn Nn

}
= βk−1Nk−1 = √

Nk−1 = √
log2 log2 Nk .

Then μNk ≥ ‖1A‖/‖1B‖ ≥ Nk/2
(log2 Nk )

√
log2 log2 Nk

.

Claim 2 μd
Nk

≤ μ̃d
Nk

≤ √
Nk , for all k ≥ 2.

Proof. Let A, B be any pair of disjoint setswith |A| = |B| ≤ Nk , and let |ε| = |η| = 1.
If |A| = |B| ≤ √

Nk , then the trivial bounds ‖1εA‖ ≤ |A| and ‖1ηB‖ ≥ 1 give

‖1εA‖
‖1ηB‖ ≤ √

Nk .

So, it remains to consider the cases
√

Nk < |A| = |B| ≤ Nk . We split A into three
parts

A0 = A ∩ Sk, A+ = A ∩ Tk, A− = A ∩ [S1 ∪ . . . ∪ Sk−1].

Then, we have the following upper bound

‖1εA‖ ≤ max
{
1, sup

n<k
αn|A−|, αk |A0|, sup

n>k
αn Nk, sup

n<k
βn Nn, sup

n≥k
βn|A|

}

≤ max
{

N ′
k, αk |A0|, βk |A|

}
,

due to the elementary inequalities

• supn<k αn|A−| ≤ |A−| ≤ N ′
k

• supn>k αn Nk = αk+1Nk = Nk2−Nk ≤ 1
• supn<k βn Nn = √

Nk−1 ≤ Nk−1 ≤ N ′
k• supn≥k βn|A| = βk |A|.

Moreover, since βk |A| ≤ min{βk Nk = √
Nk, αk |A| }, we derive

‖1εA‖ ≤ max{√Nk, αk |A0|} and ‖1εA‖ ≤ max{N ′
k, αk |A|}. (5.9)

We now give a lower bound for ‖1ηB‖. The key estimate will rely on the following

Lemma 5.5 Let B0 = B ∩ Sk and Bc
0 = Sk\B0. Then

sup
σ∈Nk

∣
∣〈1σ Sk , 1ηB0〉

∣
∣ ≥ min{|B0|, |Bc

0 |}. (5.10)
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Proof. If |B0| ≤ Nk/2, then we may select any σ ∈ Nk such that σ |B0 = η (which is
possible since |Bc

0 | ≥ |B0|), which gives

|〈1σ Sk , 1ηB0〉| = |B0| = min{|B0|, |Bc
0 |}.

Assume now that |B0| > Nk/2. Pick any S ⊂ B0 with |S| = |Bc
0 | = Nk −|B0|. Choose

ν ∈ {−1, 1}Bc
0 so that

∑
i∈S ηi + ∑

i∈Bc
0
νi = 0. Choose τ ∈ {−1, 1}B0\S so that

∑
i∈B0\S τi = 0. Replacing τ by−τ , if necessary,wemay assume that

∑
i∈B0\S τiηi ≥

0. Finally, define σ ∈ Nk by setting

σ |S = η|S, σ |Bc
0

= ν|Bc
0
, σ |B0\S = τ |B0\S .

Then,

|〈1σ Sk , 1ηB0〉| =
∑

i∈S

η2i +
∑

i∈B0\S

τiηi ≥ |S| = |Bc
0 | = min{|B0|, |Bc

0 |} .

From the lemma and the definition of the norm we see that

‖1ηB‖ ≥ max
{
1, αk min{|B0|, |Bc

0 |}, βk |B+|
}
. (5.11)

We shall finally combine the estimates in (5.9) and (5.11) to establish Claim 2. We
distinguish two cases

Case 1: min{|B0|, |Bc
0 |} = |Bc

0 |. Then, since A0 ⊂ Bc
0, we see that

αk |A0| ≤ αk |Bc
0 | ≤ ‖1ηB‖,

and therefore the first estimate in (5.9) gives

‖1εA‖
‖1ηB‖ ≤ max{√Nk, ‖1ηB‖}

‖1ηB‖ ≤ √
Nk .

Case 2: min{|B0|, |Bc
0 |} = |B0|. Then, (5.11) reduces to

‖1ηB‖ ≥ max
{
αk |B0|, βk |B+| } ≥ βk

|B0| + |B+|
2

= βk
|B| − |B−|

2
≥ βk |B|/4,

since |B−| ≤ N ′
k ≤ √

Nk/2 ≤ |B|/2, if k ≥ 2. Also, the second bound in (5.9) reads

‖1εA‖ ≤ αk |A|,

since N ′
k ≤ √

Nk/ log2 Nk = αk
√

Nk ≤ αk |A|, if k ≥ 2. Thus

‖1εA‖
‖1ηB‖ ≤ αk |A|

βk |B|/4 = 4αk

βk
= 4

√
Nk

log2 Nk
≤ √

Nk .
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This establishes Claim 2.
From Claims 1 and 2 we now deduce that

μNk

[μ̃d
Nk

]2−ε
≥ N ε/2

k /2

(log2 Nk)
√
log2 log2 Nk

→ ∞,

and therefore

lim sup
N→∞

μN

[μd
N ]2−ε

= lim sup
N→∞

μ̃N

[μ̃d
N ]2−ε

= ∞.

6 Norm convergence of CGt
mx and G t

mx

In this section we search for conditions onB = {en}∞n=1 under which it holds

‖x − CGm(x)‖ → 0, ∀ x ∈ X. (6.1)

In [19, Theorem 1.1] this convergence is asserted for every basis in X. Here we
investigate whether (6.1) may be true for a general M-basis, as defined in §1.

The solution to this question requires the notion of strong M-basis; see [21, Def
8.4]. We say that B is a strong M-basis if additionally to the conditions (a)–(d) in §1
it also holds

span {en}n∈A = {
x ∈ X : suppx ⊂ A

}
, ∀ A ⊂ N. (6.2)

Clearly, all Schauder or Cesàro bases (in some ordering) are strong M-bases; see e.g.
[18] for further examples. However, there existM-bases which are not strongM-bases,
see e.g. [21, p. 244], or [11]3 for seminormalized examples in Hilbert spaces.

Lemma 6.1 If B is an M-basis which is not a strong M-basis, then there exists an
x0 ∈ X such that, for all Chebyshev greedy operators CGm,

lim inf
m→∞ ‖x0 − CGm(x0)‖ > 0. (6.3)

Proof. IfB is not a strong M-basis there exists some set A ⊂ N (necessarily infinite)
and some x0 ∈ X with suppx0 ⊂ A such that

δ = dist(x0, [en]A) > 0.

Since suppCGm x0 is always a subset of A, this implies (6.3).

3 We thank V. Kadets for kindly providing this reference.
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Remark 6.2 The above reasoning also implies that lim infm ‖x0 − Gm x0‖ > 0, for
all greedy operators Gm . In particular, if there exists a not strong M-basis with the
quasi-greedy condition

Cq := sup
Gm∈Gm

m∈N
‖Gm‖ < ∞, (6.4)

it will not occur that Gm x converges to x for all x ∈ X. This observation suggests that
in the characterization of quasi-greedy biorthogonal systems given in [28, Theorem
1] one may need to assume that B is a strong M-basis, or else clarify if this property
could be a consequence of (6.4).4

Here we show that under the strong M-basis assumption, the conclusions of [19,
Theorem 1.1] (and also of “3 ⇒ 1” in [28, Theorem 1]) hold.

Proposition 6.3 If B is a strong M-basis then, for all Chebyshev t-greedy operators
CGt

m ,
lim

m→∞ ‖x − CGt
m(x)‖ = 0, ∀ x ∈ X. (6.5)

If additionally Cq < ∞, then for all t-greedy operators G t
m ,

lim
m→∞ ‖x − G t

m(x)‖ = 0, ∀ x ∈ X. (6.6)

Proof. Given x ∈ X and ε > 0, by (6.2) there exists z = ∑
n∈B bnen such that

‖x − z‖ < ε, for some finite set B ⊂ suppx . Let α = minn∈B |e∗
n(x)| and

�̄α = {n : |e∗
n(x)| ≥ α}.

Since α > 0, this is a finite greedy set for x which contains B. Moreover, we claim
that

�̄α ⊂ suppCGt
m(x) =: A, ∀ m > |�̄tα|. (6.7)

Indeed, if this was not the case there would exist n0 ∈ �̄α\A, and since A is a t-
greedy set for x , then minn∈A |e∗

n(x)| ≥ t |e∗
n0(x)| ≥ tα. So, A ⊂ �̄tα , which is a

contradiction since m = |A| > |�̄tα|. Therefore, (6.7) holds and hence

‖x − CGt
m(x)‖ ≤ ‖x −

∑

n∈B

bnen‖ < ε, ∀ m > |�̄tα|.

This establishes (6.5).
Wenowprove (6.6).As above, let z = ∑

n∈B bnen with B ⊂ suppx and‖x−z‖ < ε.
Performing if necessary a small perturbation in the bn’s, we may assume that bn 
=
e∗

n(x) for all n ∈ B. Let now

α1 = min
n∈B

|e∗
n(x)|, α2 = min

n∈B
|e∗

n(x − z)|, and α = min{α1, α2} > 0.

4 After this manuscript was completed, this question has been considered and settled in [2, Corollary 3.2].
There it is shown that a complete seminormalized biorthogonal systemwith the property (6.4) is necessarily
a strong M-basis.
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Consider the sets

�̄tα = {n : |e∗
n(x)| ≥ tα} = {n : |e∗

n(x − z)| ≥ tα},

which for all t ∈ (0, 1] are greedy sets for both x and x − z, and contain B. We claim
that,

if m > |�̄tα| and A := suppG t
m(x), then �̄α ⊂ A and A ∈ G(x − z, m, t).

(6.8)
The assertion �̄α ⊂ A is proved exactly as in (6.7). Next, we must show that

if n ∈ A then |e∗
n(x − z)| ≥ t max

k /∈A
|e∗

k (x − z)| = t max
k /∈A

|e∗
k (x)|.

This is clear if n ∈ A\B since e∗
n(x − z) = e∗

n(x), and A ∈ G(x, m, t). On the other
hand, if n ∈ B, then |e∗

n(x − z)| ≥ α2 ≥ α ≥ maxk∈Ac |e∗
k (x)|, the last inequality due

to �̄α ⊂ A. Thus (6.8) holds true, and therefore

G t
m(x) − z =

∑

n∈A

e∗
n(x − z)en = Ḡ t

m(x − z),

for some Ḡ t
m ∈ G

t
m . Thus,

‖G t
m(x) − x‖ = ‖(I − Ḡ t

m)(x − z)‖ ≤ (1 + ‖Ḡ t
m‖) ε,

and the result follows from supm ‖Ḡ t
m‖ ≤ (1 + 4Cq/t)Cq , by [10, Lemma 2.1].
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