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Abstract
For a complex Banach space X with open unit ball BX , consider the Banach alge-
bras H∞(BX ) of bounded scalar-valued holomorphic functions and the subalgebra
Au(BX ) of uniformly continuous functions on BX . Denoting either algebra by A,

we study the Gleason parts of the set of scalar-valued homomorphisms M(A) on A.

Following remarks on the general situation, we focus on the case X = c0, giving
a complete characterization of the Gleason parts of M(Au(Bc0)) and, among other
things, showing that every fiber inM(H∞(Bc0)) over a point in B�∞ contains 2c discs
lying in different Gleason parts.
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Introduction

Let X be a complex Banach space with open unit ball BX and unit sphere SX . Using
standard notation, Au(BX ) denotes the Banach algebra of holomorphic (complex-
analytic) functions f : BX → C that are uniformly continuous on BX . This algebra is
clearly a subalgebra ofH∞(BX ), theBanach algebra of all bounded holomorphicmap-
pings on BX both endowed with the supremum norm ‖ f ‖ = sup{| f (x)| | ‖x‖ < 1}.
Also each function in Au(BX ) extends continuously to BX . Then, the maximal ideal
space (the spectrum for short) of Au(BX ), that is the set of all nonzero C−valued
homomorphisms M(Au(BX )) on Au(BX ), contains the point evaluations δx for all
x ∈ X , ‖x‖ ≤ 1. Our primary interest here will be in the structure of the set of such
homomorphisms, and our specific focus will be on the Gleason parts ofM(Au(BX ))

and M(H∞(BX )) when X = c0. Classically, in the case of Banach algebras of
holomorphic functions on a finite dimensional space, the study of Gleason parts was
motivated by the search for analytic structure in the spectrum. That remains true in
our case, in which the holomorphic functions have as their domain the (infinite dimen-
sional) ball of X . However, in infinite dimensions the situation is more complicated
and more interesting. For instance, in this case, we will exhibit non-trivial examples
of Gleason parts intersecting more than one fiber; this phenomenon holds in the finite
dimensional case in only simple, uninteresting cases. Unlike the situation when dim
X < ∞, it is well-known (see, e.g., [3]) that M(Au(BX )) usually contains much
more than mere evaluations at points of BX . As we will see, the study of Gleason parts
ofM(Au(BX )) in the case of an infinite dimensional X is considerably more difficult
than in the easy, finite dimensional situation. Now, when the algebra considered is
H∞(D) the seminal paper of Hoffman [17] evidences the complicated nature of the
Gleason parts for its spectrum (see also [16,19,22]). So, it is not surprising that our
results when D is replaced by BX are incomplete. However, as we will see, much
information about Gleason parts for both theAu andH∞ cases can be obtained when
X = c0.

As just mentioned, we will concentrate on the case X = c0, which is the natural
extension of the polydisc D

n . After a review in Sect. 1 of necessary background and
some general results, the description of Gleason parts forM(Au(Bc0))will constitute
Sect. 2. Finally, in Sect. 3 we will discuss what we have learned about Gleason parts
forM(H∞(Bc0)).

For general theory of holomorphic functions we refer the reader to the monograph
of Dineen [12] and for further information on uniform algebras and Gleason parts we
suggest the books of Bear [5], Gamelin [14], Garnett [15] and Stout [21].

1 Background and general results

In this section, we will discuss some simple results concerning Gleason parts for
M(A) where A is an algebra of holomorphic functions defined on the open unit ball
of a general Banach space X . Namely, A will denote either Au(BX ) or H∞(BX ).
For a Banach space X , as usual X∗ and X∗∗ denote the dual and the bidual spaces,
respectively. We begin with very short reviews of:
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Gleason parts for algebras of holomorphic functions… 417

(i) Gleason parts ([5,14]) and
(ii) the particular Banach algebras of holomorphic functions that we are interested in.

(i) Let A be a uniform algebra and let M(A) denote the compact set of non-
trivial homomorphisms ϕ : A → C endowed with the w(A∗,A) topology.
For ϕ,ψ ∈ M(A), we set the pseudo-hyperbolic distance

ρ(ϕ,ψ) := sup{|ϕ( f )| | f ∈ A, ‖ f ‖ ≤ 1, ψ( f ) = 0}.

Recall that when A = A(D) or A = H∞(D), the pseudo-hyperbolic metric
for λ and μ in the unit disc D is given by

ρ(δλ, δμ) =
∣
∣
∣

λ − μ

1 − λμ

∣
∣
∣.

Also, the formula given above remains true if A = A(D) for λ,μ ∈ D, if
|λ| = 1 and λ �= μ. Clearly, in this case, ρ(δλ, δμ) = 1.

The following very useful relation is well known (see, for instance, [5, Theo-
rem 2.8]):

‖ϕ − ψ‖ = 2 − 2
√

1 − ρ(ϕ,ψ)2

ρ(ϕ,ψ)
. (1.1)

Noting that it is always the case that ‖ϕ−ψ‖ (≡ sup‖ f ‖≤1 |ϕ( f )−ψ( f )|) ≤ 2,
the main point here being that ‖ϕ − ψ‖ < 2 if and only if ρ(ϕ,ψ) < 1.
From this (with some work), it follows that by defining ϕ ∼ ψ to mean that
ρ(ϕ,ψ) < 1 leads to a partition of M(A) into equivalence classes, called
Gleason parts. Specifically, for each ϕ ∈ M(A), the Gleason part containing
ϕ is the set

GP(ϕ) := {ψ | ρ(ϕ,ψ) < 1}.

We remark that it was perhaps König [18] who coined the phrase Gleason
metric for the metric ‖ϕ − ψ‖.

(ii) We first recall [10] that any f ∈ H∞(BX ) can be extended in a canonical
way to f̃ ∈ H∞(BX∗∗). Moreover, the extension f � f̃ is a homomorphism
of Banach algebras. A standard argument shows that the canonical extension
takes functions inAu(BX ) to functions inAu(BX∗∗).Consequently, each point
z0 ∈ BX∗∗ (resp. BX∗∗ ) gives rise to an element δ̃z0 ∈ M(H∞(BX )) (resp.
M(Au(BX ))). Here, for a given function f , δ̃z0( f ) = f̃ (z0). Note that for
f ∈ Au(BX ) and z0 ∈ X∗∗, with ‖z0‖ = 1, we are allowed to compute
f̃ (z0) and we will use this fact without further mention. Also, in order to avoid
unwieldy notation we will omit the tilde over the δ, simply writing δz0( f ).
We recall that either for A = Au(BX ) or A = H∞(BX ) there is a mapping
π : M(A) → BX∗∗ given by π(ϕ) := ϕ|X∗ . Note that this makes sense since
X∗ ⊂ A. It is not difficult to see that π is surjective [3]. As usual, for any
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418 R. M. Aron et al.

z ∈ BX∗∗ , the fiber over z, will be denoted by

Mz := {ϕ ∈ M(A) | π(ϕ) = z}.

Aswewill see, knowledge of the fiber structure is useful in the study ofGleason
parts, in the context of the Banach algebras Au(BX ) and H∞(BX ). The first
instance of this occurs in part (b) of Proposition 1.1 below.

Proposition 1.1 Let X be a Banach space and M = M(A) be as above.

(a) The set {δz : z ∈ BX∗∗} is contained in GP(δ0). In fact, ρ(δ0, δz) = ‖z‖ for each
z ∈ BX∗∗ .

(b) Let z ∈ SX∗∗ and w ∈ BX∗∗ . Then, for any ϕ ∈ Mz and ψ ∈ Mw, ρ(ϕ,ψ) = 1.
That is, ϕ and ψ lie in different Gleason parts.

Proof (a) Fix z ∈ BX∗∗ , z �= 0, and f ∈ A, such that ‖ f ‖ ≤ 1 and f (0) =
δ0( f ) = 0. By an application of the Schwarz lemma to f̃ ∈ A(X∗∗), we see that
|δz( f )| = | f̃ (z)| ≤ ‖z‖. Therefore ρ(δ0, δz) ≤ ‖z‖ < 1, or in other words δz is
in the same Gleason part as δ0. In addition, if we apply the definition of ρ to a
sequence (x∗

n ) ⊂ BX∗ ⊂ A such that |z(x∗
n )| → ‖z‖,we get that ρ(δ0, δz) ≥ ‖z‖.

(b) As in part (a) and using that ϕ ∈ Mz , wemay choose a sequence (x∗
n ) of norm one

functionals on X such that ϕ(x∗
n ) = z(x∗

n ) → ‖z‖ = 1. Observe that |ψ(x∗
n )| =

|w(x∗
n )| ≤ ‖w‖ < 1. For each n,m ∈ N, the function gn,m : BX → C defined as

gn,m(·) = (x∗
n (·))m − w(x∗

n )
m

‖(x∗
n )

m − w(x∗
n )

m‖

is in A = Au(BX ) or H∞(BX ). Evidently, ‖gn,m‖ = 1 and ψ(gn,m) = 0. In
addition,

|ϕ(gn,m)| ≥ |z(x∗
n )|m − ‖w‖m
1 + ‖w‖m ,

which approaches 1 with n andm. Then, ρ(ψ, ϕ) = 1 andψ and ϕ are in different
parts. �

In the classical situation ofM(H∞(D)), the Gleason part containing the evaluation
at the origin, δ0, consists of the set {δz | z ∈ D}. This known fact is made evident
in view of Proposition 1.1 and the fact that fibers over points in D are singletons. In
the case of an infinite dimensional space X , it can happen that fibers (over interior
points) are bigger than single evaluations and also theGleason part of δ0 could properly
contain BX∗∗ . The following, which uses part (a) of Proposition 1.1, gives a glimpse
at this situation.

Proposition 1.2 Let X be a Banach space. Fix r , 0 < r < 1 and consider BX∗∗(0, r) ≈
{δz | z ∈ X∗∗, ‖z‖ < r} ⊂ M(A). Then the closure of BX∗∗(0, r) in M(A) is
contained in GP(δ0).
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Gleason parts for algebras of holomorphic functions… 419

Proof Fix ϕ ∈ M(A), ϕ in the closure of BX∗∗(0, r), and choose any f ∈ A, f (0) =
0, ‖ f ‖ = 1. By definition, for fixed ε > 0 such that r + ε < 1 there is z ∈ BX∗∗(0, r)
such that |ϕ( f ) − δz( f )| < ε. Then,

|ϕ( f ) − δ0( f )| ≤ ε + |δ0( f ) − δz( f )| ≤ ε + ρ(δ0, δz) < ε + r .

Thus, ρ(ϕ, δ0) < 1, which concludes the proof. �
In many common situations, there are norm-continuous polynomials P acting on

the Banach space X whose restriction to BX is not weakly continuous. To give one
very easy example, the 2−homogeneous polynomial P : �2 → C, P(x) = ∑

n x
2
n

is such that 1 = P(
√
2
2 [e1 + en]) �= 1/2 = P(

√
2
2 e1). In these cases, the following

corollary shows that the exact composition of GP(δ0) is somewhat more complicated.

Corollary 1.3 Let X be a Banach space which admits a (norm) continuous polynomial
that is not weakly continuous when restricted to the unit ball. Then BX∗∗ � GP(δ0).

Proof Combining [6, Corollary 2] and [6, Proposition 3] if X admits a polynomial
which is not weakly continuous when restricted to the unit ball, then there is a homo-
geneous polynomial P on X whose canonical extension P̃ to X∗∗ is not weak-star
continuous at 0 when restricted to any ball BX∗∗(0, r), 0 < r < 1. Fix any r and
choose a net (zα) ⊂ BX∗∗(0, r) that is weak-star convergent to 0 and P̃(zα) � 0.
Choosing a subnet if necessary, we may assume that P̃(zα) → b �= 0. Applying
Proposition 1.2, if ϕ ∈ M(A) is a limit point of {δzα }, then ϕ ∈ GP(δ0). Note that
δ0(P) = 0 �= b = ϕ(P), so that δ0 �= ϕ. Finally, ϕ ∈ M0, since π(ϕ) = ϕ|X∗ ,
which shows that ϕ ∈ GP(δ0)\BX∗∗ . �
Remark 1.4 Note that, under the hypothesis of the above result, by Proposition 1.1,
each homomorphism ϕ ∈ GP(δ0)\BX∗∗ should be in some fiber over points in BX∗∗ .

In the rest of this section, we will focus on the calculation of the pseudo-hyperbolic
distance in some special, albeit important, situations. Here, we will have to distinguish
between the cases A = Au(BX ) and A = H∞(BX ).

Proposition 1.5 Let X be a Banach space and A = Au(BX ) or A = H∞(BX ).
Suppose that there exists an automorphism � : BX → BX and in addition for the
case of Au(BX ), assume � is uniformly continuous. Then, given x ∈ BX such that
�(x) = 0, for any y ∈ BX we have

ρ(δx , δy) = ‖�(y)‖.

Proof We only prove the case A = Au(BX ). Let f ∈ Au(BX ), ‖ f ‖ ≤ 1, such that
δx ( f ) = f (x) = 0. As f ◦ �−1 is in H∞(BX ), we can apply the Schwarz lemma to
obtain

|δy( f )| = | f (y)| = | f ◦ �−1(�(y))| ≤ ‖�(y)‖.

Thus, from the definition of ρ, we see that ρ(δx , δy) ≤ ‖�(y)‖.
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420 R. M. Aron et al.

For the reverse inequality, choose a norm one functional x∗ ∈ X∗ such that
x∗(�(y)) = ‖�(y)‖, and set f = x∗ ◦ �. Since f ∈ Au(BX ) has norm at most
1 and satisfies f (x) = 0, we get that

ρ(δx , δy) ≥ |δy( f )| = ‖�(y)‖.

�

Note that the proof of Proposition 1.5 shows that ρ(δx , δy) is independent of the
particular choice of the automorphism �.

For subsequent embedding results, for a Banach space X and A = Au(BX ) or
A = H∞(BX ) we will use the Gleason metric on M(A). As we have already noted
in (i) at the beginning of this section, this metric is the restriction of the usual distance
given by the norm onA∗. When we refer to the Gleason metric for elements of BX∗∗ ,
the open unit ball BX∗∗ will be regarded as a subset of M(A). As we will see in the
next proposition, under certain conditions, the automorphism � of Proposition 1.5
induces an isometry (for the Gleason metric) in the spectrum that sends some fibers
onto different fibers. This type of isometry allows us to transfer information relative to
Gleason parts intersecting one fiber to other fibers. Recall that a finite type polynomial
on X is a function in the algebra generated by X∗. Also, a Banach space X is said to
be symmetrically regular if every continuous linear mapping T : X → X∗ which is
symmetric (i. e. T (x1)(x2) = T (x2)(x1) for all x1, x2 ∈ X ) turns out to be weakly
compact.

Proposition 1.6 Let X be a Banach space and A = Au(BX ) or A = H∞(BX ).
Suppose that there exists an automorphism� : BX → BX and in addition for the case
of Au(BX ), assume � and �−1 are uniformly continuous.

(i) The mapping � induces a composition operator C� : A → A, C�( f ) = f ◦ �

such that �� := Ct
�|M(A) : M(A) → M(A), the restriction of its transpose to

M(A), is an onto isometry for the Gleason metric with inverse �−1
� = ��−1 .

(ii) If for every x∗ ∈ X∗, x∗ ◦ � and x∗ ◦ �−1 are uniform limits of finite type
polynomials then for any x ∈ BX , ��(Mx ) = M�(x). If in addition X is
symmetrically regular, then, for any z ∈ BX∗∗ , ��(Mz) = M�̃(z).

Proof To prove (i), just notice that for f ∈ A and ϕ ∈ M(A),

��−1(��(ϕ))( f ) = ��(ϕ)
(

f ◦ �−1) = ϕ( f ).

Through this equality it is easily seen that ‖��(ϕ) − ��(ψ)‖ = ‖ϕ − ψ‖, for all
ϕ,ψ ∈ M(A).

It is enough to prove (ii) in the case X is symmetrically regular. Fix z ∈ BX∗∗ and
take ϕ ∈ Mz . Given x∗

1 , . . . , x
∗
n in X∗ as ϕ is multiplicative, we have that

ϕ(x∗
1 . . . x∗

n ) = ϕ(x∗
1 ) . . . ϕ(x∗

n ) = z(x∗
1 ) . . . z(x∗

n ).
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Gleason parts for algebras of holomorphic functions… 421

Thus, since any polynomial Q of finite type is a linear combination of elements as
above, we have

ϕ(Q) = Q̃(z).

By hypothesis, for any x∗ ∈ X∗ there exists a sequence (Qk) of polynomials of finite
type that converges uniformly to x∗◦� on BX . Hence, the sequence (Q̃k) converges to
x̃∗ ◦�̃ uniformly on BX∗∗ and �̃ admits a unique extension to BX∗∗ through weak-star
continuity. Thus,

��(ϕ)(x∗) = ϕ(x∗ ◦ �) = lim
k

ϕ(Qk) = lim
k

Q̃k(z) = (�̃(z))(x∗).

Consequently, ��(Mz) ⊂ M�̃(z). Now, the reverse inclusion follows from (i)
because, since X is symmetrically regular and arguing as in the proof of [8, Corollary

2.2], we know that �̃−1 ◦ �̃ = I d. Therefore, ��(Mz) = M�̃(z). �
To conclude this section, we give three examples of these results.

Example 1.7 Let X = c0 and fix a point x = (xn) ∈ Bc0 . Define the mapping
�x : Bc0 → Bc0 as follows:

�x (y) = (ηx1(y1), ηx2(y2), . . . ),

where ηα(λ) = α−λ
1−αλ

, α, λ ∈ D. In this case �x is a uniformly continuous automor-
phism (�−1

x = �x ) with �x (x) = 0 and so, for any y ∈ Bc0 ,

ρ(δx , δy) = ‖�x (y)‖ = sup
n≥1

∣
∣
∣
xn − yn
1 − xn yn

∣
∣
∣ = sup

n≥1
ρ(δxn , δyn ).

Also,��x is an onto isometry for the Gleason metric inM(A) both forA = Au(Bc0)

or A = H∞(Bc0). Moreover, ��x (Mz) = M�̃x (z) for any z ∈ B�∞ .

In the next section,wewill discuss themore complicated,more interesting extension
of the previous example to z ∈ B�∞ ; see Theorem 2.4.

Example 1.8 ([2, Lemma 4.4]) Let X = �2 and fix a point x ∈ B�2 .Define themapping
βx : B�2 → B�2 as follows:

βx (y) = 1

1 + √

1 − ‖x‖2
〈

x − y

1 − 〈y, x〉 , x
〉

x +
√

1 − ‖x‖2 x − y

1 − 〈y, x〉

(y ∈ B�2). From [20, Proposition 1, p.132], we know that βx is an automorphism from
B�2 onto itself, with inverse map β−1

x = βx and βx (x) = 0.
Also, by expanding 1/[1 − 〈y, x〉] as a geometric series

∑〈y, x〉n and noting that
the series converges uniformly on B�2 , we see that βx (y) = g(y)x + h(y)y, where
the functions g and h are in Au(B�2). Thus, βx is uniformly continuous. Applying

123



422 R. M. Aron et al.

Proposition 1.5, we see that for all x, y ∈ B�2 , ρ(δx , δy) = ‖βx (y)‖. Also, by
Proposition 1.6, �βx is an onto isometry for the Gleason metric in M(A), both for
A = Au(B�2) or A = H∞(B�2). Moreover, as Proposition 1.6 (ii) holds (see [2,
Lemma 4.3]) �βx (My) = Mβx (y) for all y ∈ B�2 .

Example 1.9 Let H be an infinite dimensional Hilbert space and let X = L(H) be the
Banach space of all bounded linear operators from H into itself. Fix R ∈ BL(H) and
denote by R∗ its adjoint operator. Define the mapping �R on BL(H) as follows:

�R(T ) = (I − RR∗)
1
2 (T − R)(I − R∗T )−1(I − R∗R)

1
2 ,

(T ∈ BL(H)). Note that �R : BL(H) → BL(H) is an automorphism with inverse map
�−R and �R(R) = 0. As in the example above, it can be seen that �R is uniformly
continuous. Then, by Proposition 1.5, for R, S ∈ BL(H) we obtain ρ(δR, δS) =
‖�R(S)‖. Again, by Proposition 1.6, ��R is an onto isometry for the Gleason metric
inM(A), both for A = Au(BL(H)) or A = H∞(BL(H)).

2 Gleason parts forM(Au(Bc0))

Compared to other infinite dimensional Banach spaces, what is unusual about X = c0
is that, in relative terms, there are very few continuous polynomials P : c0 → C.

All such polynomials are norm limits of finite linear combinations of elements of
c∗
0 = �1. As a consequence, there are very few holomorphic functions on c0 [12]. In
particular, every f ∈ Au(Bc0) is a uniform limit of such polynomials. Thus, since
any homomorphism is automatically continuous, its action on Au(Bc0) is completely
determined by its action on c∗

0 . In other words, M(Au(Bc0)) is precisely {δz | z ∈
B�∞}. Note that if c0 were replaced by �p, this approximation result would be false,
and in fact M(Au(B�p )) is considerably larger and more complicated than B�p ≈
{δz | z ∈ B�p } (see, e.g., [13]).

Our aim here will be to get a reasonably complete description of the Gleason parts
of M(Au(Bc0)). As just mentioned, our work is greatly helped by the fact that we
know exactly what M(Au(Bc0)) is, namely that it can be associated with B�∞ . A
special role is played by homomorphisms δz where z belongs to the distinguished
boundary T

N, the set of all elements z = (zn) such that |zn| = 1 for all n. Also, notice
that compared with the finite dimensional situation, there is a new and interesting
“wrinkle” here in that there are unit vectors z = (zn) ∈ B�∞ all of whose coordinates
have absolute value smaller than 1. We begin with a straightforward lemma.

Lemma 2.1 For any ∅ �= N0 ⊂ N, let � : �∞ → �∞(N0) be the projection mapping
taking z = (z j ) j∈N �→ �(z) = (z j ) j∈N0 . Then for all z, w ∈ B�∞ , the following
inequality holds:

‖δ�(z) − δ�(w)‖ ≤ ‖δz − δw‖.

123



Gleason parts for algebras of holomorphic functions… 423

Proof Clearly, � is a linear operator having norm 1, and �(c0) = c0(N0). Thus each
f ∈ Au(Bc0(N0)) generates a function g ∈ Au(Bc0) given by g = f ◦ �|c0 having
the same norm as f . An easy verification shows that the extension of g to Au(B�∞)

is given by g̃ = f̃ ◦ �. Therefore for all z, w ∈ �∞, ‖z‖, ‖w‖ ≤ 1,

‖δ�(z) − δ�(w)‖ = sup{| f̃ (�(z)) − f̃ (�(w))| | f ∈ Au(Bc0(N0)), ‖ f ‖ ≤ 1}
≤ sup{|g̃(z) − g̃(w)| | g ∈ Au(Bc0), ‖g‖ ≤ 1} = ‖δz − δw‖.

�
Another way to restate Lemma 2.1 is as follows: if δz ∈ GP(δw), then δ�(z) ∈

GP(δ�(w)). Since N0 is allowed to be finite, say of cardinal k, if δz and δw are in the
same Gleason part, then their projections onto finite coordinates (viewed as being in
D
k) are also in the same Gleason part. Our next result examines the situation: Suppose

that z, w ∈ B�∞ are such that δz and δw are in the same Gleason part. What can we say
about the coordinates where these points differ and where these points are identical?

Lemma 2.2 For z, w ∈ B�∞ , let N0 = {n ∈ N | zn �= wn} and � : �∞ → �∞(N0) be
the projection as in Lemma 2.1. Then

‖δz − δw‖ = ‖δ�(z) − δ�(w)‖.

Proof Fix z ∈ B�∞ and define �z : �∞(N0) → �∞ by:

(�z(u))n =
{

un if n ∈ N0,

zn if n /∈ N0.

Given g ∈ Au(Bc0), ‖g‖ ≤ 1, let f = g̃◦�z |c0(N0).Note that f is well-defined since
whenever u ∈ B�∞(N0) then �z(u) ∈ B�∞ . It is easy to check that f ∈ Au(Bc0(N0)),

‖ f ‖ ≤ 1, and that f̃ = g̃ ◦ �z ∈ Au(B�∞(N0)). From the definition of N0, we see
that

‖δz − δw‖ = sup{|g̃(z) − g̃(w)| | g ∈ Au(Bc0), ‖g‖ ≤ 1}
= sup{|g̃(�z ◦ �(z)) − g̃(�z ◦ �(w))| | g ∈ Au(Bc0), ‖g‖ ≤ 1}
≤ sup{| f̃ (�(z)) − f̃ (�(w))| | f ∈ Au(Bc0(N0)), ‖ f ‖ ≤ 1}
= ‖δ�(z) − δ�(w)‖,

and this, with the previous lemma, completes the proof. �
One consequence of this result is that if z ∈ B�∞ with |zn| < 1, for some n, then

any w ∈ B�∞ such that w j = z j , for all j �= n, and |wn| < 1, satisfies that δz and δw

are in the same Gleason part. In particular, the only Gleason parts that are singleton
points are the evaluations at points in the distinguished boundary T

N of B�∞, i.e. the
points in the Shilov boundary of M(Au(Bc0)).
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Lemma 2.3 For each n ∈ N, let �n : �∞ → �∞({1, 2, . . . , n}) be the natural projec-
tion. If z and w are both in B�∞ , then

‖δz − δw‖ = lim
n→∞ ‖δ�n(z) − δ�n(w)‖ = sup

n∈N
‖δ�n(z) − δ�n(w)‖.

Proof First, Lemma 2.1 implies that the sequence (‖δ�n(z) − δ�n(w)‖) is increasing
and bounded by ‖δz − δw‖. Note also that for each u ∈ B�∞, �n(u)

w(�∞,�1)−→ u, and if
f is inAu(Bc0), it follows that f̃ ∈ Au(B�∞) is weak-star continuous. Consequently,
f̃ (�n(u)) → f̃ (u) as n → ∞. Therefore, for any ε > 0 take f ∈ Au(Bc0), ‖ f ‖ ≤ 1,
such that | f̃ (z) − f̃ (w)| > ‖δz − δw‖ − ε

2 . Then, we can find n0 ∈ N such that both
of the following hold:

| f̃ (�n0(z)) − f̃ (z)| <
ε

4
and | f̃ (�n0(w)) − f̃ (w)| <

ε

4
.

Hence, we see that

| f̃ (z) − f̃ (w)| ≤ ε

4
+ | f̃ (�n0(z)) − f̃ (�n0(w))| + ε

4
≤ ‖δ�n0 (z) − δ�n0 (w)‖ + ε

2
.

From this, we obtain that ‖δz − δw‖ ≤ ‖δ�n0 (z) − δ�n0 (w)‖ + ε, and the lemma
follows. �

For the subsequent description of the Gleason parts forM(Au(Bc0)) we introduce
the following notation. For each λ ∈ D and 0 < r < 1, we denote the pseudo-
hyperbolic r-disc centered at λ by

Dr (λ) =
{

μ ∈ D | ρ(δλ, δμ) =
∣
∣
∣

λ − μ

1 − λμ

∣
∣
∣ < r

}

.

Theorem 2.4 Let z = (zn) and w = (wn) be vectors in B�∞ . Then

‖δz − δw‖ = sup
n∈N

‖δzn − δwn‖. (2.1)

Moreover, if N0 = {n ∈ N | zn �= wn} then

ρ(δz, δw) = sup
n∈N

ρ(δzn , δwn ) = sup
n∈N0

∣
∣
∣
zn − wn

1 − znwn

∣
∣
∣. (2.2)

Hence, given z = (zn) ∈ B�∞ we have

GP(δz) =
⋃

0<r<1

{δw | wn = zn if |zn| = 1 and wn ∈ Dr (zn) if |zn| < 1 }.
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Proof ByLemma 2.3, it is enough to see that ‖δ�n(z)−δ�n(w)‖ = sup1≤k≤n ‖δzk −δwk‖
for all n, where�n : �∞ → �∞({1, 2, . . . , n}) is the natural projection. By Lemma 2.2,
we may also assume that zk �= wk for k = 1, . . . , n.

First, suppose that there exists k, 1 ≤ k ≤ n, such that |zk | = 1 or |wk | =
1. Then, ‖δzk − δwk‖ = 2 and Lemma 2.1 gives the equality. Now, assume that
|zk |, |wk | < 1 for all 1 ≤ k ≤ n. Note that (1.1) describes ‖δ�n(z) − δ�n(w)‖ in
terms of ρ(δ�n(z), δ�n(w)) by an increasing function. Using Example 1.7 we see that
ρ(δ�n(z), δ�n(w)) = sup1≤k≤n ρ(δzk , δwk ) and both equalities (2.1) and (2.2) follow
from this.

Now, from ρ(δz, δw) = supn∈N ρ(δzn , δwn ), we have

GP(δz) =
⋃

0<r<1

{δw | ρ(δzn , δwn ) < r , for all n}.

The conclusion trivially holds. �
Notice that if the algebra is H∞(Bc0) and the vectors z, w belong to the open unit

ball B�∞ , equation (2.1) coincides with equation (6.1) of [9, Theorem 6.6]. The next
example illustrates how Theorem 2.4 can be used.

Example 2.5 Consider the following points in the sphere of �∞ : z = (1 − 1
n )n, w =

(1− 1
n2

)n, and u = (1− 1
2n )n . Then δz and δw are in different Gleason parts, while δz

and δu are in the same part.
To see this, observe that

ρ(δz, δw) = sup
n∈N

ρ(δzn , δwn ) = sup
n∈N

∣
∣
∣
∣

zn − wn

1 − znwn

∣
∣
∣
∣
= sup

n∈N

∣
∣
∣
∣

n − n2

n2 + n − 1

∣
∣
∣
∣
= 1,

which shows the first assertion. Similarly,

ρ(δz, δu) = sup
n∈N

ρ(δzn , δun ) = sup
n∈N

∣
∣
∣
∣

zn − un
1 − znun

∣
∣
∣
∣
= sup

n∈N
n

3n − 1
= 1

2
.

Thus, δz and δu belong to the same Gleason part.

In order to give a more descriptive insight of the size of the Gleason parts, let us
introduce some notation. Given z = (zn) ∈ B�∞ , let N1 be the (possibly empty) set
N1 = {n ∈ N | |zn| = 1}. Now, N \N1 can be split into two disjoint sets N2 ∪N3 such
that

sup
n∈N2

|zn| < 1 and sup
n∈N3

|zn| = 1.

Note that N2 and N3 could be empty and that they are not uniquely determined. For
instance, if N3 is infinite and N2 is finite, we may redefine N3 as the union of N3 and
N2 and redefine N2 to be empty. Also, N3 cannot be finite.
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In this way we write N as a disjoint union satisfying the above conditions: N =
N1 ∪ N2 ∪ N3 and, therefore, the Gleason part containing δz satisfies:

GP(δz) =
{

δw | wn = zn if n ∈ N1, sup
n∈N2

|wn| < 1 and sup
n∈N3

∣
∣
∣
∣

zn − wn

1 − znwn

∣
∣
∣
∣
< 1

}

.

Now, taking into account all the possibilities for the sets N1, N2 and N3 we obtain a
more specific description of the different Gleason parts.

Corollary 2.6 Given z ∈ B�∞ and N1, N2, N3 defined as above, the Gleason part
GP(δz) satisfies one of the following:

(i) If N = N2 then z ∈ B�∞ and GP(δz) = GP(δ0) = {δw | w ∈ B�∞}. This
produces the identification GP(δz) ≈ B�∞ .

(ii) If N = N1 then z = (zn) ∈ T
N. So, GP(δz) = {δz}.

(iii) If N3 = ∅ and N1, N2 �= ∅ then GP(δz) = {δw | wn = zn if n ∈
N1 and supn∈N2

|wn| < 1 }. So,
• if #(N2) = k then GP(δz) ≈ D

k ,
• if N2 is infinite then, GP(δz) ≈ B�∞ .

Both identifications are isometries with respect to the Gleason metric.
(iv) If N3 is infinite and N2 = ∅, then GP(δz) contains D

k for every k ∈ N and
this inclusion is an isometry for the Gleason metric. There is also a continuous
injection of B�∞ into GP(δz).

(v) If both N2 and N3 are infinite, then GP(δz) contains an isometric copy of B�∞ ,
for the Gleason metric.

Proof The results concerning isometries follow fromLemma 2.3 and Theorem 2.4.We
only have to show the continuous injection of B�∞ in item (iv). If wewriteN3 = {nk}k ,
for each k there exists rk > 0 such that whenever |znk − wnk | < rk we have wnk ∈ D

and
∣
∣
∣
∣

znk − wnk

1 − znkwnk

∣
∣
∣
∣
<

1

2
.

Then, denotingCnk = rkD andCn = {0} for n /∈ N3 we obtain that ifw ∈ z+∏∞
n=1 Cn

then δw ∈ GP(δz). Since it is clear how to inject B�∞ onto the set z + ∏∞
n=1 Cn , we

derive the injection of B�∞ into GP(δz). �

3 Gleason parts forM(H∞(Bc0))

Some of our knowledge about the Gleason parts of M(Au(BX )) passes to
M(H∞(BX )) if we consider the restriction mapping
ϒu : M(H∞(BX )) → M(Au(BX )). With obvious notation, it is clear that for any
ϕ,ψ ∈ M(H∞(BX )),

ρ(ϕ,ψ) ≥ ρu(ϒu(ϕ),ϒu(ψ)).
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Therefore, ifGPAu (ϒu(ϕ)) �= GPAu (ϒu(ψ))wealso haveGPH∞(ϕ) �= GPH∞(ψ).

Remark 3.1 Let X = c0 and consider z, w ∈ S�∞ such that GPAu (δz) �= GPAu (δw).
Then, for any ϕ ∈ Mz(H∞(Bc0)) and ψ ∈ Mw(H∞(Bc0)), as ϒu(ϕ) = δz and
ϒu(ψ) = δw, we also haveGPH∞(ϕ) �= GPH∞(ψ). In particular, if z ∈ B�∞ belongs
to the distinguished boundary T

N, every ϕ ∈ Mz(H∞(Bc0)) satisfies GPH∞(ϕ) ⊂
Mz(H∞(Bc0)). That is, the Gleason part of ϕ is contained in the fiber over z.

The following is somehow a counterpart to the above remark.

Proposition 3.2 Let z, w ∈ S�∞ be such thatGPAu (δz) = GPAu (δw). Then there exist
ϕ ∈ Mz(H∞(Bc0)) and ψ ∈ Mw(H∞(Bc0)) satisfying GPH∞(ϕ) = GPH∞(ψ).

Proof Fix real numbers (rk), with |rk | < 1 and rk ↗ 1. Consider the sequences in
B�∞ :

xk = rk z → z and yk = rkw → w.

Now, as M(H∞(Bc0)) is weak-star compact, both (δxk ) and (δyk ) admit weak-star
convergent subnets (δxk(α) )α , (δyk(α) )α inM(H∞(Bc0)). Say

δxk(α)−→ϕ; δyk(α)−→ψ.

It is clear that ϕ ∈ Mz(H∞(Bc0)) and ψ ∈ Mw(H∞(Bc0)). Now, as GPAu (δz) =
GPAu (δw), by Theorem 2.4 we have

C = sup
n

‖δzn − δwn‖M(Au(D)) = ‖δz − δw‖M(Au(Bc0 )) < 2.

Then, given f ∈ H∞(Bc0), ‖ f ‖ ≤ 1, we can find α0 so that for any α ≥ α0,

∣
∣δxk(α) ( f ) − ϕ( f )

∣
∣ <

2 − C

4
and

∣
∣
∣δyk(α) ( f ) − ψ( f )

∣
∣
∣ <

2 − C

4
.

Therefore,

|ϕ( f ) − ψ( f )| ≤ 2 − C

2
+

∣
∣
∣δxk(α) ( f ) − δyk(α) ( f )

∣
∣
∣

≤ 2 − C

2
+

∥
∥
∥δxk(α) − δyk(α)

∥
∥
∥M(H∞(Bc0 ))

= 2 − C

2
+ sup

n

∥
∥
∥δ

xk(α)
n

− δ
yk(α)
n

∥
∥
∥ ,

where the last equality, which is a version of the statement of Theorem 2.4 for the
spectrum M(H∞(Bc0)), appears in the proof of [9, Theorem 6.5]. Now, using the
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pseudo-hyperbolic distance for the unit disc D and the Schwarz–Pick theorem applied
to the function f (z) = rk(α)z, for each fixed n such that zn �= wn we have

ρ(δ
xk(α)
n

, δ
yk(α)
n

) =
∣
∣
∣
∣
∣

xk(α)
n − yk(α)

n

1 − xk(α)
n yk(α)

n

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

rk(α)(zn − wn)

1 − r2k(α)znwn

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

zn − wn

1 − znwn

∣
∣
∣
∣
≤ ρu(δz, δw).

Then, by (1.1)
∥
∥
∥δxk(α) − δyk(α)

∥
∥
∥M(H∞(Bc0 ))

≤ ‖δz − δw‖M(Au(Bc0 )) = C .

Finally, |ϕ( f ) − ψ( f )| ≤ 2−C
2 +C = 2+C

2 , for any f ∈ H∞(Bc0) with ‖ f ‖ ≤ 1.
Therefore, ‖ϕ − ψ‖M(H∞(Bc0 )) ≤ 2+C

2 < 2 and the proof is complete. �
We next prove a kind of extension of the previous proposition. In [4, Lemma 2.9] it

is shown that forw ∈ B�∞ and b ∈ D the fibers overw and (b, w) are homeomorphic.
To recall the homeomorphism let us consider�b : Bc0 → Bc0 given by�b(z) = (b, z)
and let us denote by S : Bc0 → Bc0 , the shift mapping S(z) = (z2, z3, . . . ). Now, the
homomorphism between the fibers is given by

Rb : Mw → M(b,w)

ϕ �→ ( f ∈ H∞(Bc0) �→ ϕ( f ◦ �b)).

Since both �b and S map the unit ball into the unit ball and S ◦ �b = I d it is easy
to see that Rb is an isometry for the Gleason metric. Therefore, the fiber over w and
the fiber over (b, w) (for anyw ∈ B�∞) intersect the same “number” of Gleason parts.

From Remark 3.1 we know that if z ∈ T
N, then every ϕ ∈ Mz(H∞(Bc0)) satisfies

that the Gleason part of ϕ is contained in the fiber over z. The next proposition will
show us not only that this does not hold for the fibers over points outside T

N, but also
that any Gleason part outside T

N must have elements from different fibers (in fact, at
least from a disc of fibers).

Proposition 3.3 Given b ∈ D, there exists rb > 0 such that if |c − b| < rb then, for
all ϕ ∈ M(H∞(Bc0)), Rb(ϕ) and Rc(ϕ) are in the same Gleason part.

Proof By the Cauchy integral formula, BH∞(D) is an equicontinuous set of functions.
Therefore, there exists rb > 0 such that, if |c−b| < rb then c ∈ D and |g(b)−g(c)| <

1, for all g ∈ BH∞(D).
Hence, for f ∈ H∞(Bc0) with ‖ f ‖ ≤ 1 we have

| f (b, z) − f (c, z)| < 1, if |c − b| < rb, z ∈ Bc0 .

Therefore, for every ϕ ∈ M(H∞(Bc0)),
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‖Rb(ϕ) − Rc(ϕ)‖ = sup
‖ f ‖≤1

|Rb(ϕ)( f ) − Rc(ϕ)( f )|
= sup

‖ f ‖≤1
|ϕ( f ◦ �b − f ◦ �c)|

≤ sup
‖ f ‖≤1

‖ f ◦ �b − f ◦ �c‖
= sup

‖ f ‖≤1
sup
z∈Bc0

| f (b, z) − f (c, z)| ≤ 1.

�
It is clear that the previous result is also valid between the fibers over w and over

(w1, b, w2, . . . ) or (w1, w2, b, w3, . . . ) and so on. That means that the Gleason part
of any morphism in the fiber over a point outside T

N, must have elements from other
fibers. In particular, there cannot be singleton Gleason parts outside the fibers over the
points in T

N.
Thus far, the above results show that in M(H∞(Bc0)) there are Gleason parts

intersecting different fibers (Propositions 3.2 and 3.3) and there are Gleason parts
completely contained in a fiber (Remark 3.1). These results do not provide information
on the size of the Gleason parts. In order to understand this feature a usual tool is the
following result whose statement covers several versions appearing for instance in
[15, Lemma 1.1, p. 393], [17, Lemma 2.1] and [21, p. 162].

Proposition 3.4 Let X ,Y be Banach spaces and �X ⊂ X ,�Y ⊂ Y be open convex
subsets. Let A be a uniform algebra of analytic functions defined on �X . Suppose
that � : �Y → M(A) is an analytic inclusion. Then �(�Y ) is contained in only one
Gleason part.

Remark 3.5 Using [4] and [9] it was recently proved (independently) in [7] and in [11]
that for each z ∈ B�∞ the fiber over z contains an analytic copy of B�∞ . Moreover,
this injection is a Gleason isometry. Even by the previous proposition or simply using
the Gleason isometry it follows that each of these copies of B�∞ should be in a single
Gleason part. Hence, for every z ∈ B�∞ , there is a thick intersection of the fiber over
z with a Gleason part.

Recall that given a compact set K and a uniform algebra A contained in C(K ) a
point x ∈ K is called a strong boundary point forA if for every neighborhood V of x
there exists f ∈ A such that ‖ f ‖ = f (x) = 1 and | f (y)| < 1 if y ∈ K \ V . We see
in the next result that in the fiber over each z ∈ T

N there is a strong boundary point.
Since the Gleason part of a strong boundary point is just a singleton set, by the above
remark, we derive that the fiber over any z ∈ T

N intersects a thick Gleason part and
also a singleton Gleason part.

Proposition 3.6 IfS is the set of strong boundary points ofM(H∞(Bc0)) thenπ(S) =
T
N.

Proof Denoting by SB the Shilov boundary of M(H∞(Bc0)), we have that S ⊂ SB
(see, e.g., [21, Corollary 7.24]) and thus π(S) ⊂ π(SB). Therefore, in order to prove
π(S) = T

N it is enough to see π(SB) ⊂ T
N and T

N ⊂ π(S).
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To prove the first inclusion, for each n ∈ N, let us consider the map jn : B�∞ → D

given by jn(z) = zn . Then, Pn = jn ◦ π is a weak-star continuous mapping from
M(H∞(Bc0)) into D.

Given a ∈ B�∞ \ T
N, we want to show that a /∈ π(SB). Since a /∈ T

N, there is n
such that |an| < 1. The setCn = D\D(an,

1−|an |
2 ) is a closed subset ofC, so P−1

n (Cn)

is weak-star closed inM(H∞(Bc0)). Also, sinceCn contains spheres of radius r , with
r approaching to 1, for each f ∈ H∞(Bc0) we should have

sup
z∈Bc0

| f (z)| = sup
ϕ∈P−1

n (Cn)

|ϕ( f )|.

Hence, P−1
n (Cn) is a boundary, which implies that SB ⊂ P−1

n (Cn). Thus, π(SB) ⊂
π(P−1

n (Cn)). Since a /∈ π(P−1
n (Cn)), we obtain that a /∈ π(SB).

For the second inclusion, let a = (an) ∈ T
N be given by an = eiθn , for all n. As

( e
−iθn

2n ) ∈ �1 its associated function

x∗(x) =
∞
∑

n=1

e−iθn

2n
xn

belongs to c∗
0. Hence f (x) = 1+ x∗(x) is holomorphic on c0, bounded and uniformly

continuous when restricted to B�∞ . Observe that

| f̃ (a)| = 2; while | f̃ (z)| < 2, for all z ∈ B�∞, z �= a.

Associating f with itsGelfand transform f̂ andnoting that f̂ attains its normat a strong
boundary point [21, Theorem 7.21], there is ϕ ∈ S such that | f̂ (ϕ)| = |ϕ( f )| = 2.
Finally

ϕ( f ) = ϕ(1) + ϕ(x∗) = 1 + x∗(π(ϕ)) = f̃ (π(ϕ)).

Therefore, π(ϕ) = a, and so a ∈ π(S). �
Up to now our study about the relationships between fibers and Gleason parts

gives information about in which fibers there are singleton Gleason parts, which fibers
intersect thick Gleason parts and which Gleason parts contain elements of different
fibers. To complete this picturewenowwonder about howmanyGleasonparts intersect
a particular fiber. Should it always be more than one?

With respect to this question note that we have already seen that in the fiber over
any z ∈ T

N there is a singleton Gleason part and also a copy of B�∞ . So, at least two
Gleason parts are inside each of these fibers. By translations through mappings Rb (as
in Proposition 3.3 and the subsequent comment) we also obtain that there are at least
two Gleason parts intersecting the fiber over z for each z ∈ S�∞ with all but finitely
many coordinates of modulus 1.

The following results show that the fiber over any z ∈ B�∞ intersects 2c Gleason
parts. First, relying on the proof of [9, Theorem 5.1] (see also [9, Corollary 5.2]) we
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obtain the desired result for the fiber over 0. For our purposes, we use the construction
and notation given in [9].

Theorem 3.7 Let X be an infinite dimensional Banach space. Then there is an embed-
ding � : (β(N) \ N) × D → M0 that is analytic on each slice {θ} × D and satisfies:

(a) �(θ, λ) /∈ GP(δ0) for each (θ, λ).
(b) GP(�(θ, λ)) ∩ GP(�(θ̃, λ̃)) = ∅ for each θ, θ̃ ∈ β(N) \ N with θ �= θ̃ and any

λ, λ̃ ∈ D.

Proof The existence of the analytic embedding � : (β(N) \ N) × D → M0 is given
in [9, Theorem 5.1]. Below, we summarize the main ingredients used in its construc-
tion.

• There exists a sequence (zk) ⊂ BX∗∗ such that ‖zk‖ < ‖zk+1‖ and ‖zk‖ is con-
vergent to 1.

• The sequence of norms (‖zk‖) increases so rapidly that there exists an increasing
sequence (rk), such that 0 < rk < ‖zk‖ and

∑
(1 − rk) is finite.

• For a fixed sequence (ak) so that 0 < ak < 1 and (ak) ∈ �1, there exists (Lk) ⊂ X∗
such that ‖Lk‖ < 1 and

· Lk(zk) = rk , for all k,
· L j (zk) = 0, 1 < k < j ,
· |L j (zk)| < a j , for all k > j .

• There exists 0 < r < 1 such that for all k, if wk : D → X is defined as wk(λ) =
( rk−λ
1−rk λ

) zk
rk
, then ‖wk(λ)‖ < 1 for all |λ| < r .

• The Blaschke product G : BX∗∗ → C, given by G(z) = ∏∞
j=1

r j−L j (z)
1−r j L j (z)

belongs

toH∞(BX∗∗) and |G(z)| < 1 if ‖z‖ < 1.
• For |λ| < r/2 and each k there exists a unique ξk(λ) such that |ξk(λ)| < r and

G(wk(ξk(λ))) = λ for all |λ| < r/2.
• For every k the function zk(λ) : = wk(ξk(λ)) for |λ| < r/2 is a multiple of zk ,
depends analytically on λ and satisfies ‖zk(λ)‖ < 1 if |λ| < r/2 with zk(0) = zk .

Note that replacing D by D = {λ ∈ C | |λ| < r/2}, it is enough to show the
result for β(N) \ N × D. The function � : N × D → M defined by �(k, λ) = δzk (λ)

extends to a map � : β(N) × D → M which is continuous on β(N) for each fixed λ.
Moreover, by [9, Theorem 5.1], we know that �(β(N) \ N × D) lies in the fiber over
0,M0.

Now, let us prove that (a) holds. As � is analytic on each slice, to show that
�(θ, λ) /∈ GP(δ0) for each (θ, λ) it is enough to see that �(θ, 0) /∈ GP(δ0), for any
θ . Given N ∈ N, consider fN ∈ H∞(BX∗∗) defined by

fN (z):=
∞
∏

j>N

r j − L j (z)

1 − r j L j (z)
.

Note that the restriction of fN to BX (whichwe still denote by fN ) belongs toH∞(BX )

and the canonical extension to BX∗∗ of this restriction coincides with the original
function.
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Then, δ0( fN ) = ∏

j>N r j → 1 as N → ∞. On the other hand, as �(k, 0) = δzk , for
k > N ,

�(k, 0)( fN ) =
∞
∏

j>N

r j − L j (zk)

1 − r j L j (zk)
= 0.

Now, take θ ∈ β(N) \ N. Then, there is a net ( j(α)) ⊂ N, such that θ = limα j(α).
Thus,

�(θ, 0)( fN ) = lim
α

�( j(α), 0)( fN ) = 0.

Therefore,

ρ(δ0, �(θ, 0)) ≥ sup
N

{|δ0( fN )|} = sup
N

{ ∏

j>Nr j } = 1,

which shows that �(θ, 0) /∈ GP(δ0).
To prove (b) let us see that if θ �= θ̃ then GP(�(θ, D)) ∩ GP(�(θ̃, D)) = ∅.

Indeed, for θ �= θ̃ there exists an infinite set J ⊂ N such that N \ J is also infinite and
θ ∈ { j : j ∈ J }, θ̃ ∈ { j : j ∈ N \ J }.

Here, for N ∈ N consider f(J ,N ) ∈ H∞(BX∗∗) given by

f(J ,N )(z):=
∏

j∈J
j>N

r j − L j (z)

1 − r j L j (z)
.

Then, ‖ f(J ,N )‖ ≤ 1 and f(J ,N )(zk) = 0 for all k ∈ J , k > N . Hence, as before, we
obtain that �(θ, 0)( f(J ,N )) = 0.

On the other hand, θ̃ = limα̃ k(α̃). For these indexes k(α̃) /∈ J with k(α̃) > N , the
corresponding factor does not appear in f(J ,N ) and

�(k(α̃), 0)( f(J ,N )) =
∏

j∈J
N< j<k(α̃)

r j − L j (zk(α̃))

1 − r j L j (zk(α̃))
·

∏

j∈J
j>k(α̃)

r j .

Notice that
∣
∣
∣
r j−L j (zk(α̃))

1−r j L j (zk(α̃))

∣
∣
∣ >

r j−a j
1+r j a j

, for k(α̃) > j . By the inequality

1 − r j−a j
1+r j a j

< (1 − r j ) + 2a j , the series
∑

j≥1(1 − r j−a j
1+r j a j

) converges, implying

that the infinite product
∏

j≥1
r j−a j
1+r j a j

is convergent as well as the infinite product over
{ j ∈ J }.

Now, given 0 < ε < 1 we can find k0 ∈ N such that for all k ≥ k0,

∏

j∈J
j>k

r j > 1 − ε and
∏

j∈J
j>k

r j − a j

1 + r j a j
> 1 − ε.
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Then, for N > k0 and α̃ such that k(α̃) > k0, we have

∏

j∈J
N< j<k(α̃)

∣
∣
∣

r j − L j (zk(α̃))

1 − r j L j (zk(α̃))

∣
∣
∣ >

∏

j∈J
N< j<k(α̃)

r j − a j

1 + r j a j
>

∏

j∈J
j>N

r j − a j

1 + r j a j
> 1 − ε.

Hence,

|�(k(α̃), 0)( f(J ,N ))| > (1 − ε)2,

and |�(θ̃, 0)( f(J ,N ))| ≥ (1 − ε)2. Finally, for any 0 < ε < 1

ρ(�(θ, 0)),�(θ̃ , 0)) ≥ sup
N

{|�(θ̃, 0)( f(J ,N ))|} ≥ (1 − ε)2,

and the result follows. �
Next,wewill see that there is a bijective biholomorphicmapping from B�∞ into B�∞

which is an isometry for the Gleason metric and transfers each fiber over an interior
point to a different fiber. We use this fact to extend the conclusions in Theorem 3.7 to
the fiber Mz(H∞(Bc0)) for any z ∈ B�∞ .

Lemma 3.8 Let α ∈ D and let ηα : D → D be the Moebius transformation,

ηα(λ) = α − λ

1 − αλ
.

Given |α| ≤ s < 1, for any λ ∈ D with |λ| ≤ s the following inequality holds:

|ηα(λ)| ≤ 2s

1 + s2
.

Proof Notice that

1 −
∣
∣
∣

α − λ

1 − αλ

∣
∣
∣

2 = |1 − αλ|2 − |α − λ|2
|1 − αλ|2 = (1 − |λ|2)(1 − |α|2)

|1 − αλ|2 .

Hence, the result follows for any |λ| ≤ s since

1 −
∣
∣
∣

α − λ

1 − αλ

∣
∣
∣

2 ≥
(1 − s2

1 + s2

)2
and

√

1 −
(1 − s2

1 + s2

)2 = 2s

1 + s2
.

�
Proposition 3.9 Fix a = (an) ∈ B�∞ . The mapping �a : B�∞ → B�∞ , defined by

�a(z) = (ηan (zn))
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is bijective and biholomorphic. Moreover, for any x∗ ∈ �1, the function x∗ ◦ �a is
uniformly continuous.

Proof First, let us check that �a(B�∞) ⊂ B�∞ . Fix z = (zn) ∈ B�∞ and take s =
max{‖a‖, ‖z‖} < 1. Using Lemma 3.8 we obtain

‖�a(z)‖ = sup
n

|ηan (zn)| ≤ 2s

1 + s2
< 1.

To check that �a is holomorphic, by Dunford’s theorem it is enough to check that
�a is weak-star holomorphic, i.e. that x∗ ◦ �a ∈ H(B�∞) for every x∗ = (bn) ∈ �1.
Notice that x∗ ◦ �a(z) = ∑∞

n=1 bnηan (zn), and

|bnηan (zn)| ≤ |bn|,

for every z ∈ B�∞ and every n. By the Weierstrass M-test, the series
∑∞

n=1 bnηan (zn)
converges absolutely and uniformly on B�∞ and as each z �→ ηan (zn) belongs to
Au(B�∞) we have actually proved that x∗ ◦ �a ∈ Au(B�∞), for every x∗ ∈ �1. Thus
�a ∈ H(B�∞, B�∞).

Finally as �a ◦ �a(z) = z for every z ∈ B�∞ , we obtain that �a has inverse
�−1

a = �a and �a is biholomorphic. �
Remark 3.10 Observe that if we consider a ∈ Bc0 and we restrict �a to z ∈ Bc0 , then
we obtain the biholomorphic mapping of Example 1.7.

Given a ∈ B�∞ the restriction of �a to Bc0 will be denoted by �a
∣
∣
c0
.

Theorem 3.11 Given a ∈ B�∞ , the mapping C�a : H∞(Bc0) → H∞(Bc0) defined by

C�a ( f ) = f̃ ◦ �a
∣
∣
c0

,

where f̃ : B�∞ → C is the canonical extension of each f ∈ H∞(Bc0), is an isometric
isomorphism of Banach algebras.

Moreover, ��a := Ct
�a

|M(H∞(Bc0 )) : M(H∞(Bc0)) → M(H∞(Bc0)), the
restriction of its transpose to M(H∞(Bc0)), is a surjective isometry for the Glea-
son metric with inverse �−1

�a
= ��a that satisfies

��a (Mz) = M�a(z),

for every z ∈ B�∞ .

Proof Clearly C�a is well-defined, ‖C�a‖ ≤ 1 and it is an algebra homomorphism.
Next we claim that given f ∈ H∞(Bc0),

˜f̃ ◦ �a
∣
∣
c0

= f̃ ◦ �a . (3.1)
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Let us observe that �∞ = C(βN) is a symmetrically regular space. Moreover, by
Lemma 3.8, if 0 < s < 1, then m = sup‖z‖≤s ‖�a(z)‖ < 1. With this in mind, by the
method of proof of [8, Corollary 2.2], we have

˜f̃ ◦ �a
∣
∣
c0

= ˜̃f ◦ ˜�a
∣
∣
c0

= f̃ ◦ ˜�a
∣
∣
c0

.

By Proposition 3.9, �a
∣
∣
c0

is w(c0, �1)-uniformly continuous on Bc0 . Hence it has a
unique extension to B�∞ that is w(�∞, �1)-uniformly continuous on B�∞ and it coin-

cides with its canonical extension ˜�a
∣
∣
c0
. On the other hand, also by Proposition 3.9,

�a is w(�∞, �1)-uniformly continuous on B�∞ and it is obviously an extension of

�a
∣
∣
c0
to B�∞ . Thus, ˜�a

∣
∣
c0

(z) = �a(z), for all z ∈ B�∞ .
From this equality we derive that C�a ◦ C�a ( f ) = f for every f ∈ H∞(Bc0).

Indeed,

C�a

(

C�a ( f )
)

(z) =
(

˜f̃ ◦ �a
∣
∣
c0

◦ �a
∣
∣
c0

)

(z) = f̃ ◦ ˜�a
∣
∣
c0

◦ �a(z) = f̃ (z) = f (z),

for every z ∈ Bc0 . As a consequenceC�a is an isomorphism of algebras. Also we have
‖ f ‖ ≤ ‖C�a‖‖C�a ( f )‖ ≤ ‖C�a ( f )‖ for every f , and therefore C�a is an isometry.

Hence its transpose Ct
�a

when restricted to M(H∞(Bc0)) is well-defined and
its range is again in M(H∞(Bc0)). Moreover, ��a ◦ ��a (ϕ) = ϕ for every
ϕ ∈ M(H∞(Bc0)). Finally, for each x∗ ∈ �1, the function x̃∗ ◦ �a

∣
∣
c0

belongs to
Au(Bc0) (aswe have already observed) and so it is a uniform limit of finite type polyno-
mials. Hence, as in the proof of Proposition 1.6, we obtain that ��a (Mz) = M�a(z),
for every z ∈ B�∞ . �

Combining this last theorem with Theorem 3.7 we obtain that for each z ∈ B�∞ ,
the fiber Mz(H∞(Bc0)) contains 2

c discs lying in different Gleason parts.

Corollary 3.12 Let z ∈ B�∞ . Then, there is an embedding of � : (β(N) \ N) × D →
Mz(H∞(Bc0)) that is analytic on each slice {θ} × D and satisfies:

(a) �(θ, λ) /∈ GP(δz) for each (θ, λ).
(b) GP(�(θ, λ)) ∩ GP(�(θ̃, λ̃)) = ∅ for each θ, θ̃ ∈ β(N) \ N with θ �= θ̃ and any

λ, λ̃ ∈ D.

Acknowledgements This work was initiated while the first and fourth authors visited the Departamento
de Matemática, Universidad de San Andrés during September of 2016. Both of them wish to thank the
hospitality they received during their visit.

References

1. Aron, R.M., Berner, P.D.: A Hahn–Banach extension theorem for analytic mappings. Bull. Soc. Math.
Fr. 106, 3–24 (1978)

2. Aron, R.M., Carando, D., Gamelin, T.W., Lassalle, S., Maestre,M.: Cluster values of analytic functions
on a Banach space. Math. Ann. 353, 293–303 (2012)

123



436 R. M. Aron et al.

3. Aron, R.M., Cole, B., Gamelin, T.W.: Spectra of algebras of analytic functions on a Banach space. J.
Reine Angew. Math. 415, 51–93 (1991)

4. Aron, R.M., Falcó, J., García, D., Maestre, M.: Analytic structure in fibers. Studia Math. 240(2),
101–121 (2018)

5. Bear, H.S.: Lectures on Gleason Parts. Lecture Notes in Math. Springer, Berlin (1970)
6. Boyd, C., Ryan, R.A.: Bounded weak continuity of homogeneous polynomials at the origin. Arch.

Math. 71(3), 211–218 (1998)
7. Choi, Y.S., Falcó, J., García, D., Jung, M., Maestre, M.: Analytic structure in fibers of H∞(Bc0 ).

(preprint)
8. Choi, Y.S., García, D., Kim, S.G., Maestre, M.: Composition, numerical range and Aron–Berner

extension. Math. Scand. 103, 97–110 (2008)
9. Cole, B., Gamelin, T.W., Johnson, W.: Analytic disks in fibers over the unit ball of a Banach space.

Mich. Math. J. 39(3), 551–569 (1992)
10. Davie, A.M., Gamelin, T.W.: A theorem on polynomial-star approximation. Proc. Am. Math. Soc.

106(2), 351–356 (1989)
11. Dimant, V., Singer, J.: Homomorphisms between algebras of holomorphic functions on the infinite

polydisk. (preprint)
12. Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer, London (1999)
13. Farmer, J.D.: Fibers over the sphere of a uniformly convexBanach space.Mich.Math. J. 45(2), 211–226

(1998)
14. Gamelin, T.W.: Uniform Algebras. Prentice-Hall Inc., Englewood Cliffs (1969)
15. Garnett, J.B.: BoundedAnalytic Functions. Graduate Texts inMathematics, vol. 236, 1st edn. Springer,

New York (2007)
16. Gorkin, P.: Gleason parts and COP. J. Funct. Anal. 83, 44–49 (1989)
17. Hoffman, K.: Bounded analytic functions and Gleason parts. Ann. Math. 86(1), 74–111 (1967)
18. König, H.: On the Gleason and Harnack metrics for uniform algebras. Proc. Am. Math. Soc. 22,

100–101 (1969)
19. Mortini, R.: Gleason Parts and Prime Ideals in H∞. Lecture Notes in Math, vol. 1573, pp. 136–138.

Springer, Berlin (1994)
20. Renaud, A.: Quelques propriétés des applications analytiques d’une boule de dimension infinie dans

une autre. Bull. Sci. Math. 2, 129–159 (1973)
21. Stout, E.L.: The Theory of Uniform Algebras. Bogden & Quigley Inc, Tarrytown-on-Hudson (1971)
22. Suárez, D.: Maximal Gleason parts for H∞. Mich. Math. J. 45(1), 55–72 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Gleason parts for algebras of holomorphic functions in infinite dimensions
	Abstract
	Introduction
	1 Background and general results
	2 Gleason parts for mathcalM(mathcalAu(Bc0))
	3 Gleason parts for mathcalM(mathcalHinfty(Bc0))
	Acknowledgements
	References




