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Abstract
In this paper, two interesting eigenvalue comparison theorems for the first non-zero
Steklov eigenvalue of the Laplacian have been established for manifolds with radial
sectional curvature bounded from above. Besides, sharper bounds for the first non-zero
eigenvalue of the Wentzell eigenvalue problem of the weighted Laplacian, which can
be seen as a natural generalization of the classical Steklov eigenvalue problem, have
been obtained.
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1 Introduction

Let (M, g) be an n-dimensional (n ≥ 2) complete Riemannian manifold with the
Riemannian metric g, and let � ⊆ M be a compact domain with boundary ∂�. The
so-called Steklov eigenvalue problem is actually to find a solution of the following
system {

�ϕ = 0 in �,
∂ϕ
∂ �η = vϕ on ∂�,

(1.1)
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where � is the Laplacian on M associated with the metric g, �η is the unit outward
normal vector field of the boundary ∂�, and v is a real number called the eigenvalue of
this problem. There are infinitely many real numbers v satisfying the system (1.1) and
can be listed increasingly as a sequence tending to the infinity. Clearly, the first Steklov
eigenvalue of the problem (1.1) is zero with the constant function as its eigenfunction.
By the variational principle, it is not difficult to get the first non-zero Steklov eigenvalue
v1(�) is characterized by

v1(�) = min∫
∂� u=0

∫
�

|∇u|2∫
∂�

u2
, (1.2)

where ∇ is the gradient operator on � ⊆ M , and u ∈ W 1,2(�), the completion of
the set of smooth functions under the Sobolev norm ‖u‖1,2 = ∫

�
u2 + ∫

�
|∇u|2.

The problem (1.1) was introduced by Steklov [25] with the physical background
as follows: the function ϕ denotes the steady state temperature on � such that the
flux on ∂� is proportional to the temperature. Since the set of eigenvalues for the
Steklov eigenvalue problem is the same as the set of eigenvalues of the well-known
Dirichlet-to-Neumann map, the problem (1.1) has important influence in the study
of conductivity and harmonic analysis, which was initially studied by Calderón [5].
Anyway, Escobar [11] showed that the study of (1.1) is also important in the problem
of conformal deformation of a Riemannian metric on manifolds with boundary.

By (1.2), it is easy to get the following Sobolev trace inequality

∫
∂�

|u − u0|2 ≤ 1

v1(�)

∫
�

|∇u|2,

where u0 is the mean value of the function u when restricted to the boundary. This
inequality makes an important role in the study of existence and regularity of solutions
of some boundary value problems.

In order to state ourmain conclusions below clearly, herewewould like to introduce
some basic notions, which have been introduced in [14,20–22] already. Besides, in the
sequel, for convenience, we will drop the integral measures for all integrals except it
is necessary.

1.1 Basic notions

As before, let (M, g) be an n-dimensional (n ≥ 2) complete Riemannian manifold
with the metric g, and ∇ be the gradient operator. For a point p ∈ M , one can set up
a geodesic polar coordinates (t, ξ) around this point p, where ξ ∈ Sn−1

p ⊆ TpM is a
unit vector of the unit sphere Sn−1

p with center p in the tangent space TpM . Let Dp,
a star-shaped set of TpM , and dξ be defined by

Dp =
{
tξ | 0 ≤ t < dξ , ξ ∈ Sn−1

p

}
,
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and dξ = dξ (p) := sup{t > 0| γξ (s) := expp(sξ) is the unique minimal geodesic
joining p and γξ (t)} respectively. Then expp : Dp → M\Cut(p) gives a diffeomor-
phism from Dp onto the open set M\Cut(p), with Cut(p) the cut locus of p. For
ζ ∈ ξ⊥, one can define the path of linear transformations A(t, ξ) : ξ⊥ → ξ⊥ by

A(t, ξ)ζ = (τt )
−1Y (t),

with ξ⊥ the orthogonal complement of {Rξ} in TpM , where τt : TpM → Texpp(tξ)M
is the parallel translation along the geodesic γξ (t) with γ ′(0) = ξ , and Y (t) is the
Jacobi field along γξ satisfying Y (0) = 0, (�t Y )(0) = ζ . Moreover, set

R(t)ζ = (τt )
−1R(γ ′

ξ (t), τtζ )γ ′
ξ (t),

where the curvature tensor R(X ,Y )Z is defined by R(X ,Y )Z = −[∇X , ∇Y ]Z +
∇[X ,Y ]Z . Then R(t) is a self-adjoint operator on ξ⊥, whose trace is the radial Ricci
tensor

Ricγξ (t)(γ
′
ξ (t), γ

′
ξ (t)).

Clearly, the map A(t, ξ) satisfies the Jacobi equation A
′′ + RA = 0 with initial

conditions A(0, ξ) = 0, A′(0, ξ) = I(n−1)×(n−1), where I(n−1)×(n−1) represents the
(n − 1) × (n − 1) identity matrix, and by Gauss’s lemma, the Riemannian metric of
M can be expressed by

ds2(expp(tξ)) = dt2 + |A(t, ξ)dξ |2 (1.3)

on the set expp(Dp). Consider the metric components gi j (t, ξ), i, j ≥ 1, in a coordi-
nate system {t, ξa} formed byfixing an orthonormal basis {ζa, a ≥ 2} of ξ⊥ = Tξ Sn−1

p ,
and extending it to a local frame {ξa, a ≥ 2} of Sn−1

p . Define a function J > 0 on Dp

by
Jn−1 = √|g| := √

det[gi j ].
Since τt : Sn−1

p → Sn−1
γξ (t) is an isometry, we have

g
(
d(expp)tξ (tζa), d(expp)tξ (tζb)

) = g (A(t, ξ)(ζa),A(t, ξ)(ζb)) ,

and

√|g| = detA(t, ξ).

So, by (1.3), the volume V (B(p, r)) of the geodesic ball B(p, r) on M is given by

V (B(p, r)) =
∫
Sn−1
p

∫ min{r ,dξ }

0

√|g|dtdσ =
∫
Sn−1
p

(∫ min{r ,dξ }

0
det(A(t, ξ))dt

)
dσ,

(1.4)
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where dσ denotes the (n−1)-dimensional volume element on Sn−1 ≡ Sn−1
p ⊆ TpM .

The injectivity radius inj(p) at p satisfies

inj(p) := d(p,Cut(p)) = min
ξ

dξ .

In general, we have B(p, inj(p)) ⊆ M\Cut(p). Besides, for r < inj(p), by (1.4) we
can obtain

V (B(p, r)) =
∫ r

0

∫
Sn−1
p

det(A(t, ξ))dσdt .

Denote by r(x) = d(x, p) the intrinsic distance to the point p ∈ M . Then, by the
definition of a non-zero tangent vector “radial” to a prescribed point on a manifold
given in the first page of [18], we know that for x ∈ M\(Cut(p) ∪ p) the unit vector
field

vx := ∇r(x)

is the radial unit tangent vector at x . This is because for any ξ ∈ Sn−1
p and t0 > 0, we

have ∇r(γξ (t0)) = γ ′
ξ (t0) when the point γξ (t0) = expp(t0ξ) is away from the cut

locus of p.
We need the following concepts.

Definition 1.1 ([14,20,21]) Given a continuous function k : [0, l) → R, we say that
M has a radial Ricci curvature lower bound (n−1)k along any unit-speed minimizing
geodesic starting from a point p ∈ M if

Ric(vx , vx ) ≥ (n − 1)k(r(x)), ∀x ∈ M\ (Cut(p) ∪ {p}) , (1.5)

where Ric is the Ricci curvature of M .

Definition 1.2 ([14,20,21]) Given a continuous function k : [0, l) → R, we say that
M has a radial sectional curvature upper bound k along any unit-speed minimizing
geodesic starting from a point p ∈ M if

K (vx , V ) ≤ k(r(x)), ∀x ∈ M\ (Cut(p) ∪ {p}) , (1.6)

where V ⊥ vx , V ∈ Sn−1
x ⊆ TxM , and K (vx , V ) is the sectional curvature of the

plane spanned by vx and V .

Remark 1.3 Since r(x) = d(p, x) = t and d
dt |x = ∇r(x) = vx , we know that the

inequalities (1.5) and (1.6) become Ric( d
dt ,

d
dt ) ≥ (n − 1)k(t) andK ( d

dt , V ) ≤ k(t),
respectively. This fact has been pointed out in [14, Remark 2.4] or [20, Remark 2.1.5].
Besides, for convenience, if a manifold satisfies (1.5) [resp., (1.6)], then we say that
M has a radial Ricci curvature lower bound w.r.t. a point p (resp., a radial sectional
curvature upper bound w.r.t. a point p), that is to say, its radial Ricci curvature is
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bounded from below w.r.t. p (resp., radial sectional curvature is bounded from above
w.r.t. p). As also pointed out in [14, page 706] or [21, page 378], for a given complete
Riemannian n-manifold (M, g), one can define

k−(p, t) := min
{ξ |(t,ξ)∈Dp}

Ricγξ (t)

(
d
dt |expp(tξ),

d
dt |expp(tξ)

)
n − 1

, 0 ≤ t < l(p) := max
ξ

dξ ,

and

k+(p, t) := max
{(ξ,V )|γ ′

ξ (t)⊥V ,|V |=1}
Kγξ (t)

(
d

dt

∣∣∣
expp(tξ)

, V

)
, 0 ≤ t < inj(p),

where Dp := {(t, ξ) ∈ [0,∞) × Sn−1
p |0 ≤ t < dξ } with closure Dp = {(t, ξ) ∈

[0,∞) × Sn−1
p |0 ≤ t ≤ dξ }, and, by applying the uniform continuity of continuous

functions on compact sets, for a bounded domain � ⊆ M , one can always find
optimally continuous bounds k±(p, t) for the radial sectional and Ricci curvatures
w.r.t. some point p ∈ �.

We need the following notion of spherically symmetric manifolds.

Definition 1.4 ([14,20,21]) A domain � = expp([0, l) × Sn−1
p ) ⊂ M\Cut(p), with

l < inj(p), is said to be spherically symmetric with respect to a point p ∈ �, if the
matrix A(t, ξ) satisfies A(t, ξ) = f (t)I(n−1)×(n−1), for a function f ∈ C2([0, l]),
l ∈ (0,∞] with f (0) = 0, f ′(0) = 1, f |(0, l) > 0.

By (1.3), on the set � given in Definition 1.4 the Riemannian metric of M can be
expressed by

ds2(expp(tξ)) = dt2 + f 2(t)|dξ |2, ξ ∈ Sn−1
p , 0 ≤ t < l, (1.7)

with |dξ |2 the round metric on the unit sphere S
n−1 ⊆ R

n . Spherically symmetric
manifolds were named as generalized space forms by Katz and Kondo [18], and a
standard model for such manifolds is given by the quotient manifold of the warped
product [0, l) × f S

n−1 equippedwith themetric (1.7), and all pairs (0, ξ) are identified
with a single point p, where f satisfies the conditions in Definition 1.4, and is called
the warping function. A space form with constant curvature k is also a spherically
symmetric manifold, and in this special case we have
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f (t) =

⎧⎪⎨
⎪⎩

sin
√
kt√
k

, l = π√
k

k > 0,

t, l = +∞ k = 0,
sinh

√−kt√−k
, l = +∞ k < 0.

1.2 The statement of main conclusions

In [14], Freitas, Mao and Salavessa proved that for n-dimensional (n ≥ 2) complete
Riemannian manifold (M, g) having a radial Ricci curvature lower bound (n−1)k(t)
w.r.t. a point p ∈ M , the first Dirichlet eigenvalue λ1(B(p, r)) of the Laplacian on
B(p, r) satisfies

λ1(B(p, r)) ≤ λ1(Bn(p
−, r)), (1.8)

where λ1(Bn(p−, r)) is the first Dirichlet eigenvalue of the Laplacian on the geodesic
ball Bn(p−, r), with the center p− and radius r , of the spherically symmetric n-
manifold M− = [0, l) × f S

n−1 with the base point p− and the warping function f
determined by

{
f ′′(t) + k(t) f (t) = 0 on (0, l),
f (0) = 0, f ′(0) = 1.

(1.9)

Equality in (1.8) holds if and only if B(p, r) is isometric to Bn(p−, r). They also
proved that if M has a radial sectional curvature upper bound (n − 1)k(t) w.r.t. a
point p ∈ M , then for r < inj(p),

λ1(B(p, r)) ≥ λ1(Bn(p
+, r)) (1.10)

holds, where λ1(Bn(p+, r)) is the first Dirichlet eigenvalue of the Laplacian on the
geodesic ballBn(p+, r), with the center p+ and radius r , of the spherically symmetric
n-manifold M+ = [0, l) × f S

n−1 with the base point p+ and f determined by (1.9).
Equality in (1.10) holds if and only if B(p, r) is isometric toBn(p+, r). Clearly, the
model spaces, i.e., spherically symmetric manifolds, are determined by the curvature
bounds. These eigenvalue estimates improve the classical Cheng’s eigenvalue com-
parison theorems [6,7], whose model spaces are space forms of constant curvature, a
lot in the spectral geometry. Besides, Freitas, Mao and Salavessa [14, Sect. 6] have
used interesting examples (i.e., torus, elliptic paraboloid, saddle) to intuitively and
numerically show that their comparisons are better than those of Cheng’s. The eigen-
value comparison (1.8) has been already extended to the case of nonlinear p-Laplacian
(1 < p < ∞)—see Mao [21, Theorem 3.2] for the detail.

It is interesting to know whether the system (1.9) has a long-time existence solution
(i.e., a positive solution on (0,∞) and in this case l = ∞) or not. This has close
relationship with the oscillation theory of ordinary differential equations (ODEs for
short). Clearly, by Sturm–Picone comparison theorem, one can easily get that l = ∞
if k(t) ≤ 0, while l < ∞ if k(t) ≥ α for some positive constant α > 0. Readers can
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check [20, Sect. 2.6, Chapt. 2] for the details about the general restrictions on k(t) to
get the existence or non-existence of positive solution to (1.9) on (0,∞).

By using spherically symmetric manifolds as the model spaces also, we can get
the following eigenvalue comparisons for the first non-zero Steklov eigenvalue for the
system (1.1) with � chosen as geodesic balls.

Theorem 1.5 For a given n-dimensional (n = 2, 3) complete Riemannian manifold
(M, g) having a radial sectional curvature upper bound k(t)w.r.t. p, where, as before,
t := d(p, ·) represents the distance to the point p ∈ M, and k(t) is a continuous
function w.r.t. t , we have

v1(B(p, r)) ≤ v1(Bn(p
+, r)),

where r < inj(p), andBn(p+, r) is the geodesic ball, with the center p+ and radius
r , of the spherically symmetric n-manifold M+ = [0, l) × f S

n−1 with the base point
p+ and the warping function f determined by (1.9). Equality holds if and only if
B(p, r) is isometric toBn(p+, r).

For the higher dimensional case, we have the following.

Theorem 1.6 Assume that same notations have the same meaning as in Theorem 1.5.
For a given n-dimensional (n ≥ 2) complete Riemannian manifold (M, g) having
a radial sectional curvature upper bound k(t) w.r.t. p, if the first non-zero closed
eigenvalues of the Laplacian on the boundary satisfy

λc1(∂B(p, r)) ≤ λc1(∂Bn(p
+, r)) (1.11)

with r < inj(p), then we have

v1(B(p, r)) ≤ v1(Bn(p
+, r)). (1.12)

Equality holds if and only if B(p, r) is isometric toBn(p+, r).

Remark 1.7 (1) For the purpose of letting readers understand the assumption (1.11)
clearly, here we would like to give a brief introduction to the closed eigenvalue
problem of the Laplacian. For an open, bounded, connected domain D ⊂ M ,
without boundary, on a given Riemannian n-manifold M , the so-called closed
eigenvalue problem of the Laplacian on D is actually to find a nontrivial solution
to �u + λcu = 0 in D, u ∈ W 1,2(D). It is well-known that −� only has discrete
spectrum and all the elements in the spectrum (i.e., eigenvalues) can be listed
non-decreasingly into a sequence tending to infinity, i.e., 0 = λc0(D) < λc1(D) ≤
λc2(D) ≤ λc3(D) ≤ · · · ↑ ∞. For each eigenvalue λc, the corresponding u to the
equation�u+λcu = 0 is called the eigenfunction of λc. Clearly, the eigenfunction
of λc0(D) = 0 is a constant function over D. Besides, by the variational principle,
one knows that the first non-zero closed eigenvalue λc1(D) can be characterized as
follows

λc1(D) = inf

{∫
D |∇u|2∫
D u2

∣∣∣u ∈ W 1,2(D), u �= 0,
∫
D
u = 0

}
.
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(2) The assumption (1.11) is always true for lower dimensions n = 2, 3 (see the
18th–19th pages of this article for details), so Theorem 1.5 looks much more
natural and better than Theorem 1.6.

(3) As pointed out by Escobar [13, page 145], the restraint on the injectivity radius is
necessary. In fact, Escobar constructed a geodesic ball B(p, r), with r > inj(p),
in a flat two-dimensional torus such that v1(B(p, r)) > 1

r , which is strictly bigger
than the first non-zero Steklov eigenvalue 1

r of the Euclidean 2-ball with radius
r .

(4) Escobar [12, pages 109–111] used non-simply-connected annuli as the example
to explain the fundamental difference between the Dirichlet eigenvalue problem
and the Steklov eigenvalue problem of the Laplacian, which implies that the
research experience on the Dirichlet eigenvalue problemmight not be used in the
study of the Steklov eigenvalue problem directly.

(5) Clearly, one can get Escobar’s main conclusions [13, Theorems 1 and 2] by
directly applying our Theorems 1.5 and 1.6 twice. Therefore, our conclusions
here are sharper than Escobar’s and cover them as special cases. Inspired by
examples constructed in [14,20,21], we would like to use the torus example
below to let readers realize the advantage of our comparisons here intuitively.

• Let {x, y, z}be theCartesian coordinates of theEuclidean3-spaceR3.Consider
the ring torus T given by

⎧⎨
⎩
x = (1 + ε · cos v) cos u,

y = ε · sin v,

z = (1 + ε · cos v) sin u,

with u, v ∈ [0, 2π) and 0 < ε < 1. Clearly, T can be obtained by rotating
the circle (x − 1)2 + y2 = ε2 with respect to the y-axis. Denote this circle by
C . It is not difficult to know that the Gaussian curvature of T is given by

K = cos v

ε(1 + ε · cos v)
.

Without loss of generality, we can choose ε = 1
2 , and then K = 4 cos v

2+cos v
, T is

explicitly expressed as

(
1 −

√
x2 + z2

)2 + y2 = 1

4
.

As shown clearly in [20, Example 2.5.1, Sect. 2.5, Chapt. 2] (or using the
method explained in [21, Example 4.4] for finding sharp lower bounds for the
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Gaussian curvature),1 for the geodesic ball B(p, r) onT , where 0 ≤ r < π
2 ,

2

one can get the following facts:
Case 1. If p is one of those points which are farthest from the y-axis, that is, p
locates on the circleC1 in the xoz-plane defined by x2+z2 = 9/4.Without loss
of generality, we can choose p to be the point (3/2, 0, 0), which implies that
p is also on the circle C . Clearly, the parameter v satisfies v = 0 at the point
p. In this case, the best upper bound for the Gaussian curvature what we can
choose is K 1

upper = 4/3, which implies the upper bound for v1(B(p, r)) given
by Theorem 1.5 is the same with the one determined by Escobar’s eigenvalue
comparison [13, Theorem 1].
Case 2. If p is one of those points which are nearest to the y-axis, that is, p
locates on the circle C2 in the xoz-plane defined by x2 + z2 = 1/4. Without
loss of generality, we can choose p to be the point (1/2, 0, 0), which implies
p ∈ C . In this case, at p , v = π and the best upper bound for the Gaussian
curvature what we can choose is K 2

upper = 4 cos(π−2t)
2+cos(π−2t) , 0 ≤ t < π

2 , where
t := d(p, ·) is the Riemannian distance to p. Moreover, the model manifold
is M+

2 := [0, l) × f2(t)S
1 with the base point p+

2 , where f2(t) is the solution
to the system (1.9) with k(t) = K 2

upper . By Theorem 1.5 and Fact 2 in Sect. 2,
we have

v1(B(p, r)) ≤ v1(B2(p
+
2 , r)) = 1

f2(r)
, for any 0 < r <

π

2
. (1.13)

However, if one wants to use Escobar’s conclusion [13, Theorem 1], the
best constant upper bound of the Gaussian curvature should be K̃ 2

upper =
4 cos 2r

−2+cos 2r := k0 since the function
4 cos(π−2t)
2+cos(π−2t) is increasing on [0, r), and, in

this setting, the model manifold is S2(k0) if k0 > 0, i.e., π
4 < r < π

2 ; R
2 if

k0 = 0, i.e., k0 = π
4 ; H

2(k0) if k0 < 0, i.e., 0 ≤ r < π
4 , which is actually

the 2-dimensional space form with constant curvature k0. Since spherically
symmetric manifolds are natural generalization of space forms, which leads
to the fact that Escobar’s model space here is actually the special spherically
symmetric surface M̃+

2 := [0, l̃) × f̃2(t)S
1 (endowed with a one-point com-

pactification topology if k0 > 0), where

f̃2(t) =

⎧⎪⎪⎨
⎪⎪⎩

sin
√
k0t√
k0

, l̃ = π√
k0

, k0 > 0

t, l̃ = +∞, k0 = 0
sinh

√−k0t√−k0
, l̃ = +∞, k0 < 0

1 In the 2-dimensional case, the radial Ricci curvature and the radial sectional curvature degenerate into the
Gaussian curvature. Hence, here if one wants to use our conclusion Theorem 1.5 for a given parameterized
surface, the only thing needed is finding upper bounds for the Gaussian curvature—see Remark 1.3 for the
principle of getting optimal bounds. By Theorem 1.5, we know that the more sharper upper bounds found,
the more shaper upper bounds can be given for v1(B(p, r)).
2 This range of r is used to make sure that B(p, r) is within the cut-locus of p, and then Theorem 1.5 can
be applied directly. For the detailed reason, please check [20, Example 2.5.1, Sect. 2.5, Chapt. 2] or [21,
Example 4.4].
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is a solution to the system (1.9) with k(t) = k0 = K̃ 2
upper . Hence, by using

Escobar’s conclusion [13, Theorem 1] and Fact 2, one has

v1(B(p, r)) ≤ 1

f̃2(r)
, for any 0 < r <

π

2
. (1.14)

Since f2(t), f̃2(t) satisfy the system (1.9)with different curvature upper bounds
K 2
upper and K̃ 2

upper , by using the fact

K 2
upper < K̃ 2

upper = k0, 0 < t < r <
π

2

and the Sturm–Picone comparison theorem, we have f2(r) > f̃2(r) for any
0 < r < π

2 , i.e.,

1

f2(r)
<

1

f̃2(r)
, for any 0 < r <

π

2
,

which implies, in Case 2, our upper bound for v1(B(p, r)) given by (1.13) is
sharper than the one in (1.14) determined by Escobar’s eigenvalue comparison
[13, Theorem 1].
Case 3. If p is neither a point on the circle C1 nor a point on the circle C2.
Without loss of generality, we can choose p to be a point, which is different
from the points (3/2, 0, 0) and (1/2, 0, 0), on the circleC . Assume v = α at p
with 0 < α < π or π < α < 2π . By the symmetry of T w.r.t. the xoy-plane,
without loss of the generality, we can assume 0 < α < π . In this case, the best
upper bound for the Gaussian curvature what we can choose is

K 3
upper =

⎧⎨
⎩

4 cos(α−2t)
2+cos(α−2t) , 0 ≤ t ≤ α

2 ,

4
3 ,

α
2 < t < π

2 .

If one wants to use Escobar’s conclusion [13, Theorem 1], the best constant
upper bound of the Gaussian curvature should be

K̃ 3
upper =

⎧⎨
⎩

4 cos(α−2r)
2+cos(α−2r) , 0 ≤ t < r ≤ α

2 ,

4
3 ,

α
2 < t < r < π

2 .

Clearly, K 3
upper < K̃ 3

upper for 0 ≤ t < r ≤ α
2 , and K 3

upper = K̃ 3
upper for

α
2 < t < r < π

2 . Using a similar argument to Case 2, we know that for
0 ≤ r < π

2 , the upper bound for v1(B(p, r)) given by Theorem 1.5 is sharper
than the one determined by Escobar’s eigenvalue comparison [13, Theorem
1].
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(6) By [16, Lemma 2.1], we know that for a given complete surface �, which can be
parameterized, and a geodesic ball B(p, r), with r < inj(p), on �, the optimal
upper bound for the Gaussian curvature is actually the maximal values of the
Gaussian curvature on geodesic circlesC(p, t)with center p and radii 0 < t < r ,
and this optimal upper bound can be computed numerically. This fact tells us that
one can use any parameterized complete surface, not only the ring torus example
mentioned above, to show the advantage of Theorem 1.5 here.

Now, we would like to introduce our estimates for the first non-zero eigenvalue of
the Wentzell eigenvalue problem of the weighted Laplacian, which can be seen as a
natural generalization of the classical Steklov eigenvalue problem. However, before
that, we need to briefly mention several notions introduced by Bakry and Émery [1].

Let (N , 〈·, ·〉) be an (n + 1)-dimensional compact oriented Riemannian manifold
with smooth boundary ∂N . The triple (N , 〈·, ·〉, e−φdv) is called a metric measure
space (MMS for short), where φ ∈ C∞(N ) is a smooth function defined on N , and dv

is the volume element. As introduced by Bakry–Émery [1], the weighted Laplacian
(or the drifting Laplacian) and the K -dimensional Bakry–Émery Ricci curvature can
be defined as follows

�φ = � − 〈∇·,∇φ〉

and

RicKφ = Ric + Hessφ − dφ ⊗ dφ

K − n − 1
,

where, with the abuse of notations, � and ∇ denote the Laplace and the gradient
operators on N respectively, and Hess is the Hessian operator on N associated to the
metric 〈·, ·〉. Here K > n+1 or K = n+1 if φ is a constant function. When K = ∞,
one can defined the so-called ∞-dimensional Bakry–Émery Ricci curvature (simply,
Bakry–Émery Ricci curvature or weighted Ricci curvature) as follows

Ricφ = Ric + Hessφ.

By abuse of the notation, denote also by �η the outward unit normal vector field along
the boundary ∂N . Let i : ∂N ↪→ N be the standard inclusion. For X ,Y ∈ H (∂N ),
i.e., the set of tangent vector fields on ∂N , the second fundament form I I associated
to �η is given by 〈�η,∇XY 〉 = I I (X ,Y ), and the mean curvature H = 1

n tr I I of ∂N is
actually the average of the trace of the second fundamental form. Naturally, one can
define the so-calledweightedmean curvature of the inclusion i as Hφ = H− 1

n 〈�η,∇φ〉
on the MMS (N , 〈·, ·〉, e−φdv) - see, e.g., [15] for this notion.

On the compact MMS (N , 〈·, ·〉, e−φdv) mentioned above, consider the following
eigenvalue problem with the Wentzell-type boundary condition

{
�φu = 0, in N ,

−β�̄φu + ∂u
∂ �η = τu, on ∂N ,

(1.15)
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where �̄φ is the weighted Laplacian on the boundary ∂N . In fact, (1.15) is called the
Wentzell eigenvalue problem of the weighted Laplacian. When φ = const., i.e., the
non-zero constant function, �φ and �̄φ degenerate into usual Laplacians � on N and
�̄ on the boundary ∂N respectively, and (1.15) becomes

{
�u = 0, in N ,

−β�̄u + ∂u
∂ �η = τu, on ∂N ,

(1.16)

which, for β ≥ 0, has discrete spectrum and all the eigenvalues in the spectrum can
be listed increasingly as follows

0 = τ0 < τ1 ≤ τ2 ≤ τ3 ≤ · · · ↑ ∞.

Recently, some interesting estimates for eigenvalues τi of the eigenvalue problem
(1.16) have been obtained—see, e.g., [8–10,27]. Especially, when β = 0, (1.16)
degenerates into the Steklov eigenvalue problem (1.1).

It is not difficult to find out that the weighted version (1.15) with β ≥ 0 also has
discrete spectrum and all the eigenvalues in the spectrum can be listed increasingly as
follows

0 = τ0,φ < τ1,φ ≤ τ2,φ ≤ τ3,φ ≤ · · · ↑ ∞.

Besides, by the variational principle, it is easy to know that the first non-zero eigenvalue
τ1,φ of the eigenvalue problem (1.15) can be characterized as follows

τ1,φ = min

{∫
N |∇u|2 + β

∫
∂N |∇̄u|2∫

∂N u2

∣∣∣u ∈ W 1,2(N ), u �= 0,
∫

∂N
u = 0

}
,

(1.17)

where ∇̄ is the gradient operator on ∂N . Here, wewould like to point out one thing that
all integrals in (1.17) should have weighted volume elements, and for convenience, we
have dropped them. For τ1,φ , we can obtain its lower and sharp upper bounds under
suitable assumptions on the K -dimensional Bakry–Émery Ricci curvature RicKφ , the
weighted mean curvature Hφ , and the second fundamental form I I of the boundary
∂N—see Theorems 4.1 and 4.2 for details.

The paper is organized as follows. Some preliminary facts will be mentioned in
Sect. 2. Proofs for Theorems 1.5 and 1.6 will be shown carefully in Sect. 3. In Sect. 4,
estimates for the first non-zero eigenvalue of the Wentzell eigenvalue problem of the
weighted Laplacian will be investigated. An open problem will be issued in the last
section.
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2 Some useful facts

In this section, some facts will be mentioned in the purpose of proving the main
conclusions of this paper. However, before that, let us recall several useful facts about
spherically symmetric manifolds.

By making the radial sectional curvature upper bound assumption, Mao [20, Theo-
rem 2.3.2] (see also [14, Theorem 4.2]) has proven the following Bishop-type volume
comparison theorem.

Theorem 2.1 ([14,20], generalized Bishop’s volume comparison theorem II) Assume
that M has a radial sectional curvature upper bound k(t) = − f ′′(t)

f (t) w.r.t. p ∈ M for
t < α ≤ min{in jc(p), l}, where in jc(p) = infξ cξ , with γξ (cξ ) a first conjugate point
along the geodesic γξ (t) = expp(tξ). Then on (0, α),

( √|g|
f n−1

)′
≥ 0,

√|g|(t, ξ) ≥ f n−1(t), (2.1)

and equality occurs in the first inequality at t0 ∈ (0, α) if and only if

R = − f ′′(t)
f (t)

, A = f (t)I(n−1)×(n−1),

on all of [0, t0].
There are another three important facts for our model spaces, which will be used

later, we would like to list here.

• Fact 1: ([14, page 706], [21, page 379]) By proposition 42 and corollary 43 of
chapter 7 in [23] or subsect. 3.2.3 of chapter 3 in [24], we know that the radial
sectional curvature, and the component of the radial Ricci tensor of the spherically
symmetric manifold M∗ = [0, l) × f (t)S

n−1 with the base point p are given by

K
(
V , d

dt

) = R
( d
dt , V , d

dt , V
) = − f ′′(t)

f (t) for V ∈ TξS
n−1, |V |g = 1,

Ric
( d
dt ,

d
dt

) = −(n − 1) f ′′(t)
f (t) .

(2.2)

Thus, Definition 1.1 (resp., Definition 1.2) is satisfied with equality in (1.5) [resp.,
(1.6)] and k(t) = − f ′′(t)/ f (t).

• Fact 2: ([13, Lemma 3]) Let Br be a ball in R
n endowed with a rotationally

invariant metric

dt2 + f 2(t)|dξ |2,

where, as before, |dξ |2 represents the round metric on the unit sphere Sn−1 ⊆ R
n .

The first nonconstant eigenfunction for the Steklov problem on Br has the form

ϕ(t, ξ) = ψ(t)e(ξ)
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where e(ξ) satisfies the equation �e + (n − 1)e = 0 on Sn−1 and the function ψ

satisfies the differential equation

1
f n−1(t)

d
dt

(
f n−1(t) d

dt ψ(t)
) − (n−1)ψ(t)

f 2(t)
= 0 in (0, r),

ψ ′(r) = v1(Br )ψ(r), ψ(0) = 0.

• Fact 3: ([13, Proposition 4]) Let Br be a two-dimensional ball inR2 endowed with
a rotationally invariant metric

dt2 + f 2(t)|dξ |2.

Then the first nonzero Steklov eigenvalue is f −1(r).

In order to get sharp bounds for the first non-zero eigenvalue τ1,φ of the eigenvalue
problem (1.15) on the compact MMS (N , 〈·, ·〉, e−φdv) with boundary ∂N , we need
the following facts which have been proven in [2,3].

Lemma 2.2 ([3, Proposition 2.2]) Assume that u is a smooth function on Nn+1, and
other same notations have the same meaning as those at the end of Subsect. 1.2. Then
we have

|Hessu|2 + Ricφ(∇u,∇u) ≥ (�φu)2

K
+ RicKφ (∇u,∇u)

for every K > n + 1 or K = n + 1 and φ is constant. Moreover, equality holds if and
only if Hessu = �u

n+1 〈·, ·〉 and 〈∇u,∇φ〉 = − K−n−1
K �φu.

By directly applying Lemma 2.2 and the generalized Reilly formula shown in [19],
one can obtain the following fact.

Lemma 2.3 Assume that u is a smooth function on Nn+1, h = ∂u
∂ �η , z = u|∂N , ∇̄ is the

gradient operator on ∂N, and other same notations have the same meaning as those
at the end of Subsect. 1.2. Then we have∫

N

K − 1

K

[
(�φu)2 − RicKφ (∇u,∇u)

]
≥

∫
∂N

[
2h�̄φz + nHφh

2 + I I (∇̄z, ∇̄z)
]

for every K > n + 1 or K = n + 1 and φ is constant. Moreover, equality holds if and
only if Hessu = �u

n+1 〈·, ·〉 and 〈∇u,∇φ〉 = − K−n−1
K �φu.

Remark 2.4 The first conclusion of Lemma 2.3 is actually (2.5) in [2].

Batista and Santos have proved the following conclusion, which is a slight modifi-
cation to [17, Theorem 1.6].

Lemma 2.5 ([2, Proposition 2.2]) Let Nn+1 be a compact weighted Riemannian man-
ifold with nonempty boundary ∂N and RicKφ ≥ 0. If the second fundamental form of

∂N satisfies I I ≥ cIn×n, in the quadratic form sense, and Hφ ≥ K−1
n c, then

λc1(∂N ) ≥ (K − 1)c2,
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where λc1 is the first non-zero closed eigenvalue of the drifting Laplacian acting on
functions on ∂N. The equality holds if and only if Nn+1 is isometric to a Euclidean
ball of radius 1

c , φ is constant and K = n + 1.

3 Proofs of the Steklov eigenvalue comparisons

In this section, with the help of results mentioned in Sect. 2, by using a similar method
to that shown by Escobar [13], we can give the proofs of Theorems 1.5 and 1.6 as
follows.

Proof of Theorem 1.6. Let ψ(t)e(ξ) be the eigenfunction for the first non-zero eigen-
value v1(Bn(p+, r)) on Bn(p+, r) given as Fact 2. By Fact 2 also, we have

ψ ′(t) = n − 1

f n−1(t)

∫ t

0
ψ(s) f n−3(s)ds,

which implies that ψ is positive (resp., negative) in (0, r) if ψ ′(t) is positive (resp.,
negative) in a neighborhood of zero. So, the function ψ determined in Fact 2 does not
change sign in (0, r). Without loss of generality, we can assume ψ ≥ 0. Correspond-
ingly, ψ ′(t) > 0.

Consider the test function ϕ(t, ξ) = a+(t)e1(ξ), where e1(ξ) is an eigenfunction
of the first non-zero closed eigenvalue λc1(∂B(p, r)) of the Laplacian on the boundary
∂B(p, r), and

a+(t) := max{a(t), 0},

a(t) := ψ(t)

[
f n−1(t)

h(t)

]1/2
+

∫ r

t
ψ(s)

([
f n−1(s)

h(s)

]1/2)′
ds,

with h(t) := max
{
d∗(t), f 2(t)

n−1 d
�(t)

}
and

d�(t) =
∫
Sn−1

|∇e1|2Sn−1(ξ)Jn−3(t, ξ),

d∗(t) =
∫
Sn−1

e21(ξ) · detA(t, ξ) =
∫
Sn−1

e21(ξ)
√|g|(t, ξ) =

∫
Sn−1

e21(ξ)Jn−1(t, ξ).

Clearly, h(t) is Lipschitz continuous and hence differentiable almost everywhere.
Besides, by Rayleigh’s theorem and Max–min principle, we have∫

∂B(p,r)
|∇e1|2 = λc1(∂B(p, r)) ·

∫
∂B(p,r)

e21 (3.1)

and ∫
∂B(p,r)

e1(ξ) = 0. (3.2)
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By Theorem 2.1, we have

( √|g|
f n−1

)′
= (n − 1)Jn−2

f n
(J ′ f − f ′ J ) ≥ 0

in (0, r), which implies

f ′ J − J ′ f ≤ 0 (3.3)

in (0, r).
Now, we claim that

[
f n−1(t)

h(t)

]′
≤ 0 (3.4)

in (0, r). This is because if h(t) = d∗(t) in a neighborhood of some point in (0, r),
then together with (3.3), we have

h2(t)

[
f n−1(t)

h(t)

]′
= (n − 1)d∗ f n−2 f ′ − f n−1(t) · (d∗)′
= (n − 1) f n−2

∫
Sn−1

e21 J
n−2( f ′ J − J ′ f ) ≤ 0.

If h(t) = f 2(t)
n−1 d

�(t) in a neighborhood of some point in (0, r), then together with
(3.3), we have

(
d�(t)

)2 ·
[
f n−3(t)

d�(t)

]′
= (n − 3)d� f n−4 f ′ − f n−3(t) · (d�

)′
= (n − 3) f n−4

∫
Sn−1

|∇e1|2Sn−1 J
n−4( f ′ J − J ′ f ) ≤ 0,

which implies
[
f n−1(t)
h(t)

]′ ≤ 0. Therefore, our claim (3.4) is true. So, the function

∫ r

t
ψ(s)

([
f n−1(s)

h(s)

]1/2)′
ds

is negative for t < r , except when J (t, ξ) = f (t). Together with the definitions of
a(t) and a+(t), it follows that

a(t) ≤ a+(t) ≤ ψ(t)

[
f n−1(t)

h(t)

]1/2
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on (0, r). Using the above inequality, definitions of h(t) and d�(t), one can get∫
B(p,r)

a2+(t)|∇e1|2Sn−1 J
n−3(t, ξ)dtdσ

=
∫ r

0
a2+(t)

(∫
Sn−1

|∇e1|2Sn−1 J
n−3(t, ξ)dσ

)
dt

≤
∫ r

0
ψ2 f n−1(t)d�(t)

h(t)
dt

≤ (n − 1)
∫ r

0
ψ2 f n−3(t)dt,

where, as before, dσ denotes the (n−1)-dimensional volume element on Sn−1. There-
fore, we have∫

B(p,r)
|∇ϕ|2 =

∫
B(p,r)

(
a′+(t)

)2
e21(ξ)Jn−1(t, ξ)dtdσ

+
∫
B(p,r)

a2+(t)|∇e1|2Sn−1 J
n−3(t, ξ)dtdσ

≤
∫
B(p,r)

(
ψ ′(t)

)2 f n−1(t)

h(t)
e21(ξ)Jn−1(t, ξ)dtdσ

+(n − 1)
∫ r

0
ψ2 f n−3(t)dt

=
∫ r

0

(
ψ ′(t)

)2 (∫
Sn−1 e21(ξ)Jn−1(t, ξ)dσ

h(t)

)
f n−1(t)dt

+(n − 1)
∫ r

0
ψ2 f n−3(t)dt

≤
∫ r

0

(
ψ ′(t)

)2
f n−1(t)dt + (n − 1)

∫ r

0
ψ2 f n−3(t)dt . (3.5)

On the other hand, by direct calculation, we have

∫
∂B(p,r)

ϕ2 = a2+(r)
∫
Sn−1

e21(ξ)Jn−1(r , ξ)dσ = ψ2(r) f n−1(r)d∗(r)
h(r)

. (3.6)

Equality (3.1) is equivalent to

λc1(∂B(p, r)) = d�(r)

d∗(r)
.

Together with the assumption (1.11), we have

d�(r) ≤ d∗(r) n − 1

f 2(r)
,
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which means f 2(r)
n−1 d

�(r) ≤ d∗(r). So, one has h(r) = d∗(r), and then (3.6) becomes

∫
∂B(p,r)

ϕ2 = ψ2(r) f n−1(r). (3.7)

Combining (3.5) and (3.7) yields

∫
B(p,r) |∇ϕ|2∫
∂B(p,r) ϕ2

≤
∫ r
0

(
ψ ′(t)

)2
f n−1(t)dt + (n − 1)

∫ r
0 ψ2 f n−3(t)dt

ψ2(r) f n−1(r)
. (3.8)

Since by (3.2), the equality∫
∂B(p,r)

ϕ = ψ(r)
∫

∂B(p,r)
e1(ξ) = 0

holds, and then by applying Fact 2, the characterization (1.2) and (3.8), we can obtain

v1(B(p, r)) ≤
∫
B(p,r) |∇ϕ|2∫
∂B(p,r) ϕ2

≤
∫ r
0

(
ψ ′(t)

)2
f n−1(t)dt + (n − 1)

∫ r
0 ψ2 f n−3(t)dt

ψ2(r) f n−1(r)

= v1(Bn(p
+, r)),

which is exactly (1.12). It is easy to find that the equality in the above inequality holds
if and only if f (t) = J (t, ξ), which, by Theorem 2.1, Definition 1.4 and Fact 1, is
equivalent to say that B(p, r) is isometric toBn(p+, r). This completes the proof. ��

Now, in order to prove Theorem 1.5, we only need to confirm that the precondition
(1.11) holds naturally for the case of two and three dimensions.

Proof of Theorem 1.5. We divide the proof into two cases as follows:

Case 1. If n = 2, i.e., M is a 2-dimensional Riemannian surface, then ∂B(p, r) is
connected and diffeomorphic to S1 because r < inj(p). Therefore, byWeinstock’s
Theorem [26], we have

v1(B(p, r)) ≤ 2π

L
= 2π∫ 2π

0 J (t, ξ)dσ
. (3.9)

Here L represents the perimeter of the closed curve ∂B(p, r), which is diffeomorphic
to S1. Applying Theorem 2.1, from which one has J (t, ξ) ≥ f (t) on (0, r), and Fact
3 to (3.9), we can get

v1(B(p, r)) ≤ 2π∫ 2π
0 J (t, ξ)dσ

≤ 2π∫ 2π
0 f (t)dσ

= 1

f (t)
= v1(Bn(p

+, r)).

Obviously, equality in the above inequality holds if and only if f (t) = J (t, ξ), which,
by Theorem 2.1, Definition 1.4 and Fact 1, is equivalent to say that B(p, r) is isometric
toBn(p+, r).

123



Eigenvalue comparisons in Steklov eigenvalue problem and… 407

Case 2. If n = 3, i.e., M is a Riemannian 3-manifold, then ∂B(p, r) is connected
and diffeomorphic to S

2 because r < inj(p). Let e be any eigenfunction of the
first non-zero closed eigenvalue n − 1 = 2 of the Laplacian on S

2. Therefore,
e = 〈ζ, x〉, where ζ ∈ S

2, and x represents Euclidean coordinates. By direct
calculation, we have∫

∂B(p,r) |∇e|2∫
∂B(p,r) e

2
=

∫
Sn−1 |∇e|2

Sn−1 J
n−3(r , ξ)dσ∫

Sn−1 e2 Jn−1(r , ξ)dσ

=
∫
S2

|∇e|2
S2
dσ∫

S2
e2 J 2(r , ξ)dσ

≤ 1

f 2(r)

∫
S2

|∇e|2
S2
dσ∫

S2
e2dσ

= 2

f 2(r)
= λc1(∂Bn(p

+, r)), (3.10)

where the last inequality holds because J (t, ξ) ≥ f (t) on (0, r). On the other hand,
define F : S2 → R

2 by F(eζ ) = ∫
∂B(p,r) eζ = ∫

S2
eζ J 2(r , ξ)dσ , and then we know

that there must exist some e ∈ S
2 such that F(e) = 0, i.e.,∫

∂B(p,r)
e =

∫
S2
e · J 2(r , ξ)dσ. (3.11)

This is because the function F is continuous and F(eζ ) = −F(−eζ ) by choosing
antipodal points. By (3.11), Rayleigh’s theorem and Max–min principle, one has

λc1(∂B(p, r)) ≤
∫
∂B(p,r) |∇e|2∫

∂B(p,r) e
2

. (3.12)

Combining (3.10) and (3.12) results in

λc1(B(p, r)) ≤ λc1(∂Bn(p
+, r)),

and then by applying Theorem 1.6 directly, we have v1(B(p, r)) ≤ v1(Bn(p+, r)).
Clearly, the rigidity conclusion for the equality v1(B(p, r)) = v1(Bn(p+, r)) here
can be attained by using almost the same argument as the 2-dimensional case.

This completes the proof. ��
Remark 3.1 It is easy to check that the method used in Case 2 here is also valid for
Case 1.

4 Some eigenvalue estimates

Estimates for the first non-zero eigenvalue τ1,φ of the eigenvalue problem (1.15) with
β ≥ 0 will be given in this section. In fact, we can obtain the followings.
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Theorem 4.1 Assume that (N , 〈·, ·〉, e−φdv) is an (n + 1)-dimensional compact con-
nected MMS with smooth boundary ∂N. If RicKφ ≥ 0 and Hφ ≥ (K−1)c

n , I I ≥ c · In×n

for some positive constant c > 0, with I I the second fundamental form of ∂N, then,
for the eigenvalue problem (1.15) with β ≥ 0, we have

τ1,φ ≤ βλc1 +
√

λc1

[√
λc1 +

√
λc1 − (K − 1)c2

]
(K − 1)c

, (4.1)

where, similar as before, In×n represents the n × n identity matrix, and λc1 is the first
non-zero closed eigenvalue of the drifting Laplacian on the boundary ∂N. Equality in
(4.1) holds if and only if N is isometric to an (n + 1)-dimensional Euclidean ball of
radius 1

c , φ is the non-zero constant function, and K = n + 1.

Proof Let u be the solution to the following problem

{
�φu = 0 in N ,

u = z on ∂N ,

where z is the eigenfunction of the first non-zero closed eigenvalue λc1 of the drifting
Laplacian �̄φ on ∂N . That is, �̄φz + λc1z = 0 on ∂N ,

∫
∂N z = 0. Set h = ∂u

∂ �η . By
(1.17) and the fact that

∫
∂N z = ∫

∂N u = 0, we have

τ1,φ ≤
∫
N |∇u|2 + β

∫
∂N |∇̄z|2∫

∂N z2

=
∫
∂N zh + β

∫
∂N |∇̄z|2∫

∂N z2

= βλc1 +
∫
∂N zh∫
∂N z2

(4.2)

where the first equality holds by the usage of the divergence theorem. By Lemmas 2.2
and 2.3, together with assumptions RicKφ ≥ 0, Hφ ≥ (K−1)c

n , I I ≥ c · In×n for some
positive constant c > 0, we have

0 ≥
∫
N

K − 1

K

[
(�φu)2 − RicKφ (∇u,∇u)

]

≥
∫

∂N

[
nHφh

2 + 2h�̄φz + I I (∇̄z, ∇̄z)
]

≥
∫

∂N

[
(K − 1)ch2 − 2λc1zh + c|∇̄z|2

]

=
∫

∂N

[
(K − 1)ch2 − 2λc1zh + cλc1z

2
]
,
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and then, by applying Hölder’s inequality to the above inequality, it follows that

0 ≥
∫

∂N

[
(K − 1)ch2 − 2λc1hz + cλc1z

2
]

≥
∫

∂N
(K − 1)ch2 − 2λc1

(∫
∂N

h2
) 1

2
(∫

∂N
z2

) 1
2 +

∫
∂N

cλc1z
2

= (K − 1)c

[(∫
∂N

h2
) 1

2 − λc1

(K − 1)c

(∫
∂N

z2
) 1

2
]2

+
[
cλc1 − (λc1)

2

(K − 1)c

]∫
∂N

z2,

which is equivalent with

(∫
∂N

h2
) 1

2 ≤
√

λc1

[√
λc1 +

√
λc1 − (K − 1)c2

]
(K − 1)c

(∫
∂N

z2
) 1

2

. (4.3)

Combining (4.2) and (4.3) yields

τ1,φ ≤ βλc1 +
∫
∂N zh∫
N z2

≤ βλc1 +
(∫

∂N h2
) 1
2(∫

∂N z2
) 1
2

≤ βλc1 +
√

λc1

[√
λc1 +

√
λc1 − (K − 1)c2

]
(K − 1)c

,

which is exactly (4.1). If equality holds in (4.1), then all inequalities become equalities,
and through the above argument, one has Hessu = 0 and

h =
√

λc1

[√
λc1 +

√
λc1 − (K − 1)c2

]
(K − 1)c

z.

Therefore, taking a local orthonormal fields {ei }ni=1 tangent to ∂N , similar to the
calculation in [2, page 9], we can obtain

0 =
n∑

i=1

Hessu(ei , ei )

=
n∑

i=1

〈∇ei ∇u, ei 〉
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= �̄φz + nHφh

= −λc1z + c(K − 1)h

= −λc1z + c(K − 1)

√
λc1

[√
λc1 +

√
λc1 − (K − 1)c2

]
(K − 1)c

z,

which implies λc1 = (K −1)c2. Then, under the assumptions for RicKφ , I I and Hφ , by
Lemma 2.5, we know that N is isometric to an (n + 1)-dimensional Euclidean ball of
radius 1

c , φ is a non-zero constant function and K = n + 1. This completes the proof.
��

A lower bound for τ1,φ can also be obtained as follows.

Theorem 4.2 Assume that (N , 〈·, ·〉, e−φdv) is an (n + 1)-dimensional compact con-
nected MMS with smooth boundary ∂N. If RicKφ ≥ 0, Hφ ≥ (K−1)c

n , I I ≥ c · In×n

for some positive constant c > 0, then, for the eigenvalue problem (1.15) with β ≥ 0,
we have

τ1,φ >
1

2
c

[
1 + (K − 1)cβ +

√
(K − 1)c2β2 + 2(K − 1)cβ

]
. (4.4)

Proof We use a similar proof to that of [27, Theorem 1.3]. In order to state precisely,
we divide the proof into two cases as follows:

Case 1. Assume that β = 0. Let u be an eigenfunction of the first non-zero
eigenvalue τ1,φ of the eigenvalue problem (1.15) with β = 0. Set h = ∂u

∂ �η |∂N ,
z = u|∂N . By Lemmas 2.2 and 2.3, together with the assumptions RicKφ ≥ 0,

Hφ ≥ (K−1)c
n , I I ≥ c · In×n for some positive constant c > 0, we have

0 ≥
∫

∂N

K − 1

K

[
(�φu)2 − RicKφ (∇u,∇u)

]

≥
∫

∂N

[
nHφh

2 + 2h�̄φz + I I (∇̄z, ∇̄z)
]

>

∫
∂N

[−2〈∇̄z, ∇̄h〉 + c〈∇̄z, ∇̄z〉]
=

∫
∂N

[−2τ1,φ〈∇̄z, ∇̄z〉 + c〈∇̄z, ∇̄z〉] ,

which implies

τ1,φ >
c

2
. (4.5)

Case 2. Assume that β > 0. Let u be an eigenfunction of the first non-zero
eigenvalue τ1,φ of the eigenvalue problem (1.15) with β > 0. Set γ = 1

β
, τ = τ1,φ

β
,

123



Eigenvalue comparisons in Steklov eigenvalue problem and… 411

h = ∂u
∂ �η |∂N , z = u|∂N . By (1.15), one has

�φu = 0, �̄φz = γ h − τ z. (4.6)

By Lemmas 2.2 and 2.3, together with the assumption RicKφ ≥ 0, we have

0 ≥
∫
N

K − 1

K

[
(�φu)2 − RicKφ (∇u,∇u)

]

≥
∫

∂N

[
nHφh

2 + 2h�̄φz + I I (∇̄z, ∇̄z)
]
, (4.7)

which, together with assumptions Hφ ≥ (K−1)c
n , I I ≥ c · In×n for some positive

constant c > 0, implies

0 ≥
∫

∂N

[
(K − 1)ch2 + 2h(γ h − τ z) + c|∇̄z|2

]

=
∫

∂N

[
(K − 1)ch2 + 2γ h2 − 2τhz − cz�̄φz

]

=
∫

∂N

[
cτ z2 − (2τ + cγ )hz + ((K − 1)c + 2γ ) h2

]

= [
(K − 1)c + 2γ

] ∫
∂N

[
h − (τ + cγ

2 )z

(K − 1)c + 2γ

]2

+
[
cτ −

(
τ + cγ

2

)2
(K − 1)c + 2γ

]∫
∂N

z2. (4.8)

Therefore, from the above inequality, one has

[
(τ + cγ

2 )2

(K − 1)c + 2γ
− cτ

]∫
∂N

z2 ≥ [
(K − 1)c + 2γ

] ∫
∂N

[
h − (τ + cγ

2 )z

(K − 1)c + 2γ

]2

,

which implies

(τ + cγ
2 )2

(K − 1)c + 2γ
− cτ ≥ 0.

Solving the above inequality yields

τ ≥
[√

(K − 1)2c2 + 2c(K − 1)γ + γ + (K − 1)c
]
c

2
(4.9)
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or

τ ≤
[
γ + (K − 1)c − √

(K − 1)2c2 + 2c(K − 1)γ
]
c

2
. (4.10)

Now, we show that (4.10) cannot happen. In fact, multiplying the second equation of
(4.6) by z and integrating over ∂N , one can obtain

τ

∫
∂N

z2 =
∫

∂N
|∇̄z|2 + γ

∫
∂N

hz

=
∫

∂N
|∇̄z|2 + γ

∫
N

|∇u|2, (4.11)

where the fact �φu = 0 in N has been used. Since
∫
∂N z = 0, z �= 0, by Lemma 2.5,

it follows that ∫
∂N

|∇̄z|2 ≥ λc1(∂N )

∫
∂N

z2 ≥ (K − 1)c2
∫

∂N
z2. (4.12)

Combining (4.11) and (4.12), together with the fact
∫
N |∇u|2 > c

2

∫
∂N z2, yields

τ > (K − 1)c2 + cγ

2
,

which implies that (4.10) cannot hold. In order to get the estimate (4.4), one only needs
to exclude the equality case in (4.9). We shall get this fact by contradiction. Suppose
that

τ =
[√

(K − 1)2c2 + 2c(K − 1)γ + γ + (K − 1)c
]
c

2
. (4.13)

From the above argument, we know that if (4.13) holds, then all inequalities in (4.7)
and (4.8) should take equality sign. Therefore, it follows that

h = (τ + cγ
2 )z

(K − 1)c + 2γ
on ∂N , (4.14)

I I = cIn×n , i.e., all principal curvatures of ∂N equal c, and, by Lemma 2.3 and the
first equation of (4.6),

Hessu = �φu − K−n−1
K �φu

n + 1
〈·, ·〉 = 0 on N . (4.15)

Using the restriction of (4.15) on the boundary, i.e., Hessz = 0 on ∂N , and I I = cIn×n ,
one can get

h = cz (4.16)
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Combining (4.14) and (4.16) yields

τ + cγ
2

(K − 1)c + 2γ
= c,

which, together with (4.13), implies γ = 0. This is a contradiction. Hence, we have

τ >

[√
(K − 1)2c2 + 2c(K − 1)γ + γ + (K − 1)c

]
c

2
,

which implies (4.4). Besides, when β = 0, (4.5) is equivalent with (4.4). Summing up
Cases 1 and 2, our estimate (4.4) can be achieved for the eigenvalue problem (1.15)
with β ≥ 0. ��
Remark 4.3 When β = 0, our estimate (4.1) is exactly the main estimate (1.6) in [2],
whichmeans Theorem 4.1 here covers [2, Theorem 1.1] as a special case.When β = 0
andφ = const. is a non-zero constant function, theWentzell eigenvalue problem (1.15)
of the weighted Laplacian degenerates into the classical Steklov eigenvalue problem
(1.1), and naturally τ1,φ = v1, i.e., the first non-zero Steklov eigenvalue. In this setting,
by Theorem 4.2, one has v1 > c

2 , which is exactly Escobar’s estimate in [11, Theorem
8]. That is to say, Theorem 4.2 here covers Escobar’s conclusion [11, Theorem 8] as
a special case.

5 An open problem

If one checks Sect. 3 carefully, then naturally the following interesting problem would
be proposed.

Open problem For n ≥ 4, is the Escobar-type Steklov eigenvalue inequality (1.12)
also true without the precondition (1.11)?
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