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Abstract
We prove that the (reduced) rational sectional category of the universal fibration with
fibre X , for X any space that satisfies a well-known conjecture of Halperin, equals
one.
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1 Main result

We begin with a concise résumé of the ingredients, then a statement, of our main
result. Notations used and assertions made here are described in greater detail below.
Sectional category (secat) is a numerical invariant of a fibration that extends the
notion of LS category (cat) of a space to fibrations. We normalize these invariants:
secat(p) = 0 when the fibration p : E → B has a section. Sectional category plays a
role in several interesting applications (e.g. see [1, §9.3] and [5]).

Fibrations with fibre a fixed space X are classified by a universal fibration with
fibre X [2,17,21]. For fibrations of simply connected spaces, this universal fibration
may be identified, up to homotopy, as the map on Dold–Lashof classifying spaces

This work was partially supported by a grant from the Simons Foundation (#209575 to Gregory Lupton).

B Gregory Lupton
G.Lupton@csuohio.edu

Samuel Bruce Smith
smith@sju.edu

1 Department of Mathematics, Cleveland State University, Cleveland, OH 44115, USA

2 Department of Mathematics, Saint Joseph’s University, Philadelphia, PA 19131, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13163-019-00308-z&domain=pdf
http://orcid.org/0000-0001-8910-4786


188 G. Lupton, S. B. Smith

uX : Baut∗1(X) → Baut1(X) that is induced by an inclusion aut∗1(X) ↪→ aut1(X) of
connected monoids of self-equivalences [3,11].

A fibration p : E → B with B and E simply connected admits a rationaliza-
tion pQ : EQ → BQ that, homotopically, represents a simplification of p. Then the
rational sectional category (secat0) of fibration p is defined by setting secat0(p) :=
secat(pQ).

If the fibration p has fibre X we have general inequalities secat0(p) ≤
secat0(uX ) ≤ cat0(Baut1(X)), with cat0(Baut1(X)) the rational LS category of
the classifying space, which is often infinite (see [7,8]). So it is natural to ask whether
secat0(uX ) may be finite.

Our main result is the following:

Theorem 1.1 Let X be any (rationally non-trivial) F0-space that satisfies Conjec-
ture 1 below. Then secat0(uX ) = 1, where uX : Baut∗1(X) → Baut1(X) denotes the
universal fibration with fibre X.

By an F0-space wemean a simply connected, finite complex X with H∗(X;Q) and
π∗(X)⊗Q both finite-dimensional and Hodd(X;Q) = 0. Examples of F0-spaces for
which Conjecture 1 is satisfied include even-dimensional spheres, complex projective
spaces, homogeneous spaces G/H with rank G = rank H , and finite products of any
of these spaces. It follows from Theorem 1.1 that we have secat0(p) ≤ 1 for any
fibration p : E → B of simply connected spaces with fibre X to which the Theorem
applies.

2 Introduction

We continue with a fuller description of the ingredients just indicated. We assume all
spaces are of the homotopy type of a CW complex and simply connected of finite
rational type. That is, simply connected with each rational homology group (equiva-
lently each rational homotopy group) a finite-dimensional rational vector space. This
hypothesis appears in some of the basic results from rational homotopy theory about
minimal models of spaces and fibrations. For a general space X , the classifying space
Baut1(X) need not be of finite rational type. However, if X is a simply connected, finite
complex then the universal fibration is a fibre sequence X → Baut∗1(X) → Baut1(X)

of spaces of the homotopy type of a CW complex that are simply connected and of
finite rational type. We justify this assertion carefully, as follows.

For a general space X , we have Baut1(X) simply connected: aut1(X) is connected
and we have π1

(
Baut1(X)

) ∼= π0
(
�Baut1(X)

) ∼= π0
(
aut1(X)

) = {e}. If X is simply
connected, then it follows from the long exact sequence in homotopy of the universal
fibration that so too is Baut∗1(X). For X a simply connected, finite complex, a result
of [4] implies that Baut1(X) is of the homotopy type of a CW complex of finite type.
It follows that Baut∗1(X) is also of the homotopy type of a CW complex (see [19]).
With Baut1(X) simply connected and of finite type, it is also of finite rational type,
and it follows from the Serre spectral in rational homology of the universal fibration
that Baut∗1(X) is also of finite rational type. All this applies in particular when X is
an F0-space, since we assume that such an X is a simply connected, finite complex.
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For n ≥ 1, set secat(p) = n − 1 if n is the minimal number of open sets Ui in a
cover of B such that p admits a section over each Ui . Set cat(B) = n − 1 if n is the
minimal number of open sets Ui in a cover of B such that each inclusion Ui → B
is nulhomotopic. The inequalities secat(p) ≤ cat(B) and secat( f ∗(p)) ≤ secat(p),
for f ∗(p) the pull-back of p by a map f : B ′ → B, are both proved directly (see,
e.g. Proposition 9.14 and Exercise 9.3 of [1], which reference also contains many
facts concerning secat and cat). Generally speaking, both cat and secat are delicate
invariants, and difficult to compute. It is quite surprising, therefore, that we are able
to obtain a global result such as Theorem 1.1. This is especially so considering that
the universal fibration is a rich construction that involves large and complex spaces
whose general structure is not well understood.

For simply connected B, we have cat0(B) := cat(BQ), where cat0 denotes the
rational LS category. Then for simply connected X , from the first inequality of the
previous paragraph applied to the rationalization of the universal fibration, we have
secat0(uX ) ≤ cat0(Baut1(X)). Also, because uX : Baut∗1(X) → Baut1(X) is univer-
sal, any fibration p : E → B of simply connected spaces with fibre X is a pullback
f ∗(uX ) for some classifying map f : B → Baut1(X). By the naturality of rational-
ization with respect to pull-backs, and the second inequality of the previous paragraph,
we obtain secat0(p) ≤ secat0(uX ) for any fibration p : E → B of simply connected
spaces with fibre X . This explains the inequalities cited above and below the enunci-
ation of Theorem 1.1.

Stanley has given a complete calculation of the rational sectional category of
spherical fibrations [20]. His results for the even-dimensional sphere imply (in our
normalized notation) that secat0(uS2n ) = 1. Here, we extend Stanley’s result from
S2n to any F0-space that satisfies Halperin’s Conjecture in rational homotopy theory.
We discuss this class of spaces now.

Halperin has conjectured the following generalization of classical results on the
rational cohomology of homogeneous spaces.

Conjecture 1 (Halperin) Let X be an F0-space and p : E → B any fibration of sim-
ply connected spaces with fibre X. Then the rational Serre spectral sequence for p
collapses at the E2-term.

The conjecture is equivalent to the assertion that Der<0(H∗(X;Q)) = 0 for X an
F0-space, where Der<0(A) is the graded Lie algebra of degree-lowering derivations
of the algebra A [18,22]. The conjecture follows easily from this version for X =
S2n,CPn and, more generally, for any space with rational cohomology a truncated
polynomial algebra. Meier proved the conjecture for flag-manifolds G/T with T a
maximal torus, and other homogeneous spaces [18, Th.B]. Shiga and Tezuka extended
Meier’s result to the general case of homogeneous spaces G/H of equal rank pairs
[21]. Halperin’s Conjecture has also been confirmed for the cases in which H∗(X;Q)

has 3 or fewer generators [15]. Markl has shown that the class of spaces for which
Conjecture 1 holds is closed under fibrations, not just products [16]. Our main result,
Theorem1.1, applies in all these cases.We refer the reader to [6, p.516] for a discussion
and other references.

Meier made the following connection between Halperin’s Conjecture and the ratio-
nal homotopy of the universal fibration [18, Th.A].
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Theorem 2.1 (Meier) Let X be an F0-space. Then X satisfies Halperin’s Conjecture
if and only if Baut1(X) is rationally equivalent to a product of even-dimensional
Eilenberg–Mac Lane Spaces. 	


Meier’s Theorem implies that cat0(Baut1(X)) = ∞ for X an F0-space that satisfies
Halperin’s Conjecture. In fact, this is the case for any elliptic space X [7]. We will use
Theorem 2.1 to deduce Theorem 1.1 in Sect. 3 as a consequence of Proposition 3.2, a
technical result concerning sections of rational fibrations.

3 Rational sectional category of a fibrewise join

We recall a special case of a characterization of secat in terms of the fibrewise join
construction (see [12, Sec.8]). Given p : E → B with fibre X , the fibrewise join p ∗ p

is a fibre sequence: X ∗ X E ∗ E
p∗p

B. The following is a special case of
a result of Schwarz (see [12, Prop.8.1]):

Proposition 3.1 Let p : E → B be a fibration. Then secat(p) ≤ 1 if and only if p ∗ p
has a section. 	

Our main result is that the fibrewise join of the universal fibration

X ∗ X Baut∗1(X) ∗ Baut∗1(X)
uX∗uX

Baut1(X)

has a section after rationalization when X is an F0-space that satisfies Halperin’s
Conjecture. We make use of the correspondence between fibre sequences of rational
spaces and relative Sullivan models. Although we will recall some basic facts about
minimal models, our proofs assume a working familiarity with them. Our reference
for rational homotopy is [6].

Let X → E
p→ B be a fibre sequence of simply connected spaces with B of finite

rational type. The relative Sullivan model for p is a short exact sequence

(∧W , dB)
J

(∧W ⊗ ∧V , D) (∧V , dX )

of DG algebras, with (∧W , dB) and (∧V , dX ) the Sullivan minimal models for B and
X , respectively [6, Prop.15.5]. The differential D satisfies

D(w) = dB(w) for w ∈ W and D(v) − dX (v) ∈ ∧+W ⊗ ∧V for v ∈ V .

The inclusion J is a model for p. Applying spatial realization, we obtain that
pQ : EQ → BQ admits a section if and only if J has a left-inverse S. That is, pQ admits
a section if and only if there is a DG algebra map S : (∧W ⊗ ∧V , D) → (∧W , dB)

with S ◦ J = id∧W . We prove:

Proposition 3.2 Let X → E
p→ B be a fibre sequence of simply connected spaces

with B of finite rational type. Suppose
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The rational sectional category of certain universal… 191

(1) B has the rational homotopy type of a product of even-dimensional Eilenberg–
Mac Lane spaces, and

(2) X has the rational homotopy type of a wedge of at least two odd-dimensional
spheres.

Then the rationalization pQ : EQ → BQ of p admits a section.

Proof In the following, we make use of the identification V n ∼= Hom
(
πn(X),Q

)
,

where (∧V , dX ) is theminimalmodel of X , and also the identification between Samel-
son products in the rational homotopy Lie algebra π∗(�X)⊗Q and the quadratic part
of the differential in (∧V , dX ), for any space X . See [6, Th.15.11, Th.21.6] for details.
Hypothesis (1) implies that the minimal model (∧W , dB) for B has trivial differential,
dB = 0, with W odd = 0. We deduce two consequences of (2) for the minimal model
of the fibre, (∧V , dX ). First we see that V even = 0 (a wedge of odd-dimensional
spheres has no non-zero rational homotopy in even degrees). Write V = 〈v1, v2, . . .〉
with |vi | ≤ |v j | whenever i < j and each |vi | odd. Then, for degree reasons, we have
dX (v1) = dX (v2) = 0. The rational homotopy Lie algebra π∗(�X) ⊗ Q is free as
graded Lie algebra. Translated to Sullivan models, we deduce, in particular, that there
is some vk for k ≥ 3, such that dX (vk) = v1v2.

The relative Sullivan model for X → E → B is of the form:

(∧W , 0) → (∧W ⊗ ∧V , D) → (∧V , dX ),

Given a subspace V ′ ⊆ V , let I (V ′) = ∧W ⊗ ∧+V ′ denote the ideal generated by
V ′ in ∧W ⊗ ∧V . Our goal is to prove that I (V ) is a D-stable ideal of ∧W ⊗ ∧V . We
may then define a DG algebra map S : (∧W ⊗ ∧V , D) → (∧W , 0) by S(w) = w

and S(v) = 0 to obtain the desired section.
We use induction on i to show that, for any vi , we have D(vi ) ∈ I (V ). First, we

show that D(v1) = 0. For suppose that D(v1) = P , for some polynomial P ∈ ∧W .
Since dX (v1) = dX (v2) = 0, we see that D(v2) = P2 for some P2 ∈ ∧W . Then, with
vk chosen as above, we have D(vk) = v1v2+Pk , for some Pk ∈ ∧W . Notice that there
cannot be a term from ∧+W ⊗ ∧+V in D(vk), since V is oddly graded and D(vk)

is of even degree, and also because v1v2 is of minimal degree in ∧2V . Furthermore,
since v1v2 is the only term from ∧2V appearing in d(vk), v1v2 is the only such term
appearing in D(vk). Since D2(vk) = 0, we have

0 = D2(vk) = D(v1v2 + Pk) = Pv2 − v1P2,

and it follows that P = 0 (also that P2 = 0).
Now suppose that we have D(vi ) ∈ I (V ) for all i < t and for some t ≥ 2. Then

I (v1, . . . , vt−1) is a D-stable ideal of ∧W ⊗ ∧V . We may take the quotient by this
ideal yielding the graded algebra

∧W ⊗ ∧Vi≥t = (∧W ⊗ ∧V ) /I (v1, . . . , vt−1).

Since I (v1, . . . , vt−1) is D-stable, D induces a differential D on the quotient. Let
π : (∧W ⊗ ∧V , D) → (∧W ⊗ ∧Vi≥t , D) denote the projection which is a map of
DG algebras.
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192 G. Lupton, S. B. Smith

Next observe that ∧(v1, . . . , vt−1) is a dX -stable sub-algebra of (∧V , dX ). Write
dX for the induced differential and π ′ : (∧V , dX ) → (∧Vi≥t , dX ) for the projection.
We claim that (∧Vi≥t , dX ) is the minimal model for a wedge of at least two odd-
dimensional spheres. For observe that π ′ is surjective on generators. Applying the
Mapping Theorem [6, Th.29.5], we deduce that

cat(∧Vi≥t , dX ) ≤ cat(∧V , dX ) = cat0(X) = 1.

Since V is concentrated in odd degrees and nontrivial in infinitely many degrees, the
same holds for Vi≥t . Our claim follows from [6, Th.28.5].

Now consider the commutative diagram of relative Sullivan models:

(∧W , 0) (∧W ⊗ ∧V , D)

π

(∧V , dX )

π ′

(∧W , 0) (∧W ⊗ ∧Vi≥t , D) (∧Vi≥t , dX ).

The bottom sequence of this diagram corresponds to a fibre sequence with the original
base, say XQ → EQ → BQ. We have argued above that the fibre XQ, with minimal
model (∧Vi≥t , dX ), is a wedge of at least two odd-dimensional spheres. We can now
apply the first part of the argument above, to deduce that Dvt = 0. But this implies
that D(vt ) ∈ I (v1, . . . , vt−1) ⊆ I (V ). By induction, we conclude that I (V ) is
D-stable. 	


We illustrate the need for the various hypotheses in Proposition 3.2 with the fol-
lowing examples. In these examples, and in the proof of our main result, below, we
make use of several standard identifications from (rational) homotopy theory. For the
convenience of the reader, we summarize these here and give references for them.
A useful representation of the join of two spaces, up to homotopy equivalence, is
X ∗ Y � �(X ∧ Y ). A theorem of Ganea yields the following: The homotopy fibre
of X ∨ Y → X × Y , the inclusion of the wedge into the product, is �X ∗ �Y [13,
Prop.6.63]. Calculations due to Serre show that an odd-dimensional sphere has the
rational homotopy type of an Eilenberg–Mac Lane space, S2n+1 �Q K (Q, 2n + 1)
[6, p.210]. A result of Berstein implies that a suspension has the rational homotopy
type of a wedge of spheres [6, Th.24.5]. Actually, more is true: if a space is a rational
co-H-space (has rational category equal to one), then it has the rational homotopy type
of a wedge of spheres [6, Th.28.5].

Example 3.3 In which we illustrate that a fibration need not admit a section, if we drop
any one of the hypotheses of Proposition 3.2.
(a)Wemust have that the base space B is rationally a product of only even-dimensional
Eilenberg–Mac Lane spaces. For consider the fibre sequence �S3 ∗ �S3 → S3 ∨
S3

p→ S3 × S3 obtained by converting the inclusion to a fibration. The base is a
product of odd-dimensional Eilenberg–Mac Lane spaces, up to rational homotopy
type. We deduce that the fibre is a wedge of at least two odd-dimensional spheres,
up to rational homotopy type. For �S3 �Q K (Q, 2), and so H∗(�S3 ∧ �S3;Q) is
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The rational sectional category of certain universal… 193

evenly graded. Furthermore, the fibre �S3 ∗ �S3 � �(�S3 ∧ �S3), as a suspension,
must have the rational homotopy type of a wedge of spheres, and these spheres must
be odd-dimensional since we have H∗(�S3 ∗ �S3;Q) ∼= H∗(�(�S3 ∧ �S3);Q) ∼=
H∗−1(�S3∧�S3;Q) is oddly graded. Finally, it is clear that theremust be two ormore
spheres in this wedge since, for instance, we have H7(�(�S3 ∧ �S3);Q) ∼= Q ⊕ Q

(in fact the fibre is a wedge of infinitely many odd-dimensional spheres, rationally).
However, pQ does not admit a section since p∗ : H∗(S3 × S3;Q) → H∗(S3 ∨ S3;Q)

is not injective.
(b) We must have a wedge of at least two odd-dimensional spheres in the fibre. Recall
that we have S2k−1 �Q K (Q, 2k − 1). Then, for example, the path-loop fibration
K (Q, 2k − 1) → PK (Q, 2k) → K (Q, 2k) does not have a section. In fact, since the
total space is contractible we have secat0(p) = cat(K (Q, 2k)) = ∞.
(c) We cannot have even-dimensional spheres in the fibre. For instance, consider the

fibration sequence X → S2 ∨ S3
p→ K (Q, 2k), in which p : S2 ∨ S3 → K (Q, 2)

is the composition of the pinch map S2 ∨ S3 → S2 followed by the inclusion (of
the bottom cell) S2 → K (Q, 2). We deduce that the fibre X is a wedge of at least
two spheres, at least one of which is of even dimension. For consider the long exact
sequence in rational homotopy groups of this fibration. Since p induces a surjection on
rational homotopy groups, it follows that the fibre inclusion X → S2 ∨ S3 is injective
in rational homotopy groups. Now the mapping theorem [6, Th.28.6] implies that we
have cat0(X) ≤ cat0(S2 ∨ S3) = 1. It follows that X has the rational homotopy
type of a wedge of spheres [6, Th.28.5]. Returning to the long exact sequence in
rational homotopy groups, we find that X → S2 ∨ S3 induces an isomorphism in
degrees ≥ 3. Direct computation of the rational homotopy groups of S2 ∨ S3 now
shows, for instance, that we have π3(X) ⊗ Q ∼= Q and π4(X) ⊗ Q ∼= Q. Since X is
2-connected, it follows that, as a wedge of rational spheres, X must contain at least
one odd-dimensional and at least one even-dimensional sphere (in fact X contains
infinitely many of each). This fibration does not admit a section, as p∗ is not injective
in cohomology.

We next observe that the universal fibration uX for X a rationally non-trivial
F0-space does not admit a section. To prove this, we use the Gottlieb group
G∗(X) ⊆ π∗(X) [10]. Recall that G∗(X) = Image{ω� : π∗(aut1(X)) → π∗(X)}
where ω : aut1(X) → X is the evaluation map.

Proposition 3.4 Let X be a rationally non-trivial F0-space. Then secat0(uX ) ≥ 1.

Proof First, we have G∗(X) ⊗ Q �= 0 for any such X . To see this, note that in
the minimal model (∧V , dX ) for X , there is an integer n > 0 such that V n �= 0
and Vm = 0 for m > n. This is just a translation into minimal model terms of
the hypothesis that π∗(X) ⊗ Q is finite-dimensional, using the identification V n ∼=
Hom

(
πn(X),Q

)
mentioned at the start of the proof of Proposition 3.2. Then it follows

from the identification of the Gottlieb group in minimal model terms, discussed in
[6, §29d], that we have Gn(XQ) ∼= V n �= 0. But for X a simply connected finite
complex, we have Gn(X) ⊗Q ∼= Gn(XQ) (see [14]). Hence, we have Gn(X) ⊗Q �=
0. Next, by [10, §4], G∗(X) corresponds to the image of ∂ : π∗+1(Baut1(X)) →
π∗(X), the linking homomorphism in the long exact sequence of the universal fibration
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uX : Baut1(X) → X . Thus Gn(X) ⊗ Q �= 0 implies that ∂ : πn+1(Baut1(X)) →
πn(X) is non-zero after passing to rational homotopy groups. Therefore, the linking
homomorphism in the long exact sequence of the rationalized universal fibration (uX )Q
is non-zero, and it follows that (uX )Q cannot admit a section. 	


We apply the preceding to prove our main result:

Proof of Theorem 1.1 Let X be a rationally non-trivial F0-space. By Proposition 3.4,
we have secat0(uX ) ≥ 1. We prove secat0(uX ) ≤ 1.

The fibrewise join of the universal fibration, uX ∗ uX , has base Baut1(X) and fibre
X ∗X � �(X∧X). By Theorem 2.1, since X satisfies Halperin’s Conjecture, we have
Baut1(X) is rationally a product of even-dimensional Eilenberg–Mac Lane spaces.
Regarding the fibre, note that, since H∗(X;Q) is evenly graded, H∗(�(X ∧ X);Q)

is oddly graded. As a suspension (of X ∧ X ), X ∗ X has the rational homotopy type
of a wedge of spheres, and these spheres must be odd-dimensional since H∗(�(X ∧
X);Q) ∼= H∗(X ∗ X;Q) is oddly graded. If H̃∗(X;Q) has dimension at least 2,
then X ∗ X is rationally a wedge of at least two odd-dimensional spheres. Applying
Proposition 3.2, we conclude the rationalization of uX ∗ uX has a section and we
conclude secat0(uX ) ≤ 1 by Proposition 3.1.

When H̃∗(X;Q) has dimension 1, then X �Q S2n and we can invoke Stanley’s
result [20, Lem.3.2]. Alternately, we may observe that the fibrewise join uS2n ∗ uS2n
has fibre S2n ∗ S2n �Q K (Q, 4n + 1) and base Baut1(S2n) �Q K (Q, 4n). It follows
easily from degree considerations that (uS2n ∗ uS2n )Q is fibre-homotopically trivial
and so, in particular, has a section. 	


Theorem1.1 reduces the computation of secat0 for fibrationswith fibre X satisfying
Halperin’s Conjecture to the question of the existence of a section. Stanley expressed
the obstruction to a section in cohomological terms when X = S2n [20, Th.3.3]. We
follow his approach to obtain the following example.

Example 3.5 Write FibCPm (CPn) for the set of fibrations CPm → E
p−→ CPn

modulo rational fibre-homotopy equivalence. We assume m < n. The identity
Baut1(CPm) �Q

∏m+1
k=2 K (Q, 2k) follows from [18, Pro.2.6(iii)]. By universality,

we have

FibCPm (CPn) ≡ [CPn, Baut1(CPm)Q] ≡ ⊕m+1
k=2 H

2k(CPn;Q) ≡ Qm .

We associate the rational fibre-homotopy equivalence class of p with an explicit m-
tuple (am−1, . . . , a0) ∈ Qm defined as follows. The relative Sullivan model for p is
an inclusion

( ∧ (x2, y2n+1), d
) → ( ∧ (x2, y2n+1) ⊗ ∧(u2, v2m+1), D

)
with Dx =

dx = 0, Dy = dy = xn+1, Du = 0. As for Dv, we have

Dv = um+1 + amu
mx + am−1u

m−1x2 + · · · + a0x
m+1

for some ai ∈ Q. The basis change u �→ u − 1
m+1am will depress the polyno-

mial and we may assume am = 0. We observe that the classes ak[xm+1−k] ∈
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The rational sectional category of certain universal… 195

H2(m+1−k)(CPn;Q) for k = 0, . . . ,m − 1 correspond to the Chern classes of the
fibration p as in [9, Sec.3].

Given a section S : ∧ (x, y) ⊗ ∧(u, v) → ∧(x, y) write S(u) = qx for q ∈ Q.
Comparing coefficients of xm+1 in the equation S(dv) = DS(v) = 0 we see that
z = q is a solution to zm+1 + am−1zm−1 + · · · + a1z + a0 = 0. The converse follows
similarly and we obtain:

secat0(p) =
{
0 if zm+1 + am−1zm−1 + · · · + a1z + a0 has a rational root
1 otherwise.

We conclude with a question arising from our work. Meier [18] and others have
given various equivalent versions of Halperin’s Conjecture. It would be interesting to
have an equivalent version of the conjecture phrased in terms of the sectional category
of the universal fibration. We pose the following:

Question 3.6 Let X be an F0-space. Does secat0(uX ) = 1 imply that X satisfies
Halperin’s Conjecture?
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