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Abstract
If μ is a finite positive Borel measure on the interval [0, 1), we let Hμ be the
Hankel matrix (μn,k)n,k≥0 with entries μn,k = μn+k , where, for n = 0, 1, 2, . . .,
μn denotes the moment of order n of μ. This matrix induces formally the operator
Hμ( f )(z) = ∑∞

n=0

(∑∞
k=0 μn,kak

)
zn on the space of all analytic functions f (z) =

∑∞
k=0 akz

k , in the unit disc D.When μ is theLebesguemeasure on [0, 1) the operator
Hμ is the classical Hilbert operator H which is bounded on H p if 1 < p < ∞,
but not on H1. J. Cima has recently proved that H is an injective bounded operator
from H1 into the space C of Cauchy transforms of measures on the unit circle.
The operator Hμ is known to be well defined on H1 if and only if μ is a Carleson
measure and in such a case we have that Hμ(H1) ⊂ C . Furthermore, it is bounded
from H1 into itself if and only if μ is a 1-logarithmic 1-Carleson measure. In this
paper we prove that when μ is a 1-logarithmic 1-Carleson measure then Hμ actually
maps H1 into the space of Dirichlet type D1

0 . We discuss also the range of Hμ on
H1 when μ is an α-logarithmic 1-Carleson measure (0 < α < 1). We study also the
action of the operators Hμ on Bergman spaces and on Dirichlet spaces.
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800 D. Girela, N. Merchán

1 Introduction andmain results

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane C, ∂D

will be the unit circle. The space of all analytic functions in D will be denoted by
Hol(D). We also let H p (0 < p ≤ ∞) be the classical Hardy spaces. We refer to
[11] for the notation and results regarding Hardy spaces.

For 0 < p < ∞ and α > −1 the weighted Bergman space Ap
α consists of those

f ∈ Hol(D) such that

‖ f ‖Ap
α

def=
(

(α + 1)
∫

D

(1 − |z|2)α| f (z)|p d A(z)

)1/p

< ∞.

Here, d A stands for the area measure on D, normalized so that the total area of D

is 1. Thus d A(z) = 1
π
dx dy = 1

π
r dr dθ . The unweighted Bergman space Ap

0
is simply denoted by Ap. We refer to [12,18,29] for the notation and results about
Bergman spaces.

The space of Dirichlet type D p
α (0 < p < ∞ and α > −1) consists of those

f ∈ Hol(D) such that f ′ ∈ Ap
α . In other words, a function f ∈ Hol(D) belongs to

D p
α if and only if

‖ f ‖D p
α

def= | f (0)| +
(

(α + 1)
∫

D

(1 − |z|2)α| f ′(z)|p d A(z)

)1/p

< ∞.

The Hilbert matrix is the infinite matrix H =
(

1
k+n+1

)

k,n≥0
. It induces formally

an operator, called the Hilbert operator, on spaces of analytic functions as follows:
If f ∈ Hol(D), f (z) = ∑∞

n=0 anz
n , then we set

H f (z) =
∞∑

n=0

( ∞∑

k=0

ak
n + k + 1

)

zn, z ∈ D, (1)

whenever the right-hand side of (1) makes sense for all z ∈ D and the resulting
function is analytic in D. We define also

I f (z) =
∫ 1

0

f (t)

1 − t z
dt, z ∈ D, (2)

if the integrals in the right-hand side of (2) converge for all z ∈ D and the resulting
function I f is analytic in D. It is clear that the correspondences f 	→ H f and
f 	→ I f are linear.
If f ∈ H1, f (z) = ∑∞

n=0 anz
z , then by the Fejér-Riesz inequality [11, Theo-

rem3.13, p. 46] and Hardy’s inequality [11, p. 48], we have

∫ 1

0
| f (t)| dt ≤ π‖ f ‖H1 and

∞∑

n=0

an
n + 1

≤ π‖ f ‖H1 .
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Hankel matrices acting on the Hardy space H1 and on Dirichlet... 801

This immediately yields that if f ∈ H1 then H f and I f are well defined analytic
functions in D and that, furthermore, H f = I f .

Diamantopoulos and Siskakis [9] proved that H is a bounded operator from H p

into itself if 1 < p < ∞, but this is not true for p = 1. In fact, they proved that
H (

H1
)

� H1. Cima [6] has recently proved the following result.

Theorem A (i) The operator H maps H1 into the space C of Cauchy transforms
of measures on the unit circle ∂D.

(ii) H : H1 → C is injective.

We recall that if σ is a finite complex Borel measure on ∂D, the Cauchy transform
Cσ is defined by

Cσ(z) =
∫

∂D

dσ(ξ)

1 − ξ z
, z ∈ D.

We letM be the space of all finite complex Borel measure on ∂D. It is a Banach space
with the total variation norm. The space of Cauchy transforms is C = {Cσ : σ ∈ M }.
It is a Banach space with the norm ‖Cσ‖ def= inf{‖τ‖ : Cτ = Cσ }. We mention [7]
as an excellent reference for the main results about Cauchy transforms. We let A
denote the disc algebra, that is, the space of analytic functions in D with a continuous
extension to the closed unit disc, endowed with the ‖ · ‖H∞ -norm. It turns out [7,
Chapter4] that A can be identified with the pre-dual of C via the pairing

〈g,Cσ 〉 def= lim
r→1

1

2π

∫ 2π

0
g(reiθ )Cσ(reiθ ) dθ. (3)

This is the basic ingredient used by Cima to prove the inclusion H(H1) ⊂ C .
Now we turn to consider a class of operators which are natural generalizations of

the operators H and I. If μ is a finite positive Borel measure on [0, 1) and n =
0, 1, 2, . . .,we let μn denote themoment of order n of μ, that is,μn = ∫

[0,1) t
n dμ(t),

and we define Hμ to be the Hankel matrix (μn,k)n,k≥0 with entries μn,k = μn+k .
The measure μ induces formally the operators Iμ and Hμ on spaces of analytic
functions as follows:

Iμ f (z) =
∫

[0,1)
f (t)

1 − t z
dμ(t), Hμ f (z) =

∞∑

n=0

( ∞∑

k=0

akμn+k

)

zn, z ∈ D,

for f (z) = ∑∞
n=0 anz

n ∈ Hol(D) being such that the terms on the right-hand sides
make sense for all z ∈ D, and the resulting functions are analytic in D. If μ is the
Lebesgue measure on [0, 1) the matrix Hμ reduces to the classical Hilbert matrix
and the operators Hμ and Iμ are simply the operators H and I.

If I ⊂ ∂D is an interval, |I | will denote the length of I . The Carleson square
S(I ) is defined as S(I ) = {reit : eit ∈ I , 1 − |I |

2π ≤ r < 1}.
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802 D. Girela, N. Merchán

If s > 0 and μ is a positive Borel measure on D, we shall say that μ is an
s-Carleson measure if there exists a positive constant C such that

μ (S(I )) ≤ C |I |s, for any interval I ⊂ ∂D.

A 1-Carleson measure will be simply called a Carleson measure. We recall that Car-
leson [4] proved that H p ⊂ L p(dμ) (0 < p < ∞) if and only if μ is a Carleson
measure (see also [11, Chapter9]).

For 0 ≤ α < ∞ and 0 < s < ∞ we say that a positive Borel measure μ on D

is an α-logarithmic s-Carleson measure if there exists a positive constant C such that

μ (S(I ))
(
log 2π

|I |
)α

|I |s ≤ C, for any interval I ⊂ ∂D.

A positive Borel measure μ on [0, 1) can be seen as a Borel measure on D by
identifying it with the measure μ̃ defined by

μ̃(A) = μ (A ∩ [0, 1)) , for any Borel subset A of D.

In this way a positive Borel measure μ on [0, 1) is an s-Carleson measure if and only
if there exists a positive constant C such that

μ ([t, 1)) ≤ C(1 − t)s, 0 ≤ t < 1.

We have a similar statement for α-logarithmic s-Carleson measures.
The action of the operators Iμ and Hμ on distinct spaces of analytic functions

have been studied in a number of articles (see, e. g., [2,5,14–16,22,25,27]).
Combining results of [14] and of [16] we can state the following result.

Theorem B Let μ be a finite positive Borel measure on [0, 1).
(i) The operator Iμ is well defined on H1 if and only if μ is a Carleson measure.
(ii) If μ is a Carleson measure, then the operator Hμ is also well defined on H1

and Iμ f = Hμ f for all f ∈ H1.
(iii) The operator Hμ is a bounded operator from H1 into itself if and only if μ is a

1-logarithmic 1-Carleson measure.

Galanopoulos and Peláez [14, Theorem2.2] proved the following.

Theorem C Let μ be a positive Borel measure on [0, 1). If μ is a Carleson measure
then Hμ(H1) ⊂ C .

This result is stronger than TheoremA(i). In view of these results, the following
question arises naturally.

Question 1 Suppose that μ is a 1-logarithmic 1-Carleson measure on [0, 1). What
can we say about the image Hμ(H1) of H1 under the action of the operator Hμ?
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Hankel matrices acting on the Hardy space H1 and on Dirichlet... 803

To answer Question1, let us start noticing that it is known that, for 0 < p ≤ 2, the
space of Dirichlet type D p

p−1 is continuously included in H p (see [26, Lemma1.4]).

In particular, the space D1
0 is continuously included in H1. In fact, the estimates

obtained by Vinogradov in the proof of his lemma easily yield the inequality

‖ f ‖H1 ≤ 2‖ f ‖D1
0
, f ∈ D1

0.

We shall prove that if μ is a 1-logarithmic 1-Carleson measure on [0, 1) then
Hμ(H1) is contained in the space D1

0. Actually, we have the following stronger
result.

Theorem 1 Let μ be a positive Borelmeasure on [0, 1). Then the following conditions
are equivalent.

(i) μ is a 1-logarithmic 1-Carleson measure.
(ii) Hμ is a bounded operator from H1 into itself.
(iii) Hμ is a bounded operator from H1 into D1

0 .
(iv) Hμ is a bounded operator from D1

0 into D1
0 .

There is a gap between TheoremC and Theorem1 and so it is natural to discuss
the range of H1 under the action of Hμ when μ is an α-logarithmic 1-Carleson
measure with 0 < α < 1. We shall prove the following result.

Theorem 2 Let μ be a positive Borel measure on [0, 1). Suppose that 0 < α < 1
and that μ is an α-logarithmic 1-Carleson measure. Then Hμ maps H1 into the
space D1(logα−1) defined as follows:

D1(logα−1) =
{

f ∈ Hol(D) :
∫

D

| f ′(z)|
(

log
2

1 − |z|
)α−1

d A(z) < ∞
}

.

These results will be proved in Sect. 2. Since the space of Dirichlet type D1
0 has

showed up in a natural way in our work, it seems natural to study the action of the
operators Hμ and Iμ on the Bergman spaces Ap

α and the Dirichlet spaces D p
α for

general values of the parameters p and α. This will be done in Sect. 3.
Throughout this paper the letter C denotes a positive constant that may change

from one step to the next. Moreover, for two real-valued functions E1, E2 we write
E1 � E2, or E1 � E2, if there exists a positive constant C independent of the
arguments such that E1 ≤ CE2, respectively E1 ≥ CE2. If we have E1 � E2 and
E1 � E2 simultaneously then we say that E1 and E2 are equivalent and we write
E1 � E2.

2 Proofs of the theorems1 and 2

Proof of Theorem 1 We already know that (i) and (ii) are equivalent by TheoremB.
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804 D. Girela, N. Merchán

To prove that (i) implies (iii) we shall use some results about the Bloch space. We
recall that a function f ∈ Hol(D) is said to be a Bloch function if

‖ f ‖B def= | f (0)| + sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

The space of all Bloch functions will be denoted by B. It is a non-separable Banach
space with the norm ‖ · ‖B just defined. A classical source for the theory of Bloch
functions is [1]. The closure of the polynomials in the Bloch norm is the little Bloch
space B0 which consists of those f ∈ Hol(D) with the property that

lim|z|→1
(1 − |z|2)| f ′(z)| = 0.

It is well known that (see [1, p. 13])

| f (z)| � ‖ f ‖B log
2

1 − |z| . (4)

The basic ingredient to prove that (i) implies (iii) is the fact that the dual (B0)
∗ of

the little Bloch space can be identified with the Bergman space A1 via the integral
pairing

〈h, f 〉 =
∫

D

h(z) f (z) d A(z), h ∈ B0, f ∈ A1. (5)

(See [29, Theorem5.15]).
Let us proceed to prove the implication (i)⇒ (iii). Assume that μ is a 1-logarithmic

1-Carleson measure and take f ∈ H1. We have to show that Iμ f ∈ D1
0 or, equiv-

alently, that
(Iμ f

)′ ∈ A1. Since B0 is the closure of the polynomials in the Bloch
norm, it suffices to show that

∣
∣
∣
∣

∫

D

h(z)
(Iμ f

)′
(z) d A(z)

∣
∣
∣
∣ � ‖h‖B‖ f ‖H1 , for any polynomial h. (6)

So, let h be a polynomial. We have

∫

D

h(z)
(Iμ f

)′
(z) d A(z) =

∫

D

h(z)

(∫

[0,1)
t f (t)

(1 − t z)2
dμ(t)

)

d A(z)

=
∫

D

h(z)
∫

[0,1)
t f (t)

(1 − t z)2
dμ(t) d A(z)

=
∫

[0,1)
t f (t)

∫

D

h(z)

(1 − t z)2
d A(z) dμ(t).
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Hankel matrices acting on the Hardy space H1 and on Dirichlet... 805

Because of the reproducing property of the Bergman kernel [29, Proposition4. 23],∫
D

h(z)
(1−t z)2

d A(z) = h(t). Then it follows that

∫

D

h(z)
(Iμ f

)′
(z) d A(z) =

∫

[0,1)
t f (t) h(t) dμ(t). (7)

Since μ is a 1-logarithmic 1-Carleson measure, the measure ν defined by

dν(t) = log
2

1 − t
dμ(t)

is a Carleson measure [15, Proposition2. 5]. This implies that

∫

[0,1)
| f (t)| log 2

1 − t
dμ(t) � ‖ f ‖H1 .

This and (4) yield

∫

[0,1)

∣
∣
∣t f (t) h(t)

∣
∣
∣ dμ(t) � ‖h‖B‖ f ‖H1 .

Using this and (7), (6) follows.
Since D1

0 ⊂ H1 , the implication (iii) ⇒ (iv) is trivial. To prove that (iv) implies
(i) we shall use the following result of Pavlović [23, Theorem3.2].

Theorem D Let f ∈ Hol(D), f (z) = ∑∞
n=0 anz

n, and suppose that the sequence
{an} is a decreasing sequence of non-negative real numbers. Then f ∈ D1

0 if and
only if

∑∞
n=0

an
n+1 < ∞, and we have

‖ f ‖D1
0

�
∞∑

n=0

an
n + 1

.

Now we turn to prove the implication (iv)⇒ (i). Assume that Hμ is a bounded
operator from D1

0 into D1
0. We argue as in the proof of Theorem1.1 of [16]. For

1
2 < b < 1 set

fb(z) = 1 − b2

(1 − bz)2
, z ∈ D.

We have f ′
b(z) = 2b(1−b2)

(1−bz)3
(z ∈ D). Then, using Lemma3.10 of [29] with t = 0 and

c = 1, we see that

‖ fb‖D1
0

�
∫

D

1 − b2

|1 − bz|3 d A(z) � 1.
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806 D. Girela, N. Merchán

Since Hμ is bounded on D1
0, this implies that

1 � ‖Hμ( fb)‖D1
0
. (8)

We also have,

fb(z) =
∞∑

k=0

ak,bz
k, with ak,b = (1 − b2)(k + 1)bk .

Since the ak,b’s are positive, it is clear that the sequence {∑∞
k=0 μn+kak,b}∞n=0 of the

Taylor coefficients ofHμ( fb) is a decreasing sequence of non-negative real numbers.
Using this, TheoremD, (8), and the definition of the ak,b’s, we obtain

1 � ‖Hμ( fb)‖D1
0

�
∞∑

n=1

1

n

( ∞∑

k=0

μn+kak,b

)

=
∞∑

n=1

1

n

( ∞∑

k=0

ak,b

∫

[0,1)
tn+k dμ(t)

)

� (1 − b2)
∞∑

n=1

1

n

( ∞∑

k=1

kbk
∫

[b,1)
tn+k dμ(t)

)

� (1 − b2)
∞∑

n=1

1

n

( ∞∑

k=1

kbn+2k μ ([b, 1))
)

= (1 − b2)μ ([b, 1))
∞∑

n=1

bn

n

( ∞∑

k=1

kb2k
)

= (1 − b2)μ ([b, 1))
(

log
1

1 − b

)
b2

(1 − b2)2
.

Then it follows that

μ ([b, 1)) = O

(
1 − b

log 1
1−b

)

, as b → 1.

Hence, μ is a 1-logarithmic 1-Carleson measure. ��
Before embarking on the proof of Theorem2 we have to introduce some notation

and results. Following [24], for α ∈ R theweightedBergman space A1(logα) consists
of those f ∈ Hol(D) such that

‖ f ‖A1(logα)
def=

∫

D

| f (z)|
(

log
2

1 − |z|
)α

d A(z) < ∞.
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Hankel matrices acting on the Hardy space H1 and on Dirichlet... 807

This is a Banach space with the norm ‖ · ‖A1(logα) just defined and the polynomials
are dense in A1(logα). Likewise, we define

D1(logα) = { f ∈ Hol(D) : f ′ ∈ A1(logα)}.

We define also the Bloch-type space B(logα) as the space of those f ∈ Hol(D)

such that

‖ f ‖B(logα)
def= | f (0)| + sup

z∈D
(1 − |z|2)

(

log
2

1 − |z|
)−α

| f ′(z)| < ∞,

and

B0(log
α) =

⎧
⎪⎨

⎪⎩
f ∈ Hol(D) : | f ′(z)| = o

⎛

⎜
⎝

(
log 2

1−|z|
)α

1 − |z|

⎞

⎟
⎠ , as |z| → 1

⎫
⎪⎬

⎪⎭
.

The space B(logα) is a Banach space and B0(logα) is the closure of the polynomials
in B(logα).

We remark that the spaces D1(logα) , B(logα) , and B0(logα) were called B1
logα ,

Blogα , and blogα in [24]. Pavlović identified in [24, Theorem2.4] the dual of the space
B0(logα).

Theorem E Let α ∈ R. Then the dual of B0(logα) is A1(logα) via the pairing

〈h, g〉 =
∫

D

f (z) g(z) d A(z), h ∈ B0(log
α), g ∈ A1(logα).

Actually, Pavlović formulated the duality theorem in another way but it is a simple
exercise to show that his formulation is equivalent to this one which is better suited to
our work.

Proof of Theorem 2 Let μ be a positive Borel measure on [0, 1) and 0 < α < 1.
Suppose that μ is an α-logarithmic 1-Carleson measure. Take f ∈ H1. We have to
show that Iμ f ∈ D1(logα−1) or, equivalently, that

(Iμ f
)′ ∈ A1(logα−1). Bearing

in mind TheoremE and the fact that B0(logα−1) is the closure of the polynomials in
B(logα−1) , it suffices to show that

∣
∣
∣
∣

∫

D

h(z)
(Iμ f

)′
(z) d A(z)

∣
∣
∣
∣ � ‖h‖B(logα−1)‖ f ‖H1 , for any polynomial h. (9)

So, let h be a polynomial. Arguing as in the proof of the implication (i) ⇒ (iii) in
Theorem1 we obtain

∫

D

h(z)
(Iμ f

)′
(z) d A(z) =

∫

[0,1)
t f (t) h(t) dμ(t). (10)
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808 D. Girela, N. Merchán

Now, it is clear that

|h(z)| � ‖h‖B(logα−1)

(

log
2

1 − |z|
)α

,

and then it follows that

∫

[0,1)

∣
∣
∣t f (t) h(t)

∣
∣
∣ dμ(t) � ‖h‖B(logα−1)

∫

[0,1)
| f (t)|

(

log
2

1 − t

)α

dμ(t).

Using the fact that the measure
(
log 2

1−t

)α

dμ(t) is a Carleson measure [15, Propo-

sition2. 5], this implies that

∫

[0,1)

∣
∣
∣t f (t) h(t)

∣
∣
∣ dμ(t) � ‖h‖B(logα−1)‖ f ‖H1 .

This and (10) give (9). ��

3 The operatorsH� acting on Bergman spaces and on Dirichlet
spaces

Jevtić and Karapetrović [20] have recently proved the following result.

Theorem F The Hilbert operator H is a bounded operator from D p
α into itself if and

only if max(−1, p − 2) < α < 2p − 2.

Now, it is well known that Ap
α = D p

α+p (see [29, Theorem4.28]). Hence, regard-
ing Bergman spaces TheoremF says the following.

Corollary G The Hilbert operator H is a bounded operator from Ap
α into itself if and

only if −1 < α < p − 2.

Let us recall that Diamantopoulos [8] had proved before that the Hilbert operator
is bounded on Ap for p > 2, but not on A2. The situation on A2 is even worse.
Dostanić, Jevtić, and Vukotić [10] proved that the Hilbert operator is not well defined
on A2. Indeed, they considered the function f defined by

f (z) =
∞∑

n=1

1

log(n + 1)
zn, z ∈ D, (11)

which belongs to A2. However, the series defining H f (0) is
∑∞

n=1
1

(n+1) log(n+1) =
∞ and the integral defining I f (0) is

∫ 1
0 f (t) dt = ∞. Hence neither H nor I

are defined on A2.
This result can be extended. We can assert that H is not well defined on Ap

p−2 for
any p > 1. Indeed, let f be the function defined in (11). Notice that the sequence
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Hankel matrices acting on the Hardy space H1 and on Dirichlet... 809

{ 1
(n+1) log(n+1) } is decreasing and that

∑∞
n=1

1
n(log(n+1))p < ∞. Then (see Proposi-

tion1 below) it follows that f ∈ Ap
p−2, and we have already seen that H f and I f

are not defined. Since α ≥ p−2 ⇒ Ap
p−2 ⊂ Ap

α , it follows that the Hilbert operator

H is not defined on Ap
α if α ≥ p − 2.

In this section we shall obtain extensions of the mentioned results of Jevtić and
Karapetrović considering the generalized Hilbert operators Hμ .

Theorem 3 Suppose that max(−1, p − 2) < α < 2p − 2 and let μ be a finite
positive Borel measure on [0, 1). If μ is a Carleson measure then the operators Hμ

and Iμ are well defined on D p
α . Furthermore, Iμ f = Hμ f , for all f ∈ D p

α .

When dealing with Bergman spaces Theorem3 reduces to the following.

Corollary 1 Suppose that p > 1 and −1 < α < p−2 , and let μ be a finite positive
Borel measure on [0, 1). If μ is a Carleson measure then the operators Hμ and Iμ

are well defined on Ap
α . Furthermore, Iμ f = Hμ f , for all f ∈ Ap

α .

Proof of Theorem 3 Suppose that μ is a Carleson measure and take f ∈ D p
α . Set

β = 2+α
p − 1. Observe that 0 < β < 1. Using [29, Theorem4.14], we see that

| f ′(z)| � 1
(1−|z|)(2+α)/p and, hence, | f (z)| � 1

(1−|z|)β . Then it follows that

∫

[0,1)
| f (t)| dμ(t) �

∫

[0,1)
dμ(t)

(1 − t)β
.

Integrating by parts, using that μ is a Carleson measure, and that 0 < β < 1, we
obtain

∫

[0,1)
dμ(t)

(1 − t)β
= μ([0, 1)) − lim

t→1

μ([t, 1))
(1 − t)β

+ β

∫ 1

0

μ([t, 1))
(1 − t)β+1 dt

= μ([0, 1)) + β

∫ 1

0

μ([t, 1))
(1 − t)β+1 dt

� μ([0, 1)) +
∫ 1

0

1

(1 − t)β
dt

< ∞.

Consequently, we obtain that

∫

[0,1)
| f (t)| dμ(t) < ∞. (12)

Clearly, this implies that the integral

∫

[0,1)
f (t) dμ(t)

1 − t z
converges absolutely and uniformly on compact subsets of D.

(13)
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This gives that Iμ f is a well defined analytic function in D and that

Iμ f (z) =
∞∑

n=0

(∫

[0,1)
tn f (t) dμ(t)

)

zn, z ∈ D. (14)

Using [19, Theorem2.1] (see also [20, Theorem2.1]) we see that for these values
of p and α we have that if f ∈ Ap

α , f (z) = ∑∞
n=0 anz

n , then
∑∞

k=0
|ak |
k+1 < ∞.

Now, since μ is a Carleson measure we have that |μn| � 1
n+1 ([5, Proposition1]).

Then it follows that

∞∑

k=0

|μn+kak | �
∞∑

k=0

|ak |
k + n + 1

�
∞∑

k=0

|ak |
k + 1

, for all n.

Clearly, this implies that Hμ f is a well defined analytic function in D and that∫
[0,1) t

n f (t) dμ(t) = ∑∞
k=0 μn+kak for all n. This and (13) give that Iμ f = Hμ f .

��
Our next result is an extension of CorollaryG.

Theorem 4 Suppose that −1 < α < p − 2 and let μ be a finite positive Borel
measure on [0, 1).

The operator Hμ is well defined on Ap
α and it is a bounded operator from Ap

α to
itself if and only if μ is a Carleson measure.

A number of results will be needed to prove this theorem. We start with a char-
acterization of the functions f ∈ Hol(D) whose sequence of Taylor coefficients is
decreasing which belong to Ap

α .

Proposition 1 Let f ∈ Hol(D), f (z) = ∑∞
n=0 an z

n (z ∈ D). Suppose that 1 < p <

∞, α > −1, and that the sequence {an}∞n=0 is a decreasing sequence of non-negative
real numbers. Then

f ∈ Ap
α ⇔

∞∑

n=1

n p−3−αa p
n < ∞.

Furthermore, ‖ f ‖p
Ap

α
� |a0|p + ∑∞

n=1 n
p−3−αa p

n < ∞.

This result can be proved with arguments similar to those used in the proofs of
[15, Theorem3.10] and [23, Theorem3.1] where the analogous results for the Besov
spaces B p = D p

p−2 (p > 1) and for the spaces D p
p−1 (p > 1) were proved. The case

α = 0 is proved in [3, Proposition2. 4]. Consequently, we omit the details.
The following lemma is a generalization of [13, Lemma3(ii)].

Lemma 1 Let μ be a positive Borel measure on [0, 1) which is a Carleson measure.
Assume that 0 < p < ∞ and α > −1. Then there exists a positive constant
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C = C(p, α, μ) such that for any f ∈ Ap
α

∫

[0,1)
Mp∞(r , f )(1 − r)α+1 dμ(r) ≤ C‖ f ‖p

Ap
α
.

Of course, M∞(r , f ) = sup|z|=r | f (z)|.

Proof Take f ∈ Ap
α and set

g(r) = Mp∞(r , f )(1 − r)α+1,

F(r) = μ([0, r)) − μ([0, 1)) = −μ([r , 1)), 0 < r < 1.

Integrating by parts, we have

∫

[0,1)
Mp∞(r , f )(1 − r)α+1 dμ(r) =

∫

[0,1)
g(r) dμ(r)

= lim
r→1

g(r)F(r) − g(0)F(0) −
∫ 1

0
g′(r)F(r) dr

= | f (0)|pμ([0, 1)) − lim
r→1

Mp∞(r , f )(1 − r)α+1μ([r , 1))

+
∫ 1

0
g′(r)μ([r , 1)) dr . (15)

Since f ∈ Ap
α we have that Mp∞(r , f ) = o

(
(1 − r)−2−α

)
, as r → 1 (see, e. g., [18,

p. 54]). This and the fact that μ is a Carleson measure imply that

lim
r→1

Mp∞(r , f )(1 − r)α+1μ([r , 1)) = 0. (16)

Using again that μ is a Carleson measure and integrating by parts we see that

∫ 1

0
g′(r)μ([r , 1)) dr �

∫ 1

0
g′(r)(1 − r) dr

= lim
r→1

g(r)(1 − r) − g(0) +
∫ 1

0
g(r) dr

≤ lim
r→1

Mp∞(r , f )(1 − r)α+2 +
∫ 1

0
Mp∞(r , f )(1 − r)α+1 dr

=
∫ 1

0
Mp∞(r , f )(1 − r)α+1 dr .

Then, using [13, Lemma 3. (ii)], it follows that

∫ 1

0
g′(r)μ([r , 1)) dr � ‖ f ‖p

Ap
α
.
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Using this and (16) in (15) readily yields
∫
[0,1) M

p∞(r , f )(1 − r)α+1 dμ(r)

� ‖ f ‖p
Ap

α
. ��

We shall also need the following characterization of the dual of the spaces Aq
β

(q > 1). It is a special case of [21, Theorem2.1].

Lemma 2 If 1 < q < ∞ and β > −1, then the dual of Aq
β can be identified with Ap

α

where 1
p + 1

q = 1 and α is any number with α > −1, under the pairing

〈h, f 〉Aq,β,α =
∫

D

h(z) f (z)(1 − |z|2) β
q + α

p d A(z), h ∈ Aq
β, f ∈ Ap

α . (17)

Finally, we recall the following result from [13, (5. 2), p. 242] which is a version of
the classical Hardy’s inequality [17, pp. 244–245].

Lemma 3 Suppose that k > 0, q > 1, and h is a non-negative function defined in
(0, 1), then

∫ 1

0

(∫ 1

1−r
h(t) dt

)q

(1 − r)k−1 dr ≤
(q

k

)q ∫ 1

0
(h(1 − r))q(1 − r)q+k−1 dr .

Proof of Theorem 4 Suppose first that Hμ is a bounded operator from Ap
α into itself.

For 0 < b < 1, set

fb(z) = (1 − b2)1−
α
p

(1 − bz)
2
p +1

, z ∈ D.

Recall that p − α > 2. Then using [29, Lemma3.10] with t = α and c = p − α,
we obtain

‖ fb‖p
Ap

α
= (1 − b2)p−α

∫

D

(1 − |z|2)α
|1 − bz|2+p

d A(z) � 1.

Since Hμ is bounded on Ap
α , this implies

1 � ‖Hμ( fb)‖Ap
α
. (18)

We also have

fb(z) =
∞∑

k=0

ak,bz
k, (z ∈ D), with ak,b � (1 − b2)1−

α
p k

2
p bk .

Since the ak,b’s are positive, it is clear that the sequence
{∑∞

k=0 μn+kak,b
}∞
n=0 of the

Taylor coefficients ofHμ( fb) is a decreasing sequence of non-negative real numbers.
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Using this, Proposition1, (18), and the definition of the ak,b’s, we obtain

1 � ‖Hμ( fb)‖p
Ap

α
�

∞∑

n=1

n p−α−3

( ∞∑

k=1

μn+kak,b

)p

=
∞∑

n=1

n p−α−3

( ∞∑

k=1

ak,b

∫

[0,1)
tn+kdμ(t)

)p

� (1 − b2)p−α
∞∑

n=1

n p−α−3

( ∞∑

k=1

k
2
p bk

∫

[b,1)
tn+kdμ(t)

)p

≥ (1 − b2)p−α

∞∑

n=1

n p−α−3

( ∞∑

k=1

k
2
p bn+2kμ([b, 1))

)p

= (1 − b2)p−αμ([b, 1))p
∞∑

n=1

n p−α−3bnp
( ∞∑

k=1

k
2
p b2k

)p

� (1 − b2)p−αμ([b, 1))p 1

(1 − b2)2+p

∞∑

n=1

n p−α−3bnp

� (1 − b2)p−αμ([b, 1))p 1

(1 − b2)2+p
· 1

(1 − b2)p−α−2

� μ([b, 1))p 1

(1 − b)p
.

Then it follows that

μ ([b, 1)) = O (1 − b) , as b → 1,

and, hence, μ is a Carleson measure.
We turn to prove the other implication. So, suppose that μ is aCarlesonmeasure and

take f ∈ Ap
α . Let q be defined by the relation 1

p + 1
q = 1 and take β = −αq

p = −α
p−1 .

Observe that β > −1 and that with this election of β the weight in the pairing (17)

is identically equal to 1. We have to show that Hμ f ∈ Ap
α which is equal to

(
Aq

β

)∗

under the pairing 〈·, ·〉q,β,α . So take h ∈ Aq
β .

〈h,Hμ f 〉q,β,α =
∫

D

h(z)Hμ f (z) d A(z)

=
∫

[0,1)
f (t)

(∫

D

h(z)

1 − t z
d A(z)

)

dμ(t)

=
∫

[0,1)
f (t)

(∫ 1

0

r

π

∫ 2π

0

h(reiθ )

1 − tre−iθ
dθ dr

)

dμ(t)

=
∫

[0,1)
f (t)

(∫ 1

0

(
r

π i

∫

|ξ |=1

h(rξ)

ξ − tr
dξ

)

dr

)

dμ(t)

= 2
∫

[0,1)
f (t)

(∫ 1

0
rh(r2t) dr

)

dμ(t).
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Thus,

∣
∣〈h,Hμ f 〉q,β,α

∣
∣ ≤ 2

∫ 1

0
| f (t)|G(t) dμ(t),

where G(t) = ∫ 1
0 r |h(r2t)| dr . Using Hölder’s inequality we obtain,

∫

[0,1)
f (t)G(t) dμ(t) =

∫

[0,1)
| f (t)|(1 − t)

α+1
p G(t)(1 − t)−

α+1
p dμ(t)

≤
(∫

[0,1)
| f (t)|p(1 − t)α+1 dμ(t)

)1/p

·
(∫

[0,1)
G(t)q(1 − t)−

q(α+1)
p dμ(t)

)1/q

.

Lemma1 implies that

(∫

[0,1)
| f (t)|p(1 − t)α+1 dμ(t)

)1/p

� ‖ f ‖Ap
α
.

Next we will show that

∫

[0,1)
G(t)q(1 − t)−

q(α+1)
p dμ(t) � ‖h‖q

Aq
β

. (19)

This will give that

∣
∣〈h,Hμ f 〉q,β,α

∣
∣ � ‖ f ‖Ap

α
· ‖h‖q

Aq
β

.

By the duality theorem, this implies that Hμ f ∈ Ap
α .

Let us prove (19). Observe first that if 0 < t < 1/2 then |h(r2t)| ≤ M∞( 12 , h) for
each r ∈ (0, 1), thus

G(t) =
∫ 1

0
|h(r2t)|r dr ≤ M∞

(
1

2
, h

)

, 0 < t < 1/2.

Clearly, this implies

∫

[0,1/2)
G(t)q(1 − t)−

q(α+1)
p dμ(t) � Mq∞

(
1

2
, h

)

� ‖h‖q
Aq

β

. (20)

Notice that − q(α+1)
p = p−2−α

p−1 − 1 > −1. Making the change of variables r2t = s,

we obtain
∫ 1
0 r |h(r2t)| dr = 1

2t

∫ t
0 |h(s)| ds and, hence,

∫

[1/2,1)
G(t)q(1 − t)−

q(α+1)
p dμ(t)
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=
∫

[1/2,1)

(∫ 1

0
|h(r2t)|r dr

)q

(1 − t)−
q(α+1)

p dμ(t)

=
∫

[1/2,1)
1

(2t)q

(∫ t

0
|h(s)| ds

)q

(1 − t)−
q(α+1)

p dμ(t)

≤
∫

[1/2,1)

(∫ t

0
M∞(s, h) ds

)q

(1 − t)−
q(α+1)

p dμ(t)

≤
∫

[0,1)

(∫ 1

1−t
M∞(1 − s, h) ds

)q

(1 − t)−
q(α+1)

p dμ(t) (21)

Let us call H(t) =
(∫ 1

1−t M∞(1 − s, h) ds
)q

(1− t)−
q(α+1)

p for 0 ≤ t < 1. Integrating

by parts we obtain the following

∫

[0,1)
H(t) dμ(t) = H(0)μ([0, 1)) − lim

t→1− H(t)μ([t, 1)) +
∫ 1

0
μ([t, 1))H ′(t) dt .

(22)

The first term is equal to 0. Using the fact that μ is a Carleson measure we have that

H(t)μ([t, 1)) � (1 − t)H(t)

=
(∫ 1

1−t
M∞(1 − s, h) ds

)q

(1 − t)1−
q(α+1)

p

=
(∫ t

0
M∞(s, h) ds

)q

(1 − t)1−
q(α+1)

p .

Since h ∈ Aq
β we have M∞(t, h) = o

(

(1 − t)−
β+2
q

)

, as t → 1. Then, bearing in

mind that β+2
q > 1, it follows that

H(t)μ([t, 1)) = o

(

(1 − t)−β−2+q · (1 − t)1−
q(α+1)

p

)

= o(1), as t → 1. (23)

Actually, we have also proved that

(1 − t)H(t) = o(1), as t → 1. (24)

Using that μ is a Carleson measure, integrating by parts, and using the definition
of H and (24), we obtain

∫ 1

0
μ([t, 1))H ′(t) dt �

∫ 1

0
(1 − t)H ′(t) dt

= lim
t→1

(1 − t)H(t) − H(0) +
∫ 1

0
H(t) dt
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=
∫ 1

0

(∫ 1

1−t
M∞(1 − s, h) ds

)q

(1 − t)−
q(α+1)

p dt . (25)

Now, using Lemma3 and [13, Lemma3], we see that

∫ 1

0

(∫ 1

1−t
M∞(1 − s, h) ds

)q

(1 − t)−
q(α+1)

p dt

�
∫ 1

0
Mq∞(t, h)(1 − t)α+1 dt � ‖h‖q

Aq
β

.

Using this, (25), (23), (22), and (21), it follows that

∫

[1/2,1)
G(t)q(1 − t)−

q(α+1)
p dμ(t) � ‖h‖q

Aq
β

.

This and (20) yield (19). ��

Our final aim in this article is to find the analogue of Theorem4 for Dirichlet spaces.
In other words, we wish give an answer to the following question.

Question 2 If max(−1, p − 2) < α < 2p − 2, is it true that Hμ is a bounded
operator from D p

α into itself if and only if μ is a Carleson measure?

Since p − 1 < α < 2p − 2 implies that D p
α = Ap

α−p, Theorem4 answers the
question affirmatively for these values of p and α. It remains to consider the case
max(−1, p − 2) < α ≤ p − 1. We shall prove the following result which gives a
positive answer to Question2 in the case p > 1.

Theorem 5 Suppose that p > 1 and p − 2 < α ≤ p − 1, and let μ be a finite
positive Borel measure on [0, 1).

The operator Hμ is well defined on D p
α and it is a bounded operator from D p

α

into itself if and only if μ is a Carleson measure.

The following two lemmas will be needed in the proof of Theorem5. The first one
follows trivially from Proposition1.

Lemma 4 Let f ∈ Hol(D), f (z) = ∑∞
n=0 anz

n (z ∈ D). Suppose that 1 < p < ∞
and p − 2 < α ≤ p − 1, and that the sequence {an}∞n=0 is a decreasing sequence of
non-negative real numbers. Then

f ∈ D p
α ⇔

∞∑

n=0

(n + 1)2p−α−3a p
n < ∞.

The following lemma is a generalization of [13, Lemma4].
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Lemma 5 Let μ be a positive Borel measure on [0, 1) which is a Carleson measure.
Assume that 0 < p < ∞ and α > −1. Then there exists a positive constant
C = C(p, α, μ) such that for any f ∈ D p

α

∫

[0,1)
Mp∞(r , f )(1 − r)α−p+1 dμ(r) ≤ C‖ f ‖p

D p
α
.

Proof We argue as in the proof of Lemma1. Take f ∈ D p
α and set

g(r) = Mp∞(r , f )(1 − r)α−p+1,

F(r) = μ([0, r)) − μ([0, 1)) = −μ([r , 1)), 0 < r < 1.

Integrating by parts, we have

∫

[0,1)
Mp∞(r , f )(1 − r)α−p+1 dμ(r) =

∫

[0,1)
g(r) dμ(r)

= lim
r→1

g(r)F(r) − g(0)F(0) −
∫ 1

0
g′(r)F(r) dr

= | f (0)|pμ([0, 1)) − lim
r→1

Mp∞(r , f )(1 − r)α−p+1μ([r , 1))

+
∫ 1

0
g′(r)μ([r , 1)) dr . (26)

Since f ∈ D p
α we have that Mp∞(r , f ′) = o

(
(1 − r)−2−α

)
, as r → 1. Hence,

Mp∞(r , f ) = o
(
(1 − r)−2−α+p

)
, as r → 1. This and the fact that μ is a Carleson

measure imply that

lim
r→1

Mp∞(r , f )(1 − r)α−p+1μ([r , 1)) = 0. (27)

Using again that μ is a Carleson measure and integrating by parts we see that

∫ 1

0
g′(r)μ([r , 1)) dr �

∫ 1

0
g′(r)(1 − r) dr

= lim
r→1

g(r)(1 − r) − g(0) +
∫ 1

0
g(r) dr

≤ lim
r→1

Mp∞(r , f )(1 − r)α−p+2

+
∫ 1

0
Mp∞(r , f )(1 − r)α−p+1 dr

=
∫ 1

0
Mp∞(r , f )(1 − r)α−p+1 dr .
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Then, using [13, Lemma 3], it follows that

∫ 1

0
g′(r)μ([r , 1)) dr � ‖ f ‖p

D p
α
.

Using this and (27) in (26) readily yields
∫
[0,1) M

p∞(r , f )(1 − r)α−p+1 dμ(r) �
‖ f ‖p

D p
α
. ��

Proof of Theorem 5 Suppose first that Hμ is a bounded operator from D p
α into itself.

For 1/2 < b < 1 we set

fb(z) = (1 − b2)1−
α
p

(1 − bz)2/p
, z ∈ D.

We have ‖ fb‖D p
α

� 1. Then arguing as in the proof of the correspondent implication
in Theorem4 we obtain that μ is a Carleson measure. We omit the details.

To prove the other implication, suppose that μ is a Carleson measure and take
f ∈ D p

α . Since Hμ and Iμ coincide on D p
α , we have to prove that Iμ f ∈ D p

α and
that ‖Iμ f ‖D p

α
� ‖ f ‖D p

α
or, equivalently, that

(Iμ f
)′ ∈ Ap

α and

‖ (Iμ f
)′ ‖Ap

α
� ‖ f ‖Ap

α
. (28)

We shall distinguish two cases.

First case:α < p− 1. Let q be defined by the relation 1
p + 1

q = 1 and take β = −αq
p .

In view of Lemma2, (28) is equivalent to

∣
∣
∣
∣

∫

D

h(z)
(Iμ f

)′
(z) d A(z)

∣
∣
∣
∣ � ‖ f ‖D p

α
‖h‖Aq

β
, h ∈ Aq

β. (29)

So, take h ∈ Aq
β . Just as in the proof of Theorem1, we have

∫

D

h(z)
(Iμ f

)′
(z) d A(z) =

∫

[0,1)
t f (t) h(t) dμ(t). (30)

Set s = −1 + α+1
p . Observe that ps = α − p + 1 and −qs = β + 1. Then, using

(30), Hölder’s inequality, Lemma1, and Lemma5, we obtain

∣
∣
∣
∣

∫

D

h(z)
(Iμ f

)′
(z) d A(z)

∣
∣
∣
∣ ≤

∫

[0,1)
| f (t)|(1 − t)s |h(t)|(1 − t)−s dμ(t)

≤
(∫

D

| f (t)|p(1 − t)α−p+1 dμ(t)

)1/p (∫

[0,1)
|h(t)|q(1 − t)β+1 dμ(t)

)1/q

≤
(∫

D

Mp∞(t, f )(1 − t)α−p+1 dμ(t)

)1/p
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×
(∫

[0,1)
Mq∞(t, h)(1 − t)β+1 dμ(t)

)1/q

≤ ‖ f ‖D p
α
‖h‖Aq

β
.

Thus, (29) holds.

Second case: α = p− 1. We let again q be defined by the relation 1
p + 1

q = 1 and
take β = q − 1. Using Lemma2 and arguing as in the preceding case, we have to
show that

∣
∣
∣
∣

∫

D

(1 − |z|2) h(z)
(Iμ f

)′
(z) d A(z)

∣
∣
∣
∣ � ‖ f ‖D p

p−1
‖h‖Aq

q−1
, h ∈ Aq

q−1. (31)

We have

∫

D

(1− |z|2) h(z)
(Iμ f

)′
(z) d A(z) =

∫

[0,1)
t f (t)

∫

D

(1 − |z|2)h(z)

(1 − t z)2
d A(z) dμ(t).

(32)
Now,

∫
D

h(z)
(1−t z)2

d A(z) = h(t) and

∫

D

|z|2 h(z)

(1 − t z)2
d A(z) =

∫ 1

0

r3

π

∫ 2π

0

h(reiθ ) dθ

(1 − tre−iθ )2
dr

=
∫ 1

0

2r3

2π i

∫ 2π

0

eiθh(reiθ )ieiθ dθ

(eiθ − tr)2
dr =

∫ 1

0

2r3

2π i

∫

|z|=1

zh(r z)

(z − tr)2
dz dr

=
∫ 1

0
2r3

[
h(r2t) + r2th′(r2t)

]
dr .

Then it is clear that
∣
∣
∣
∫
D

(1−|z|2) h(z)
(1−t z)2

d A(z)
∣
∣
∣ � M∞(t, h). Using this, (32), Hölder’s

inequality, Lemma1, and Lemma5, we obtain

∣
∣
∣
∣

∫

D

(1 − |z|2) h(z)
(Iμ f

)′
(z) d A(z)

∣
∣
∣
∣ �

∫

[0,1)
M∞(t, f ) M∞(t, h) dμ(t)

≤
(∫

[0,1)
Mp∞(t, f ) dμ(t)

)1/p (∫

[0,1)
Mq∞(t, h) dμ(t)

)1/q

≤ ‖ f ‖D p
p−1

‖h‖Aq
q−1

.

This is (31). ��
We shall close the article with some comments about the case p = 1 in Question2.

We have the following result.

Theorem 6 Let μ be a finite positive Borel measure on [0, 1) and −1 < α < 0. If
μ is a Carleson measure then the operator Hμ is a bounded operator form D1

α to
itself.
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Proof Using [29, Theorem5.15, p. 113], we see that A1
α can be identified as the dual

of the little Bloch space under the pairing

〈h, g〉 =
∫

D

(1 − |z|2)α h(z) g(z) d A(z), h ∈ B0, g ∈ A1
α. (33)

Suppose that μ is a Carleson measure. Using this duality relation and the fact that
Hμ = Iμ on D1

α , showing that Hμ is a bounded operator from D1
α to itself is

equivalent to showing that

∣
∣
∣
∣

∫

D

(1 − |z|2)α h(z)
(Iμ f

)′
(z) d A(z)

∣
∣
∣
∣ � ‖h‖B · ‖ f ‖D1

α
, h ∈ B0, f ∈ D1

α. (34)

Let us prove (34). Take h ∈ B0 and f ∈ D1
α . We have

∫

D

(1 − |z|2)α h(z)
(Iμ f

)′
(z) d A(z)

=
∫

[0,1)
t f (t)

∫

D

(1 − |z|2)αh(z)

(1 − t z)2
d A(z) dμ(t). (35)

Using [29, Lemma5.14, pp. 113-114] we have that the operator T defined by

Tφ(ξ) = (1 − |ξ |2)−α

∫

D

(1 − |z|2)αφ(z)

(1 − ξ z)2
d A(z)

is a bounded operator from B into L∞(D). Then it follows that

∣
∣
∣
∣

∫

D

(1 − |z|2)αh(z)

(1 − t z)2
d A(z)

∣
∣
∣
∣ � ‖h‖B(1 − t2)α, t ∈ [0, 1).

Using this in (35), we obtain

∣
∣
∣
∣

∫

D

(1 − |z|2)α h(z)
(Iμ f

)′
(z) d A(z)

∣
∣
∣
∣ � ‖h‖B

∫

D

(1 − t)α| f (t)| dμ(t). (36)

The fact that μ is a Carleson measure readily implies that the measure ν defined by
dν(t) = (1− t)α dμ(t) is a (1− α)-Carleson measure. Using Theorem1 of [28] we
see that then ν is a Carleson measure for D1

α , that is,

∫

[0,1)
(1 − t)α|g(t)| dμ(t) � ‖g‖D1

α
, g ∈ D1

α.

Using this in (36), (34) follows. ��
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We do not know whether the converse of Theorem6 is true. This is due to the fact
that we do not know whether Lemma4 remains true for p = 1. The inequality

∞∑

n=0

|an|(n + 1)−(1+α) � ‖ f ‖D1
α
. (37)

is certainly true with no assumption on the sequence {an}. Indeed, by Hardy’s inequal-
ity [11, p. 48],

∑∞
n=1 |an|rn−1 �

∫ 2π
0 | f ′(reiθ )|dθ . Hence

‖ f ‖D1
α

�
∫ 1

0
(1 − r)α

∫ 2π

0
| f ′(reiθ )|dθdr

�
∞∑

n=1

|an|
∫ 1

0
(1 − r)αrn−1 dr =

∞∑

n=1

|an|B(α + 1, n),

where B(·, ·) is the Beta function. Stirling’s formula gives B(α + 1, n) � n−(α+1)

and then (37) follows.
However, the proof of TheoremD in [23] does not seen towork to prove the opposite

inequality when {an} is decreasing.
Acknowledgements The authors wish to express their gratitude to the referees who made several sugges-
tions for improvement.
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