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the subalgebra Bg of all functions compatible with the equivalence relation defined
by the proper mapping g. We provide alternative representations of these algebras and
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on the symmetrized polydisk.
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1 Introduction

Let Ω and Ω ′ be regions in C
n , n ∈ N. A mapping g : Ω ⊆ C

n −→ Ω ′ ⊆ C
n

naturally defines an equivalence relation on any subset U of Ω by z ∼ w if and only
if g(z) = g(w), z, w ∈ U . If B(U ) is an algebra of functions defined on a subset U
of Ω , then we can consider the subalgebra of functions that are compatible with the
equivalence relation defined by g. We denote this subalgebra by

Bg(U ) = { f ∈ B(U ) : if z, w ∈ U with g(z) = g(w) then f (z) = f (w)}.

It is a common situation in mathematics that one needs to identify the abstract set
U/ ∼ in terms of a more concrete set V , ideally by exhibiting a bijection between
them. In our particular case V = g(U ).

The idea of studying the set of holomorphic functions compatible with the equiva-
lence relation defined by a proper holomorphicmapping has been explored in a number
of recent papers, including [13,22]. We continue this study here. Without going into
details right now, our interest is in the study of algebras of holomorphic functions f
(in one or several complex variables) having the property that for some fixed proper
holomorphic mapping g, whenever g(z) = g(w) then necessarily f (z) = f (w).

In Sect. 2 we study continuity properties of the inverse mapping of the proper
function g. These results will allow us to provide alternative representations of these
algebras Bg(U ) and study their spectra. We will study the algebras Bg(U ) by estab-
lishing an isomorphism between Bg(U ) and the algebras B(g(U )). We concentrate on
algebras of polynomials in Sect. 3 and applications to the algebra Ag(K ) are given.
Section 4 is devoted to the study of the algebras of holomorphic functionsHg(U ) and
H∞

g (U ). In the final section we focus on algebras of symmetric functions defined on
the polydisk. It turns out that these algebras coincide with the algebras of holomorphic
functions defined on the well studied symmetrized polydisk.

It is worth remarking that the approach that we use here can be used in two direc-
tions. On the one hand, we can transform functions satisfying a compatibility condition
to functions defined on a usually more complicated domain. In this way, we are trans-
forming a condition of the functions to a condition on the domain. On the other hand,
some holomorphic functions defined on abstract domains can be related to functions
defined on usually simpler domains under the condition that the functions satisfy
some kind of compatibility condition. In this case, we ameliorate the conditions on
the domain by adding conditions to the functions.

2 Proper holomorphic mappings

Given two regions Ω ⊂ C
n and Ω ′ ⊂ C

k , n, k ∈ N, a continuous mapping g : Ω →
Ω ′ is said to be proper if for every compact set X ⊂ Ω ′, g−1(X) is compact in Ω .
Most of the properties of proper mappings have been studied for the particular case
of g holomorphic and k = n. See [18, Chapter 15] for an introduction to the theory
of proper holomorphic mappings. Before we continue we present some properties of
proper holomorphic mappings that we will use in the rest of the paper.
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Algebras of symmetric holomorphic… 653

Naturally, n is less than or equal to k. Recall that for k = n any proper holomorphic
mapping is open, closed and onto. In this case, if we denote by Jg the Jacobian of g,
an element z ∈ Ω such that Jg(z) �= 0 is called a regular point of g and every z ∈ Ω

with Jg(z) = 0 is called a critical point of g. The set of critical points of g is denoted
by M = J−1

g (0) and every point in g(M) is called a critical value of g. Every point
in g(Ω) \ g(M) is called a regular value of g. By [18, Theorem 15.1.9], there is an
integer m, called the multiplicity of g, such that for every regular value x of g, the
set g−1(x) has exactly m elements and for every critical value x of g, the set g−1(x)
has less than m elements. Also, the set of regular points is dense in Ω and the set of
regular values is dense in Ω ′.

Definition 1 Let us consider a proper holomorphic mapping g : Ω ⊆ C
n −→ Ω ′ ⊆

C
n of multiplicity m and a point z ∈ Ω . Denote by {z1, . . . , zk} = g−1(g(z)) ⊂ Ω .

Consider pairwise disjoint open sets Uzi ⊂ Ω , for i = 1, . . . , k, such that zi ∈ Uzi
and the restriction g|Uzi

: Uzi −→ g(Uzi ) is a proper holomorphic mapping (see the
proof of [18, Theorem 15.1.9] for a possible construction of the setsUi , i = 1, . . . , k).
We define the multiplicity of z as the multiplicity of the proper holomorphic mapping
g|Uz and we denote it by mult (z).

Notice that the definition of the multiplicity of z is independent of the setUz and the
mapping g|Uz , and automatically every regular point hasmultiplicity one. Furthermore,
for every z ∈ Ω ,

∑

zi∈g−1(g(z))

mult (zi ) = m. (1)

In the following proposition we will consider subsets of Ω of cardinality less than
or equal to a fixed natural number m. The set of subsets of Ω of cardinality less than
or equal to m is denoted by P<m+1(Ω). Naturally P<m+1(Ω) can be considered as a
metric space when endowed with the Hausdorff distance between sets. Recall that the
Hausdorff distance between finite subsets X andY of ametric space (M, d) is given by

dH(X,Y ) = max{max
x∈X min

y∈Y d(x, y),max
y∈Y min

x∈X d(x, y)}.

For a point z in C
n and a positive number ε, B(z, ε) will denote the open euclidean

ball centered at z with radius ε.
The following proposition shows that the inverse of a proper holomorphic mapping

is a continuous mapping when considered as a multivalued mapping.

Proposition 1 Given a proper holomorphic mapping g : Ω ⊂ C
n −→ Ω ′ ⊂ C

n of
multiplicity m, the mapping

g−1 : Ω ′ −→ P<m+1(Ω)

x � {z ∈ Ω : g(z) = x}

is continuous.
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654 R. M. Aron et al.

Proof Let us fix x ∈ Ω ′. If x is a regular value of the mapping g, then the set
{z ∈ Ω : g(z) = x} contains exactly m different elements that we denote by
{z1, . . . , zm}. Then, for i = 1, . . . ,m, Jg(zi ) �= 0. As a consequence of the inverse
function theorem for functions of several complex variables there exist pairwise
disjoint open neighborhoods U1, . . . ,Um of z1, . . . , zm respectively and an open
neighborhood Vx of x such that the mapping g|Uj :Uj −→ Vx has a continuous inverse

that we denote by g−1
j : Vx −→ Uj , j = 1, . . . ,m. Then, if {xi }∞i=1 is a sequence of

points in Vx convergent to x , by continuity we have that {g−1
j (xi )}∞i=1 converges to z j

for j = 1, . . . ,m. Therefore, {g−1(xi )}∞i=1 converges to g−1(x).
Let us assume now that x is a critical value of the mapping g and the set g−1(x)

is {z1, . . . , zs} with 1 ≤ s < m. To show that g−1 is continuous at x we proceed by
contradiction. Assume that g−1 is not continuous at x . Then, there exists a sequence
{xi }∞i=1 convergent to x such that {g−1(xi )}∞i=1 is not convergent to g−1(x). Since
{g−1(xi )}∞i=1 is not convergent to g

−1(x) there exist a positive number ε and a strictly
increasing sequence of natural numbers {ir }∞r=1 with

dH (g−1(x), g−1(xir )) > ε.

Without loss of generality, we can assume that ε < 1/2min1≤ j<k≤s ‖z j − zk‖ and
B(z j , ε) ⊂ Uz j for j = 1, . . . , s, where Uz j are the disjoint open sets that appear in
Definition 1.

For each i = ir , we denote by {zi1, . . . , zimi
} the set g−1(xi ).

Note that max1≤ j≤s min1≤t≤mi d(z j , zit ) cannot be bigger than ε since m =∑s
j= mult (z j ) = ∑mi

t=1mult (zit ). So we can assume without lost of general-

ity that max1≤t≤mi min1≤ j≤s d(z j , zit ) > ε for all natural number i . Then, since
max1≤t≤mi min1≤ j≤s d(z j , zit ) > ε, for each natural number i there exists ti with
min1≤ j≤s d(z j , ziti ) > ε. Therefore, we can find a sequence of points in Ω , {ziti }∞i=1,
with ziti ∈ {zi1, . . . , zimi

} such that

min
j=1,...,s

‖z j − ziti ‖ > ε. (2)

Put N = g
(∩s

j=1 (Ω \ B(z j , ε))
)
. Since g is proper and holomorphic, g is a closed

mapping. Hence, N is closed in Ω ′ and does not contain x . Let δ > 0 be such that
B(x, δ) ⊂ Ω ′ \ N .

Since the sequence {xi }∞i=1 converges to the point x , for i big enough the point xi
belongs to B(x, δ). As xi does not belong to N , we have that g−1(xi ) ∩ ( ∩s

j=1 (Ω \
B(z j , ε))

) = ∅. Therefore g−1(xi ) ⊂ ∪s
j=1B(z j , ε). In particular, ziti ∈ ∪s

j=1B(z j , ε)

for i big enough. But this contradicts Eq. (2). Therefore, g−1 is continuous at x . ��
Corollary 1 Let g : Ω ⊂ C

n −→ Ω ′ ⊂ C
n be a proper holomorphic mapping and

K = U ⊂ Ω where U is a bounded non-empty open subset of Ω . If for every regular
point z in K the set g−1(g(z)) is contained in K , then g−1(g(K )) = K.
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Proof The inclusion K ⊂ g−1(g(K )) is trivial. Let us show the other inclusion. Let
z be a point in K . Since K = U there exists a sequence of regular points {zi }∞i=1 ⊂ U
convergent to z. By the continuity of the mappings g and g−1 we have that g−1(g(zi ))
is convergent to g−1(g(z)). Since g−1(g(zi )) ⊂ K then g−1(g(z)) ⊂ K .

3 Banach algebras of polynomials

Given a proper holomorphic mapping g : Ω ⊆ C
n −→ Ω ′ ⊆ C

k and a compact set
K ⊂ Ω , we denote by

Pg(K ) = {P|K : P ∈ P(Cn) and if z, w ∈ K with g(z) = g(w) then P(z) = P(w)},

where P(Cn) stands for the algebra of all polynomials defined on C
n .

Roughly speaking Pg(K ) is the set of polynomials in C
n that are compatible with

the equivalence relation defined by the mapping g on the set K .
We denote byPg(K ) the Banach algebra defined as the closure of Pg(K ) with the

topology of uniform convergence on K .
Notice, that if g is the identity mapping form C

n to C
n , then the algebra Pg(K )

is the classical algebra P(K ) defined as the closure in C(K ) of P(Cn) with the
topology of uniform convergence on K . More examples of algebras Pg(K ) will be
seen in Sect. 5.

If K is a compact subset of C
n , the polynomially convex hull of K is the set

K̂ = {z ∈ C
n : |P(z)| ≤ ‖P‖K for every polynomial P ∈ P(Cn)}.

A compact set K of C
n is said polynomially convex if K̂ = K .

We denote by

K̂ g = {z ∈ C
n : |P(z)| ≤ ‖P‖K for every polynomial P ∈ Pg(K )}.

Amapping g : Ω ⊆ C
n −→ Ω ′ ⊆ C

k is a proper polynomial mappingwhenever g
is a polynomial fromC

n toC
k that is also a proper mapping when restricted toΩ . This

is equivalent to saying that g is a proper mapping that can be written as (g1, . . . , gk)
with gi ∈ P(Cn) for i = 1, . . . , k.

The following result establishes the relation between the sets K̂ and K̂ g .

Proposition 2 For any proper polynomial mapping g : C
n −→ C

n and any compact
set K ⊂ C

n with g−1(g(K̂ )) = K̂ we have that

K̂ g = K̂ .

Proof Clearly K̂ ⊆ K̂ g so we will check the other inclusion. Let consider z /∈ K̂ .
Then, since K̂ is polynomially convex, g−1(g(K̂ )) = K̂ and g is a proper holomor-
phic mapping from C

n to C
n , by [21, Theorem 1.6.24] the set g(K̂ ) is polynomially

convex and g(z) /∈ g(K̂ ). Consequently, there exists a polynomial Q ∈ P(Cn) with
|Q(g(z))| > ‖Q‖g(K̂ ).
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Then the polynomial P = Q ◦ g is an element of Pg(K ) with

|P(z)| > ‖P‖K̂ = ‖P‖K ,

so z /∈ K̂ g .

As a consequence we obtain the following extension of [1, Theorem 3.1].

Corollary 2 Let g : C
n −→ C

n be a proper polynomial mapping and let K ⊂ C
n be

a polynomially convex set with g−1(g(K̂ )) = K̂ . Then, for every z /∈ K there exists a
polynomial P ∈ Pg(K ) with

|P(z)| > sup
w∈K

|P(w)|.

Definition 2 Given a subset K of C
n , consider an algebra of polynomials B(K ) ⊂

P(Cn). It is said that {gi }ki=1 ⊂ B(K ) is algebraically independent in B(K ) if the
only polynomial Q ∈ P(Ck) that satisfies Q(g1, . . . , gk) = 0 is Q = 0.We recall that
{gi }ki=1 ⊂ B(K ) is a basis of B(K ) if for every polynomial P ∈ B(K ) there exists a
unique polynomial Q ∈ P(Ck) such that P(z) = Q(g1(z), . . . , gk(z)) for all z ∈ K .

Remark 1 Given a proper polynomial mapping g : Ω ⊆ C
n −→ Ω ′ ⊆ C

k , g =
(g1, . . . , gk), and a compact subset K of Ω , the polynomials {gi }ki=1 are not always a
basis of the algebra Pg(K ), even if K has nonempty interior. Indeed, g : C

2 −→ C
3

defined by g(x, y) = (x2, y2, xy) is a proper polynomial mapping. However, for any
compact subset K ofC

2, the polynomial P(x, y) = x2y2 cannot bewritten in a unique
way as an algebraic combination of g1(x, y) = x2, g2(x, y) = y2 and g3(x, y) = xy.

Before we continue, let us relate the algebra Pg(K ), that we have just defined, to
the classical algebra of group invariant polynomials. Let us denote by GL(n, C) the
general linear group of degree n consisting of the set of all n × n complex invertible
matrices. We consider the natural group action of GL(n, C) on C

n . For a subgroup
G ≤ GL(n, C) and a set K ⊂ C

n we denote by

〈G, K 〉 = {gw : g ∈ G, w ∈ K }

the action of the group G on the set K and it is said that K is invariant under the
action of G if 〈G, K 〉 = K . Given a finite subgroup G ≤ GL(n, C) and a polynomial
P ∈ P(Cn), we recall that P is an invariant polynomial under the group G or G-
invariant if P(w) = P(gw) for all g ∈ G and all w ∈ C

n . For more details about the
theory of invariant polynomials under the action of finite groups we recommend [10,
Chapter 7]. Given a set K that is invariant under the action of a group G ≤ GL(n, C)

we denote by

PG(K ) = {P ∈ P(Cn) : P ◦ σ = P on K for all σ ∈ G}

and byPG(K ) the Banach algebra defined as the closure in C(K ) of PG(K ) with the
topology of uniform convergence on K .
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This setting will be discussed in a more general scenario at the beginning of Sect. 4.
Recall that a finite unitary reflection group G is a finite subgroup of GL(n, C

n)

of unitary transformations that is generated by the reflections that it contains. By
reflection we understand a linear transformation T : C

n → C
n that fixes pointwise

only a hyperplane of dimension n − 1. For example, T (x, y, z) = (x, y, 2z) is such
a T . The finite unitary groups were studied and classified by Shephard and Todd [20]
and Flatto [12]. Hilbert proved that for any finite unitary reflection group G there exist
finitely many polynomials p1, . . . , pr that are G-invariant and form a basis of the
algebra PG(Cn). Chevalley showed that in fact this basis can be chosen to be exactly
n homogeneous G-invariant polynomials. See [10, § 2.5 Theorem 4] and [9, Theorem
(A)] for the details.

Here we show that for finite unitary reflection groups the algebras Pg(K ) and
PG(K ) coincide.

Proposition 3 Let G ⊂ GL(n, C) be a finite unitary reflection group, let {g1, . . . , gn}
be a basis of homogeneous polynomials of PG(Cn) and put g = (g1, . . . , gn). Then
for any compact set K containing zero as an interior point that is invariant under the
action of the group G, the set {gi }ni=1 is a basis of the algebra Pg(K ) and

PG(K ) = Pg(K ).

Proof Firstwe show that {gi }ni=1 is a basis of the algebraPG(K ). Let P be apolynomial
inPG(K ). By [10, §7.2 Proposition 10] P isG-invariant if and only if its homogeneous
parts are G-invariant. Thus, we can assume that P is homogeneous. Since zero is an
interior point of K , by homogeneity, P is an element ofPG(Cn). Therefore,PG(K ) ⊆
PG(Cn). Clearly the other inclusion holds, hencePG(K ) = PG(Cn) and {g1, . . . , gn}
is a basis of polynomials of PG(K ).

To see that PG(K ) = Pg(K ) it is enough to show that PG(K ) = Pg(K ). If P
is a polynomial in PG(K ) then P can be written as P = Q ◦ g for some polynomial
Q ∈ P(Cn). Thus P ∈ Pg(K ). Therefore PG(K ) ⊂ Pg(K ). Let us assume now
that P is a polynomial in Pg(K ). Let us also assume that z ∈ K and σ ∈ G. Since
the mappings gi , i = 1, . . . , n, are G-invariant, gi (σ (z)) = gi (z) for all i . Thus
g(σ (z)) = g(z) for all z ∈ K and all σ ∈ G. Hence, P(σ (z)) = P(z) for all z ∈ K
and all σ ∈ G so P ∈ PG(K ).

For a complex Banach algebra B, M(B) stands for the spectrum of B, which is
the set of complex non-zero homomorphisms. In what follows, we give a complete
description of the spectrum of the algebras Pg(K ).

Let g : Ω ⊆ C
n −→ Ω ′ ⊆ C

k be a proper polynomial mapping, g = (g1, . . . , gk)
with gi ∈ P(Cn) and K be a compact subset of Ω . Assume that the polynomials
{gi }ki=1 are a basis of the algebra Pg(K ). We define

π : M(Pg(K )) −→ C
k

ψ � (ψ(g1), . . . , ψ(gk)).
(3)

Notice that the mapping π is well defined since the polynomials g1, . . . , gk belong
automatically to the algebra Pg(K ) ⊆ Pg(K ).
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658 R. M. Aron et al.

If we consider g to be the identity mapping, then the mappings g1, . . . , gn are
the projection mappings p1, . . . , pn that are a basis of the algebra of polynomials
P(Cn). Also in this particular case themappingπ coincideswith the classicalmapping
π : M(P(K )) −→ C

n defined as π(ψ) = (ψ(p1), . . . , ψ(pn)) for any compact
subset K of C

n . As usual, for z ∈ C
n , we denote by Mz(P(K )) the fiber of the

spectrum of the algebra P(K ) at the point z defined as

Mz(P(K )) = {ψ ∈ P(K ) : π(ψ) = z} = π−1(z).

It is a classical result that every character of P(K ) is the evaluation at a unique
point z ∈ K̂ , δz (see for instance [21, Theorem 1.2.9]). The following theorem is a
generalization of this result.

Theorem 2 Let g : Ω ⊆ C
n −→ Ω ′ ⊆ C

k be a proper polynomial mapping,
g = (g1, . . . , gk). Let K be a compact subset of Ω . Assume that the polynomials
{gi }ki=1 are a basis of the algebra Pg(K ). Then,

π(M(Pg(K ))) = ĝ(K ).

Furthermore, for every x ∈ ĝ(K ) ∩ g(Ω),

Mx (Pg(K )) = {δw : w ∈ g−1(x)}. (4)

In particular, if k = n, then (4) holds for every x ∈ ĝ(K ) ∩ Ω ′.

Proof First we show that π(M(Pg(K ))) ⊂ ĝ(K ). Let us fix a homomorphism ψ ∈
M(Pg(K )) and consider z := π(ψ) = (ψ(g1), . . . , ψ(gk)) ∈ C

k . By hypothesis,
every polynomial P ∈ Pg(K ) can be uniquely written as P = Q ◦ g for some
polynomial Q ∈ P(Ck). Since ψ is linear and multiplicative,

ψ(P) = ψ(Q ◦ g) = Q(ψ(g1), . . . , ψ(gk)) = Q(z).

Now, for every polynomial S ∈ P(Ck), we have that R = S ◦ g ∈ Pg(K ).
Therefore,

|S(z)| = |ψ(R)| ≤ ‖R‖K = ‖S‖g(K )

where the above inequality follows from the fact that the norm of the character is
bounded by 1. Hence, π(ψ) = z ∈ ĝ(K ).

To see the other inclusion, take x ∈ ĝ(K ). Consider the function

ψ : Pg(K ) −→ C

P � Q(x)

where Q is the unique polynomial inP(Ck)with P = Q◦g. This functionψ is clearly
a continuous homomorphism as x ∈ ĝ(K ). By the density of Pg(K ) in Pg(K ), ψ
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can be extended to a homomorphism inM(Pg(K )) that we denote in the same way.
Obviously, π(ψ) = x and the inclusion follows.

To finish, let x ∈ ĝ(K ) ∩ g(Ω) and ψ ∈ M(Pg(K )) with π(ψ) = x . Fix
w ∈ g−1(x). For every P ∈ Pg(K ),

ψ(P) = ψ(Q ◦ g) = Q(x) = (Q ◦ g)(w) = P(w),

where Q is the unique polynomial in P(Ck) with P = Q ◦ g. Hence, ψ = δw.
Therefore,

Mx (Pg(K )) = {δw : w ∈ g−1(x)}

for any x ∈ ĝ(K ) ∩ g(Ω). ��
By [21, Theorem 1.6.24] if g : C

n −→ C
n is a proper mapping then g(K ) is

a polynomially convex compact subset of C
n for any polynomially convex compact

subset K of C
n . Hence we have the following corollary of Theorem 2.

Corollary 3 Let g : C
n −→ C

n be a proper polynomial mapping, g = (g1, . . . , gn).
Let K be a polynomially convex compact subset of C

n. Assume that the polynomials
{gi }ni=1 are a basis of the algebra Pg(K ). Then,

π(M(Pg(K ))) = g(K ).

Moreover, for every x ∈ g(K ),

Mx (Pg(K )) = {δw : w ∈ g−1(x)}.

Given a compact set K ⊂ C
n with non-empty interior we denote by A(K ) the

algebra of functions from K into C that are continuous on K and holomorphic in the
interior of K . For a fixed proper polynomial mapping g : Ω ⊆ C

n −→ Ω ′ ⊆ C
k, if

K ⊂ Ω is a compact set with non-empty interior we denote by

Ag(K ) = { f ∈ A(K ) : if z, w ∈ K with g(z) = g(w) then f (z) = f (w)}.

Remark 3 Let K be a compact balanced set with 0 ∈ int (K ), K ⊂ Ω ⊆ C
n . The

following are equivalent:

1. for every function f ∈ Ag(K ), its Taylor polynomials at the origin, Pm f , m =
0, 1, 2, . . ., belong to Ag(K ),

2. if g(x) = g(y) with x, y ∈ K then f (λx) = f (λy) for every complex number λ

with |λ| = 1 and every f ∈ Ag(K ),
3. if g(x) = g(y) with x, y ∈ K then g(λx) = g(λy) for every complex number λ

with |λ| = 1.

It is said that a mapping g is circular if it satisfies any of the conditions in the
remark above.
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660 R. M. Aron et al.

Remark 4 If K is a compact balanced set in C
n which coincides with the closure of

its interior and 0 ∈ int (K ), then A(K ) = P(K ). Indeed, given f ∈ A(K ), since
the interior of K is balanced f (x) = ∑∞

m=0 Pm f (x) for every x in the interior of K ,
where Pm f are the Taylor polynomials of f at the origin. Hence, since f is uniformly
continuous on K , given ε > 0 there exists 0 < r < 1 such that | f (x) − f (r x)| < ε

for all x ∈ K . Thus, | f (x) − ∑∞
m=0 r

m Pm f (x)| ≤ ε for all x ∈ K . Therefore, there
exists a natural number m0 such that | f (x) − ∑m0

m=0 r
m Pm f (x)| ≤ 2ε for all x ∈ K .

If we want to know the relation between Ag(K ) and Pg(K ) where g is a proper
polynomial mapping, by Remark 4 we would need that for any f ∈ Ag(K ) all the
Taylor polynomials of f at the origin are elements in Pg(K ). This happens when g is
circular.

Corollary 4 Let g : Ω ⊆ C
n −→ Ω ′ ⊆ C

k be a circular and proper polynomial
mapping, g = (g1, . . . , gk). Let K be a compact balanced subset ofΩ which coincides
with the closure of its interior and 0 ∈ int (K ). Assume that the polynomials {gi }ki=1
are a basis of the algebra Pg(K ). Then,

π(M(Ag(K ))) = ĝ(K ).

Moreover, for every x ∈ ĝ(K ) ∩ g(Ω),

Mx (Ag(K )) = {δw : w ∈ g−1(x)}. (5)

In particular, if k = n, then (5) holds for every x ∈ ĝ(K ) ∩ Ω ′.

4 Algebras of holomorphic functions

Given a proper mapping g : Ω ⊆ C
n −→ Ω ′ ⊆ C

k , an open subset U ⊂ Ω and a
subalgebra B(U ) of H(U ), we define the algebra

Bg(U ) = { f ∈ B(U ) : if z, w ∈ U with g(z) = g(w) then f (z) = f (w)}.

Naturally the mapping g defines an equivalence relation on U by z ∼ w if and
only if g(z) = g(w) for z, w ∈ U . Roughly speaking the algebra Bg(U ) is the set of
holomorphic functions on B(U ) that are compatible with respect to the equivalence
relation defined by g.

Recently, several authors have studied algebras of holomorphic functions that are
invariant under the action of a given group or semigroup of operators. A lot of attention
has been devoted to the study of algebras of symmetric functions (see, e.g., [2,3] and
the references therein). In particular, if U is an open subset of Ω and G is a subgroup
ofGL(n, C) leavingU fixed, i.e.U is invariant under the action ofG, we can consider
the action of G on H(U ) defined by

G × H(U ) −→ H(U )

(σ, f ) � f ◦ σ |U .
(6)
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To simplify the notation, from now on, we will write f ◦ σ instead of f ◦ σ |U .
We can then consider the subalgebra of H(U ) consisting of all the G-invariant

holomorphic functions, i.e.,

HG(U ) = { f ∈ H(U ) : f ◦ σ = f for all σ ∈ G}.

Naturally the definition of HG(U ) can be extended to any subalgebra B(U ) of
H(U ) whenever the mapping (6) is well defined, i.e. for every σ ∈ G and every
f ∈ B(U ) then f ◦ σ ∈ B(U ). We define

BG(U ) = { f ∈ B(U ) : f ◦ σ = f for all σ ∈ G}.

Recall that for a group G acting on a set X , the orbit of a point z ∈ X is the set

orb(z) = {σ z : σ ∈ G}.

The following result extends Proposition 3 to algebras of holomorphic functions.

Proposition 4 Let G ≤ GL(n, C) be a finite unitary reflection group, {g1, . . . , gn} a
basis of G-invariant polynomials and g = (g1, . . . , gn). Let U be an open set that is
invariant under the action of G and B(U ) a subalgebra of H(U ). If f ◦ σ ∈ B(U )

for every σ ∈ G and every f ∈ B(U ), then we have that

Bg(U ) = BG(U ).

Proof The fact that the polynomials g1, . . . , gn are homogeneous and a combination
of [19, Proposition 2.1] and [19, Theorem 5.1] show that the mapping g : C

n → C
n is

a proper polynomial mapping. To prove the result it is enough to show that for every
point z ∈ U we have that orb(z) = g−1(g(z)). This equality is a direct consequence of
[19, Proposition 2.2 (i)] where it is proved thatw ∈ orb(z) if and only if g(z) = g(w).

Proposition 5 Given a proper holomorphic mapping g : Ω ⊆ C
n −→ Ω ′ ⊆ C

n of
multiplicity m, and an open set U ⊂ Ω with g−1(g(U )) = U, the linear operator

ρg : H(U ) −→ Hg(U ),

f � fg

where fg(z) = 1

m

∑

zi∈g−1(g(z))

f (zi )mult (zi ) for every z ∈ U, is well defined. More-

over,

(a) the mapping ρg is continuous,
(b) if f ∈ Hg(U ) then ρg( f ) = f ,
(c) if f ∈ Hg(U ) and h ∈ H(U ) then ρg( f h) = fρg(h),
(d) if f is bounded by a positive constant M then so is ρg( f ).
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Proof First we show that fg is continuous. Let us fix z ∈ U . Put {z1, . . . , zk} =
g−1(g(z)) ⊂ U . For simplicity we assume that z = z1. We show now that fg is
continuous at z1.

Following the idea of the proof of [18, Theorem 15.1.9], we can find neighborhoods
Uz1 , . . . ,Uzk ⊂ U and Vg(z1) ⊂ g(U ) of the points z1, . . . , zk and g(z1) respectively
such that the mappings

Gi = g|Uzi
: Uzi −→ Vg(z1)

are proper holomorphic mappings with multiplicity mi , i = 1, . . . , k. Without loss of
generality, we can assume that Uzi ⊂ B(zi , r/2), with r = min1≤i< j≤k ‖zi − z j‖.

Since f is continuous at z1, . . . , zk , given ε > 0 there exists a positive number
δ < r/2 such that if w ∈ Uzi and ‖w − zi‖ < δ then | f (w) − f (zi )| < ε, for
i = 1, . . . , k. By Proposition 1, the set-valued mapping g−1 is continuous on Ω ′
so g−1 ◦ g is continuous at z1. Thus, there exists γ > 0 such that if w ∈ Uzi and
‖w − z1‖ < γ then dH (g−1(g(w)), g−1(g(z1))) < δ.

For any w ∈ Uz1 with ‖w − z1‖ < γ , we denote by {wi
1, . . . , w

i
mi

} the set
g−1(g(w)) ∩ Uzi where we are repeating the points according to their multiplicity.
Then, for each i = 1, . . . , k and each j = 1, . . . ,mi we have that

δ > dH (g−1(g(w)), g−1(g(z1))) ≥ d(wi
j , g

−1(g(z1))) = min
s=1,...,k

‖wi
j − zs‖.

Since r/2 > δ, wi
j ∈ Uzi ⊂ B(zi , r/2) and zs ∈ Uzs ⊂ B(zs, r/2) we obtain

that mins=1,...,k ‖wi
j − zs‖ = ‖wi

j − zi‖. Hence, for j = 1, . . . ,mi , i = 1, . . . , k,

‖wi
j − zi‖ < δ, so | f (wi

j ) − f (zi )| < ε. By the triangle inequality, for i = 1, . . . , k,

∣∣∣
( mi∑

j=1

f (wi
j )

)
− f (zi )mi

∣∣∣ ≤
mi∑

j=1

| f (wi
j ) − f (zi )| < miε.

Therefore

| fg(w) − fg(z1)| =
∣∣∣
1

m

k∑

i=1

mi∑

j=1

f (wi
j ) − 1

m

k∑

i=1

f (zi )mi

∣∣∣

≤ 1

m

k∑

i=1

∣∣∣
mi∑

j=1

f (wi
j ) − f (zi )mi

∣∣∣ < ε.

Thus, fg is continuous at z = z1.
Now we are going to show that fg is holomorphic. If z is a regular point of g inU ,

then g−1(g(z)) = {z1, . . . , zm} and Jg(z) �= 0. To simplify our notation we assume
that z = z1. Notice that g(z1) is a regular value of the mapping g and every point
z1, . . . , zm is a regular point of g inU . By the inverse function theorem and using that
g is holomorphic at z1 there exist pairwise disjoint neighborhoodsUz1 , . . . ,Uzm ⊂ U
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and Vg(z1) ⊂ g(U ) of the points z1, . . . , zm and g(z1) respectively such that the
mappings

Gi = g|Uzi
: Uzi −→ Vg(z1)

are biholomorphic for i = 1, . . . ,m.

For i = 1, . . . ,m, put,

Fi = f |Uzi
◦ G−1

i ◦ G1 : Uz1 −→ C.

Then, each function Fi is the composition of holomorphic functions on the neighbor-
hood Uz1 of the point z1. Since

fg|Uz1
= 1

m

m∑

i=1

Fi ,

the function fg is holomorphic on Uz1 , whenever z1 is a regular point of g in U .
Let us nowfix a critical point z ∈ J−1

g {0}∩U . ConsiderUz a bounded neighborhood

of z with Uz ⊂ U . Since fg is continuous on Uz , then fg is bounded on Uz .
As fg is holomorphic onU \ J−1

g {0} and bounded on a neighborhood of every point
of J−1

g {0} ∩U , by [15, Theorem 7.3.3] there exists a holomorphic extension F of fg
to U . By the density of the set U \ J−1

g {0} in U , the functions F and fg coincide in
U . Thus, fg is holomorphic in U .

To continue we see that fg is compatible with the equivalence relation defined by g.
Let us consider z, w ∈ U with g(z) = g(w). Then, g−1(g(w)) = g−1(g(z)). Thus,

fg(z) = 1

m

∑

zi∈g−1(g(z))

f (zi )mult (zi ) = 1

m

∑

zi∈g−1(g(w))

f (zi )mult (zi ) = fg(w).

Therefore, the linear operator ρg is well defined.
Let us show that ρg is continuous. For a compact set K ⊂ U and z ∈ K ,

|ρg( f )(z)| = | 1
m

∑

zi∈g−1(g(z))

f (zi )mult (zi )|

≤ 1

m

∑

zi∈g−1(g(z))

| f (zi )|mult (zi )

≤ 1

m

∑

zi∈g−1(g(z))

‖ f ‖g−1(g(K ))mult (zi )

= ‖ f ‖g−1(g(K )), ( by (1)).

Therefore ‖ρg( f )‖K ≤ ‖ f ‖g−1(g(K )). Hence ρg is continuous. Properties (b) and
(d) follow from the definition of fg . To prove (c), let us consider f ∈ Hg(U ) and
h ∈ H(U ). Then, for every z ∈ U ,
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ρg( f h)(z) = 1

m

∑

zi∈g−1(g(z))

( f (zi )h(zi ))mult (zi )

= 1

m

∑

zi∈g−1(g(z))

( f (z)h(zi ))mult (zi ) (since f ∈ Hg(U ))

= f (z)
1

m

∑

zi∈g−1(g(z))

h(zi )mult (zi )

= f (z)ρg(h)(z).

Remark 5 An alternative version of Proposition 5 can be done without giving the
explicit definition of the function fg at every point in U . For this, we can define the

function fg only at the regular points as fg(z) = 1

m

∑
zi∈g−1(g(z)) f (zi ) and then use

the density of the regular points and [15, Theorem 7.3.3] to extend the function fg
to U . However, the version provided here has the advantage that it gives us a precise
description of the function fg at the singular points of the mapping g.

Proposition 6 Let g : Ω ⊆ C
n −→ Ω ′ ⊆ C

n be a proper holomorphic mapping of
multiplicity m and let U be an open subset of Ω with g−1(g(U )) = U. If B(U ) is a
Banach subalgebra ofH(U ) such that that ρg( f ) ∈ Bg(U ) for every f ∈ B(U ), then
the mapping

Pg : M(B(U )) −→ M(Bg(U ))

ψ � ψ |Bg(U )

is surjective.

Proof We need to show that every non-zero complex homomorphism

ψ : Bg(U ) −→ C

extends to a non-zero complex homomorphism � : B(U ) −→ C. Naturally, the
kernel of ψ , Ker(ψ), is a subset of B(U ). Let I be the ideal of B(U ) generated by
Ker(ψ). We show that I is a proper ideal of B(U ). Indeed, if this were not the case,
then 1 would be an element of I , so we could find elements f1, . . . , fm ∈ Ker(ψ)

and h1, . . . , hm ∈ B(U ) with

1 = f1h1 + · · · + fmhm .

Therefore, by Proposition 5,

1 = ψ(ρg(1)) = ψ(ρg( f1h1 + · · · + fmhm))

= ψ( f1ρg(h1) + · · · + fmρg(hm))

= ψ( f1)ψ(ρg(h1)) + · · · + ψ( fm)ψ(ρg(hm))

= 0ψ(ρg(h1)) + · · · + 0ψ(ρg(hm)) = 0,

a contradiction.
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Thus I is a proper ideal. Since B(U ) is a Banach algebra, I ⊆ Ker(�) for some
non-trivial complex homomorphism � : B(U ) −→ C. Thus, � is an extension of ψ

and the proof is completed.

Theorem 6 Let g : Ω ⊆ C
n −→ Ω ′ ⊆ C

n be a proper holomorphic mapping of
multiplicity m. Let U be an open bounded subset ofΩ with U ⊂ Ω and g−1(g(U )) =
U. Then there is an algebra isomorphism between Hg(U ) and H(g(U ))

η : H(g(U )) −→ Hg(U )

h � η(h) = h ◦ g

when both algebras are endowed with the compact-open topology.

Proof Consider the mapping η from H(g(U )) to Hg(U ) defined by η(h) = h ◦ g =
h̃. The mapping h̃ is holomorphic since it is the composition of two holomorphic
functions. Also if z, w are two elements of U with g(z) = g(w), then h̃(z) = h̃(w).
Hence h̃ ∈ Hg(U ). Clearly, the mapping η is linear, multiplicative and continuous
when both algebras are endowed with the compact-open topology.

Let us show that this mapping η is a bijection fromH(g(U )) ontoHg(U ). First we
show that the mapping is one-to-one. If h1 ◦ g = h2 ◦ g, then (h1 ◦ g)(z) = (h2 ◦ g)(z)
for every z in U . Hence, h1(x) = h2(x) for every x ∈ g(U ). Therefore, h1 = h2.
Now we need to show that the mapping η is onto, i.e. given f ∈ Hg(U ) there exists
a holomorphic function h inH(g(U )) such that h̃ = f . Define the function

h : g(U ) −→ C

x � h(x) = f (z),
(7)

where z is some point in U such that x = g(z). Notice that since f ∈ Hg(U ) the
definition of the function h is independent of the point x in the set g−1(z). Hence, the
function h is well defined.

We show that the function h is continuous. Let {xi }∞i=1 ⊂ g(U ) be a sequence
convergent to a point x ∈ g(U ). For each natural number i , let us fix a point zi ∈ U such
that xi = g(zi ). Let us fix also a point z ∈ g−1(x). Notice that since g−1(g(U )) = U ,
z is an element ofU . We claim that the sequence { f (zi )}∞i=1 is convergent to the point
f (z). If this were not the case, we could find a positive number ε and a subsequence
{ f (zik )}∞k=1 of the sequence { f (zi )}∞i=1 with | f (zik )− f (z)| > ε. SinceU is compact
there would exist a subsequence of the sequence {zik }∞k=1, that we denote in the same
way, and a point z0 ∈ U , such that {zik }∞k=1 → z0 ∈ U . By the continuity of the the
function f ,

{ f (zik )}∞k=1 → f (z0)

which is different from f (z), since | f (zik ) − f (z)| > ε for all natural numbers k.
By the continuity of the mapping g we have that

x = lim
k→∞ xik = lim

k→∞ g(zik ) = g(z0).
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Since g(z0) = x = g(z) and f ∈ Hg(U ) we have that f (z0) = f (z) which is a
contradiction. Hence, the sequence { f (zi )}∞i=1 is convergent to the point f (z). But,
h(xi ) = f (zi ) for all natural numbers i and h(x) = h(z). Therefore, {h(xi )}∞i=1 →
h(x) and h is continuous.

Finally, let us show that the function h is holomorphic. For every regular value
x ∈ g(U ), let us fix a point z ∈ U so that g(z) = x . Since z is a regular point of g and
g is holomorphic at z, there exist neighborhoods Uz and Vx of z and x respectively
such that the mapping g|Uz : Uz −→ Vx is biholomorphic. Since h = f ◦ g−1 on the
set Vx , h is holomorphic at the point x . Thus h is holomorphic on the set of regular
values of the mapping g. For every singular value x ∈ g(U ), consider Vx a bounded
neighborhood of x with V x ⊂ g(U ). Since h is continuous on V x , h is bounded on
V x . By [15, Theorem 7.3.3] there exists a holomorphic extension H of h to g(U ) that
coincides with h on a dense subset of g(U ). Thus, h is holomorphic on g(U ).

Since η is a linear, multiplicative, continuous and bijective mapping between two
Fréchet algebras, η is an algebra isomorphism between Hg(U ) and H(g(U )).

In Theorem 2 and Corollary 4 we have a proper polynomial mapping g : Ω ⊆
C
n −→ Ω ′ ⊆ C

n , g = (g1, . . . , gn), and we assume the hypothesis that {gi }ni=1 is
a basis of Pg(K ). Now we are going to provide some cases where this hypothesis is
fulfilled.

Corollary 5 If g : Ω ⊆ C
n −→ Ω ′ ⊆ C

n, g = (g1, . . . , gn), is a proper polynomial
mapping and K is a compact subset of Ω with non-empty interior, then {gi }ni=1 is
algebraically independent in the algebra Pg(K ). Moreover if the polynomials {gi }ni=1
are homogeneous then it is a basis of Pg(K ).

Proof Let Q ∈ P(Cn) such that Q(g1, . . . , gn) = 0. Let U be the interior of K .
By Theorem 6 we have an isomorphism η between Hg(U ) and H(g(U )) defined by
η(h) = h ◦ g, where g = (g1, . . . , gn). Since Q(g1, . . . , gn) ∈ Hg(U ), there exists a
unique F ∈ H(g(U )) such that Q(g1, . . . , gn)(z) = F(g1, . . . , gn)(z) for all z ∈ U .
But η(0) = 0, hence F = 0. As the restriction Q|g(U ) is inH(g(U )), then Q|g(U ) = 0.
If we now apply the Identity Principle to a non-empty connected component of g(U )

we obtain that Q = 0 on C
n . Therefore {gi }ni=1 is algebraically independent in the

algebra Pg(K ).
Moreover, assume now that g j is homogeneous of degree deg(g j ) = m j , j =

1, . . . , n. Let P ∈ Pg(K ). Thus P is also an element of Hg(U ). By Theorem 6 there
exists a unique F ∈ H(g(U )) such that P(x) = F(g1, . . . , gn)(x) for all x ∈ U .
Without loss of generality we may assume 0 ∈ U and 0 ∈ g(U ). So there are r, s > 0
such that B∞(0, r) ⊂ U , B∞(0, s) ⊂ g(U ) and B∞(0, s) ⊂ g(B∞(0, r)), where
B∞(0, t) denotes the closed polydisk centered at the origin with radius t = r, s. Let
us denote

F(z) =
∑

α∈Nn
0

cα(F)zα

the monomial expansion of F , which is absolutely and uniformly convergent on
B∞(0, r). Thus we can make the following rearrangement F(z) = R(z) + S(z) with
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R(z) =
∑

α∈Nn
0

deg(gα)≤k

cα(F)zα and S(z) =
∑

α∈Nn
0

deg(gα)>k

cα(F)zα ,

for all z ∈ B∞(0, r), where k = deg(P) and gα = ∏n
i=1 g

αi
i . Therefore

P(x) = R(g(x)) + S(g(x)) =
∑

α∈Nn
0

deg(gα)≤k

cα(F)gα(x) +
∑

α∈Nn
0

deg(gα)>k

cα(F)gα(x) , (8)

for all x ∈ B∞(0, s).
The first summand R(g) of Eq. (8) is a polynomial since the set {α ∈ N

n
0 :

deg(gα) ≤ k} is finite, and it belongs to Pg(K ). Indeed, if we denote |α| =
α1 + . . . + αn for α = (α1, . . . , αn) ∈ N

n
0, we have that α j ≥ |α|

n for some j ,

so deg(gα) = deg(gα1
1 · · · gαn

n ) = α1m1 + . . . + αnmn ≥ α jm j ≥ |α|
n m, where

m = min{m1, . . . ,mn} ≥ 1 and |α|
n m > k if and only if |α| > nk

m . So

{α ∈ N
n
0 : deg(gα) ≤ k} ⊂

{
α ∈ N

n
0 : |α| ≤ nk

m

}
.

The second summand S(g) of Eq. (8) is a holomorphic function on some open set
containing B∞(0, r). Clearly

∫
rTn

gα(x)
xα+1 dx = 0 for all |α| ≤ k < deg(gα), where T

stands for the torus and1 = (1, . . . , 1).Hence, by theCauchy integral formula,wehave
that cα(S(g)) = 0 for all |α| ≤ k. As a consequence, cα(P − R(g)) = cα(S(g)) = 0
for all |α| ≤ k, and since deg(P − R(g)) ≤ k we obtain that P = R(g) = η(R) (and
S(g) = 0). This completes the proof. ��

By [19,Theorem5.1], everymapping g = (g1, . . . , gn), where g j is a homogeneous
polynomial, j = 1, . . . , n, and g−1(0) = {0} is a proper polynomial mapping from
C
n to C

n . Hence these mappings are examples of proper polynomial mappings g
satisfying the hypothesis in above corollary, i.e., {g1, . . . , gn} is a basis of Pg(K ).

Theorem 7 Let g : Ω ⊆ C
n −→ Ω ′ ⊆ C

n be a proper holomorphic mapping of
multiplicity m. Let U be an open bounded subset ofΩ with U ⊂ Ω and g−1(g(U )) =
U. Then there is an algebra isometric isomorphism between the Banach algebras
H∞

g (U ) and H∞(g(U )).

Proof Let η be the algebra isomorphism fromH(g(U )) ontoHg(U ) used in the proof
of Theorem 6. To prove the result we show that if h ∈ H(g(U )) is bounded then so is
η(h) and ‖h‖g(U ) = ‖η(h)‖U . For fixed h ∈ H∞(g(U )),

‖h‖ = sup
x∈g(U )

|h(x)| = sup
z∈U

|(h ◦ g)(z)| = sup
z∈U

|(η(h))(z)| = ‖η(h)‖
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Let g : Ω ⊆ C
n −→ Ω ′ ⊆ C

n be a proper holomorphic mapping, g =
(g1, . . . , gn) and U be an open subset of Ω . We define

π : M(Hg(U )) −→ C
n

ψ � (ψ(g1), . . . , ψ(gn)).
(9)

Notice that the mapping π is well defined since the mappings g1, . . . , gn belong
automatically to the algebra Hg(U ).

If we consider g to be the identity mapping, then the mapping π coincides with the
classical mapping π : M(H(U )) −→ C

n defined as π(ψ) = (ψ(p1), . . . , ψ(pn))
for any open subset U of C

n , where p1, . . . , pn are the projection mappings. Also, if
g is a proper polynomial mapping and U is bounded, the mapping π restricted to the
Banach algebra Pg(U ) coincides with the mapping π introduced in Eq. (3).

In the following theorem we will need open sets that solve Gleason’s problem,
which we now review. Let B(U ) be some class of holomorphic functions on an open
set U ⊂ C

n . Gleason’s problem is to determine the open sets U such that for each
w ∈ U and f ∈ B(U ) there exist functions h1, . . . , hn ∈ B(U ) such that

f (z) − f (w) =
n∑

k=1

(zk − wk)hk(z) (10)

for all z ∈ U .
In [18, Section 6.6.1] Gleason’s problem is solved for the Euclidean unit ball Bn

of C
n and several algebras of holomorphic functions such as, for example, H∞(Bn).

References to the solution in strictly pseudo-convex domains is given in [18, Section
6.6]. This problem has been studied by many authors (see, e.g., [5,16,17]).

Theorem 8 Let g : C
n −→ C

n be a proper polynomial mapping g = (g1, . . . , gn).
LetU ⊂ C

n be an open bounded set withU polynomially convex and g−1(g(U )) = U.
Assume that Gleason’s problem is solved forH∞(U ) and that the polynomials {gi }ni=1
are a basis of the algebra Pg(U ). Then,

π(M(H∞
g (U ))) = g(U ).

Moreover, for every x ∈ g(U ),

Mx (H∞
g (U )) = {δw : w ∈ g−1(x)}.

Proof For the first part, note that g(U ) ⊂ π(M(H∞
g (U ))). Indeed, for x ∈ g(U ),

consider the mapping δ̌x ∈ M(H∞
g (U )) defined for every h ∈ H∞

g (U ) as δ̌x (h) =
δx ( f ) = f (x) where f is the unique function in H∞(g(U ))) with f ◦ g = h.
Then, π(δ̌x ) = x . On the other hand, every φ ∈ M(H∞

g (U )) can be considered as

φ ∈ M(Pg(U )) and by Corollary 3,

π(M(H∞
g (U ))) ⊂ π(M(Pg(U ))) = g(U ) ⊂ g(U ).
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Since π(M(H∞
g (U ))) is compact and g(U ) ⊂ π(M(H∞

g (U ))) ⊂ g(U ), it follows

that π(M(H∞
g (U ))) = g(U ).

Now we show that for every x ∈ g(U ), Mx (H∞
g (U )) = {δw : w ∈ g−1(x)}. Let

φ ∈ Mx (H∞
g (U )). By Proposition 6, there exists � ∈ M(H∞(U )) with �( f ) =

φ( f ) for all f ∈ H∞
g (U ). Therefore, since gi is a polynomial and � is linear and

multiplicative we have that

g(�(p1), . . . , �(pn)) = (
g1(�(p1), . . . , �(pn)), . . . , gn(�(p1), . . . , �(pn))

)

= (
�(g1), . . . , �(gn)

) = (
φ(g1), . . . , φ(gn)

) = x,

where p1, . . . , pn are the projection mappings.
Hence,

(
�(p1), . . . , �(pn)

) ∈ g−1(x) ∈ U . Therefore, the classical mapping
π : M(H∞(U )) −→ C

n defined as π(�) = (�(p1), . . . , �(pn)) for every � ∈
M(H∞(U )) satisfies that π(�) ∈ U . Thus, since Gleason’s problem is solved for
H∞(U ), � = δ(�(p1),...,�(pn)), hence φ = δ(�(p1),...,�(pn)).

To finish, notice that for every w ∈ g−1(x) and every f ∈ H∞
g (U ), we have that

δw( f ) = f (w) = f (�(p1), . . . , �(pn)) = δ(�(p1),...,�(pn))( f ).

Hence,

Mx (H∞
g (U )) = {δw : w ∈ g−1(x)}.

5 Algebras of symmetric holomorphic functions

During the last few years the study of algebras of symmetric holomorphic functions
has received a lot of attention, see [2,3,6–8,14]. We present in this section the results
obtained in Sects. 3 and 4 for the particular case of algebras of symmetric functions.

The symmetric group of order n, consisting of the group of all permutations of the
set {1, . . . , n} and denoted by Sn is the classical example of a finite unitary reflection
group. Sn can be naturally considered as a subgroup of GL(n, C) with the natural
action of a permutation σ ∈ Sn on a point (w1, . . . , wn) ∈ C

n being σ(w1, . . . , wn) =
(wσ(1), . . . , wσ(n)). For this group, a basis of Sn-invariant polynomials is given by the
set of polynomials

g j (w1, . . . , wn) =
∑

1≤i1<...<i j≤n

wi1 · · · wi j , j = 1, . . . , n. (11)

Another basis of Sn-invariant polynomials is given by the set of polynomials

g j (w1, . . . , wn) =
n∑

i=1

w
j
i .

Let us consider the mapping g = (g1, . . . , gn) where gi are the mappings defined
in Eq. (11). The symmetrized polydisk is the image of the polydisk of center zero and
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radius one under the mapping g, usually denoted by Gn = g(Dn). The properties of
the set Gn have been intensively studied during the last years. For instance for n = 2
an implicit representation of the symmetrized bidisk is as follows

G2 = {(s, p) ∈ C
2 : |s − s p| + |p|2 < 1}.

The symmetrized bidisk can be naturally identifiedwith the quotient space of the bidisk
D
2 under the obvious action of the group of two elements S2. However the geometries

of the sets D
2 and G2 are very different. For instance, the symmetrized bidisk is not

convex though it is polynomially convex, hypoconvex and starlike about (0, 0). It also
has as distinguished boundary the symmetrized torus, which is topologically aMöbius
band. For a complete description of the geometrical properties of the set Gn see, e.g.,
[4] and [11].

Here we study the algebras of symmetric functions on D
n and relate these algebras

with the respective algebras of functions on Gn . Let us fix an open set U ⊂ C
n with

(wσ(1), . . . , wσ(n)) ∈ U for all (w1, . . . , wn) ∈ U and all σ ∈ Sn and an algebra
B(U ) of functions defined on U . We denote by

Bs(U ) = { f ∈ B(U ) : f (w1, . . . , wn) = f (wσ(1), . . . , wσ(n)) for all σ ∈ Sn
and all (w1, . . . , wn) ∈ U }

the subalgebra of B(U ) consisting of all the symmetric functions of B(U ).
As a consequence of Propositions 3 and 4 we obtain that the algebra Bs coincides

with the algebra Bg .

Proposition 7 If g = (g1, . . . , gn) where gi is defined as in Eq. (11), then

Ps(D
n
) = PSn (D

n
) = Pg(D

n
)

and for any subalgebra B(Dn) of H(Dn),

Bs(D
n) = BSn (D

n) = Bg(D
n).

ByCorollary 3 and using that the polydisk is polynomially convex andGn = g(D
n
)

we obtain the following description of the spectrum of M(Pg(D
n
)).

Theorem 9 If g = (g1, . . . , gn) where gi is defined as in Eq. (11), then

π(M(Ps(D
n
))) = Gn .

Moreover, for every x ∈ Gn,

Mx (Pg(D
n
)) = {δw : w ∈ g−1(z)}.

By using the results obtained in Sect. 4 we obtain a description of the algebras of
holomorphic symmetric functions on D

n .
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Theorem 10 If g = (g1, . . . , gn) where gi is defined as in Eq. (11), then Hs(D
n) is

algebra isomorphic to H(Gn) and H∞
s (Dn) is algebra isometrically isomorphic to

H∞(Gn).
Moreover,

π(M(H∞
s (Dn))) = Gn

and, for every x ∈ Gn,

Mx (H∞
s (Dn)) = {δw : w ∈ g−1(x)}.

For the particular case of n = 2, if we denote by (x, y) an element of G2, then

{
x = z + w

y = zw.
(12)

for some (z, w) ∈ D
2
. Therefore, by solving the system of equations with respect to

the variables z and w we obtain that

{δ(z,w) : (z, w) ∈ g−1(z, y)} =
⎧
⎨

⎩δ(
x+

√
x2−4y
2 ,

x−
√

x2−4y
2

), δ(
x−

√
x2−4y
2 ,

x+
√

x2−4y
2

)

⎫
⎬

⎭ .

To finish it is worth remarking that the techniques used here can be applied to study
subalgebras of these Banach algebras. In the following example we study a proper
subalgebra ofPs(D

n
). This example also answers in the negative the following natural

question: Given a proper holomorphic mapping g, does the algebraPg(D
n
) coincide

withPG(D
n
) for some subgroup G of Sn?

Example 1 Let g = (g1, . . . , gn) where gi is defined as in Eq. (11). We consider the
mapping g2(z) = (g21(z), . . . , g

2
n(z)), where g

2
i (z) stands for the composition of the

mapping gi and the squaring mapping, for i = 1, . . . , n. As a consequence of [19,
Theorem 5.1] and Corollary 5, g2 : C

n −→ C
n is a proper holomorphic mapping

such that {g21, . . . , g2n} is a basis of the algebra Pg2(D
n
). This algebra is a proper

subalgebra ofPg(D
n
) = PSn (D

n
) since g1 ∈ Pg(D

n
) \Pg2(D

n
). Furthermore, for

n = 2, the only subgroups of S2 are the trivial subgroup I d, consisting of the identity

permutation, and the whole group S2. Therefore, the algebra Pg2(D
2
) associated to

themapping g2(z) = ((z1+z2)2, (z1z2)2) does not coincide with the algebraPG(D
2
)

for any subgroup G of S2. Indeed,

Pg2(D
2
) � PS2(D

2
) � PI d(D

2
) = P(D

2
).
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