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1 Introduction

The theory of extrapolation is a powerful technique in harmonic analysis: in a nutshell,
it shows that norm inequalities for an operator on theweighted Lebesgue space L p(w),
for any 1 < p < ∞ andw in theMuckenhoupt weight class Ap, are all a consequence
of such an inequality being true for a single value of p. Extrapolation was introduced
by Rubio de Francia [30] more than 30 years ago; since then it has been refined
and developed in a number of directions, including applications to Banach functions
spaces, bilinear inequalities and two weight norm inequalities. We refer the reader
to [5] for a more detailed discussion of extrapolation and its history.

In its classic form, extrapolation depends on theweightw being in theMuckenhoupt
Ap class, 1 < p < ∞:

[w]Ap = sup
Q

(
−
∫
Q

w dx

) (
−
∫
Q

w1−p′
dx

)p−1

< ∞,

where the supremum is taken over all cubes Q with sides parallel to the coordinate
axes. More recently, Auscher and Martell [2] introduced a “limited range” version of
extrapolation that depends on both the Ap class of the weight and its reverse Hölder
class RHs , 1 < s < ∞. We say w ∈ RHs if

[w]RHs = sup
Q

(
−
∫
Q

w dx

)−1 (
−
∫
Q

ws dx

) 1
s

< ∞,

where the supremum is taken over all cubes Q. (For a precise statement of their result,
see Theorem 2.2 below.)

As an immediate consequence of their result we prove an extrapolation theorem
that only depends on the reverse Hölder class of the weight.We state it here; for precise
definitions of the notation used, please see Sect. 2.

Theorem 1.1 Let 0 < q0 < ∞ and F = {( f, g)} be a family of pairs of measurable
functions. Suppose there exists p0 with 0 < p0 ≤ q0 such that for all w ∈ RH(

q0
p0

)′ ,

‖ f ‖L p0 (w) ≤ C‖g‖L p0 (w) ( f, g) ∈ F . (1.1)

Then for all p, 0 < p < q0, and w ∈ RH(
q0
p )′ we have

‖ f ‖L p(w) ≤ C‖g‖L p(w) ∀ ( f, g) ∈ F . (1.2)

The goal of this paper is to prove a generalization of Theorem 1.1 to a larger class of
weights. To state our results we use the theory of Young functions and Orlicz norms;
for precise definitions, see Sect. 3. Given a Young function �, we say w ∈ RH� if

sup
Q

(
−
∫
Q

w dx

)−1

‖w‖�,Q < ∞,
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Extrapolation in the scale of generalized reverse Hölder… 265

where again the supremum is taken over all cubes Q. This class was first introduced
by Harboure et al. [13] with a different but essentially equivalent definition. When
�(t) = t s , this reduces to the class RHs defined above, and as we will show below,
theseweights also satisfy the classical reverseHölder inequality. Intuitively, they differ
in that they capture different behavior at different values of the range of the weight.
For instance, if � is the “oscillatory” Young function

�(t) = t s+a sin(log log(ee+t)), 0 < a < s − 1,

then depending on its size, on some cubes w ∈ RH� behaves like a weight in RHs+a

and on others like a weight in RHs−a . Using these weights we prove the following
extrapolation theorem. The class Br is a growth condition on Young functions: see
Sect. 3 below for a definition.

Theorem 1.2 Given 0< p0 < q0, suppose that for a fixed �0 ∈ B(
q0
p0

)′ and all w ∈
RH�0 ,

‖ f ‖L p0 (w) � ‖g‖L p0 (w), ( f, g) ∈ F . (1.3)

Define the Young function� by�0(t) = �(tr ) with r = (q0/p0)′
(q0/p)′ < 1. If p0 < p < q0

and w ∈ RH� , then we have that

‖ f ‖L p(w) � ‖g‖L p(w), ( f, g) ∈ F . (1.4)

We actually prove a more general result when p = q0 and also when p0 = q0; see
Theorem 3.5 below.

To illustrate the utility of our extrapolation results, we give applications to the study
of two weight norm inequalities for linear and bilinear Calderón–Zygmund singular
integral operators, and to the theory of oneweight inequalities for the bilinear fractional
integral operator. Two weight norm inequalities have been studied for many years by
a number of authors. In recent years this problem has received renewed attention
because of its close connection to the so-called “A2 conjecture” for singular integral
operators that was proved by Hytönen [15]. In the decade of work that led to the proof
of this result, it became clear that in order to get the desired sharp constant estimate,
the problem had to be treated as a two-weight problem, with the Ap condition used
only once at some key step.

The techniques used, particularly the dyadic sparse operators that were introduced
byLerner [20], have been applied to the study of “Ap bump” conditions for two-weight
norm inequalities. This approach to generalizing the two-weight Ap conditionwas first
introduced by Neugebauer [26] but was systematically developed by Pérez [27,28]
(see also [5] and [1]). The following result was first conjectured by Pérez and the
second author [7] and finally proved by Lerner [20].
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266 T. C. Anderson et al.

Theorem 1.3 Suppose 1 < p < ∞ and � and � are Young functions such that
�̄ ∈ Bp′ and �̄ ∈ Bp. If (u, v) is a pair of weights that satisfies

sup
Q

‖u‖�,Q‖v−1‖�,Q < ∞,

then given any Calderón–Zygmund singular integral operator T ,

‖(T f )u‖L p � ‖ f v‖L p .

Below (see Theorem 4.2) we give a new proof of this result using extrapolation.
Moreover, we prove a slight generalization, proving that T satisfies a two weight,
Coifman–Fefferman type inequality:

‖(T f )u‖L p � ‖M�̄ ( f v)‖L p .

We also extend Theorem 1.3 to the bilinear setting, proving the analogous result for
bilinear Calderón–Zygmund singular integral operators. These are the natural gener-
alization of the linear operators, and have been considered by a number of authors:
see [12,17]. One weight norm inequalities were characterized by [11,19]. Our results
in the two weight case are new. The exact condition required depends on whether
p > 1 or 1/2 < p ≤ 1: see Theorems 4.5 and 4.6.

Finally, we consider weighted norm inequalities for the bilinear fractional integral
operator

BIα( f, g)(x) =
∫

Rn

f (x − y)g(x + y)

|y|n−α
dy.

This operator is the fractional analog of the bilinear Hilbert transform; for weighted
norm inequalities and a history of this operator, see [8,14,25]. The corresponding
maximal operator is

BMα( f, g)(x) = sup
r>0

1

(2r)n−α

∫
[−r,r ]n

| f (x − y)g(x + y)| dy.

We also recall the less singular bilinear fractional operators:

Iα( f, g)(x) =
∫

R2n

f (y)g(z)

(|x − y| + |x − z|)2n−α
dydz, 0 < α < 2n,

and the associated maximal operator

Mα( f, g)(x) = sup
Q�x

|Q| α
n −
∫
Q

| f (y)| dy · −
∫
Q

|g(z)|dz 0 ≤ α < 2n.

These operators are the fractional operators corresponding to bilinear CZOs.
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Extrapolation in the scale of generalized reverse Hölder… 267

As an application of our extrapolation techniques, we are able to prove a Coifman–
Fefferman type inequality relating BIα to the the less singular bilinear maximal
operator,Mα . Our result improves one that was first proved by the third author in [25].

The remainder of this paper is organized as follows. In Sect. 2 we give some pre-
liminary information about Muckenhoupt weights and extrapolation, and then prove
Theorem 1.1. In Sect. 3 we give the necessary background information on Young
functions and Orlicz spaces, and then prove two extrapolation theorems. The first one
is an unweighted extrapolation used in our applications, Theorem 3.4, and the second
is Theorem 3.5, a generalization of Theorem 1.2. Though some of the proof of The-
orem 3.4 overlaps with Theorem 3.5, we include the proof for two reasons. First, it
is more general due to the range of p; second, the proof makes clear the main ideas
while avoiding the technicalities that arise in the weighted case. Finally, in Sect. 4 we
prove our applications in Theorems 4.2, 4.5, 4.6, and 4.7.

Throughout this paper, n will denote the dimension of the space R
n . If we write

A � B, we mean A ≤ CB for some constant C ; A ≈ B means A � B And B � A.
Whether implicit or explicit, unless otherwise specified the constants may depend on
the dimension n, p, the weights and the operator being studied, and can change from
line to line.

Remark 1.4 As we were completing this paper, we learned that Theorem 1.1 was
discovered independently by Martell and Prisuelos [23].

2 Ap, RHs weights and extrapolation

Preliminaries about weights

Hereafter, by a weight we mean a non-negative, locally integrable function. We begin
with a few preliminary facts about Ap and RHs weights we will need in this and the
following section. Beyond the Ap and RHs classes defined above, we define three
additional weight classes. We say that a weight w ∈ A1 if

[w]A1 = sup
Q

(
−
∫
Q

w dx

)
ess supx∈Q(w−1(x)) < ∞,

where the supremum is taken over all cubes Q. Recall that the Ap classes are nested:
for all q > p > 1, A1 ⊂ Ap ⊂ Aq . Analogously, we define w ∈ RH∞ if

[w]RH∞ = sup
Q

(
ess supx∈Q w(x)

) (
−
∫
Q

w dx

)−1

< ∞,

where the supremum is taken over all cubes Q; then for all r < s < ∞, RH∞ ⊂
RHs ⊂ RHr . Finally, we let A∞ denote the union of the Ap classes:

A∞ =
⋃

1<p<∞
Ap.
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268 T. C. Anderson et al.

There is a close connection between Ap weights and the Hardy–Littlewood maximal
operator. Given f ∈ L1

loc, define

M f (x) = sup
Q

−
∫
Q

| f | dy · χQ(x);

where the supremum is taken over all cubes Q.
For proofs of the results in the following lemma, see [6,9,10].

Lemma 2.1 Given a weight w:

(a) w ∈ A∞ if and only if there exists s > 1 such that w ∈ RHs;
(b) w ∈ A∞ if and only if there exist constants 0 < α, β < 1 such that given any

cube Q and E ⊂ Q with |E | < α|Q|, w(E) < βw(Q); similarly, w ∈ A∞ if
and only if there exist γ, δ > 1 such that if |Q| ≤ γ |E |, then w(Q) ≤ δw(E);

(c) w ∈ RHs for some 1 < s < ∞ if and only if ws ∈ A∞;
(d) if w ∈ RH∞, then ws ∈ RH∞ for all s > 0;
(e) given p > 1, if w ∈ A1 then w1−p′ ∈ RH∞ ∩ Ap, and if w ∈ RH∞ ∩ Ap then

w1−p′ ∈ A1;
(f) for all 0 < r < 1, if Mw(x) < ∞ a.e., then (Mw)r ∈ A1.

Extrapolation

While a major application of extrapolation is to prove norm inequalities for operators,
it can be applied much more broadly if it is stated in terms of pairs of functions. We
follow the formulation used in [5]. Hereafter, F = {( f, g)} will denote a family of
pairs of non-negative, measurable functions that are not identically 0. Given a fixed
family F and some weighted space L p(w), if we write

‖ f ‖L p(w) � ‖g‖L p(w), ( f, g) ∈ F ,

then we mean that this inequality holds for all pairs ( f, g) for which the lefthand term
in the inequality is finite. (This assumption assures that in the underlying proofs, it is
possible to estimate the norm by duality.) The constantC can depend on the Ap and/or
RHs characteristic of w, and on s and p, but it cannot depend on the weight w itself.

In practice, to prove weighted norm inequalities for an operator T , it suffices to
consider a family of pairs of functions of the form (|T f |, | f |), where f is taken from
some suitably chosen dense family of functions (e.g., f ∈ L∞

c ). In order to get the
norm finiteness of the first term, we can replace |T f | by min(|T f |, N )χB(0,N ) and
then take the limit as N → ∞.

We can now prove Theorem 1.1. As we noted in the Introduction, this result is a
consequence of the limited range extrapolation theorem of Auscher and Martell [2,
Theorem 4.9] (see also [5]).
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Extrapolation in the scale of generalized reverse Hölder… 269

Theorem 2.2 Given 0 < s0 < q0 < ∞ and a family F = {( f, g)}, suppose there
exists s0 ≤ p0 ≤ q0 such that for all w ∈ A p0

s0
∩ RH(

q0
p0

)′ ,

‖ f ‖L p0 (w) � ‖g‖L p0 (w) ( f, g) ∈ F .

Then for all s0 < p < q0 and w ∈ A p
s0

∩ RH(
q0
p )′ ,

‖ f ‖L p(w) � ‖g‖L p(w) ( f, g) ∈ F .

Proof of Theorem 1.1 Fix 0 < p < q0 and w ∈ RH(
q0
p )′ ; we will show that

‖ f ‖L p(w) � ‖g‖L p(w), ( f, g) ∈ F .

By Lemma 2.1a, we can fix q sufficiently large so that w ∈ Aq ∩ RH(
q0
p )′ . Fix

0 < s0 < min( p
q , p0). Then by assumption, for all v ∈ A p0

s0
∩ RH(

q0
p0

)′ ⊂ RH(
q0
p0

)′ ,

‖ f ‖L p0 (v) � ‖g‖L p0 (v) ( f, g) ∈ F .

Therefore, the hypotheses of Theorem 2.2 are satisfied, and since we have that w ∈
A p

s0
∩ RH(

q0
p )′ , the desired inequality holds. �

Remark 2.3 In Theorem 2.2 the implicit constants in both the hypothesis and conclu-
sion depend on the corresponding Ap and RHs constants of the weights. In our proof
of Theorem 1.1 we make use of the fact that if RH(

q0
p )′ , then w ∈ A p

s0
∩ RH(

q0
p )′ ;

implicit in this assertion is the fact s0 and the A p
s0
constant of w depend only on (

q0
p )′

and the RH(
q0
p )′ of w. This fact is itself implicit in the proof of Lemma 2.1a: see, for

example, [10].

3 Orlicz reverse Hölder extrapolation

Young functions and Orlicz norms

Here we gather the basic properties of Young functions and Orlicz norms that we will
use. We follow [5]; for proofs see, for example, [29]. A Young function� : [0,∞) →
[0,∞) is a convex, increasing, continuous function such that �(0) = 0 and

lim
t→∞

�(t)

t
= ∞.

Young functions are sometimes normalized so that �(1) = 1; doing so simplifies the
constants that appear below.

Given a Young function �, the complementary Young function �̄ is defined by

�̄(s) = sup
t

{st − �(t)}
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270 T. C. Anderson et al.

If �(t) = t p, p > 1, then �̄(t) ≈ t p
′
. More generally,

�−1(t)�̄−1(t) ≈ t.

Another important example are Orlicz functions of the form �(t) = t p log(e +
t)p−1+δ , δ > 0. In this case we have that

�̄(t) ≈ t p
′

log(e + t)1+(p′−1)δ
.

Given a Young function � and a cube Q, we define the localized Orlicz norm

‖ f ‖�,Q = inf

{
λ > 0 : −

∫
Q

�

( | f (x)|
λ

)
dx ≤ 1

}
.

If �(t) = t p, then we get the localized Lebesgue norm:

‖ f ‖�,Q =
(

−
∫
Q

| f |p dx
) 1

p

.

These norms form an increasing scale: more precisely, given Young functions � and
�, if �(t) � �(ct), then

‖ f ‖�,Q � ‖ f ‖�,Q,

with a constant independent of Q.
This norm satisfies versions of Hölder’s inequality: given a Young function � and

a cube Q,

−
∫
Q

| f g| dx ≤ 2‖ f ‖�,Q‖g‖�̄,Q .

More generally, given Young functions �, �, 
 such that �−1(t)�(t)−1 � 
−1(t),
we have that

‖ f g‖
,Q ≤ 2‖ f ‖�,Q‖g‖�,Q .

Wenowdefine two growth conditions onYoung functions. The first bounds aYoung
function from below. Given a Young function � and a > 1, we say that � is an a-

Young function if�a(t) = �(t
1
a ) is a Young function. In this case, ta � �(t) for large

t . The second condition bounds a Young function from above. Given 1 < p < ∞, a
Young function � satisfies the Bp condition, denoted by � ∈ Bp, if

∫ ∞

1

�(t)

t p
dt

t
< ∞.
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Extrapolation in the scale of generalized reverse Hölder… 271

In this case we have�(t) � t p for large t . This conditionwas introduced by Pérez [28]
to study the Orlicz maximal operators

M� f (x) = sup
Q�x

‖ f ‖�,Q .

He proved the following L p estimate.

Theorem 3.1 For all 1 < p < ∞, ‖M� f ‖L p � ‖ f ‖L p if and only if � ∈ Bp.

Remark 3.2 In [28] the statement of this result contained the further hypothesis that
� was doubling; however, this was shown to be superfluous by Liu and Luque [22]
(see also [1]).

Finally, we have that the generalized reverse Hölder class RH� is contained in the
scale of Ap weights. More precisely, we have the following lemma that was proved
in [13] in a slightly different form. For the convenience of the reader we repeat the
short proof.

Lemma 3.3 Given any Young function �, if w ∈ RH�, then w ∈ A∞.

Proof Fix a cube Q and ameasurable set E ⊂ Q.We first estimate the norm ‖χE‖�̄,Q .
Fix λ > 0 such that

−
∫
Q

�̄

(
χE (x)

λ

)
dx = 1.

Then we have that

‖χE‖�̄,Q = λ = �̄−1
( |Q|

|E |
)−1

.

Since �−1(t)�̄−1(t) ≈ t , we get that

‖χE‖�̄,Q � |E |
|Q|�

−1
( |Q|

|E |
)

.

We now estimate as follows:

w(E) = |Q|−
∫
Q

wχE dx � |Q|‖w‖�,Q‖‖χE‖�̄,Q � w(Q)
|E |
|Q|�

−1
( |Q|

|E |
)

.

Since � is a Young function, we have that

lim
s→∞

s

�−1(s)
= lim

t→∞
�(t)

t
= ∞.

Therefore, we can find 0 < α, β < 1 such that if |E |/|Q| < α, thenw(E)/w(Q) < β.
Then by Lemma 2.1b, w ∈ A∞. �
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272 T. C. Anderson et al.

Extrapolation with generalized reverse Hölder weights

We can now state and prove our main extrapolation theorems. Our first result yields
unweighted inequalities.

Theorem 3.4 Given p0 < q0 and �0 ∈ B(
q0
p0

)′ , suppose that for all w ∈ RH�0 ,

‖ f ‖L p0 (w) ≤ C‖g‖L p0 (w), ( f, g) ∈ F . (3.1)

Then for all 0 < p ≤ q0,

‖ f ‖L p ≤ C‖g‖L p , ( f, g) ∈ F . (3.2)

If p0 = q0, the same conclusion holds if we assume (3.1) holds whenever w ∈ RH∞.

Theorem 3.4 is actually a consequence of Theorem1.1. Since�0 ∈ B(
q0
p0

)′ ,�0(t) �

t
(
q0
p0

)′
for t ≥ 1. Therefore, if w ∈ RH(

q0
p0

)′ ,

‖w‖�0,Q � ‖w‖(
q0
p0

)′
,Q

� ‖w‖1,Q,

and so w ∈ RH�0 . Thus (3.1) implies that (1.1) holds, and so by Theorem 1.1, for
0 < p < q0, (1.2) holds. If we take w = 1 we get (3.2).

Despite this, here we give a direct proof. We do so for two reasons. First, our
proof is ultimately simpler, since it avoids limited range extrapolation which itself is
nontrivial to prove. Second, as we noted in the Introduction, our proof makes clear the
main ideas that will be used in the proof of Theorem 3.5, which is not a consequence
of Theorem 2.2.

Proof We first consider the case p0 < p ≤ q0 (the case p = p0 is obvious by taking
w = 1). By duality we have that

‖ f ‖L p = ‖| f |p0‖
1
p0

L
p
p0

=
(∫

| f |p0h dx
) 1

p0

for some h ∈ L
(

p
p0

)′
with norm one. Moreover, since the Bp classes are nested we

have

�0 ∈ B(
q0
p0

)′ ⊂ B(
p
p0

)′

since p ≤ q0. Hence

M�0 : L(
p
p0

)′ → L
(

p
p0

)′
.
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Extrapolation in the scale of generalized reverse Hölder… 273

We now define a Rubio de Francia iteration algorithm:

Rh =
∞∑
k=0

Mk
�0
h

2k‖M�0‖k
L

(
p
p0

)′
,

where M0
�0
h = |h|. The operator R satisfies the following properties:

(a) |h| ≤ Rh,
(b) ‖Rh‖

L
(
p
p0

)′ ≤ 2‖h‖
L

(
p
p0

)′ ,

(c) M�0(Rh) ≤ CRh,

(d) Rh ∈ RH�0 .

The first three points are standard: cf. [5]. To prove the final point, fix a cube Q. Then
we have that

‖Rh‖�0,Q ≤ −
∫
Q
M�0(Rh) ≤ C−

∫
Q
Rh.

We can now estimate as follows:

(∫
| f |p0h dx

) 1
p0 ≤

(∫
| f |p0Rh dx

) 1
p0

≤ C

(∫
|g|p0Rh dx

) 1
p0

(since Rh ∈ RH�0)

≤ C

(∫
|g|p

) 1
p
(∫

Rh
(

p
p0

)′
dx

) 1
p0(

p
p0

)′

≤ 2
1
p0 C

(∫
|g|p dx

) 1
p

.

We now consider the case when 0 < p < p0 ≤ q0. This case is much simpler and

only relies on the maximal operator. Fix r > 1
p and define H = M(g

1
r )

pr
(p0/p)′ . Then

H−p0/p = M(g
1
r )−a for a > 0, and so by Lemma 2.1e,f, H−p0/p ∈ RH∞ ⊂ RH�0 .

We can now estimate as follows: by our hypothesis and since the maximal operator
is bounded on L pr ,

‖ f ‖p
L p =

∫
Rn

f pH−1H dx

≤
(∫

Rn
f p0H−p0/p dx

)p/p0 (∫
Rn

H (p0/p)′ dx

)1/(p0/p)′

�
(∫

Rn
g p0H−p0/p dx

)p/p0 (∫
Rn

M(g
1
r )pr dx

)1/(p0/p)′
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274 T. C. Anderson et al.

≤
(∫

Rn
g p0(g

1
r )r(p−p0) dx

)p/p0 (∫
Rn

g p dx

)1/(p0/p)′

=
∫

Rn
g p dx .

�
Now we state and prove Theorem 3.5, the more general version of Theorem 1.2.

Theorem 3.5 Given 0 < p0 < q0, suppose that for a fixed �0 ∈ B(
q0
p0

)′ and all

w ∈ RH�0 ,

‖ f ‖L p0 (w) � ‖g‖L p0 (w), ( f, g) ∈ F . (3.3)

If p0 = q0, suppose (3.3) holds for any w ∈ RH∞. If either of the following hold:

(a) p0 < p < q0 and w ∈ RH� , where � is defined by �0(t) = �(tr ) with
r = (q0/p0)′

(q0/p)′ < 1;
(b) p = q0 and w ∈ RH∞;

then we have that

‖ f ‖L p(w) � ‖g‖L p(w), ( f, g) ∈ F . (3.4)

Remark 3.6 Notice that as p gets close to q0, then 1
r → ∞, so the second case is a

natural endpoint condition.

Remark 3.7 In Theorem 3.5we are not able to proveweighted inequalities in the range
0 < p < p0 ≤ q0 analogous to the unweighted inequalities in Theorem 3.4. Our proof
in the unweighted case does not extend to the weighted setting. This problem seems
to be much more subtle and will require new techniques.

Proof The proof follows the same outline as the proof of Theorem 3.4, and we refer
to that proof for some details that are the same. We consider each case in turn.

First suppose that p0 < p < q0; by duality there exists h ∈ L
(

p
p0

)′
, ‖h‖

L
(
p
p0

)′ = 1,

such that

‖ f ‖p0
L p(w) =

(∫
Rn

f
p0

p
p0 w

p0
p

p
p0 dx

) p0
p

=
∫

Rn
f p0w

p0
p h dx .

Since �0(t) = �(tr ), � ∈ B(
q0
p )′ : by a change of variables we have that

∫ ∞

1

�(t)

t

(
q0
p

)′
dt

t
≈

∫ ∞

1

�0(t)

t

(
q0
p0

)′
dt

t
< ∞;

the last inequality holds by our assumption that �0 ∈ B(
q0
p0

)′ .
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Now suppose that we have a non-negative function H that satisfies the following
conditions:

(a) h ≤ H ;
(b) ‖H‖

L
(
p
p0

)′ � ‖h‖
L

(
p
p0

)′ = 1.

(c) Hw
p0
p ∈ RH�0 ;

Then by our hypothesis and the properties of H we can estimate as follows:

∫
Rn

f p0w
p0
p h dx ≤

∫
Rn

f p0Hw
p0
p dx

�
∫

Rn
g p0Hw

p0
p dx

≤
∥∥∥gp0w

p0
p

∥∥∥
L

p
p0

‖H‖
L

(
p
p0

)′

≤ ‖g‖p0
L p(w).

Therefore, to complete the argument for this case we need to construct a function
H with the desired properties. We first construct two auxiliary Young functions. Let

C(t) = �(t
p
p0 ). We claim that w

p0
p ∈ RHC . Indeed, by Lemma 3.3, w ∈ A∞ and

so by Lemma 2.1c we have that w
p0
p ∈ RH p

p0
. Therefore, by rescaling the norm, we

have that

∥∥∥w
p0
p

∥∥∥
C,Q

= ‖w‖
p0
p

�,Q � ‖w‖
p0
p
1,Q �

∥∥∥w
p0
p

∥∥∥
1,Q

.

Now define s > 0 by

1

s
= 1

r
− p0

p
.

If 1 < 1
s < 1

r , �(t s) = �((tr )s/r ) = �0(t s/r ), and s/r > 1 so B(t) = �(t s) is a
Young function; on the other hand, if 0 < 1

s ≤ 1 then s ≥ 1 and B is again a Young
function. Moreover, in either case we have that B ∈ B(

p
p0

)′ and hence MB is bounded

on L
(

p
p0

)′
. To see this, first note that

1

s

(
p

p0

)′
=

(
q0 − p0
q0 − p

− p0
p

)
p

p − p0
= q0(p − p0)

p(q0 − p)

p

p − p0
= q0

q0 − p
=

(
q0
p

)′
.

Then by a change of variables and the fact that � ∈ B(
q0
p )′ ,

∫ ∞

1

B(t)

t
(

p
p0

)′
dt

t
=

∫ ∞

1

�(t s)

t
(

p
p0

)′
dt

t
≈

∫ ∞

1

�(t)

t (
q0
p )′

dt

t
< ∞.
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We can now define H using a Rubio de Francia iteration algorithm:

H = Rh =
∞∑
k=0

Mk
Bh

2k‖MB‖k
L

(
p
p0

)′
. (3.5)

Then, arguing as in the proof of Theorem 3.4 we have that h ≤ H and ‖H‖
L

(
p
p0

)′ ≤
2‖h‖

L
(
p
p0

)′ . This proves properties (a) and (b) above. Moreover, since B is a Young

function, again by the above argument we have that

M(Rh) ≤ MB(Rh) � Rh;

Thus H ∈ A1 ∩ RHB . By the definition of B and C we have that

C−1(t)B−1(t) = �−1(t)
p0
p �−1(t)

1
s = �−1(t)

1
r = �−1

0 (t).

Therefore, by the generalized Hölder’s inequality and the definition of A1,

∥∥∥Hw
p0
p

∥∥∥
�0,Q

� ‖H‖B,Q

∥∥∥w
p0
p

∥∥∥
C,Q

� ‖H‖1,Q
∥∥∥w

p0
p

∥∥∥
1,Q

�
∥∥∥Hw

p0
p

∥∥∥
1,Q

,

which proves property (c). This completes our proof when p0 < p < q0.
The proof when p = q0 is nearly the same as the previous case; here we describe the

changes. Fix w ∈ RH∞, and let �0 be any Young function in B(q0/p0)′ . Let B = �0
and define H by (3.5). Then H ∈ A1 ∩ RHB and satisfies properties (a) and (b) as

before. To prove (c) note first that by Lemma 2.1d, w
p0
p ∈ RH∞. By this, and then

using that H ∈ RHB and then that H ∈ A1,

∥∥∥Hw
p0
p

∥∥∥
�0,Q

� ‖H‖B,Q

∥∥∥w
p0
p

∥∥∥
1,Q

� ‖H‖1,Q
∥∥∥w

p0
p

∥∥∥
1,Q

�
∥∥∥Hw

p0
p

∥∥∥
1,Q

.

Given this function H , the remainder of the proof goes through without change. This
completes the proof. �

4 Applications

In this section we give several applications of reverse Hölder extrapolation to prove
weighted norm inequalities. In spirit, though not in detail, these applications are similar
to those proved via A∞ extrapolation in [4].

Calderón–Zygmund operators

A Calderón–Zygmund kernel is a function K (x, y) defined away from the diagonal
{(x, y) : x = y} that satisfies
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|K (x, y)| � |x − y|−n

and for some ε > 0,

|K (x, y) − K (x, y + h)| + |K (x, y) − K (x + h, y)|
≤ C

|h|ε
|x − y|n+ε

, |x − y| > 2|h|. (4.1)

A Calderón–Zygmund operator (CZO) is an L2 bounded linear operator associated to
a Calderón–Zygmund kernel K such that the representation

T f (x) =
∫

Rn
K (x, y) f (y) dy

holds for all f ∈ L∞
c and x /∈ supp( f ).

To prove norm inequalities for CZOswewill use the theory of sparse operators over
dyadic grids. The following is based on the seminal work of Lerner [20]; the pointwise
estimates are due to Conde-Alonso and Rey [3] and Lacey [18]. (See also the recent
monograph by Lerner and Nazarov [21], which uses a slightly different definition of
a dyadic grid.)

By a dyadic grid D we mean a collection of cubes D = ⋃
k Dk in R

n that have the
following properties:

(a) for each k, if Q ∈ Dk , then |Q| = 2−kn ;
(b) the cubes in Dk form a partition of R

n ;
(c) if P, Q ∈ D, then P ∩ Q = ∅, P ⊂ Q or Q ⊂ P .

Given a dyadic grid D we say a subfamily S ⊂ D is sparse if for each Q ∈ S
∣∣∣∣∣∣∣∣∣

⋃
Q′⊂S
Q′

�Q

Q′

∣∣∣∣∣∣∣∣∣
≤ 1

2
|Q|.

As a consequence, there exists EQ ⊂ Q such that the family {EQ}Q∈S is pairwise
disjoint and there exists a uniform constant such that |Q| ≤ c|EQ |.

Given a dyadic grid D and a sparse family S ⊂ D, define a sparse operator by

TS f (x) =
∑
Q∈S

(
−
∫
Q

f dy

)
χQ(x).

Sparse operators are positive, linear operators. Their importance is that CZOs can be
dominated by them pointwise.

Theorem 4.1 Given a CZO operator T and a function f , there exist 3n dyadic grids
{Dk}3nk=1 and sparse families Sk ⊂ Dk such that
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|T f (x)| �
3n∑
k=1

TSk
(| f |)(x)

almost everywhere. The implicit constant depends on the dimension and the kernel K
associated to T .

Using sparse operators and reverse Hölder extrapolation, we can prove our gener-
alization of Theorem 1.3.

Theorem 4.2 Let T be a CZO, and fix 1 < p < ∞. Suppose (u, v) is a pair of weights
that satisfies

sup
Q

‖u‖�,Q‖v−1‖�,Q < ∞,

where �̄ ∈ Bp′ and � is any Young function. Then

‖(T f )u‖L p � ‖M�̄ ( f v)‖L p . (4.2)

In particular, if �̄ ∈ Bp, then

‖(T f )u‖L p � ‖ f v‖L p . (4.3)

Remark 4.3 By using results from [16,18], Theorem 4.2 can be extended to singular
integral operators that replace (4.1) with a weaker Dini continuity condition. Details
are left to the interested reader.

Proof When �̄ ∈ Bp, (4.3) follows immediately from (4.2) by Theorem 3.1. To
prove (4.2), by Theorem 4.1 it will suffice to prove it with T replaced by a sparse
operator TS and with f non-negative. By Theorem 3.4 with q0 = p and p0 = 1, it
will suffice to show that if w ∈ RH�̄, then

‖(TS f )u‖L1(w) � ‖M�̄ ( f v)‖L1(w).

This inequality follows by a straightforward computation using the properties of a
sparse family. We have that

∫
Rn

(TS f )uw dx =
∑
Q∈S

(
−
∫
Q

f dx

) (
−
∫
Q
uw dx

)
|Q|.

Further, since by Lemma 3.3, w ∈ RH�̄ ⊂ A∞, by Lemma 2.1(b)

‖w‖�̄,Q |Q| ≤ [w]RH�̄
w(Q) ≤ Cw(EQ).
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Therefore, by the generalized Hölder’s inequality,

∑
Q∈S

(
−
∫
Q

f dx

) (
−
∫
Q
uw dx

)
|Q| ≤

∑
Q∈S

‖ f v‖�̄,Q‖v−1‖�,Q‖u‖�,Q‖w‖�̄,Q |Q|

�
∑
Q∈S

‖ f v‖�̄,Q‖w‖�̄,Q |Q|

�
∑
Q∈S

‖ f v‖�̄,Qw(EQ)

�
∫

Rn
M�̄ ( f v)w dx .

�

Bilinear Calderón–Zygmund operators

The results of the previous section extend naturally to themultilinear setting. A bilinear
CZO is defined by the integral formula

T ( f, g)(x) =
∫

Rn
K (x, y, z) f (y)g(z) dydz x /∈ (supp f ) ∩ (supp g).

for f, g ∈ L∞
c (Rn) where K is a bilinear Calderón–Zygmund kernel:

|K (x, y, z)| � (|x − y| + |x − z|)−2n,

|∇K (x, y, z)| � (|x − y| + |x − z|)−2n−1.

Bilinear CZOs can also be dominated pointwise by bilinear sparse operators. Again,
given a dyadic grid D and a sparse family S ⊂ D, we define

TS( f, g)(x) =
∑
Q∈S

(
−
∫
Q

f dy

) (
−
∫
Q
g dy

)
χQ(x).

The following estimate was proved in [3,21].

Theorem 4.4 Given a bilinear CZO, T and functions f , g, there exist 3n dyadic grids
Dk and sparse families Sk ⊂ Dk such that

|T ( f, g)(x)| �
3n∑
k=1

TSk (| f |, |g|)(x).

Given twoYoung functions�1 and�2, we define the bisublinear maximal function

M�1,�2( f, g) = sup
Q�x

‖ f ‖�1,Q‖g‖�2,Q .
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Clearly we have thatM�1,�2( f, g)(x) ≤ M�1 f (x)M�2g(x), so by Hölder’s inequal-
ity, if �1 ∈ Bp1 and �2 ∈ Bp2 , then M�1,�2 : L p1 × L p2 → L p. We can now state
and prove the analog of Theorem 4.2 for bilinear CZOs. We get two results; in the first
we assume p > 1.

Theorem 4.5 Let T be a bilinear CZO, fix 1 < p1, p2 < ∞, and define p = p1 p2
p1+p2

.
Suppose p > 1 and (u, v1, v2) are weights that satisfy

sup
Q

‖u‖�,Q‖v−1
1 ‖�1,Q‖v−1

2 ‖�2,Q < ∞,

where � is a Young function with �̄ ∈ Bp′ and �1, �2 are Young functions. Then

‖T ( f, g)u‖L p � ‖M�̄1,�̄2
( f v1, gv2)‖L p .

In particular, if �̄1 ∈ Bp1 and �̄2 ∈ Bp2 , then

‖T ( f, g)u‖L p � ‖ f v1‖L p1 ‖gv2‖L p2 .

Proof As in the proof of Theorem 4.2, it will suffice to prove the first inequality; the
second is an immediate corollary. And again, it will suffice to prove this for a bilinear
sparse operator TS and non-negative f, g. By Theorem 3.4 with q0 = p and p0 = 1
we only need to prove a weighted L1 inequality.

Fix w ∈ RH�̄; then we can essentially repeat the previous argument, using Lem-
mas 3.3 and 2.1b:

∫
Rn

TS( f, g)wu dx

=
∑
Q∈S

(
−
∫
Q

f dx

) (
−
∫
Q
g dx

) (
−
∫
Q
uw dx

)
|Q|

≤
∑
Q∈S

‖ f v1‖�̄1,Q‖gv2‖�̄2,Q‖v−1
1 ‖�1,Q‖v−1

2 ‖�2,Q‖u‖�,Q‖w‖�̄,Q |Q|

�
∑
Q∈S

‖ f v1‖�̄1,Q‖gv2‖�̄2,Q‖w‖�̄,Q |Q|

�
∑
Q∈S

‖ f v‖�̄1,Q‖gv2‖�̄2,Qw(EQ)

�
∫

Rn
M�̄1,�̄2

( f v1, gv2)w dx .

�
Surprisingly, when p ≤ 1we do not need anOrlicz bump on theweight u: it suffices

to take the localized L p norm.
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Theorem 4.6 Let T be a bilinear CZO, fix 1 < p1, p2 < ∞, and define p = p1 p2
p1+p2

.
Suppose p ≤ 1 and (u, v1, v2) are weights that satisfy

sup
Q

(
−
∫
Q
u p dx

) 1
p ∥∥∥v−1

1

∥∥∥
�1,Q

∥∥∥v−1
2

∥∥∥
�1,Q

< ∞,

where �1, �2 are Young functions. Then

‖T ( f, g)u‖L p � ‖M�̄1,�̄2
( f v1, gv2)‖L p .

In particular, if �̄1 ∈ Bp1 and �̄2 ∈ Bp2 then

‖T ( f, g)u‖L p � ‖ f v1‖L p1 ‖gv2‖L p2 .

Proof The proof is more straightforward than the proof of Theorem 4.5 since we do
not need to use extrapolation. Again, we will prove it for a sparse bilinear operator TS
and a pair of non-negative functions f, g. Since 0 < p ≤ 1, by convexity we have the
pointwise inequality

T S( f, g)p ≤
∑
Q∈S

[(
−
∫
Q

f dx

) (
−
∫
Q
g dx

)]p

χQ .

Therefore, proceeding as we did above,

∫
Rn

(TS( f, g)u)p dx ≤
∑
Q∈S

[(
−
∫
Q

f dx

) (
−
∫
Q
g dx

)]p (
−
∫
Q
u p dx

)
|Q|

≤
∑
Q∈S

(
‖ f v1‖�̄1,Q‖gv2‖�̄2,Q

∥∥∥v−1
1

∥∥∥
�1,Q

∥∥∥v−1
2

∥∥∥
�2,Q

)p

(
−
∫
Q
u p dx

)
|Q|

�
∑
Q∈S

(
‖ f v1‖�̄1,Q‖gv2‖�̄2,Q

)p |Q|

�
∑
Q∈S

(
‖ f v1‖�̄1,Q‖gv2‖�̄2,Q

)p |EQ |

�
∫

Rn
M�̄1,�̄2

( f v1, gv2)
p dx .

�
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Bilinear fractional integral operators

Recall from the Introduction that, given 0 < α < n, we define the bilinear fractional
integral operator

BIα( f, g)(x) =
∫

Rn

f (x − y)g(x + y)

|y|n−α
dy

and bilinear fractional maximal operator

BMα( f, g)(x) = sup
r>0

1

(2r)n−α

∫
[−r,r ]n

| f (x − y)g(x + y)| dy.

Also recall the following, less singular version of the bilinear fractional integral
operator,

Iα( f, g)(x) =
∫

R2n

f (y)g(z)

(|x − y| + |x − z|)2n−α
dydz, 0 < α < 2n,

and the associated maximal operator

Mα( f, g)(x) = sup
Q�x

|Q| α
n −
∫
Q

| f (y)| dy · −
∫
Q

|g(z)|dz.

A similar calculation to that in the linear case shows that BMα( f, g) � BIα( f, g)
and Mα( f, g) � Iα( f, g) when f, g ≥ 0; moreover, it was shown in [24] (via A∞
extrapolation) that for 0 < p < ∞ and w ∈ A∞,

‖Iα( f, g)‖L p(w) ≤ C‖Mα( f, g)‖L p(w).

Here we use extrapolation to give a new proof of the following analogous inequality
for BIα and Mα . This result was first proved in [25].

Theorem 4.7 Given 0 < p ≤ 1 and w ∈ RH( 1
p )′ , then

‖BIα( f, g)‖L p(w) ≤ C‖Mα( f, g)‖L p(w).

Proof Our proof is similar in parts to the proof of [25, Theorem 1.8], so we will only
sketch the details.Wewill prove that the hypotheses of Theorem 1.1 are satisfied when
p0 = q0 = 1: i.e., we will show that if w ∈ RH∞, then we have

∫
Rn

B Iα( f, g)w dx �
∫

Rn
Mα( f, g)w dx

for non-negative functions f and g.
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In [25, Theorem 3.2] it was shown that BIα is dominated pointwise by the dyadic
operator

BIα( f, g)(x) � BIDα ( f, g)(x)

:=
∑
Q∈D

|Q| α
n

|Q|
∫

|y|≤�(Q)

f (x − y)g(x + y) dy · χQ(x),

whereD is the standard dyadic grid. Now letw ∈ RH∞; then we estimate as follows:

∫
Rn

B IDα ( f, g)w dx =
∑
Q∈D

|Q| α
n

|Q|
∫
Q

∫
|y|≤�(Q)

f (x − y)g(x + y)w(x) dydx

�
∑
Q∈D

|Q| α
n

|Q|

(
sup
Q

w

) ∫
Q

∫
|y|≤�(Q)

f (x − y)g(x + y) dydx .

If we make the change of variables u = x − y, v = x + y and use the RH∞ condition
on w, then

∫
Rn

B IDα ( f, g)w dx �
∑
Q∈D

|Q| α
n

(
−
∫
3Q

f dx

) (
−
∫
3Q

g dx

) (∫
Q

w dx

)
. (4.4)

This sum is similar to the sum that appeared in the proof of Theorem 4.5 except
that it is over all dyadic cubes. However, we will bound it by a sum over a sparse
family. Fix a > 1; the exact value will be chosen later. Fix k ∈ Z and let

Ck =
{
Q ∈ D : ak <

(
−
∫
3Q

f dx

) (
−
∫
3Q

g dx

)
≤ ak+1

}
.

Let Sk be all cubes in D that are maximal with respect to inclusion and satisfy

ak <

(
−
∫
3Q

f dx

) (
−
∫
3Q

g dx

)
.

(By an approximation argument we may assume f and g are bounded and have
compact support, so such maximal cubes exist.) It is clear that every Q ∈ Ck is a
subset of a unique cube in Sk . We can now estimate the righthand side of inequality
(4.4) as follows:

∑
Q∈D

|Q| α
n

(
−
∫
3Q

f dx

) (
−
∫
3Q

g dx

) (∫
Q

w dx

)

=
∑
k∈Z

∑
Q∈Ck

|Q| α
n

(
−
∫
3Q

f dx

) (
−
∫
3Q

g dx

) (∫
Q

w dx

)
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≤
∑
k∈Z

ak+1
∑
Q∈Ck

|Q| α
n

∫
Q

w dx

=
∑
k∈Z

ak+1
∑
P∈Sk

∑
Q∈D(P)

|Q| α
n

∫
Q

w dx

=
∑
k∈Z

ak+1
∑
P∈Sk

∞∑
j=1

∑
Q∈D(P)

�(Q)=2− j �(P)

|Q| α
n

∫
Q

w dx

�
∑
k∈Z

ak+1|Q| α
n

∑
P∈Sk

∫
P

w dx

�
∑
Q∈S

|Q| α
n

(
−
∫
3Q

f dx

) (
−
∫
3Q

g dx

) (∫
Q

w dx

)
,

where in the last line we let S = ⋃
k Sk .

We claim that S is a sparse set. To see this, let

k =
⋃
Q∈Sk

Q;

then k ⊇ k+1 and given Q ∈ Sk we have

∣∣∣∣∣∣
⋃

Q′∈SQ′
�Q

Q′
∣∣∣∣∣∣ = |Q ∩ k+1| ≤

∣∣∣{x : M( f χ3Q, gχ3Q)(x) > ak+1}
∣∣∣

≤
[

C

ak+1

(∫
3Q

f dx

) (∫
3Q

g dx

)] 1
2

� C

a
1
2

|Q|.

The second inequality follows from the fact that M : L1(Rn) × L1(Rn) →
L1/2,∞(Rn). But then, if we choose a sufficiently large, we get that S is sparse.

We can now complete the proof. Since by Lemma 2.1a,b, w ∈ RH∞ ⊂ A∞ and
so w(Q) � w(EQ), and since the sets {EQ} are disjoint,

∑
Q∈S

|Q| α
n

(
−
∫
3Q

f dx

) (
−
∫
3Q

g dx

)
w(Q)

�
∑
Q∈S

|Q| α
n

(
−
∫
3Q

f dx

) (
−
∫
3Q

g dx

)
w(EQ) ≤

∑
Q∈S

∫
EQ

Mα( f, g)w dx

≤
∫

Rn
Mα( f, g)w dx .

If we combine the above estimates, we get the desired inequality and the proof is
complete. �
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