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Abstract We consider the Cauchy problem for the nonlinear Schrödinger equation
on Rd , where the initial data is in Ḣ1(Rd) ∩ L p(Rd). We prove local well-posedness
for large ranges of p and discuss some global well-posedness results.
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1 Introduction

In this work, we consider the classical nonlinear Schrödinger equation over Rd :

iut+�u+λ|u|σu = 0, u = u(t, x), (t, x) ∈ R×R
d , λ ∈ R, 0 < σ < 4/(d−2)+

and focus on the corresponding Cauchy problem u(0) = u0 ∈ E , where E is a
suitable function space. This model equation is the subject of more than fifty years
of intensive research, which makes us unable to give a complete list of important
references (we simply refer the monographs [3,11,12] and references therein). The
usual framework one considers is E = H1(Rd), the so-called energy space, or more
generally, E = Hs(Rd). A common property of these spaces is that they are L2-based.
The reason for this constraint comes from the fact that the linear group is bounded in
L2, but not in any other L p.
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450 S. Correia

In the sense of lifting the L2 constraint, various approaches have been considered:
in [7], one considers local well-posedness on Zhidkov spaces

E = Xk(Rd) = {u ∈ L∞(Rd) : ∇u ∈ Hk−1(Rd)}.

In [8], one takes the Gross–Pitaevskii equation and looks for local well-posedness on

E = {u ∈ H1
loc(R

d) : ∇u ∈ L2(Rd), |u|2 − 1 ∈ L2(Rd)}.

In [1], one takes E as a modulation space, which allows to measure in a more precise
way the concentration of a tempered distribution in both space and frequency. This
leads to some local well-posedness results which require less regularity on the initial
condition. In [15], one deals with the case E = Ws,p(Rd), 1 < p < 2 (where the
local well-posedness is proven for a weaker notion of solution). In [13], one takes the
one-dimensional cubic (NLS) and considers

E =
{
u ∈ S ′(Rd) : ‖eit∂xx u‖L3([−1,1];L6(R)) < ∞

}
.

Finally, in [5], one considers E = H1(R2) + X , where X is either a particular space
of bounded functions with no decay or a subspace of L4(R2) (and not of L2(R2)).

The aim of this paper is to look for local well-posedness results over another class
of spaces, namely

E = X p(R
d) = Ḣ1(Rd) ∩ L p(Rd), 2 < p < 2d/(d − 2)+.

In particular, we obtain local well-posedness in the most general energy space
Xσ+2(R

d) and obtain global well-posedness over X p(R
d) in the defocusing case

λ < 0 for all p � σ + 2.

Remark 1.1 Our results can be extended to more general nonlinearities f (u) as in
the H1 framework. We present our results for f (u) = |u|σu so not to complicate
unnecessarily the proofs and deviate from the main ideas.

We briefly explain the structure of this work: in Sect. 2, we derive the required group
estimates and show that the Schrödinger group is well-defined over X p(R

d). In Sect. 3,
we show local well-posedness for p � 2σ + 2, where the use of Strichartz estimates
is available. We also prove global well-posedness for small σ (cf. Proposition 3.6). In
Sect. 4, we deal with the complementary case p > 2σ + 2 in dimensions d = 1, 2.

Notation The norm over L p(Rd) will be denoted as ‖ · ‖p or ‖ · ‖L p , whichever is
more convenient. The spatial domainRd will often be ommited. The free Schrödinger
group in H1(Rd) is written as {S(t)}t∈R. We write p∗ = dp/(d − p)+. To avoid
repetition, we hereby set 2 < p < 2∗ and 0 < σ < 4/(d − 2)+.
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Local Cauchy theory for the nonlinear Schrödinger equation… 451

2 Linear estimates

We recall the essential Strichartz estimates. We say that (q, r) is an admissible pair if

2 � r � 2∗, 2

q
= d

(
1

2
− 1

r

)
, r 	= ∞ if d = 2.

Lemma 2.1 (Strichartz estimates) Given two admissible pairs (q, r) and (γ, ρ), we
have, for all sufficiently regular u0 and f and for any interval I ⊂ R,

‖S(·)u0‖Lq (I ;Lr (RN )) � ‖u0‖2 (2.0)

and

∥∥∥∥
∫

0<s<t
S(t − s) f (s)ds

∥∥∥∥
Lq (I ;Lr (RN ))

� ‖ f ‖Lγ ′
(I ;Lρ′

(RN ))
. (2.1)

Remark 2.1 The estimate (2.1) may be extended to other sets of admisssible pairs: see
[6] and [14]. However, the linear estimate (2.0) is not valid for any other pairs and for
u0 /∈ L2(Rd).

Proposition 2.2 (Group estimates with loss of derivative) Define k so that (k, p) is
admissible. Then

• (Linear estimate) For φ ∈ S(Rd),

‖S(t)φ‖2p � ‖φ‖2p + |t |1− 2
k ‖∇φ‖22, t ∈ R.

• (Non-homogeneous estimate) For f ∈ C([0, T ];S(Rd)) and any (q, r) admissi-
ble,

∥∥∥∥
∫ ·

0
S(· − s) f (s)ds

∥∥∥∥
L∞((0,T );L p(Rd ))

� C(T )
(
‖ f ‖L2((0,T );L p(Rd )) + ‖∇ f ‖Lq′

((0,T );Lr ′ (Rd ))

)
, (2.2)

where C(·) is a increasing bounded function over bounded intervals of R.

Notice that, due to the scaling invariance of the Schrödinger equation, the polyno-
mial growth in time in the linear estimate is unavoidable.

Proof For the linear estimate, write u = S(t)φ. Then u ∈ C1(R; H2(Rd)) satisfies

iut + �u = 0, u(0) = φ.
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452 S. Correia

Multiplying the equation by |u|p−2ū, integrating over Rd and taking the imaginary
part, we obtain

1

p

d

dt
‖u(t)‖p

p �
∣∣∣∣Im

∫
|u|p−2ū�u

∣∣∣∣ � p − 2

2

∫
|u|p−2|∇u|2

� p − 2

2
‖u(t)‖p−2

p ‖∇u(t)‖2p

Thus we have

d

dt
‖u(t)‖2p � (p − 2)‖∇u(t)‖2p.

An integration between 0 and t ∈ R and the linear Strichartz estimate yield

‖u(t)‖2p � ‖φ‖2p +
∫ t

0
‖∇u(s)‖2pds � ‖φ‖2p + |t |1− 2

k

(∫ t

0
‖∇u(s)‖kpds

) 2
k

� ‖φ‖2p + |t |1− 2
k ‖∇φ‖22.

For the non-homogeneous estimate, set v(t) = −i
∫ t
0 S(t − s) f (s)ds. Then v ∈

C1([0, T ]; H1(Rd)) satisfies

ivt + �v = f, v(0) = 0.

As for the previous estimate, we have

1

p

d

dt
‖v(t)‖p

p � ‖v(t)‖p−2
p ‖∇v(t)‖2p + ‖v(t)‖p−1

p ‖ f (t)‖p

and so

d

dt
‖v(t)‖2p � ‖∇v(t)‖2p + ‖v(t)‖p‖ f (t)‖p � ‖∇v(t)‖2p + ‖v(t)‖2p + ‖ f (t)‖2p.

The required estimate now follows by direct integration in (0, t), 0 < t < T , and by
the non-homogeneous Strichartz estimate. ��
Lemma 2.3 (Local Strichartz estimate without loss of derivatives) Given f ∈
C([0, T ],S(Rd)),

∥∥∥∥
∫ ·

0
S(· − s) f (s)ds

∥∥∥∥
L∞((0,T ),L p(Rd ))

� C(T, q)‖ f ‖Lq′
((0,T ),L p′ (Rd ))

,
1

q

> d

(
1

2
− 1

p

)
. (2.3)
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Proof This estimate follows easily from the decay estimates of the Schrödinger group:
indeed, given 0 < t < T ,

∥∥∥∥
∫ t

0
S(t − s) f (s)ds

∥∥∥∥
L p(Rd )

�
∫ T

0
‖S(t − s) f (s)‖L p(Rd )ds

�
∫ T

0

1

|t − s|d
(
1
2− 1

p

) ‖ f (s)‖L p′ (Rd )
ds

�

⎛
⎝

∫ T

0

1

|t − s|qd
(
1
2− 1

p

) ds

⎞
⎠

1
q

‖ f ‖Lq′
((0,T ),L p′ (Rd ))

.

��
We set

X p(R
d) = L p(Rd) ∩ Ḣ1(Rd).

Remark 2.2 From theGagliardo–Nirenberg inequality, we have H1(Rd) ↪→ X p(R
d).

Proposition 2.4 The Schrödinger group {S(t)}t∈R over H1(Rd) defines, by continu-
ous extension, a one-parameter continuous group on X p(R

d).

Proof Given any φ ∈ Ḣ1(Rd), we have ‖S(t)∇φ‖2 = ‖∇φ‖2. Together with Propo-
sition 2.2, this implies that

‖S(t)φ‖X p � (1 + |t |1− 2
k )1/2‖φ‖X p , t ∈ R.

Therefore, for each fixed t ∈ R, S(t) may be extended continuosly to X p. By density,
it follows easily that S(t + s) = S(t)S(s), t, s ∈ R, and S(0) = I on X p. Finally, we
prove continuity at t = 0: given φ ∈ X p(R

d) and ε > 0, take φε ∈ H1(Rd) such that

‖φε − φ‖X p < ε.

Then

lim sup
t→0

‖S(t)φ − φ‖X p � lim sup
t→0

(‖S(t)(φ − φε)‖X p + ‖S(t)φε

−φε‖X p + ‖φε − φ‖X p

)

� lim sup
t→0

(
(1 + |t |1− 2

k )1/2‖φ − φε‖X p

+‖S(t)φε − φε‖H1
)

� ε.

��
Remark 2.3 Fix d = 1. Using the same ideas, one may easily observe that the
Schrödinger group is well-defined on the Zhidkov space
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454 S. Correia

X2(R) = {u ∈ L∞(R) : ∇u ∈ H1(R)}.

Indeed, for any 2 � p � ∞ a direct integration of the equation gives

d

dt
‖u(t)‖p � ‖�u(t)‖p.

Hence, choosing k so that (k, p) is an admissible pair,

‖u(t)‖p � ‖u0‖p +
∫ t

0
‖�u(s)‖pds � ‖u0‖p + Ct1−

1
k ‖�u‖Lk ((0,t),L p)

� ‖u0‖p + Ct1−
1
k ‖�u0‖2,

where C is a constant independent on p (this comes from the fact that such a constant
may be obtained via the interpolation between L∞

t L2
x and L4

t L
∞
x ). Then, taking the

limit p → ∞, we obtain

‖u(t)‖∞ � ‖u0‖∞ + t
3
4 ‖�u0‖2, t > 0, u0 ∈ H2(R).

For higher dimensions, a similar procedure may be applied, at the expense of some
derivatives (one must use Sobolev injection to control L p, with p large). As one might
expect, this argument does not provide the best possible estimate: in [7], one may see
that

‖u(t)‖∞ � (1 + t
1
4 ) (‖u0‖∞ + ‖∇u0‖2) , t > 0, u0 ∈ H1(R).

Remark 2.4 One may ask if the required regularity is optimal: can we define the
Schrödinger group on Xs

p(R
d) := Ḣ s(Rd) ∩ L p(Rd)? What is the optimal s? Taking

into consideration the previous remark, we conjecture that it should be possible to
lower the regularity assumption. This entails a deeper analysis of the Schrödinger
group, as it was done in [7].

3 Local well-posedness for p � 2σ + 2

In order to clarify what do we mean by a solution of (NLS), we give the following

Definition 3.1 (Solution over X p(R
d)) Given u0 ∈ X p(R

d), we say that u ∈
C([0, T ], X p(R

d)) is a solution of (NLS) with initial data u0 if the Duhamel for-
mula is valid:

u(t) = S(t)u0 + iλ
∫ t

0
S(t − s)|u(s)|σu(s)ds, t ∈ [0, T ].

Throughout this section, let (γ, ρ) and (q, r) be admissible pairs such that

r = (σ + 1)ρ′ = max{σ + 2, p}. (3.1)
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Local Cauchy theory for the nonlinear Schrödinger equation… 455

It is easy to check that such pairs are well-defined for p � 2σ + 2.

Proposition 3.2 (Uniqueness over X p(R
d)) Suppose that p � 2σ + 2. Let u1, u2 ∈

C([0, T ], X p(R
d)) be two solutions of (NLS) with initial data u0 ∈ X p(R

d). Then
u1 ≡ u2.

Proof Taking the difference between the Duhamel formula for u1 and u2,

u1(t) − u2(t) = iλ
∫ t

0
S(t − s)

(|u1(s)|σu1(s) − |u2(s)|σu2(s)
)
ds

Then, for any interval J = [0, t] ⊂ [0, T ], since X p(R
d) ↪→ Lr (Rd),

‖u1 − u2‖Lq (J,Lr ) � ‖|u1|σu1 − |u2|σu2‖Lγ ′
(J,Lρ′

)

�
∥∥(‖u1‖σ

r + ‖u2‖σ
r )‖u1 − u2‖r

∥∥
Lγ ′

(J )

�
(
‖u1‖L∞([0,T ],X p(Rd ))

+‖u2‖L∞([0,T ],X p(Rd ))

)
‖u1 − u2‖Lγ ′

(J,Lr )

� C(T )‖u1 − u2‖Lγ ′
(J,Lr )

The claimed result now follows from [3, Lemma 4.2.2]. ��
Theorem 3.3 (Local well-posedness on X p(R

d), p � 2σ + 2) Given u0 ∈ X p(R
d),

there exists T = T (‖u0‖X p ) > 0 and an unique solution

u ∈ C([0, T ), X p(R
d)) ∩ Lγ ((0, T ), Ẇ 1,ρ(Rd)) ∩ Lq((0, T ), Ẇ 1,r (Rd))

of (NLS) with initial data u0. One has

u− S(·)u0 ∈ C([0, T ].L2(Rd))∩ Lq((0, T ), Lr (Rd))∩ Lγ ((0, T ), Lρ(Rd)). (3.2)

Moreover, the solution depends continuously on the initial data and may be extended
in an unique way to a maximal time interval [0, T ∗(u0)). If T ∗(u0) < ∞, then

lim
t→T ∗(u0)

‖u(t)‖X p = +∞.

Remark 3.1 The property (3.2) is a type of nonlinear “smoothing” effect: the integral
term in Duhamel’s formula turns out to have more integrability than the solution
itself (a similar property was seen in [8,13]). This insight allows the use of Strichartz
estimates at the zero derivatives level. Without this possibility, one would be restricted
to the estimate (2.3) and the possible ranges of σ and p would be significantly smaller.

Proof Step 1 Define

S0 = L∞((0, T ), L2) ∩ Lq((0, T ), Lr ) ∩ Lγ ((0, T ), Lρ).

123



456 S. Correia

and

S1 = L∞((0, T ), H1) ∩ Lq((0, T ),W 1,r ) ∩ Lγ ((0, T ),W 1,ρ).

Consider the space

E =
{
u ∈ L∞((0, T ), X p) ∩ Lγ ((0, T ), Ẇ 1,ρ) ∩ Lq((0, T ), Ẇ 1,r ) :
|||u||| := ‖u‖L∞((0,T ),L p) + ‖u − S(·)u0‖S1 � M

}
.

endowed with the distance

d(u, v) = ‖u − v‖S0 .

It is not hard to check that (E, d) is a complete metric space: indeed, if {un}n∈N is a
Cauchy sequence in E , then {un − S(·)u0}n∈N is a Cauchy sequence in S0. Then there
exists u ∈ D′([0, T ]×R

d) such that un − S(·)u0 → u− S(·)u0 in S0. By [3, Theorem
1.2.5], this convergence implies that

u − S(·)u0 ∈ S1, ‖u − S(·)u0‖S1 � lim inf ‖un − S(·)u0‖S1

Finally, it follows from the Gagliardo–Nirenberg inequality that, for some 0 < θ < 1,

‖un − u‖L∞((0,T ),L p) � ‖un − u‖1−θ

L∞((0,T ),L2)
‖∇un − ∇u‖θ

L∞((0,T ),L2)
→ 0

and so un → u in L∞((0, T ), L p).
Step 2 Define, for any u ∈ E ,

(�u)(t) = S(t)u0 + iλ
∫ t

0
S(t − s)|u(s)|σu(s)ds, 0 < t < T .

It follows from the definition of r (see (3.1)) that X p(R
d) ↪→ Lr (Rd). Then

‖�u − S(·)u0‖S1 � ‖|u|σu‖Lγ ′
((0,T ),W 1,ρ′

)

�
∥∥‖u‖σ

r (‖u‖r + ‖∇u‖r )
∥∥
Lγ ′

(0,T )

�
∥∥∥‖u‖σ

X p
(‖u‖X p + ‖∇(u − S(·)u0)‖r + ‖S(·)∇u0‖r

∥∥∥
Lγ ′

(0,T )

� T
1
γ ′ ‖u‖σ+1

L∞((0,T ),X p)

+ T
1
γ ′ − 1

q ‖u‖σ
L∞((0,T ),X p)

‖∇(u − S(·)u0)‖Lq ((0,T ),Lr )

+ T
1
γ ′ − 1

q ‖u‖σ
L∞((0,T ),X p)

‖S(·)∇u0‖Lq ((0,T ),Lr )

�
(
T

1
q′ + T

1
q′ − 1

q

)
(Mσ+1 + ‖u0‖σ+1

X p
).
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It follows that, for M ∼ 2‖u0‖X p and T sufficiently small, we have � : E �→ E .
Step 3 Now we show a contraction estimate: given u, v ∈ E ,

d(�(u),�(v)) � ‖|u|σu − |v|σ v‖Lγ ′
(Lρ′

)

�
∥∥(‖u‖σ

r + ‖v‖σ
r )‖u − v‖r

∥∥
Lγ ′

(0,T )

� T
1
γ ′ − 1

q
(
‖u‖σ

L∞((0,T ),X p(Rd )

+‖u‖σ
L∞((0,T ),X p(Rd )

)
‖u − v‖Lq ((0,T ),Lr )

� T
1
q′ − 1

q
(
Mσ + ‖u0‖σ

X p

)
d(u, v).

Therefore, for T = T (‖u0‖X p ) small enough, the mapping � : E �→ E is a
strict contraction and so, by Banach’s fixed point theorem, � has a unique fixed point
over E . This gives the local existence of a solution u ∈ C([0, T ], X p(R

d)) of (NLS)
with initial data u0. From the uniqueness result, such a solution can then be extended
to a maximal interval of existence (0, T ∗(u0)). If such an interval is bounded, then
necessarily one has ‖u(t)‖X p → ∞ as t → T ∗(u0). The continuous dependence on
the initial data follows as in the H1 case (see, for example, the proof of [3, Theorem
4.4.1]). ��

Remark 3.2 The condition p � 2σ +2 is necessary for one to use Strichartz estimates
with no derivatives. Indeed, when one applies Strichartz to the integral term of the
Duhamel formula, one has

∥∥∥∥
∫ ·

0
S(· − s)|u(s)|σu(s)ds

∥∥∥∥
Lq ((0,T ),Lr )

� ‖u‖σ+1
Lγ ′(σ+1)((0,T ),Lρ′(σ+1))

for any admissible pairs (q, r) and (γ, ρ). Since the solution u only lies on spaces with
spatial integrability larger or equal than p, one must have p � ρ′(σ + 1) � 2σ + 2
(because ρ � 2).

Proposition 3.4 (Persistence of integrability) Suppose that p̃ < p � 2σ + 2. Given
u0 ∈ X p̃(R

d), consider the X p(R
d)-solution u ∈ C([0, T ∗(u0)), X p) of (NLS) with

initial data u0. Then u ∈ C([0, T ∗(u0)), X p̃).

Proof By the local well-posedness result over X p̃(R
d) and by the uniqueness over

X p(R
d), there exists a time T0 > 0 such that u ∈ C([0, T0], X p̃(R

d)). Thus the
statement of the proposition is equivalent to saying that u does not blow-up in X p̃(R

d)

at a time T0 < T < T ∗(u0). Since u is bounded in X p over [0, T ], it follows from the
local existence theorem that

‖u − S(·)u0‖L∞((0,T ),H1) < ∞.
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458 S. Correia

Then, by Proposition 2.2, for any 0 < t < T ,

‖u‖L∞((0,t),X p̃) � ‖S(·)u0‖L∞((0,t),X p̃) + ‖u − S(·)u0‖L∞((0,t),X p̃)

� ‖u0‖X p̃ + ‖u − S(·)u0‖L∞((0,t),H1) < ∞,

which implies that u does not blow-up at time t = T . ��

Proposition 3.5 (Conservation of energy) Suppose that p � σ + 2. Given u0 ∈
X p(R

d), the corresponding solution u of (NLS) with initial data u0 satisfies

E(u(t)) = E(u0) := 1

2
‖∇u0‖22 − λ

σ + 2
‖u0‖σ+2

σ+2, 0 < t < T (u0).

Consequently, if λ < 0, then T ∗(u0) = ∞. Moreover, if λ > 0 and T ∗(u0) < ∞, then

lim
t→T ∗(u0)

‖∇u(t)‖2 = lim
t→T ∗(u0)

‖u(t)‖σ+2 = ∞. (3.3)

Proof Since the conservation law is valid for u0 ∈ H1(Rd), through a regularization
argument, the same is true for any u0 ∈ X p(R

d). If λ < 0, one has

‖u(t)‖Xσ+2(Rd ) � E(u0), 0 < t < T ∗(u0).

By the blow-up alternative, this implies that u, as a Xσ+2(R
d) solution, is globally

defined.Bypersistenceof integrability, this implies thatu is global in X p(R
d). Ifλ > 0,

suppose by contradiction that (3.3) is not true. Then, by conservation of energy, u is
bounded in Xσ+2(R

d) and therefore it is globally defined (as an Xσ+2(R
d) solution,

but also as an X p(R
d) solution, by persistence of integrability). ��

Proposition 3.6 Fix λ > 0. If

2σ 2 + (d + 2)σ � 4, (3.4)

then, for any u0 ∈ Xσ+2(R
d), the corresponding solution u of (NLS) is globally

defined.

Remark 3.3 Notice that the condition on σ implies that σ < min{√2, 4/(d + 2)} <

4/d.

Proof Using a suitable scaling, one may reduce the case λ > 0 to λ = 1. By contra-
diction, assume that u blows-up at time t = T . The previous proposition then implies
that

lim
t→T

‖∇u(t)‖2 = ∞.
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The first step is to obtain a corrected mass conservation estimate: indeed, by direct
integration of the equation,

1

2

d

dt
‖u(t) − S(t)u0‖22 = − Im

∫
|u(t)|σu(t)(u(t) − S(t)u0)

= Im
∫

|u(t)|σu(t)S(t)u0

� ‖u(t)‖σ+1
σ+2‖S(t)u0‖σ+2.

Integrating on (0, t),

‖u(t) − S(t)u0‖22 �
∫ t

0
‖u(s)‖σ+1

σ+2‖S(s)u0‖σ+2ds

� ‖S(·)u0‖L∞((0,T ),Lσ+2)

∫ t

0
‖u(s)‖σ+1

σ+2ds

�
∫ t

0
‖u(s)‖σ+1

σ+2ds.

All of these formal computations can be justified by a suitable regularization and
approximation argument. The next step is to use the conservation of energy and the
Gagliardo–Nirenberg inequality to obtain a bound on ‖∇u(t)‖2.

1

2
‖∇u(t)‖22 = E(u0) + 1

σ + 2
‖u(t)‖σ+2

σ+2

� 1 + ‖u(t) − S(t)u0‖σ+2
σ+2 + ‖S(t)u0‖σ+2

σ+2

� 1 + ‖∇(u(t) − S(t)u0)‖
dσ
2
2 ‖u(t) − S(t)u0‖

4−(d−2)σ
2

2

� 1 + ‖∇(u(t) − S(t)u0)‖
dσ
2
2

(∫ t

0
‖u(s)‖σ+1

σ+2ds

) 4−(d−2)σ
4

For t close to T , ‖∇(u(t) − S(t)u0)‖2 ∼ ‖∇u(t)‖2 and, by conservation of energy,

‖u(t)‖σ+1
σ+2 � ‖∇u(t)‖

2σ+2
σ+2
2

Thus

‖∇u(t)‖
4−dσ

2
2 � 1 +

(∫ t

0
‖∇u(s)‖

2σ+2
σ+2
2 ds

) 4−(d−2)σ
4

which, together with the condition on σ , implies that

g(t) :=‖∇u(t)‖
2σ+2
σ+2
2 � ‖∇u(t)‖

2(4−dσ)
4−(d−2)σ
2 �1+

∫ t

0
‖∇u(s)‖

2σ+2
σ+2
2 ds�1+

∫ t

0
g(s)ds.
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The desired contradiction now follows from a standard application of Gronwall’s
lemma. ��
Remark 3.4 (Global existence in the focusing L2-subcritical regime) As it is well-
known, the global existence in H1(Rd) for σ < 4/d follows easily from the
conservation of mass and energy and from the Gagliardo–Nirenberg inequality. In
Proposition 3.6, we managed to perform a similar argument by using the corrected
mass

M(t) = ‖u(t) − S(t)u0‖22.

However, the range of exponents for which the result is valid still leaves much to be
desired. We are left with some questions: Is there another choice for “corrected mass”
that allows a larger range of exponents? Is it possible that the large tails of the initial
data contribute to blow-up behaviour?

Remark 3.5 (Blow-up in the L2-(super)critical regime) One may ask whether the
known blow-up results for σ � 4/d can be extended to initial data in X p(R

d) which
do not lie in L2(Rd). First of all, notice that

X p(R
d) ∩ L2(|x |2dx) ↪→ L2(Rd).

Thus, in order to obtain blow-up outside L2, onemust first showblow-up in H1 without
the finite variance assumption. This is an open problem, which has been solved in [10]
under radial hypothesis and relying heavily on the conservation of mass (which is
unavailable on X p(R

d)). For the nonradial case, recent works (see, for example, [9])
only manage to prove unboundedness of solutions of negative energy. The problem
of blow-up solutions strictly in X p(R

d) is an even harder problem, requiring a better
control on the tails of the solution.

Remark 3.6 (Scaling invariance) It is useful to understand how scalings affect the
X p(R

d) norm: recalling that the (NLS) is invariant under the scaling uλ(t, x) =
λ2/σu(λ2t, λx), we have

‖uλ(t)‖p = λ
2
σ

− d
p ‖u(λ2t)‖p, ‖∇uλ(t)‖2 = λ

2
σ

+1− d
2 ‖∇u(λ2t)‖2.

Thus the (NLS) is X p(R
d)-subcritical for σ < 2p/d. In this situation, global existence

for small data is equivalent to global existence for any data. Recall, however, that,
for σ � 4/d, existence of blow-up phenomena is known for special initial data in
H1(Rd) ↪→ X p(R

d). Therefore, it is impossible to obtain a global existence result
for small data for 4/d � σ < 2p/d. Notice that in the energy case p = σ + 2, one
has σ < 2p/d for any σ + 2 < 2∗.

Remark 3.7 (Global existence for small data) The main obstacle in proving global
existence for small data turns out to be the linear part of the Duhamel formula S(t)u0,
since there isn’t, to our knowledge, a way to bound uniformly this term over X p(R

d).
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The other possibility is to leave the linear term with a space-time norm: indeed, for
some powers σ > 2/d, it is well-known that, if u0 ∈ H1(Rd) is such that

‖S(·)u0‖La((0,∞),Lσ+2(Rd )) is small, a = 2σ(σ + 2)

4 − σ(d − 2)
,

then the corresponding solution of (NLS) is globally defined (see [4]). It is not hard
to check that the result can be extended to u0 ∈ Xσ+2(R

d).

4 Local well-posedness for p > 2σ + 2

As it was observed in Remark 3.2, the condition p � 2σ + 2 was necessary in order
to use Strichartz estimates with no loss in regularity. For p > 2σ + 2, in order to
estimate L∞

t L p
x , one must turn to estimate (2.2), which has a loss of one derivative.

Therefore the distance one defines for the fixed-point argument must include norms
with derivatives. This implies the need of a local Lipschitz condition

||u|σ ∇u − |v|σ ∇v| � C(|u|, |v|, |∇u|, |∇v|) (|u − v| + |∇(u − v)|) ,

which we can only accomplish for σ � 1.
Because of the restriction σ � 1, one must have 4 < p < 2∗, which excludes any

dimension greater than three. For d = 3, it turns out that no range of p > 2σ + 2 can
be considered. Indeed, if one uses (2.2) with f = |u|σu,

∥∥∥∥
∫ ·

0
S(· − s)|u(s)|σu(s)ds

∥∥∥∥
L∞((0,T ),L p)

� ‖u‖σ+1
L2σ+2((0,T ),L p(σ+1))

+ ‖∇(|u|σu)‖Lq′
((0,T ),Lr ′ ).

We focus on the first norm on the right hand side. To control such a term, either
X p ↪→ L p(σ+1)

x and

‖u‖L2σ+2((0,T ),L p(σ+1) � T
1

2σ+2 ‖u‖L∞((0,T ),X p),

or, setting r � 2 so that

1 − 3

r
= − 3

p(σ + 1)
,

one estimates

‖u‖L2σ+2((0,T ),L p(σ+1)) � ‖∇u‖L2σ+2((0,T ),Lr ) � T
1

2σ+2− 1
q ‖∇u‖Lq ((0,T ),Lr ).

In the first case, one needs 8 < p(σ + 1) < 2∗ = 6. In the second, one must impose
2σ + 2 < q. A simple computation yields p(3σ + 1) < 6, which is again impossible,
since p(3σ + 1) > 16.
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Theorem 4.1 (Local well-posedness on X p(R
d) for d = 1, 2) Given u0 ∈ X p(R

d),
there exists T = T (‖u0‖X p ) > 0 and an unique solution

u ∈ C([0, T ], X p(R
d))

of (NLS) with initial data u0. The solution depends continuously on the initial data
and may be extended uniquely to a maximal interval [0, T ∗(u0)). If T ∗(u0) < ∞,
then

lim
t→T ∗(u0)

‖u(t)‖X p = +∞.

Proof Consider the space

E =
{
u ∈ L∞((0, T ), X p) : |||u||| := ‖u‖L∞((0,T ),X p) � M

}
.

endowed with the natural distance

d(u, v) = |||u − v|||.

The space (E, d) is clearly a complete metric space. If u, v ∈ E , then

‖|u|σu − |v|σ v‖2L2((0,t),L p)
�

∫ t

0

(
‖u‖2σp(σ+1) + ‖v‖2σp(σ+1)

)
‖u − v‖2p(σ+1)ds

Since X p(R
d) ↪→ L p(σ+1)(Rd),

‖|u|σu − |v|σ v‖2L2((0,t),L p)

� T
(
‖u‖2σL∞((0,t).X p)

+ ‖v‖2σL∞((0,t).L p)

)
‖u − v‖2L∞((0,t).X p)

. (4.1)

Choose an admissible pair (γ, ρ) with ρ sufficiently close to 2. We have

‖∇ (|u|σu − |v|σ v
) ‖Lγ ′

((0,T ),Lρ′
)
�

∥∥∥
(
|u|σ−1 + |v|σ−1

)
(|u − v||∇v|

+ |v||∇(u − v)|)‖Lγ ′
((0,T ),Lρ′

)
.

As an example, we treat the term |u|σ−1|u − v||∇v|:

‖|u|σ−1|u − v||∇v|‖ρ′ � ‖u‖σ−1
2σρ′
2−ρ′

‖u − v‖ 2σρ′
2−ρ′

‖∇v‖2
� ‖u‖σ

X p
‖u − v‖X p ,
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Therefore

‖∇ (|u|σu − |v|σ v
) ‖Lγ ′

((0,T ),Lρ′
)

� T
1
γ ′

(
‖u‖σ

L∞((0,T ),X p)
+ ‖v‖σ

L∞((0,T ),X p)

)
‖u − v‖L∞((0,T ),X p)

� T
1
γ ′ Mσd(u, v). (4.2)

For u ∈ E , define

�(u)(t) = S(t)u0 + iλ
∫ t

0
S(t − s)|u(s)|σu(s)ds, 0 � t � T .

The estimates (4.1) and (4.2), together with (2.2) and Strichartz’s estimates then imply
that

|||�(u)||| �‖u0‖X p +
∥∥∥∥
∫ ·

0
S(· − s)|u(s)|σu(s)ds

∥∥∥∥
L∞((0,T ),L p)

+
∥∥∥∥
∫ ·

0
S(· − s)|u(s)|σu(s)ds

∥∥∥∥
L∞((0,T ),Ḣ1)

� ‖u0‖X p +
(
‖|u|σu‖L2((0,T );L p) + ‖∇(|u|σu)‖Lγ ′

((0,T );Lρ′
)

)

� ‖u0‖X p +
(
T

1
2 + T

1
γ ′

)
Mσ+1

and

d(�(u),�(v)) �
(‖|u|σu − |v|σ v‖L2((0,T );L p) + ‖∇(|u|σu)

−∇(|v|σ v)‖Lγ ′
((0,T );Lρ′

)

)

�
(
T

1
2 + T

1
γ ′

)
Mσd(u, v). (4.3)

Choosing M ∼ 2‖u0‖X p , for T = T (‖u0‖X p ) small enough, it follows that � : E �→
E is a strict contraction. Banach’s fixed point theorem now implies that� has a unique
fixed point over E , which is the unique solution u of (NLS) with initial data u0 on the
interval (0, T ). This solution may then be extended uniquely to a maximal interval
of existence (0, T (u0)). The blow-up alternative follows by a standard continuation
argument. Finally, if u, v are two solutions with initial data u0, v0 ∈ X p(R

d), as in
(4.3), one has
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d(u, v) = d(�(u),�(v)) � ‖u0 − v0‖X p +
(
T

1
2 + T

1
γ ′

)
Mσd(u, v)

� ‖u0 − v0‖X p

+
(
T

1
2 + T

1
γ ′

) (
max{‖u0‖X p , ‖v0‖X p }

)σ
d(u, v)

Thus, for T0 = T0(‖u0‖X p , ‖v0‖X p ) small,

d(u, v) � ‖u0 − v0‖X p ,

and continuous dependence follows. ��
Proposition 4.2 (Persistence of integrability) Fix d = 1, 2 and p > p̃. Given u0 ∈
X p̃(R

d), consider the X p(R
d)-solution u ∈ C([0, T ∗(u0)), X p) of (NLS) with initial

data u0. Then u ∈ C([0, T ∗(u0)), X p̃).

Proof As in the proof of Proposition 3.4, given T < T ∗(u0), one must prove that the
L p̃ norm of u is bounded over (0, T ). Applying (2.2) to the Duhamel formula of u,

‖u‖L∞((0,T ),L p̃) � ‖u0‖X p̃ + ‖|u|σu‖L2((0,T ),L p̃) + ‖|u|σ |∇u|‖Lγ ′
((0,T ),Lρ′

)
,

for any admissible pair (γ, ρ). The penultimate term is treated using the injection
X p(R

d) ↪→ L p̃(σ+1):

‖|u|σu‖L2((0,T ),L p̃) = ‖u‖σ+1
L2σ+2((0,T ),L p̃(σ+1))

� T
1
2 ‖u‖σ+1

L∞((0,T ),X p(Rd )
< ∞.

Choose ρ sufficiently close to 2 so that X p(R
d) ↪→ L

2σρ′
2−ρ′ (Rd). Then

‖|u|σ |∇u|‖Lγ ′
((0,T ),Lρ′

)
�

∥∥∥∥∥‖u‖σ
2σρ′
2−ρ′

‖∇u‖2
∥∥∥∥∥
Lγ ′

(0,T )

� T
1
γ ′ ‖u‖σ+1

L∞((0,T ),X p)
< ∞.

Therefore ‖u‖L∞((0,T ),L p̃) is finite and the proof is finished. ��

5 Further comments

In light of the results we have proven, we highlight some new questions that have
risen:

1. Local well-posedness: In dimensions d � 3, the local well-posedness in the case
p > 2σ + 2 remains open. Is this optimal? As we have argued in Remark 3.2, this
case requires new estimates for the Schrödinger group.

2. Global well-posedness: this problem is completely open for p > σ +2. Even if the
energy is well-defined, there are still several cases where global well-posedness
(even for small data) remains unanswered.
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3. New blow-up behaviour: in the opposite perspective, is it possible to exhibit new
blow-up phenomena?Thiswould be especially interesting either for the defocusing
case or for the L2-subcritical case, where blow-up behaviour in H1 is impossible.

4. Stability of ground-states: in the H1 framework, the work of [2] has shown that
the ground-states are orbitally stable under H1 perturbations. Does the result still
hold if we consider X p perturbations?
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