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Abstract We consider the Cauchy problem for the nonlinear Schrédinger equation
on R?, where the initial data is in H'(RY) N L?(R%). We prove local well-posedness
for large ranges of p and discuss some global well-posedness results.
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1 Introduction
In this work, we consider the classical nonlinear Schrodinger equation over R¥:
i+ Au+Aul’u =0, u=u(,x), (,x)e€ RxRY A eR, 0<0o < 4/(d-2)*

and focus on the corresponding Cauchy problem u(0) = ug € E, where E is a
suitable function space. This model equation is the subject of more than fifty years
of intensive research, which makes us unable to give a complete list of important
references (we simply refer the monographs [3,11,12] and references therein). The
usual framework one considers is E = H'(R9), the so-called energy space, or more
generally, E = H*(R?). A common property of these spaces is that they are L?-based.
The reason for this constraint comes from the fact that the linear group is bounded in
L2, but not in any other LP.
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450 S. Correia

In the sense of lifting the L? constraint, various approaches have been considered:
in [7], one considers local well-posedness on Zhidkov spaces

E =XRY) = {u e L°R?Y) : Vu € HF'(R?)).
In [8], one takes the Gross—Pitaevskii equation and looks for local well-posedness on
E={ueH. R):VueL*R?,u®—1eL*RY)).

In [1], one takes E as a modulation space, which allows to measure in a more precise
way the concentration of a tempered distribution in both space and frequency. This
leads to some local well-posedness results which require less regularity on the initial
condition. In [15], one deals with the case E = W*P(R%), 1 < p < 2 (where the
local well-posedness is proven for a weaker notion of solution). In [13], one takes the
one-dimensional cubic (NLS) and considers

E = {M S S/(Rd) . ||€ilBXXM||L3([_1’1];L6(R)) < OO} .

Finally, in [5], one considers E = H!(R?) + X, where X is either a particular space
of bounded functions with no decay or a subspace of L*(R?) (and not of L2(R?)).

The aim of this paper is to look for local well-posedness results over another class
of spaces, namely

E=X,R)=H®HYNLPRY), 2<p<2d/d-2)".

In particular, we obtain local well-posedness in the most general energy space
Xy42(R?) and obtain global well-posedness over X ,,(Rd) in the defocusing case
A<Oforall p<o—+2.

Remark 1.1 Our results can be extended to more general nonlinearities f () as in
the H' framework. We present our results for f(u) = |u|”u so not to complicate
unnecessarily the proofs and deviate from the main ideas.

We briefly explain the structure of this work: in Sect. 2, we derive the required group
estimates and show that the Schrédinger group is well-defined over X, (R%).In Sect. 3,
we show local well-posedness for p < 20 + 2, where the use of Strichartz estimates
is available. We also prove global well-posedness for small o (cf. Proposition 3.6). In
Sect. 4, we deal with the complementary case p > 20 + 2 in dimensions d = 1, 2.

Notation The norm over LP(R?) will be denoted as | - || p or || - [[Lr, whichever is
more convenient. The spatial domain R? will often be ommited. The free Schrodinger
group in Hl(Rd) is written as {S(¢)};er. We write p* = dp/(d — p)T. To avoid
repetition, we hereby set2 < p <2*and 0 < o < 4/(d —2)™.
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Local Cauchy theory for the nonlinear Schrédinger equation... 451

2 Linear estimates

We recall the essential Strichartz estimates. We say that (g, ) is an admissible pair if

2 1 1
2<r <25, —=d(§——>, r #ocoifd =2.
q r

Lemma 2.1 (Strichartz estimates) Given two admissible pairs (g, r) and (v, p), we
have, for all sufficiently regular uy and f and for any interval I C R,

||S(')MO||Lq(1;Lr(RN)) S lluoll2 (2.0)

and

Remark 2.1 The estimate (2.1) may be extended to other sets of admisssible pairs: see
[6] and [14]. However, the linear estimate (2.0) is not valid for any other pairs and for
uo ¢ L2(RY).

/ S —s)f(s)ds
O<s<t

S ||f||LV’(1;Lp’(RN))~ 2.1
La(I;L"(RV))

Proposition 2.2 (Group estimates with loss of derivative) Define k so that (k, p) is
admissible. Then

e (Linear estimate) For ¢ € S(R?),
2
ISOI5 < ol + 1t [Vel3. teR.

e (Non-homogeneous estimate) For f € C([0, T1; S(RY)) and any (g, r) admissi-
ble,

H/ S —s)f(s)ds
0

L®((0,T); LP (RY))
S c(T) (”f”Lz((O,T);LI’(Rd)) + ”Vf”Lq’((()’T);Lr’(Rd))) s (2.2)

where C(-) is a increasing bounded function over bounded intervals of R.

Notice that, due to the scaling invariance of the Schrédinger equation, the polyno-
mial growth in time in the linear estimate is unavoidable.

Proof For the linear estimate, write u = S(t)¢. Thenu € C L(R; H2(R?)) satisfies
iu; + Au =0, u(0)=d¢.
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452 S. Correia

Multiplying the equation by |u|”~2i, integrating over R and taking the imaginary
part, we obtain

1d
——Jlu@®h < ‘Im/ lulP 2 Au
pdt

p—2
2

-2
< ”T/|u|P—2|vM|2

-2
< @I~ 1Vl

[hus we have
I lu@®1? < (p = DIVu@®|
; ul, < (p Vu()|,-

An integration between 0 and ¢ € R and the linear Strichartz estimate yield

2
t ) t 3
||u(z>||§,5||¢||§,+f0 IVu)|5ds < Il + ¢ % (/0 ||Vu(s)||’;,ds>

_2
S gl + 15 | Vel3.
P

For the non-homogeneous estimate, set v(t) = —i fé S(t — s)f(s)ds. Then v €
Cl([0, T1; H'(RY)) satisfies

ivy+Av=f, v(0)=0.

As for the previous estimate, we have
;EHU(Z)”p S vl “IVeOly, + vl 1Ol
and so
d 2 2 2 2 2
lev(t)llp S IVeOI, + vl Ol S IV, + vy, + 11 Ol

The required estimate now follows by direct integration in (0, ¢),0 < t < T, and by
the non-homogeneous Strichartz estimate. O

Lemma 2.3 (Local Strichartz estimate without loss of derivatives) Given f €
C([0, T1, S(RY)),

1
< O D o 1 iy
L®((0,T),LP(RY)) ((0,7),LP" (R%))

a(L-1L 2.3
- (2_17)' @

”/.S(' — ) f(s)ds
0
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Proof This estimate follows easily from the decay estimates of the Schrédinger group:
indeed, given 0 <t < T,

t
H/ S —s)f(s)ds
0

T
5/ ”S(t _S)f(s)”Lp(Rd)dS
Lrrdy  Jo

< /T ! (FACI| d
_— N+ o wards

~ 1_1 LP (R?)
01— g7

1

r 1
: f 9| Wl orr @
0 _F)

We set
X,(RY = LP(RY) N H'(RY).

Remark 2.2 From the Gagliardo—Nirenberg inequality, we have H!(R?) — X ,(R%).

Proposition 2.4 The Schrodinger group {S(t)};cr over H (R?) defines, by continu-
ous extension, a one-parameter continuous group on X (RY).

Proof Given any ¢ € Hl(Rd), we have ||S(t)Ve|2» = ||[V@|2. Together with Propo-
sition 2.2, this implies that

_2
ISOBlx, S A+ 11D 2lgllx,, € R.
Therefore, for each fixed r € R, S(#) may be extended continuosly to X ,. By density,

it follows easily that S(r +s5) = S(#)S(s), ¢, s € R, and §(0) = I on X ,. Finally, we
prove continuity at# = 0: given ¢ € X, (Rd) and € > 0, take ¢ € H ! (Rd ) such that

e — lix, <e.

Then
lim sup [|S(1)¢ — pllx, < limsup (IS@) (@ — de)llx, + 1S pe
t—0 t—0
—dellx, + ¢ — blix,)
2
Stimsup (1411175216 - ¢cllx,
t—0
IS pe = ellp) S e.
O
Remark 2.3 Fix d = 1. Using the same ideas, one may easily observe that the

Schrodinger group is well-defined on the Zhidkov space
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454 S. Correia

X’R) ={u e L) : Vu € H'(R)}.

Indeed, for any 2 < p < oo a direct integration of the equation gives

d
21Ol < 1Au@)p.

Hence, choosing k so that (k, p) is an admissible pair,

t
_1
lullp < lluollp +/ I Au(s)llpds < fluoll, + Ct' N Aull L o.0), L)
0
_1
< luollp + Ct' =% || Aug|2,

where C is a constant independent on p (this comes from the fact that such a constant
may be obtained via the interpolation between L{° L% and LfL)OCO). Then, taking the
limit p — o0, we obtain

3
lu@lloo S luolleo + 17 1Augll2, 1 >0, ug € H*(R).

For higher dimensions, a similar procedure may be applied, at the expense of some
derivatives (one must use Sobolev injection to control L”, with p large). As one might
expect, this argument does not provide the best possible estimate: in [7], one may see
that

1
lu@lloo S (A +1%) (luolleo + IVuoll2) , 1> 0,up € H' (R).

Remark 2.4 One may ask if the required regularity is optimal: can we define the
Schrédinger group on X, (RY) := H*(RY) N LP(R%)? What is the optimal s? Taking
into consideration the previous remark, we conjecture that it should be possible to
lower the regularity assumption. This entails a deeper analysis of the Schrodinger
group, as it was done in [7].

3 Local well-posedness for p < 20 + 2

In order to clarify what do we mean by a solution of (NLS), we give the following

Definition 3.1 (Solution over X p(Rd)) Given ug € X ,,(Rd), we say that u €
c(o, 7],Xx p(Rd)) is a solution of (NLS) with initial data uq if the Duhamel for-
mula is valid:

t

u(t) = S(t)uo + ik/ S(t — ) |u(s)|%u(s)ds, tel[0,T].
0

Throughout this section, let (y, p) and (g, r) be admissible pairs such that

r=(o+1)p = max{o +2, p}. 3.1
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Local Cauchy theory for the nonlinear Schrédinger equation... 455

It is easy to check that such pairs are well-defined for p < 20 + 2.

Proposition 3.2 (Uniqueness over X p(Rd)) Suppose that p < 20 + 2. Let uj, us €
C([0, T1, X ,(RY)) be two solutions of (NLS) with initial data ug € X ,(RY). Then
uyp = uj.

Proof Taking the difference between the Duhamel formula for 1| and u»,
t
() — ur(t) = ix/O S(t = 5) (1 () u1 (5) — [ua(5)|7 wa(5)) ds

Then, for any interval J = [0, 7] C [0, T, since X ,(RY) < L"(R%),
lur —uzlliaery < Mutl®ur = luzl®uall ooy
S a7 + w2 i) ey = wallr |y 5
< (”ul”LDO([O,T],X,;(Rd))

2l qo.r1,x, e ) 1 = w2l 1)

< CD)ur — w2l 1)
The claimed result now follows from [3, Lemma 4.2.2]. O

Theorem 3.3 (Local well-posedness on X, (RY), p <20 +2) Givenug € X p(Rd),
there exists T =T (luollx,) > 0 and an unique solution

ue C(0,T), X,(RY) N LY (0, T), W (RY)) N LI((0, T), W' (R?))
of (NLS) with initial data ugy. One has
u—S0Huy € CI0, T1.LZRY)NLIO, T), L (RY)NLY (0, T), L”(RY)). (3.2)

Moreover, the solution depends continuously on the initial data and may be extended
in an unique way to a maximal time interval [0, T*(ug)). If T*(ug) < oo, then

lim lu(n)]x, = +oo.
t—T*(ug)

Remark 3.1 The property (3.2) is a type of nonlinear “smoothing” effect: the integral
term in Duhamel’s formula turns out to have more integrability than the solution
itself (a similar property was seen in [8,13]). This insight allows the use of Strichartz
estimates at the zero derivatives level. Without this possibility, one would be restricted
to the estimate (2.3) and the possible ranges of o and p would be significantly smaller.

Proof Step I Define

So = L>®((0,T), L>) N L1((0, T), L")y N LY ((0, T), L”).
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456 S. Correia

and

Si=L>(0,T), HYNLY(0, T), W' )N LY (0, T), W"*).
Consider the space

£= {u € L™((0,T), X,) N LY (0, T), W) N LI((0, T), W"") :
el := Nallzoeqo, 1y, + llu = SChuolls, < M}
endowed with the distance
d(u,v) = llu —vls,-

It is not hard to check that (£, d) is a complete metric space: indeed, if {u,},cN is a
Cauchy sequence in &, then {u,, — S(-)ug}nen is a Cauchy sequence in Sp. Then there
exists u € D'([0, T]x R¥) such that u,, — S(ug — u—S()ugin Sp. By [3, Theorem
1.2.5], this convergence implies that

u—S8Cuo € S1, u—SCOuolls, <liminf [lu, — SCuolls,
Finally, it follows from the Gagliardo—Nirenberg inequality that, for some 0 < 6 < 1,

1-6
”un - u”LOC((O,T),LP) ,-S ”uﬂ - u”LOC((O,T),LZ)”vun - vu"ioc((o’T)’LZ) - O

and so u, — u in L°°((0, T), LP).
Step 2 Define, for any u € &,

t
(DPu)(t) = S(H)ug + ik/ St —s)|u@s)|®u(s)ds, 0<t<T.
0

It follows from the definition of r (see (3.1)) that X ,(R?) < L"(R?). Then

1Pu — SCuolls, S Metl”ull 0.7y, w0’y
S e lally + 196l ||y 0.7

< [, Qulix, + 19 = SO + 150 Vuoll,

LY (0,T)

1
7 1

1_1
+7Tv ||u||[£oo((0,r)‘xp)||v(” — SGuo)llLaco,1),Lr)

1_
7

1
+T7 |u ||i°°((0,T),Xp) IS¢ VuollLao,1),Lm)

1_
7

1 1
< (Tq/ + T ) M7+ JluolIFHh.
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Local Cauchy theory for the nonlinear Schrédinger equation... 457

It follows that, for M ~ 2|luo| x, and T sufficiently small, we have @ : & — €.
Step 3 Now we show a contraction estimate: given u, v € &,

d(@@), D) S Ilul”u = 0170l )

Sl + 11D e = vl 1y 0.1
1 1
T o
S Tr <||u||L°°((O,T),Xp(Rd)
+ ”u”ioo((o’T))xp(Rd)) ”u - U”L’i((O,T),L’)
1

1_1
STV A (M” + ||uo||‘§p)d(u7 v).

Therefore, for T = T (|lugllx,) small enough, the mapping ® : & > Eis a
strict contraction and so, by Banach’s fixed point theorem, ® has a unique fixed point
over £. This gives the local existence of a solution u € C([0, T'], X ,,(Rd )) of (NLS)
with initial data u#(. From the uniqueness result, such a solution can then be extended
to a maximal interval of existence (0, T*(ug)). If such an interval is bounded, then
necessarily one has ||u(?)|| x, > ooast — T*(ug). The continuous dependence on
the initial data follows as in the H! case (see, for example, the proof of [3, Theorem
4.4.1). O

Remark 3.2 The condition p < 20 +2 is necessary for one to use Strichartz estimates
with no derivatives. Indeed, when one applies Strichartz to the integral term of the
Duhamel formula, one has

< o+1
~ “u”Ly’(a-%—l)((()’T)’Lﬂ/(a-H))

”/ S —$)|u(s)|u(s)ds
0

L4((0,T),L")

for any admissible pairs (g, r) and (y, p). Since the solution u only lies on spaces with
spatial integrability larger or equal than p, one must have p < p'(o + 1) < 20 +2
(because p = 2).

Proposition 3.4 (Persistence of integrability) Suppose that p < p < 20 + 2. Given
uy € Xf,(]Rd), consider the Xp(Rd)—solution u € C([0, T*(up)), Xp) of (NLS) with
initial data uo. Then u € C([0, T*(uo)), Xp).

Proof By the local well-posedness result over X 5 (R9) and by the uniqueness over
X,,(]Rd), there exists a time Ty > O such that u € C([0, Tp], X];(]Rd)). Thus the
statement of the proposition is equivalent to saying that # does not blow-up in X ,;(Rd)
atatime To < T < T*(uo). Since u is bounded in X, over [0, T], it follows from the
local existence theorem that

llu = SCuoll Lo o,1), 1) < O°-
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458 S. Correia

Then, by Proposition 2.2, forany 0 <t < T,

lll oo 0,0, x50 S NSOuollLeo,n,x5) + llu = SOuollLeo,0,x )

S lluollx; + llu — SCuoll oo 0,0, H1y < 00,
which implies that «# does not blow-up at time s = T'. O

Proposition 3.5 (Conservation of energy) Suppose that p < o + 2. Given uy €
X, (RY), the corresponding solution u of (NLS) with initial data ug satisfies

_ . 1 2 A o+2
E(u(t)) = E(uo) := zllvuollz - mlluollaﬂ, 0 <1 < T(uo).

Consequently, if .. < 0, then T*(ug) = oo. Moreover, if A > 0 and T*(up) < 0o, then

lim [[Vu@)l2= 1lim |u(@)|s+2 = oco. (3.3)
t—T*(ugp) t—T*(uop)

Proof Since the conservation law is valid for ug € H'(R?), through a regularization
argument, the same is true for any up € X, (Rd). If A < 0, one has

lu@®llx, @y S E@o), 0 <t < T*(uo).

By the blow-up alternative, this implies that u, as a X2 (R?) solution, is globally
defined. By persistence of integrability, this implies thatu is globalin X , RY).IfA > 0,
suppose by contradiction that (3.3) is not true. Then, by conservation of energy, u is
bounded in X U+2(Rd ) and therefore it is globally defined (as an X, U+2(Rd ) solution,
but also as an X, (R%) solution, by persistence of integrability). O

Proposition 3.6 Fix A > 0. If
20% + (d +2)o < 4, (3.4)

then, for any uy € Xo42(RY), the corresponding solution u of (NLS) is globally
defined.

Remark 3.3 Notice that the condition on o implies that o < min{+/2,4/(d + 2)} <
4/d.

Proof Using a suitable scaling, one may reduce the case A > 0 to A = 1. By contra-
diction, assume that u blows-up at time ¢t = T'. The previous proposition then implies
that

lim || Vu(t) |2 = oo.
t—T

@ Springer



Local Cauchy theory for the nonlinear Schrédinger equation... 459

The first step is to obtain a corrected mass conservation estimate: indeed, by direct
integration of the equation,

1d -
5@ = S(uol3 = —Im / (1)1 u(t)(u(t) — S(t)ug)
t
=1Im / (1) u(t)S(t)uo
S NuIZE IS Ouollo2-

Integrating on (0, ¢),

t
lu(r) — S@uolls < fo lu()IGT IS ($)uollos2ds
t
SISOuoll Lo, 7). L0+2) [ lu(s) 1253 ds
0
t
< fo lu(s) 1255 ds.

All of these formal computations can be justified by a suitable regularization and
approximation argument. The next step is to use the conservation of energy and the
Gagliardo—Nirenberg inequality to obtain a bound on || Vu(?) 2.

1 s 1 o
EIIVu(t)Ilz = E(uo) + mllu(t)llgﬂ

S+ flu) — S(r)uou:;i% +1S@OuollZE3
4—(d—2)o
<1+ IV @) — SOu)ly? lut) — SOuolly

4—(d-2)0

<1+ IV — SOu)ly ( / ||u<s>||gi;ds)

Fort closeto T, ||V(u(t) — S(H)up)ll2 ~ [[Vu(?)|2 and, by conservation of energy,

2042

lu N33 < IVu@lly ™

Thus

4—(d—-2)o
P

4—do t 2042
IVu@®ll, > <1+ (/ IVu(s)ly dS>
0

which, together with the condition on o, implies that

2042 2(4-do) t 2042 t
g =Vu@®) ™ < IVu@®lly, 7 ST+ | IVus)),"? ds S1+ / g(s)ds.
0 0

@ Springer



460 S. Correia

The desired contradiction now follows from a standard application of Gronwall’s
lemma. .

Remark 3.4 (Global existence in the focusing L*-subcritical regime) As it is well-
known, the global existence in H'(R?) for 0 < 4/d follows easily from the
conservation of mass and energy and from the Gagliardo—Nirenberg inequality. In
Proposition 3.6, we managed to perform a similar argument by using the corrected
mass

M(t) = |lu(r) — S(t)uoll3.

However, the range of exponents for which the result is valid still leaves much to be
desired. We are left with some questions: Is there another choice for “corrected mass”
that allows a larger range of exponents? Is it possible that the large tails of the initial
data contribute to blow-up behaviour?

Remark 3.5 (Blow-up in the L*-(super)critical regime) One may ask whether the
known blow-up results for o > 4/d can be extended to initial data in X, (R%) which
do not lie in Lz(Rd). First of all, notice that

X,(RY) N L2(|x|*dx) < L*(RY).

Thus, in order to obtain blow-up outside L2, one must first show blow-upin H I without
the finite variance assumption. This is an open problem, which has been solved in [10]
under radial hypothesis and relying heavily on the conservation of mass (which is
unavailable on X, (Rd)). For the nonradial case, recent works (see, for example, [9])
only manage to prove unboundedness of solutions of negative energy. The problem
of blow-up solutions strictly in X, (R9) is an even harder problem, requiring a better
control on the tails of the solution.

Remark 3.6 (Scaling invariance) It is useful to understand how scalings affect the
X p(Rd) norm: recalling that the (NLS) is invariant under the scaling u, (t, x) =
Az/”u(kzt, Ax), we have

2_d 2 2414 2
lur@Ollp =2 2llu@Dllp, [Vur@®ll2 = Ao " 2[[Vu@=0)]2.

Thus the (NLS) is X, (R%)-subcritical for o < 2p/d. Inthis situation, global existence
for small data is equivalent to global existence for any data. Recall, however, that,
for o > 4/d, existence of blow-up phenomena is known for special initial data in
H'(R?) — X p(Rd ). Therefore, it is impossible to obtain a global existence result
for small data for 4/d < o < 2p/d. Notice that in the energy case p = o + 2, one
haso < 2p/d forany o + 2 < 2*.

Remark 3.7 (Global existence for small data) The main obstacle in proving global
existence for small data turns out to be the linear part of the Duhamel formula S(#)ug,
since there isn’t, to our knowledge, a way to bound uniformly this term over X, (RY).
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The other possibility is to leave the linear term with a space-time norm: indeed, for
some powers ¢ > 2/d, it is well-known that, if ug € H ! (Rd ) is such that

. 20(0 +2)
”S(')MO||L“((O,oo),L<’+2(Rd)) is small, a= m,
then the corresponding solution of (NLS) is globally defined (see [4]). It is not hard
to check that the result can be extended to ug € X542 (Rd).

4 Local well-posedness for p > 20 + 2

As it was observed in Remark 3.2, the condition p < 20 + 2 was necessary in order
to use Strichartz estimates with no loss in regularity. For p > 20 + 2, in order to
estimate L;’OL)’Z , one must turn to estimate (2.2), which has a loss of one derivative.
Therefore the distance one defines for the fixed-point argument must include norms
with derivatives. This implies the need of a local Lipschitz condition

Nul”Vu — [v|” Vo] S C(lul, [v], [Vul, [Vv]) (Ju — v| + [V(u = v)|),
which we can only accomplish for o > 1.
Because of the restriction o > 1, one must have 4 < p < 2*, which excludes any

dimension greater than three. For d = 3, it turns out that no range of p > 20 42 can
be considered. Indeed, if one uses (2.2) with f = |u|%u,

H f S — )u(s) [ uls)ds
0

L®°((0,T),LP)

+1
rg ”u”i20+2((0,T),L1’(0+1)) + ”V('u|0u)||Lq/((0’T)’Lr’)-

We focus on the first norm on the right hand side. To control such a term, either
X, < LP“"D and

i
Nl 20420, 7y, L@+ S T2 2 Ul Lo 0.1y, X ) s

or, setting r > 2 so that

one estimates

11
”l/l || L20+2((0,T),LP(o+D) 5 ||VM ||L2‘7+2((0,T),L") S T2+2 q ”Vbt ||Lq ((0,T),L7)-
In the first case, one needs 8 < p(o + 1) < 2* = 6. In the second, one must impose

20 +2 < g. A simple computation yields p(30 4 1) < 6, which is again impossible,
since p(30 + 1) > 16.
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462 S. Correia

Theorem 4.1 (Local well-posedness on X, (R?) ford = 1,2) Given ug € X » (RY),
there exists T = T (|luol|x,) > 0 and an unique solution

u € C([0, T1, X ,(R%))

of (NLS) with initial data uo. The solution depends continuously on the initial data
and may be extended uniquely to a maximal interval [0, T*(ug)). If T*(ug) < oo,
then

lim Ju@®)|x, = +o0.
t—T*(ug)

Proof Consider the space
£ = {u e L. 1. X,) : lull := o x,) < M.
endowed with the natural distance
d(u,v) = llu —vll.

The space (£, d) is clearly a complete metric space. If u, v € £, then

t
el = 1012200 1) S /O (H02 1) + W12 1)) Nt = 012y
Since X ,(RY) < LPEF+D(RY),

o 0,2
|||M| u— |U| U||L2((0,I),LP)

2 2 2
S T <||u||L(ZO((0,;)_Xp) + ||U||L%C((()yt)_[‘p)> llu — U”LOO((O,;)_Xpy 4.1)
Choose an admissible pair (y, p) with p sufficiently close to 2. We have
19 (k= 1) 0.0y S (1177 4+ 0171 ) = 011V
+ |U||V(l/t - v)|)”LV/((0,T),Lp/) .
As an example, we treat the term |u|° ' |u — v||Vv]:

—1 -1
el e = vVl S Mlull %y, e = vll 20 V]2

Py 2—p’

<l lu = vllx,
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Therefore
IV (ll”u = 1017 0) 1 0.7y

1
5 T <||u||(zoo((o,7"),xp) + ”v”(ZOC((O,T),Xp)) [ — U||L°°((O,T),X,,)

1
STY Md(u, v). (4.2)
For u € &, define
t
Du)(t) = S(t)uog + iA/ St —$)|u(s)|u(s)ds, 0<t<T.
0

The estimates (4.1) and (4.2), together with (2.2) and Strichartz’s estimates then imply
that

NP @)l Slluollx, + H/o SC = 9)us)|uls)ds

L®°((0,T),LP)

+ Hf S —$)|u(s)|u(s)ds
0

L((0,T),H")

S ol + (1l ll 2. 7y:20) + IV Q0] 0.1y 1.1

1
< luollx, + (Ti + w) Mo
and

d(@ ), @) S (Ilul”u — 7] 20,7y Lry + IV (] u)
_ V(|v|ov)||Ly,((0’T);U,,))

1
< (Ti + TV’) M®d(u, v). (4.3)

Choosing M ~ 2|lugl|x,, for T = T (||uo|x,) small enough, it follows that  : £ >
£ is a strict contraction. Banach’s fixed point theorem now implies that ® has a unique
fixed point over £, which is the unique solution u of (NLS) with initial data ug on the
interval (0, T'). This solution may then be extended uniquely to a maximal interval
of existence (0, T (u¢)). The blow-up alternative follows by a standard continuation
argument. Finally, if u, v are two solutions with initial data ug, vo € X, (R?), as in
(4.3), one has
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d(u,v) =d(@u), ) < lluo — vollx, + <T2 + TVI) M?d(u, v)

S lluo —wollx,

1 1
+ (Tz | Tv’) (max{[luollx,. lvollx,})” d(u, v)

Thus, for To = To(lluollx,,, llvollx,) small,

d(u,v) S llug — vollx

p’
and continuous dependence follows. O

Proposition 4.2 (Persistence of integrability) Fix d = 1,2 and p > p. Given ugy €
X5(RY), consider the X ,(RY)-solution u € C ([0, T*(uo)), X ) of (NLS) with initial
data uo. Then u € C([0, T*(uo)), X ).

Proof As in the proof of Proposition 3.4, given T < T*(uo), one must prove that the
LP norm of u is bounded over (0, T'). Applying (2.2) to the Duhamel formula of u,

||U||L00((0,T),Lﬁ) 5 ||’/¢0||X,—, + |||”|(TU||L2((0,T),U?) + |||u|‘7|Vu|||Lyr((O’T)’Lp/),

for any admissible pair (y, p). The penultimate term is treated using the injection
X[,(Rd) s LPo+D).

_ +1 1 +1
|||u|0u||L2((0’T),LI3) - ”u”i20+2((0,T),L13(0+1)) g T2 ”u“ioc(((),T),Xp(Rd) < 00.
200"
Choose p sufficiently close to 2 so that X, (R?) — L2/ (RY). Then

1
by 1
”|M|U|V”|||Ly’((()’T)’Lp’) S (el 1Vl ST ||M||(ITJ—OE((0,T)’XP) < 00.

200"
2-0 LY (0,7)
Therefore ||u|| Lo((0,T), LP) is finite and the proof is finished. m]

5 Further comments

In light of the results we have proven, we highlight some new questions that have
risen:

1. Local well-posedness: In dimensions d > 3, the local well-posedness in the case
p > 20 + 2 remains open. Is this optimal? As we have argued in Remark 3.2, this
case requires new estimates for the Schrodinger group.

2. Global well-posedness: this problem is completely open for p > o +2. Even if the
energy is well-defined, there are still several cases where global well-posedness
(even for small data) remains unanswered.
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3.

4.

New blow-up behaviour: in the opposite perspective, is it possible to exhibit new
blow-up phenomena? This would be especially interesting either for the defocusing
case or for the L2-subcritical case, where blow-up behaviour in H' is impossible.
Stability of ground-states: in the H' framework, the work of [2] has shown that
the ground-states are orbitally stable under H' perturbations. Does the result still
hold if we consider X, perturbations?
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