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Abstract In Nakamura and Hashimoto (Collect Math 65(3):407–416, 2014), the
authors showed that for every f ∈ L1

loc(R), the essential p-variation ess Vp( f,R)

of f is given by

lim
h→0

∫
R

∣∣∣∣ f (x + h) − f (x)

h

∣∣∣∣
p

dx .

In this paper, more generally we treat the following convergence for a function f ∈
L1
loc(R) and a convex function � : R → [0,∞);

lim
h→0

∫
R

�

(
f (t + h) − f (t)

h

)
dt,

and we show that the limit is equivalent to an essential �-variation ess V�( f ). More-
over, we obtain a characterization of the class of functions f with ess V�( f ) < ∞.
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394 G. Nakamura, K. Hashimoto

1 Introduction

Let (R,M,m) be the usual Lebesgue measure space on the setR of real numbers. Let
1 ≤ p < +∞. The space L p(R) will denote the L p(R,M,m), which are made up of
the Lebesgue measurable functions f , for which | f |p is integrable on R.

A function f ∈ L1
loc(R) is said to be locally integrable on R if f is integrable on

every bounded closed subinterval I of R.
A function f : R → R is said to be locally absolutely continuous if it is absolutely

continuous on every bounded closed subinterval I of R. We denote by ACloc(R) the
vector space of locally absolutely continuous functions on R.

Let W 1,p(R) be a Sobolev space, i.e, f ∈ W 1,p(R) if and only if f ∈ L p(R) and
the derivative Df of f in the sense of distribution belongs to L p(R). In particular, if
f ∈ L1(R) and Df is a Radon measure of bounded variation on R, then f is called
a function of bounded variation. The class of all such functions will be denoted by
BV (R). Thus, f ∈ BV (R) if and only if there is a Radon measure μ defined in R

such that |μ|(R) < +∞ and

∫
R

f ϕ′dt = −
∫
R

ϕdμ, ϕ ∈ C∞
0 (R),

where, |Df |(R) = |μ|(R) means the total variation of μ. It is obvious that a function
f onR is absolutely continuous and the derivative f ′ is in L1(R), then f is of bounded
variation, i.e. W 1,1(R) ⊂ BV (R) (see [2, p. 222]).

LetN be denote the set of all convex functions� : R → [0,∞) such that�(0) = 0
and � is not identically zero. It is well-known that every � ∈ N is continous on R.

Given f ∈ L1
loc(R) and a subset D of R, we write

V�( f, D) = sup
π

n∑
i=1

�

(
f (ti ) − f (ti−1)

ti − ti−1

)
(ti − ti−1),

for the �-variation on D of the function f in the sense of F. Riesz ([6]), where the
supremum is taken over all partitions π : t0 < t1 < · · · < tk < · · · < tn and
tk ∈ D. If D = R, we denote the V�( f, D) simply by V�( f ). If �(x) = |x |,
x ∈ R, then it is obvious that �(x), �+(x) = x ∨ 0, �−(x) = (−x) ∨ 0 ∈ N and
V�( f ) = V�+( f ) + V�−( f ). In the case D = [a, b] (a subinterval of R), we refer to
[1] and [3], but they are treated under the additional assumption that � is even on R.

We define a subset ess D( f ) of R by

ess D( f ) =
{
t ∈ R : lim

h→0

1

h

∫ t+h

t
f (s) ds converges

}
.

We shall call the set ess D( f ) the essential domain of f . We should note that
m(R\ess D( f )) = 0 and ess D( f ) does not depend on measurable functions equal
to f a.e. on R. We define
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On the essential bounded Riesz �-variation 395

f̃ (t) =
⎧⎨
⎩

lim
h→0

1

h

∫ t+h

t
f (s) ds, t ∈ ess D( f )

undefined, otherwise.

Then we should note that f = f̃ (a.e.). Put

L( f ) = {
t ∈ ess D( f ) : f̃ (t) = f (t)

}
,

then it is obvious that m(R\L( f )) = 0.
For f ∈ L1

loc(R), define

ess V�( f ) = sup

{
n∑

k=1

�

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)

×(tk − tk−1) : t0 < t1 < · · · < tn, tk ∈ ess D( f )

}

In what follows, we call ess V�( f ) the essential �-variation of f . In particular,
if �(x) = |x |p, then we call this variation the essential p-variation instead of the
essential�-variation, we write ess Vp( f ) in place of ess V�( f ). Moreover, for h 	= 0,

we write fh(t) = f (t + h) − f (t)

h
.

In the case p = 1, in [4] we showed that ess V1( f ) < ∞ if and only if f ∈ BV (R).
More generally, in [5], we have obtained that the following holds:

Theorem Let 1 ≤ p < ∞ and f ∈ L1
loc(R). Then we have

lim
h→0

∫
R

| fh(t)|p dt = ess Vp( f ).

In this paper, more generally we treat the following convergence for f ∈ L1
loc(R)

and � ∈ N :

lim
h→0

∫
R

�( fh(t)) dt,

and we show that the limit is equivalent to an essential �-variation ess V�( f ). More-
over, we obtain a characterization (Theorem 2.7) of the class of functions f with
ess V�( f ) < ∞.

2 Main results

Theorem 2.1 Let � ∈ N and f ∈ L1
loc(R). Then we have

(i) limh→0

∫
R

�( fh(t)) dt = ess V�( f ).

(ii) essV�( f ) ≤ V�( f ).
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396 G. Nakamura, K. Hashimoto

(iii) If f ∈ ACloc(R), we have essV�( f ) =
∫
R

�( f ′(t)) dt.
In particular, if �(x) = |x |p for 1 ≤ p < ∞, then we have that

(i i i)′ essVp( f ) =
∫
R

| f ′(t)|p dt.

Proof To prove (i), we first prove that lim infh→0

∫
R

�( fh(t)) dt ≥ ess V�( f ). Let

t0 < t2 < · · · < tn be an arbitrary sequence in ess D( f ). Then by Jensen’s inequality
we have

�

(
1

tk − tk−1

∫ tk

tk−1

fh(t) dt

)
≤ 1

tk − tk−1

∫ tk

tk−1

�( fh(t)) dt,

and so

∫ tk

tk−1

�( fh(t)) dt ≥ (tk − tk−1)�

(
1

tk − tk−1

∫ tk

tk−1

fh(t) dt

)

= (tk − tk−1)�

(
1

h(tk − tk−1)

(∫ tk+h

tk
f (t) dt

−
∫ tk−1+h

tk−1

f (t) dt

))
.

Thus for all h 	= 0, we have

∫
R

�( fh(t)) dt ≥
n∑

k=1

∫ tk

tk−1

�( fh(t)) dt

=
n∑

k=1

(tk − tk−1)�

(
1

h(tk − tk−1)

(∫ tk+h

tk
f (t) dt

−
∫ tk−1+h

tk−1

f (t) dt

))
.

It is obvious that the right-hand side of the above equation coverges to the following
value as h → 0:

n∑
k=1

(tk − tk−1)�

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
.

Thus we have

lim inf
h→0

∫
R

�( fh(t)) dt ≥
n∑

k=1

�

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
(tk − tk−1),
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On the essential bounded Riesz �-variation 397

and so we see from the definition of ess V�( f ) that

lim inf
h→0

∫
R

�( fh(t)) dt ≥ ess V�( f ). (2.1)

To show the converse inequality:

lim sup
h→0

∫
R

�( fh(t)) dt ≤ ess V�( f ),

it suffices to show that

∫
R

�( fh(t)) dt ≤ ess V�( f ) for all h 	= 0.

Without loss of generality, we can assume that h > 0.

∫
R

�( fh(t)) dt =
∞∑

k=−∞

∫ kh

(k−1)h
�( fh(t)) dt

=
∞∑

k=−∞

∫ h

0
�

(
f (t + kh) − f (t + (k − 1)h)

h

)
dt

=
∫ h

0

∞∑
k=−∞

�

(
f (t + kh) − f (t + (k − 1)h)

h

)
dt.

On theother hand, sinceR\L( f ) is a null set, and alsom
(⋃∞

k=−∞{(R\L( f )) − kh}
)

= 0. Moreover, since t /∈
⋃∞

k=−∞{(R\L( f )) − kh} implies that t + kh ∈ L( f ) for

every integer k, we see that

∞∑
k=−∞

�

(
f (t + kh) − f (t + (k − 1)h)

h

)
h

=
∞∑

k=−∞
�

(
f̃ (t + kh) − f̃ (t + (k − 1)h)

h

)
h

≤ ess V�( f ) a.e. on [0, h],

and so

∫
R

�( fh(t)) dt ≤ 1

h

∫ h

0
ess V�( f ) dt

= ess V�( f ) for h > 0.
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398 G. Nakamura, K. Hashimoto

Hence we have ∫
R

�( fh(t)) dt ≤ ess V�( f ) for h 	= 0. (2.2)

Thus we have

lim sup
h→0

∫
R

�( fh(t)) dt ≤ ess V�( f ).

Combining with (2.1), we have

lim
h→0

∫
R

�( fh(t)) dt = ess V�( f ),

which completes the proof of (i).
Next we show (ii). The inequality ess V�( f ) ≤ V�( f ) is obvious from (i) and the

following inequality:

∫
R

�( fh(t)) dt =
∞∑

k=−∞

∫ h

0
�

(
f (t + kh) − f (t + (k − 1)h)

h

)
dt

= 1

h

∫ h

0

∞∑
k=−∞

�

(
f (t + kh) − f (t + (k − 1)h)

h

)
h dt

≤ 1

h

∫ h

0
V�( f ) dt

= V�( f ).

To prove (iii), we suppose that f ∈ ACloc(R). Let t0 < t1 < · · · < tn with
tk ∈ ess D( f ) for 0 ≤ k ≤ n. Then we have from f (tk) = f̃ (tk) and Jensen’s
inequality that

1

tk − tk−1

∫ tk

tk−1

�( f ′(t)) dt ≥ �

(
1

tk − tk−1

∫ tk

tk−1

f ′(t) dt
)

= �

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
,

and so

∫
R

�( f ′(t)) dt ≥
n∑

k=1

∫ tk

tk−1

�( f ′(t)) dt ≥
n∑

k=1

�

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
(tk − tk−1).

Thus we have from the definition of essV�( f ) that

∫
R

�( f ′(t)) dt ≥ essV�( f ). (2.3)
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On the essential bounded Riesz �-variation 399

On the other hand, we have from Fatou’s lemma that

∫
R

lim inf
n→∞ �

(
f (t + 1

n ) − f (t)
1
n

)
dt ≤ lim inf

n→∞

∫
R

�

(
f (t + 1

n ) − f (t)
1
n

)
dt.

Thus we have from Theorem 2.1 that
∫
R

�( f ′(t)) dt ≤ essV�( f ). (2.4)

Combining this inequality with (2.3) completes the proof of (ii). ��
Remark 2.1 In Theorem 2.1, we see easily from (2.2) that

sup
h 	=0

∫
R

�( fh(t)) dt = ess V�( f ).

Theorem 2.1(ii) has more refined results. To show this, we first prepare the following
two lemmas.

Lemma 2.1 Let � ∈ N . Then the following (i) or (ii) holds:

(i) There exist x0, a, b ∈ R with x0 > 0, a > 0 such that �(x0) > 0 and �(x) ≥
ax + b for all x ∈ R.

(ii) There exist x0, a, b ∈ R with x0 < 0, a < 0 such that �(x0) > 0 and �(x) ≥
ax + b for all x ∈ R.

Proof By the assumption, since � is not constant, then there exists a x0 	= 0 such that
�(x0) > 0. We see from the convexity of � that there exist a ∈ R, b ∈ R such that
�(x) ≥ ax + b for all x ∈ R and �(x0) = ax0 + b.

In case of x0 > 0;

0 <
�(x0) − �(0)

x0
≤ (ax0 + b) − b

x0
= a.

In case of x0 < 0;

0 >
�(x0) − �(0)

x0
≥ (ax0 + b) − b

x0
= a.

��
Remark 2.2 For (i) and (ii) in Lemma 2.1. We should note that

(i) If both of (i) and (ii) hold, then limx→±∞ �(x) = ∞.
(ii) If (i) holds, but (ii) does not hold, then limx→∞ �(x) = ∞ and �(x) = 0 for

x < 0.
(iii) If (i) does not hold, but (ii) holds, then limx→−∞ �(x) = ∞ and �(x) = 0 for

x > 0.
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400 G. Nakamura, K. Hashimoto

Let T = {t0, t1, . . . , tn} be a finite subset of R with at least two elements and
t0 < t1 < · · · < tn . Let f : R −→ R and � ∈ N . We define V�[ f, T ] by

V�[ f, T ] =
n∑

k=1

�

(
f (tk) − f (tk−1)

tk − tk−1

)
(tk − tk−1).

Lemma 2.2 If S ⊆ T ⊂ R, then we have

V�[ f, S] ≤ V�[ f, T ].

Proof Let S = {s0, s1, . . . , sm} with s0 < s1 < · · · < sm and T = {t0, t1, . . . , tn}
with t0 < t1 < · · · < tn . Without loss of generality, we can suppose n = m + 1 and
T \S = {tk}. In cases of tk < s0 or sm < tk , we see easily that V�[ f, S] ≤ V�[ f, T ].
So we suppose that s0 < tk < sm and s� = min{s ∈ S : tk < s}. Then we have

V�[ f, T ] − V�[ f, S] = �

(
f (tk) − f (s�−1)

tk − s�−1

)
(tk − s�−1)

+�

(
f (s�) − f (tk)

s� − tk

)
(s� − tk)

−�

(
f (s�) − f (s�−1)

s� − s�−1

)
(s� − s�−1)

= (s� − s�−1)

{
�

(
f (tk) − f (s�−1)

tk − s�−1

)
tk − s�−1

s� − s�−1

+ �

(
f (s�) − f (tk)

s� − tk

)
s� − tk

s� − s�−1

}
− (s� − s�−1)

×�

(
f (s�) − f (s�−1)

s� − s�−1

)

≥ (s� − s�−1)�

(
f (tk) − f (s�−1)

tk − s�−1
· tk − s�−1

s� − s�−1

+ f (s�) − f (tk)

s� − tk
· s� − tk
s� − s�−1

)

−(s� − s�−1)�

(
f (s�) − f (s�−1)

s� − s�−1

)
(By convexity of �)

= (s� − s�−1)�

(
f (s�) − f (s�−1)

s� − s�−1

)
− (s� − s�−1)

×�

(
f (s�) − f (s�−1)

s� − s�−1

)

= 0.

Thus we have V�[ f, S] ≤ V�[ f, T ]. ��
Theorem 2.2 If f ∈ L1

loc(R) with ess V�( f ) < ∞, then the following properties
hold:
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On the essential bounded Riesz �-variation 401

(i) For each t ∈ R there exist

α(t) = lim
t+h∈ess D( f )

h→0+
f̃ (t + h) and β(t) = lim

t+h∈ess D( f )
h→0−

f̃ (t + h) in R.

(ii) t ∈ essD( f ) if and only if α(t) = β(t). Then f̃ (t) = α(t) = β(t) holds.
(iii) V�( f ) = essV�( f ) if and only if α(t) ≤ f (t) ≤ β(t) or β(t) ≤ f (t) ≤ α(t)

holds.

Proof Proof of (i): We first show that limn→∞ f̃ (tn) exists in R for every t ∈ R and
{tn} ⊆ essD( f ) with t0 < t1 < t2 < · · · < tn → t (n → ∞). Let a ∈ R and b ∈ R

satisfy the condition (i) or (ii) of Lemma 2.1. Let Ψ (x) = �(x) − ax − b ≥ 0 for

x ∈ R, and so x = 1

a
(�(x) − Ψ (x) − b). Then for each n ∈ N, we have that

f̃ (tn) = f̃ (t0) +
n∑

k=1

f̃ (tk) − f̃ (tk−1)

tk − tk−1
· (tk − tk−1)

= f̃ (t0) +
n∑

k=1

1

a

{
�

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)

−Ψ

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
− b

}
(tk − tk−1)

= f̃ (t0) + 1

a

{
n∑

k=1

�

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
(tk − tk−1)

−
n∑

k=1

Ψ

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
(tk − tk−1)

}
− b

a
(tn − t0).

By the assumption essV�( f ) < ∞, we have

lim
n→∞

n∑
k=1

�

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
(tk − tk−1)

converges in [0,∞). For Ψ ≥ 0 and tk − tk−1 > 0,

lim
n→∞

n∑
k=1

Ψ

(
f̃ (tk) − f̃ (tk−1)

tk − tk−1

)
(tk − tk−1) ∈ [0,∞],

and limn→∞ tn = t . Thus we have

lim
n→∞ f̃ (tn) ∈ [−∞,∞].
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402 G. Nakamura, K. Hashimoto

Since {tn} is arbitrary, we have

lim
h↑0,t+h∈essD( f )

f̃ (t + h) ∈ [−∞,∞].

We suppose that

lim
h↑0,t+h∈essD( f )

f̃ (t + h) = ±∞.

We take any c, d ∈ essD( f ) so that c < t < d. By the definition of essV�( f ),

�

(
f̃ (t + h) − f̃ (c)

t + h − c

)
(t + h − c) + �

(
f̃ (d) − f̃ (t + h)

d − (t + h)

)
(d − (t + h))

≤ essV�( f ) < ∞,

for c < t + h < d with t + h ∈ essD( f ). On the other hand, by Remark 2.2,

lim
h↑0,t+h∈essD( f )

{
�

(
f̃ (t + h) − f̃ (c)

t + h − c

)
(t + h − c) + �

(
f̃ (d) − f̃ (t + h)

d − (t + h)

)

×(d − (t + h))

}

= �(±∞)(t − c) + �(∓∞)(d − t)

= ∞,

which is a contradiction. Thus we have that limh↑0,t+h∈essD( f ) f̃ (t + h) 	= ±∞, and
so limh↑0,t+h∈essD( f ) f̃ (t + h) coverges in R.

Similarly, we can show that for any t ∈ R, limh↓0,t+h∈essD( f ) f̃ (t + h) converges
in R.

In fact, put �̄(x) = �(−x), f̄ (t) = f (−t) for x , t ∈ R. Then we see that
�̄ : R → [0,∞) is a convex, continuous and nonconstant function with �̄(0) = 0,
and f̄ ∈ L1

loc(R), essD( f̄ ) = −essD( f ), f̃ (t) = ˜̄f (−t) for t ∈ essD( f ) and
essV�̄( f̄ ) = essV�( f ) < ∞. Hence, we see that

lim
h↓0,t+h∈essD( f )

f̃ (t + h) = lim
h↓0,−t−h∈essD( f̄ )

˜̄f (−t − h) = lim
h↑0,−t+h∈essD( f̄ )

˜̄f (−t + h)

converges in R.

Proof of (ii) By f ∈ L1
loc(R), f (t) = f̃ (t) a.e.t , combining with the result (i) above,

we have that for every t ∈ R,

lim
h→0+

1

h

∫ t+h

t
f (s) ds = lim

h→0+
1

h

∫ t+h

t
f̃ (s) ds = α(t)

lim
h→0−

1

h

∫ t+h

t
f (s) ds = lim

h→0−
1

h

∫ t+h

t
f̃ (s) ds = β(t)
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On the essential bounded Riesz �-variation 403

On the other hand, by the definition of essD( f ), t ∈ essD( f ) if and only if

limh→0
1

h

∫ t+h

t
f (s) ds exits in R. Thus we see that (ii) holds.

Proof of (iii) We first assume that α(t) ≤ f (t) ≤ β(t) or β(t) ≤ f (t) ≤ α(t)
for all t ∈ R. For any set T = {t0, t1, t2, . . . , tn} with t0 < t1 < · · · < tn , we put
Λ = {0, 1}{0,1,2,...,n}. For each λ ∈ Λ, we denote the function gλ : R → R as follows:

gλ(t) =
⎧⎨
⎩

α(ti ), if t = ti , λ(i) = 0, 0 ≤ i ≤ n
β(ti ), if t = ti , λ(i) = 1, 0 ≤ i ≤ n
0, if t /∈ T

For every λ ∈ Λ, gλ(ti ) = α(ti ) or β(ti ) (0 ≤ i ≤ n), and so there exists {ti j } j ⊂
essD( f ) for each 0 ≤ i ≤ n such that lim j→∞ ti j = ti , lim j→∞ f̃ (ti j ) = gλ(ti ).

For sufficiently large j , we have that t0 j < t1 j < t2 j < · · · < tn j . Let Tj =
{t0 j , t1 j , t2 j , . . . , tn j }. Then we have that

V�[ f̃ , Tj ] ≤ ess V�( f ), lim
j→∞ V�[ f̃ , Tj ] = V�[gλ, T ],

and so

V�[gλ, T ] ≤ ess V�( f ) for λ ∈ Λ.

According to our assumption that α(t) ≤ f (t) ≤ β(t) or β(t) ≤ f (t) ≤ α(t) for all
t ∈ R, we can take 0 ≤ θi ≤ 1 for each 0 ≤ i ≤ n such that

f (ti ) = θiα(ti ) + (1 − θi )β(ti ).

Moreover, for each λ ∈ Λ we set

θλ,i =
{

θi , if λ(i) = 0
1 − θi , if λ(i) = 1,

and θλ =
∏n

i=0
θλ,i . Then θλ ≥ 0,

∑
λ∈Λ

θλ =
∑

λ∈Λ

∏n

i=0
θλ,i =

∏n

i=0
(θi +

(1 − θi )) = 1. For each 0 ≤ j ≤ n, we have that

∑
λ∈Λ

θλgλ(t j ) =
∑
λ∈Λ

(
n∏

i=0

θλ,i

)
gλ(t j )

=
∑
λ∈Λ

λ( j)=0

(
n∏

i=0

θλ,i

)
gλ(t j ) +

∑
λ∈Λ

λ( j)=1

(
n∏

i=0

θλ,i

)
gλ(t j )
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= θ j

⎛
⎜⎜⎝

∏
0≤i≤n
i 	= j

(θi + (1 − θi ))α(t j )

⎞
⎟⎟⎠ + (1 − θ j )

×

⎛
⎜⎜⎝

∏
0≤i≤n
i 	= j

(θi + (1 − θi ))β(t j )

⎞
⎟⎟⎠

= θ jα(t j ) + (1 − θ j )β(t j )

= f (t j ).

V�[ f, T ] =
n∑
j=1

�

(
f (t j ) − f (t j−1)

t j − t j−1

)
(t j − t j−1)

=
n∑
j=1

�

(∑
λ∈Λ

θλ

gλ(t j ) − gλ(t j−1)

t j − t j−1

)
(t j − t j−1)

≤
n∑
j=1

(∑
λ∈Λ

θλ�

(
gλ(t j ) − gλ(t j−1)

t j − t j−1

))
(t j − t j−1)

=
n∑
j=1

∑
λ∈Λ

θλ�

(
gλ(t j ) − gλ(t j−1)

t j − t j−1

)
(t j − t j−1)

=
∑
λ∈Λ

θλ

n∑
j=1

�

(
gλ(t j ) − gλ(t j−1)

t j − t j−1

)
(t j − t j−1)

=
∑
λ∈Λ

θλV�[gλ, T ]

≤
∑
λ∈Λ

θλess V�( f )

= ess V�( f ).

Since T is arbitrary, we have that V�( f ) ≤ ess V�( f ). Thus it follows from (ii) of
Theorem 2.1 that V�( f ) = ess V�( f ).

To show the converse, assume that α(s), β(s) < f (s) for some s ∈ R. Let g
be g(t) = f (t) for t 	= s and α(s), β(s) < g(s) < f (s). Then it is obvious that
ess V�( f ) = ess V�(g) ≤ V�(g). For every n, there exists a finite subset {Tn} ⊂ R

such that

ess V�( f ) − 1

n
< V�[g, Tn]. (2.5)

From Lemma 2.2, by adding more points in Tn if necessary, we can assume that
s ∈ Tn and there exist sn , s′

n ∈ Tn ∩ L( f ) such that sn = max{(s − 1/n, s) ∩ Tn} and
s′
n = min{(s, s + 1/n) ∩ Tn}. Then we have that
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V�[ f, Tn] − V�[g, Tn] =
{
�

(
f (s) − f (sn)

s − sn

)
(s − sn)

+�

(
f (s′

n) − f (s)

s′
n − s

)
(s′

n − s)

}

−
{
�

(
g(s) − f (sn)

s − sn

)
(s − sn)

+�

(
f (s′

n) − g(s)

s′
n − s

)
(s′

n − s)

}

=
{
�

(
f (s) − f (sn)

s − sn

)
− �

(
g(s) − f (sn)

s − sn

)}
(s − sn)

+
{
�

(
f (s′

n) − f (s)

s′
n − s

)
− �

(
f (s′

n) − g(s)

s′
n − s

)}

×(s′
n − s). (2.6)

Since limn→∞ sn = s, limn→∞ f (sn) = limn→∞ f̃ (sn) = β(s) and limn→∞ s′
n = s,

limn→∞ f (s′
n) = limn→∞ f̃ (s′

n) = α(s), we have from the assumption that

lim
n→∞

g(s) − f (sn)

s − sn
= ∞, lim

n→∞
f (s′

n) − g(s)

s′
n − s

= −∞, (2.7)

and so for sufficiently large n we have that

0 <
g(s) − f (sn)

s − sn
<

f (s) − f (sn)

s − sn
,

f (s′
n) − f (s)

s′
n − s

<
f (s′

n) − g(s)

s′
n − s

< 0.

For simplicity of notation we write �̂(t) = �(t)

t
(t 	= 0). Hence we have from the

monotonicity of �̂(t) on (0,∞) that

{
�

(
f (s) − f (sn)

s − sn

)
− �

(
g(s) − f (sn)

s − sn

)}
(s − sn)

=
{
�̂

(
f (s) − f (sn)

s − sn

)
f (s) − f (sn)

s − sn
− �̂

(
g(s) − f (sn)

s − sn

)
g(s) − f (sn)

s − sn

}

×(s − sn)

≥
{
�̂

(
g(s) − f (sn)

s − sn

)
f (s) − f (sn)

s − sn
− �̂

(
g(s) − f (sn)

s − sn

)
g(s) − f (sn)

s − sn

}

×(s − sn)

= �̂

(
g(s) − f (sn)

s − sn

)
( f (s) − g(s)). (2.8)
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On the other hand, we have from the monotonicity of �̂(t) on (−∞, 0) that

{
�

(
f (s′

n) − f (s)

s′
n − s

)
− �

(
f (s′

n) − g(s)

s′
n − s

)}
× (s′

n − s)

=
{
�̂

(
f (s′

n) − f (s)

s′
n − s

)
f (s′

n) − f (s)

s′
n − s

− �̂

(
f (s′

n) − g(s)

s′
n − s

)
f (s′

n) − g(s)

s′
n − s

}

×(s′
n − s)

≥
{
�̂

(
f (s′

n) − g(s)

s′
n − s

)
f (s′

n) − f (s)

s′
n − s

− �̂

(
f (s′

n) − g(s)

s′
n − s

)
f (s′

n) − g(s)

s′
n − s

}

×(s′
n − s)

= −�̂

(
f (s′

n) − g(s)

s′
n − s

)
( f (s) − g(s)). (2.9)

For sufficiently large n, combining those inequalities with (2.6) gives

V�[ f, Tn] − V�[g, Tn] ≥
{
�̂

(
g(s) − f (sn)

s − sn

)
− �̂

(
f (s′

n) − g(s)

s′
n − s

)}

×( f (s) − g(s)).

We see from (2.7) and the monotonicity of
�(t)

t
on (−∞, 0) and (0,∞) that

lim
n→∞

{
�̂

(
g(s) − f (s′

n)

s − s′
n

)
− �̂

(
f (s′

n) − g(s)

s′
n − s

)}
= lim

t→∞ �̂(t)

− lim
t→−∞ �̂(t) ∈ (0,∞].

Thus we have from assumption f (s) − g(s) > 0 that lim infn→∞(V�[ f, Tn] −
V�[g, Tn]) > 0.

On the other hand, from (2.5) we have that lim infn→∞ V�[g, Tn] ≥ ess V�( f ).
Hence we have that

lim inf
n→∞ V�[ f, Tn] ≥ lim inf

n→∞ (V�[ f, Tn] − V�[g, Tn]) + lim inf
n→∞ V�[g, Tn]

> ess V�( f ).

Thus it follows from V�( f ) ≥ V�[ f, Tn] that V�( f ) > ess V�( f ).
For the case of f (s) < α(s), β(s) for some s ∈ R, in a similar procedure for

�̄(x) = �(−x), we obtain that V�( f ) = V�̄(− f ) > ess V�̄(− f ) = ess V�( f ).
Thus we see that the converse holds. ��
Corollary 2.1 For all f ∈ L1

loc(R), we have

essV�( f ) = inf {V�(g) : f = g a.e.} .

123



On the essential bounded Riesz �-variation 407

Proof Thus for g ∈ L1
loc(R) with f = g a.e., from Theorem 2.1(ii) the following

holds:

essV�( f ) = essV�(g) ≤ V�(g),

and hence we have that

essV�( f ) ≤ inf {V�(g) : f = g a.e.} .

To show the converse inequality, since it is obvious if essV�( f ) = ∞, we suppose
that essV�( f ) < ∞. Put g(t) = α(t) or g(t) = β(t) for every t ∈ R, where α and β

are obtained in Theorem 2.2, Thenwe easily that f = g a.e and V�(g) = essV�(g) =
essV�( f ). ��

Set

K�(R) :=
{
f ∈ L1

loc(R) : � ◦ f (= �( f (·))) ∈ L1(R)
}

.

Then we see easily that K�(R) is a convex subset in L1
loc(R). Moreover, we define

�̃(x) = χ[0,∞)(x)�(x) − χ(−∞,0](x)�(x), x ∈ R,

where χI is the characteristic function of a subset I ⊆ R.
For f , g ∈ K�(R), we define

d�( f, g) = ‖�̃ ◦ f − �̃ ◦ g‖1.

Then it is easily checked that the following hold

(1) d�( f, g) = d�(g, f ) ≥ 0 and d�( f, f ) = 0.
(2) d�( f, g) ≤ d�( f, h) + d�(h, g).

Moreover, if �(x) > 0 for all x 	= 0, then �̃ is strictly increasing and we have
(3) d�( f, g) = 0 if and only if f = g a.e..

Then we have the following result.

Theorem 2.3 Let � ∈ N with �(x) > 0 for all x 	= 0. Then (K�(R), d�) is a
complete metric space.

Proof Wesee easily from theproperties of� that� is continuous and strictlymonoton-
ically decreasing on (−∞, 0] and is continuous and strictly monotonically increasing
on [0,∞) and limx→±∞ �(x) = ∞. Therefore, �̃, �̃−1 : R → R is continu-
ous, strictly monotonically increasing and onto on R. From this it easily follows that
d�( f, g) = 0 implies f = g a.e., so we see that (K�(R), d�) is a metric space.

To show the completeness of (K�(R), d�), we should note from convexity of �

with �(0) = 0 that �(x)/x is monotonically increasing. And hence we have that
�(x) ≥ �(1)x for all x ≥ 1 and �(x) ≥ −�(−1)x for all x ≤ −1, and so
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�(x) ≥ min{�(1),�(−1)}|x | for all |x | ≥ 1. Let a be min{�(1),�(−1)}, so a > 0.
Put b = infx∈R{�(x) − a|x |}, then b ∈ R, and so �(x) ≥ a|x | + b for all x ∈ R.
From this we have that

|�̃(x)| ≥ a|x |+b for all x ∈ R and |�̃−1(x)| ≤ |x |/a+|b|/a for all x ∈ R. (2.10)

Let { fn} be a Cauchy’s sequence in K�(R). Then {�̃ ◦ fn} is a Cauchy’s sequence in
L1(R) and so there exists g ∈ L1(R) such that limn→∞ �̃ ◦ fn = g in L1(R). Let
f (x) = �̃−1(g(x)), then we see from (2.10) that f is in L1

loc(R). Thus we have that
�̃ ◦ f = g ∈ L1(R) and so f ∈ K�(R) and limn→∞ d�( fn, f ) = 0. ��

Put �(x) = |x |p for 1 ≤ p < ∞, then we see easily that K�(R) = L p(R).
Moreover we have the following result.

Theorem 2.4 Let �(x) = |x |p for 1 ≤ p < ∞. Then (L p(R), d�) is isomorphic to
(L p(R), ‖ · ‖p).

Proof Let us see that:

|�̃(x) − �̃(y)| ≤ (|x | + |y − x |)p − |x |p for x, y ∈ R. (2.11)

Assume first that xy ≥ 0. Then it is obvious that |�̃(x)−�̃(y)| = ||x |p − |y|p| holds.
Furthermore, we show that ||x |p − |y|p| ≤ (|x | + |y − x |)p − |x |p. If |x | ≤ |y|, then
it is obvious that ||x |p − |y|p| = |y|p − |x |p = (|x | + |y − x |)p − |x |p. If |y| ≤ |x |,
then

∣∣|x |p − |y|p∣∣ = |x |p − |y|p = (|y| + |y − x |)p − |y|p.

Put u(t) = (t + |y − x |)p − t p (t ∈ [0,∞)), then u(t) is monotone increasing with
respect to t , and so u(|y|) ≤ u(|x |). Thus we have

(|y| + |y − x |)p − |y|p ≤ (|x | + |y − x |)p − |x |p,

and so

∣∣|x |p − |y|p∣∣ ≤ (|x | + |y − x |)p − |x |p.

Thus if xy ≥ 0, then we have that (2.11) holds.
On the other hand, if xy < 0, then we have from Jensen’s inequality and the

monotonicity of u that

|�̃(x) − �̃(y)| = |x |p + |y|p ≤ (|x | + |y|)p = |y − x |p ≤ (|x | + |y − x |)p − |x |p.

Thus we see that (2.11) holds.
Let f , g ∈ L p(R). From (2.11) we have:

d�( f, g) =
∫
R

∣∣�̃( f (t)) − �̃(g(t))
∣∣ dt
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≤
∫
R

(| f (t)| + | f (t) − g(t)|)pdt −
∫
R

| f (t)|pdt
= ‖| f | + | f − g|‖p

p − ‖ f ‖p
p

≤ (‖ f ‖p + ‖ f − g‖p)
p − ‖ f ‖p

p. (2.12)

On the other hand, if xy ≥ 0, since

∣∣�̃(x) − �̃(y)
∣∣ = ∣∣|x |p − |y|p∣∣ =

{
u(|x |) if |x | ≤ |y|
u(|y|) if |y| ≤ |x |,

we have that

∣∣�̃(x) − �̃(y)
∣∣ ≥ u(0) = |y − x |p ≥ 1

2p−1 |x − y|p.

If xy < 0, we have that

∣∣�̃(x) − �̃(y)
∣∣ = |x |p + |y|p ≥ 1

2p−1 (|x | + |y|)p = 1

2p−1 |x − y|p.

Hence we have that

|�̃(x) − �̃(y)| ≥ 1

2p−1 |x − y|p for x, y ∈ R. (2.13)

Thus we have that

d�( f, g) =
∫
R

∣∣�̃( f (t)) − �̃(g(t))
∣∣ dt

≥ 1

2p−1

∫
R

| f (t) − g(t)|p dt

= 1

2p−1 ‖ f − g‖p
p. (2.14)

Combining this inequality with (2.12) gives

1

2p−1 ‖ f − g‖p
p ≤ d�( f, g) ≤ (‖ f ‖p + ‖ f − g‖p)

p − ‖ f ‖p
p.

We conclude the proof. ��
Theorem 2.5 Let f ∈ ACloc(R) and f ′ ∈ K�(R). Then we have that

fh ∈ K�(R) for every h 	= 0 and lim
h→0

d�

(
fh, f ′) = 0.

In particular, if �(x) = |x |p for 1 ≤ p < ∞ and f ′ ∈ L p(R), then we have that

lim
h→0

∥∥ fh − f ′∥∥
p = 0.
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Proof Let f ′ ∈ K�(R) and f ∈ ACloc(R). Then from Theorem 2.1 (iii) we see that
essV�( f ) < ∞. Moreover, we see from Remark 2.1 that

∫
R

�( fh(t)) dt ≤ essV�( f ) < ∞ for every h 	= 0,

which implies that

fh ∈ K�(R) for every h 	= 0.

Let �1(x) = χ[0,∞)(x)�(x) and �2(x) = χ(−∞,0](x)�(x), then these functions
from R to [0,∞) are also convex functions with �i (0) = 0 (i = 1, 2) and �̃(x) =
�1(x) − �2(x).

Then 0 ≤ �1 ≤ �, �( fh) ∈ L1(R) implies �1 ( fh) ∈ L1(R). We put δh =
�1 ( fh) − �1( f ′), δ+

h = {
�1 ( fh) − �1( f ′)

}+, δ−
h = {

�1 ( fh) − �1( f ′)
}−.

If δ+
h (t) > 0, we have that

δ+
h (t) = �1 ( fh(t)) − �1( f

′(t))

= �1

(
1

h

∫ h

0
f ′(t + s) ds

)
− �1( f

′(t))

≤ 1

h

∫ h

0
�1( f

′(t + s)) ds − �1( f
′(t))

= 1

h

∫ h

0
(�1( f

′(t + s)) − �1( f
′(t))) ds

≤ 1

h

∫ h

0

∣∣�1( f
′(t + s)) − �1( f

′(t))
∣∣ ds.

Thus we have that

0 ≤ δ+
h (t) ≤ 1

h

∫ h

0

∣∣�1( f
′(t + s)) − �1( f

′(t))
∣∣ ds for a.e.,

and so we have by Fubini’s Theorem that

‖δ+
h ‖1 ≤ 1

h

∫ ∞

−∞

∫ h

0

∣∣�1( f
′(t + s)) − �1( f

′(t))
∣∣ ds dt

= 1

h

∫ h

0

∫ ∞

−∞
∣∣�1( f

′(t + s)) − �1( f
′(t))

∣∣ dt ds

= 1

h

∫ h

0

∣∣|�1( f
′(· + s)) − �1( f

′(·))∥∥1 ds.

Since �1( f ′(·)) ∈ L1(R), we have

lim
h→0

‖δ+
h ‖1 = 0. (2.15)
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On the other hand, if δ−
h (t) > 0,

δ−
h (t) = �1( f

′(t)) − �1 ( fh(t)) ≤ �1( f
′(t)).

Hence 0 ≤ δ−
h (t) ≤ �1( f ′(t)) a.e..

limh→0 �1 ( fh(t)) = �1( f
′(t))a.e. implies limh→0 δ−

h (t) = 0 a.e..
Thus we have from �( f ′) ∈ L1(R) that

lim
h→0

‖δ−
h ‖1 = 0. (2.16)

∥∥�1 ( fh) − �1( f
′)
∥∥
1 =

∫
R

∣∣�1 ( fh(t)) − �1( f
′(t))

∣∣ dt
=

∫
R

(δ+
h (t) + δ−

h (t)) dt

= ‖δ+
h ‖1 + ‖δ−

h ‖1.

From (2.15) and (2.16)

lim
h→0

∥∥�1 ( fh) − �1( f
′)
∥∥
1 = 0.

In the same way, we have that

lim
h→0

∥∥�2 ( fh) − �2( f
′)
∥∥
1 = 0.

d�

(
fh, f ′) =

∫
R

∣∣�̃ ( fh(t)) − �̃( f ′(t))
∣∣ dt

=
∫
R

∣∣�1 ( fh(t)) − �1( f
′(t))

∣∣ dt
+

∫
R

∣∣�2 ( fh(t)) − �2( f
′(t))

∣∣ dt
= ∥∥�1 ( fh) − �1( f

′)
∥∥
1 + ∥∥�2 ( fh) − �2( f

′)
∥∥
1 .

Thus we have that

lim
h→0

d�

(
fh, f ′) = 0.

��

Let I ⊂ R be a closed interval. A function f ∈ L1
loc(R) is said to be essentially

absolutely continuous on I if for every ε > 0 there exists δ > 0 such that
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n∑
k=1

| f̃ (bk) − f̃ (ak)| ≤ ε

for every finite number of nonoverlapping interval (ak, bk), k = 1, . . ., n with ak ,
bk ∈ essD( f ) ∩ I and

n∑
k=1

|bk − ak | ≤ δ.

Note that a function f ∈ L1
loc(R) is locally essentially absolutely continuous on R

if and only if there exists a locally absolutely continuous (and therefore continuous)
g ∈ L1

loc(R) such that f = g a.e. In this case ess D( f ) = R and ess V�( f ) = V�( f̃ ).

Theorem 2.6 Let us suppose that �(−a) > 0, �(b) > 0 for some a, b > 0 and
f ∈ L1

loc(R). Then the following are equivalent:

(i) fh ∈ K�(R) for h 	= 0 sufficiently small and there exists g ∈ K�(R) such that
limh→0 d� ( fh, g) = 0.

(ii) fh ∈ K�(R) for all h 	= 0 and there exists g ∈ K�(R) such that
limh→0 d� ( fh, g) = 0.

(iii) f is locally essentially absolutely continuous and ( f̃ )′ ∈ K�(R).

Then limh→0 d�

(
fh, ( f̃ )

′) = 0 holds.

Remark 2.3 In this theorem, if � satisfies an additional property with �(x) > 0 for
x 	= 0, from Theorem 2.3, since (K�(R), d�) is a metric space, we see that limh→0 fh
converges to ( f̃ )′ on (K�(R), d�) and ( f̃ )′ = g a.e..

Lemma 2.3 Let us suppose that �(−a) > 0, �(b) > 0 for some a, b > 0. Then
there exist p, q ∈ (0,∞) such that |x − y| ≤ p|�̃(x) − �̃(y)| + q for all x, y ∈ R.

Proof There exists m > 0 such that

�(−a)

a
,
�(b)

b
> m > 0.

Define the function

�̂(x) := �̃(x) − mx, x ∈ R.

Let V−(�̂, I ) be the negative variation of �̂ on an interval I .

(i) For any x1 < x2 ≤ a,

�̃(x2) − �̃(x1)

x2 − x1
= −�(x2) − �(x1)

x2 − x1
≥ −�(0) − �(−a)

0 − (−a)
= �(−a)

a
≥ m.

Hence �̃(x2) −mx2 ≥ �̃(x1) −mx1, and so �̂(x1) ≤ �̂(x2). Thus we have that
V−(�̂, (−∞,−a]) = 0.
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(ii) For any b ≤ x3 < x4 < ∞,

�̃(x4) − �̃(x3)

x4 − x3
= �(x4) − �(x3)

x4 − x3
≥ �(b) − �(0)

b − 0
= �(b)

b
≥ m.

Hence �̃(x3) −mx3 ≤ �̃(x4) −mx4, and so �̂(x3) ≤ �̂(x4). Thus we have that
V−(�̂, [b,∞)) = 0.

(iii) For any −a ≤ x5 < x6 < ∞, �̂(x6) − �̂(x5) = (�̃(x6) − mx6) − (�̃(x5) −
mx5) = (�̃(x6)−�̃(x5))−m(x6−x5) ≥ −m(x6−x5), and soV−(�̂, [−a, b]) ≤
m(a + b).

From (i), (ii) and (iii) we have that

V−(�̂, (−∞,∞)) = V−(�̂, (−∞,−a]) + V−(�̂, [−a, b]) + V−(�̂, [b,∞))

≤ m(a + b).

Consequently, for any x ≤ y, we have that

−m(a + b) ≤ −V−(�̂, (−∞,∞)) ≤ �̂(y) − �̂(x) = (�̃(y) − �̃(x)) − m(y − x),

and so

m(y − x) − m(a + b) ≤ �̃(y) − �̃(x),

that is,

m|x − y| − m(a + b) ≤ |�̃(x) − �̃(y)| for x, y ∈ R.

Thus we have that

|x − y| ≤ 1

m
|�̃(x) − �̃(y)| + (a + b) for x, y ∈ R,

and hence the proof is complete. ��

Proof of Theorem 2.6 First, to show that (i) implies (iii), take p,q > 0 so that |x−y| ≤
p|�̃(x) − �̃(y)| + q as in Lemma 2.3. For any t1, t2 ∈ essD( f ) with t1 < t2,

f̃ (t2) − f̃ (t1) = lim
h→0

{
1

h

∫ t2+h

t2
f (t) dt − 1

h

∫ t1+h

t1
f (t) dt

}

= lim
h→0

1

h

∫ t2

t1
( f (t + h) − f (t)) dt.
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∣∣ f̃ (t2) − f̃ (t1)
∣∣ = lim

h→0

∣∣∣∣
∫ t2

t1
fh(t) dt

∣∣∣∣
= lim

h→0

∣∣∣∣
∫ t2

t1
{ fh(t) − g(t)} dt +

∫ t2

t1
g(t) dt

∣∣∣∣
≤ lim inf

h→0

∫ t2

t1
| fh(t) − g(t)| dt +

∫ t2

t1
|g(t)| dt

≤ lim inf
h→0

∫ t2

t1

{
p
∣∣�̃ ( fh(t)) − �̃(g(t))

∣∣ + q
}
dt

+
∫ t2

t1
|g(t)| dt

= p lim inf
h→0

d� ( fh, g) + q(t2 − t1) +
∫ t2

t1
|g(t)| dt

= q(t2 − t1) +
∫ t2

t1
|g(t)| dt.

Thuswe see easily from g ∈ L1
loc(R) that f is locally essentially absolutely continuous

on R. Therefore, as mentioned before Theorem 2.6, f̃ is extended uniquely from
essD( f ) to R in such a way that the extended function is still locally absolutely
continous on R.

∫
R

�( f̃ ′(t)) dt = essV�( f ) (by Theorem 2.1)

= lim
h→0

∫
R

�( fh(t)) dt (by Theorem 2.1)

= lim
h→0

∥∥�̃ ( fh)
∥∥
1

≤ lim inf
h→0

∥∥�̃ ( fh) − �̃(g)
∥∥
1 + ∥∥�̃(g)

∥∥
1

= ∥∥�̃(g)
∥∥
1 < ∞.

Thus we have shown that (iii) holds.
Next, we show that (iii) implies (ii). Assume that f is locally essentially absolutely

continuous and f̃ ′ ∈ K�(R). Then we see from Temorem 2.5 that (ii) holds. It is
obvious that (ii) implies (i), which completes the proof. ��

Theorem 2.7 Let lim|x |→∞
�(x)

|x | = ∞ and f ∈ L1
loc(R). Then the following are

equivalent:

(i) fh ∈ K�(R) for h 	= 0 sufficiently small and there exists g ∈ K�(R) such that
limh→0 d� ( fh, g) = 0.

(ii) fh ∈ K�(R) for all h 	= 0 and there exists g ∈ K�(R) such that
limh→0 d� ( fh, g) = 0.
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(iii) f is locally essentially absolutely continuous and f̃ ′ ∈ K�(R).
(iv) essV�( f ) < ∞
Then limh→0 d�

(
fh, f̃ ′) = 0 holds.

Proof It is obvious fromTheorem2.6 that the properties (i), (ii) and (iii) are equivalent.
Hence it suffices to show that properties (iii) and (iv) are equivalent.

Suppose that (iii) holds, then it follows from the immediate description before
Theorems 2.6 and 2.1(iii) that the property (iv) holds.

To prove the converse implication, we first consider the case essV�( f ) = 0. For
any s < t with s, t ∈ essD( f ),

0 ≤ �

(
f̃ (t) − f̃ (s)

t − s

)
(t − s) ≤ essV�( f ) = 0.

Thus we have that
f̃ (t) − f̃ (s)

t − s
∈ �−1(0) for every s < t with s, t ∈ essD( f ).

Since �−1(0) is bounded in R form the hypothesis of �, there exists C > 0 such that
�−1(0) ⊂ [−C,C], and so we have that | f̃ (s)− f̃ (t)| ≤ C |s− t | for s, t ∈ essD( f ).
Thus we see that f is locally essentially absolutely continuous on R.

In case of essV�( f ) > 0: Fix ε > 0, then we have from the hypothesis of � that
there exists M > 0 such that

2

ε
essV�( f )|x | ≤ �(x) for all |x | ≥ M. (2.17)

Let {Ik : 1 ≤ k ≤ n} be any finite number of nonoverlapping intervals with

Ik = [ak, bk), ak , bk ∈ essD( f ) and
∑n

k=1
(bk − ak) <

ε

2M
. Let {I ′

k : 1 ≤ k ≤ �}
and {I ′′

k : 1 ≤ k ≤ m} be families of Ik such that

∣∣∣∣ f̃ (bk) − f̃ (ak)

bk − ak

∣∣∣∣ ≥ M and

∣∣∣∣ f̃ (bk) − f̃ (ak)

bk − ak

∣∣∣∣ < M,

respectively, and so we denote that I ′
k = [a′

k, b
′
k)(1 ≤ k ≤ �), I ′′

k = [a′′
k , b

′′
k )(1 ≤ k ≤

m). Thus we have from (2.17) and the definition of I ′
k that

essV�( f ) ≥
�∑

k=1

�

(
f̃ (b′

k) − f̃ (a′
k)

b′
k − a′

k

)
(b′

k − a′
k)

≥
�∑

k=1

2

ε
essV�( f )

∣∣∣∣∣
f̃ (b′

k) − f̃ (a′
k)

b′
k − a′

k

∣∣∣∣∣ (b′
k − a′

k)

= 2

ε
essV�( f )

�∑
k=1

| f̃ (b′
k) − f̃ (a′

k)|.

Since 0 < essV�( f ) < ∞, we have that
∑�

k=1
| f̃ (b′

k) − f̃ (a′
k)| ≤ ε/2.
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On the other hand, we have from the definition of I ′′
k that

m∑
k=1

| f̃ (b′′
k ) − f̃ (a′′

k )| =
m∑

k=1

∣∣∣∣∣
f̃ (b′′

k ) − f̃ (a′′
k )

b′′
k − a′′

k

∣∣∣∣∣ (b′′
k − a′′

k ) ≤
m∑

k=1

M(b′′
k − a′′

k )

≤ M
n∑

k=1

(bk − ak)

< ε/2.

Thus we have

n∑
k=1

| f̃ (bk) − f̃ (ak)| =
�∑

k=1

| f̃ (b′
k) − f̃ (a′

k)| +
m∑

k=1

| f̃ (b′′
k ) − f̃ (a′′

k )| < ε/2 + ε/2 = ε.

By the arbitrariness of ε > 0, we see that f is essentially absolutely continuous.
Moreover, we have from Theorem 2.1(iii) that � ◦ ( f̃ )′ ∈ L1(R), and hence ( f̃ )′ ∈
K�(R). This concludes the proof. ��
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