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Abstract In this paper, we establish the compact embedding of p(x, t)-Sobolev
spaces into p(x, t)-Lebesgue spaces. Moreover, we prove some existence results for
nonlinear parabolic problems of the form

∂t u − div a(x, t, Du) = f − div
(
|F |p(x,t)−2F

)
in�T ,

where the vector-field a(x, t, ·) satisfies certain p(x, t)-growth conditions.
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1 Introduction

The first main aim of this paper is to establish the compact embedding of nonstandard
p(x, t)-Sobolev spaces into nonstandard p(x, t)-Lebesgue spaces. This Aubin–Lions
type Theorem is important among others for our existence result to general nonlinear
parabolic equations with nonstandard p(x, t)-growth of the type

∂t u − div a(x, t, Du) = f − div
(
|F |p(x,t)−2F

)
in �T . (1.1)
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36 A. H. Erhardt

Moreover, the results of this manuscript are also important to prove the existence of
solutions to parabolic obstacle problems with p(x, t)-growth, see [20].

The motivation of this paper and the study of problems with nonstandard growth is
on the one hand based on mathematical interest, on the other hand the consideration of
problems in the sense of (1.1) are motivated by issues of life sciences. In general, par-
abolic problems are often motivated by physical aspects. In particular, evolutionary
equations and systems can be used to model physical processes, e.g. heat conduc-
tion or diffusion processes. For example the basic equation of fluid mechanics is the
Navier–Stokes equation. Some properties of solutions to the system of a modified
Navier–Stokes equation describing electro-rheological fluids are studied in [5]. Such
fluids are recently of high technological interest, because of their ability to change
the mechanical properties under the influence of exterior electro-magnetic field, see
[23,27]. Many electro-rheological fluids are suspensions consisting of solid particles
and a carrier oil. These suspensions change their material properties dramatically if
they are exposed to an electric field, see [28].

Most of the known results concern the stationary models with p(x)-growth, see e.g.
[1–4]. In the context of parabolic problems with p(x, t)-growth applications are e.g.
the models for flows in porous media [11,25] or nonlinear parabolic obstacle problems
[19]. Moreover, in the last years parabolic problems with p(x, t)-growth arouse more
and more interest in mathematics, also in regularity theory, cf. [12–15,18–22,31] and
[32].

Finally, we want to highlight that in the case of certain parabolic equations with
nonstandard growth condition first existence results are available, i.e. by Antontsev
and Shmarev in [7–9], Alkutov and Zhikov in [6] and Diening et al. [17].

1.1 General assumptions

We consider a bounded domain � ⊂ R
n of dimension n ≥ 2 and we write �T :=

� × (0, T ) for the space–time cylinder over � of height T > 0. Here, ut resp. ∂t u
denote the partial derivate with respect to the time variable t and Du denotes the one
with respect to the space variable x .

The setting First of all, we should mention that we denote by ∂P�T = (�̄ ×
{0})∪ (∂�× (0, T )) the parabolic boundary of �T . Furthermore, we write z = (x, t)
for points in R

n+1. We shall consider vector-fields a : �T × R
n → R

n which are
assumed to beCarathéodory functions—i.e. a(z, w) ismeasurable in the first argument
for every w ∈ R

n and continuous in the second one for a.e. z ∈ �T—and satisfy the
following nonstandard growth andmonotonicity properties, for some growth exponent
p : �T → ( 2n

n+2 ,∞) and structure constants 0 < ν ≤ 1 ≤ L and μ ∈ [0, 1]:

|a(z, w)| ≤ L(1 + |w|)p(z)−1, (1.2)

(a(z, w) − a(z, w0)) · (w − w0) ≥ ν(μ2 + |w|2 + |w0|2) p(z)−2
2 |w − w0|2 (1.3)

for all z ∈ �T and w, w0 ∈ R
n . Furthermore, the growth exponent p : �T →

( 2n
n+2 ,∞) satisfies the following conditions: There exist constants γ1, γ2 < ∞, such
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that

2n

n + 2
< γ1 ≤ p(z) ≤ γ2 and |p(z1) − p(z2)| ≤ ω(dP (z1, z2)) (1.4)

hold for any choice of z1, z2 ∈ �T , where ω : [0,∞) → [0, 1] denotes a modulus
of continuity. More precisely, we shall assume that ω(·) is a concave, non-decreasing
function with limρ↓0 ω(ρ) = 0 = ω(0). Moreover, the parabolic distance is given by
dP (z1, z2) := max{|x1 − x2|,√|t1 − t2|} for z1 = (x1, t1), z2 = (x2, t2) ∈ R

n+1. In
addition, for themodulus of continuityω(·)we assume the followingweak logarithmic
continuity condition:

lim sup
ρ↓0

ω(ρ) log

(
1

ρ

)
< +∞. (1.5)

By virtue of (1.5) we may assume for a constant L1 > 0 depending on ω(·) that

ω(ρ) log

(
1

ρ

)
≤ L1, for all ρ ∈ (0, 1]. (1.6)

Moreover, we denote by p1 and p2 the infimum resp. supremum of p(·) with respect
to the domain we are going to deal with, e.g. p1 := inf�T p(·), p2 := sup�T

p(·).
Finally, we point out that (1.3) implies, by using (1.2) and Young’s inequality, the
coercivity property

a(z, w) · w ≥ ν

c(γ1, γ2)
|w|p(z) − c(γ1, γ2, ν, L) ∀ z ∈ �T and w ∈ R

n . (1.7)

1.2 The function spaces

The spaces L p(�), W 1,p(�) and W 1,p
0 (�) denote the usual Lebesgue and Sobolev

spaces.
Parabolic Lebesgue–Orlicz spaces We start by the definition of the nonstandard p(z)-
Lebesgue space. The space L p(z)(�T ,Rk) is defined as the set of those measurable
functions v : �T → R

k for k ∈ N, which satisfy |v|p(z) ∈ L1(�T ,Rk), i.e.

L p(z)(�T ,Rk) :=
{
v : �T → R

k is measurable in �T :
∫

�T

|v|p(z)dz < +∞
}

.

The set L p(z)(�T ,Rk) equipped with the Luxemburg norm

‖v‖L p(z)(�T ) := inf

{
λ > 0 :

∫

�T

∣∣∣v
λ

∣∣∣
p(z)

dz ≤ 1

}

becomes aBanach space. This space is separable and reflexive, see [6,17]. For elements
of L p(z)(�T ,Rk) the generalized Hölder’s inequality holds in the following form: If
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f ∈ L p(z)(�T ,Rk), g ∈ L p′(z)(�T ,Rk), where p′(z) = p(z)
p(z)−1 , we have

∣∣∣∣
∫

�T

f gdz

∣∣∣∣ ≤
(

1

γ1
+ γ2 − 1

γ2

)
‖ f ‖L p(z)(�T )‖g‖L p′(z)(�T )

, (1.8)

see also [6]. Moreover, the norm ‖ · ‖L p(z)(�T ) can be estimated as follows:

−1 + ‖v‖γ1

L p(z)(�T )
≤

∫

�T

|v|p(z)dz ≤ ‖v‖γ2

L p(z)(�T )
+ 1. (1.9)

Finally, for the right-hand side of (1.1) we assume

F ∈ L p(z)(�T ,Rn) and f ∈ Lγ ′
1(0, T ; W −1,γ ′

1(�)). (1.10)

Notice that we will use also the abbreviation p(·) for the exponent p(z).
Parabolic Sobolev–Orlicz spaces First, we introduce nonstandard Sobolev spaces for
fixed t ∈ (0, T ). From assumption (1.4), we know that p(·, t) satisfy |p(x1, t) −
p(x2, t)| ≤ ω(|x1 − x2|) for any choice of x1, x2 ∈ � and for every t ∈ (0, T ).
Next, we define for every fixed t ∈ (0, T ) the Banach space W 1,p(·,t)(�) as
W 1,p(·,t)(�) := {u ∈ L p(·,t)(�,R) | Du ∈ L p(·,t)(�,Rn)} equipped with the norm
‖u‖W 1,p(·,t)(�) := ‖u‖L p(·,t)(�)+‖Du‖L p(·,t)(�). In addition,W

1,p(·,t)
0 (�) ≡ the closure

ofC∞
0 (�) inW 1,p(·,t)(�) and denote byW 1,p(·,t)(�)′ its dual. For every t ∈ (0, T ) the

inclusion W 1,p(·,t)
0 (�) ⊂ W 1,γ1

0 (�) holds. Now, we consider more general nonstan-

dard parabolic Sobolev spaces without fixed t . By W p(·)
g (�T ) we denote the Banach

space

W p(·)
g (�T ) :=

{
u ∈ [g + L1(0, T ; W 1,1

0 (�))] ∩ L p(·)(�T ) | Du ∈ L p(·)(�T ,Rn)

}

equipped by the norm ‖u‖W p(·)(�T ) := ‖u‖L p(·)(�T ) + ‖Du‖L p(·)(�T ). If g = 0 we

write W p(·)
0 (�T ) instead of W p(·)

g (�T ). Here, it is worth to mention that the notion

(u − g) ∈ W p(·)
0 (�T ) respectively u ∈ g + W p(·)

0 (�T ) indicate that u agrees with g

on the lateral boundary of the cylinder �T , i.e. u ∈ W p(·)
g (�T ). Now, we are ready to

give the definition of a weak solution to the nonstandard parabolic equation (1.1):

Definition 1.1 We identify a function u ∈ L1(�T ) as a weak solution of the parabolic
equation (1.1), if and only if u ∈ C0([0, T ]; L2(�)) ∩ W p(·)(�T ) and

∫

�T

[u · ϕt − a(z, Du) · Dϕ] dz = −
∫

�T

[
f · ϕ + |F |p(·)−2F · Dϕ

]
dz (1.11)

holds, whenever ϕ ∈ C∞
0 (�T ).
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Remark 1.2 In this paper we will consider certain initial value problems. Therefore,
we should mention the meaning when referring to an initial condition of the type
u(·, 0) = g(·, 0) a.e. on �. Here, we shall always mean

1

h

∫ h

0

∫

�

|u − g(·, 0)|2dxdt → 0 as h ↓ 0. (1.12)

In particular, when u ∈ C0([0, T ]; L2(�)), then (1.12) is obviously equivalent with
saying u(·, 0) = g(·, 0). ��
Our next aim is to introduce the dual space of W p(·)

0 (�T ). Therefore, we denote by

W p(·)(�T )′ the dual of the space W p(·)
0 (�T ). Assume that v ∈ W p(·)(�T )′. Then,

there exist functions vi ∈ L p′(·)(�T ), i = 0, 1, . . . , n, such that

〈〈v,w〉〉�T
=

∫

�T

(
v0w +

n∑
i=1

vi Diw

)
dz ∀ w ∈ W p(·)

0 (�T ). (1.13)

Here and in the following, we will write 〈〈·, ·〉〉�T
for the dual pairing between

W p(·)(�T )′ and W p(·)
0 (�T ). Furthermore, if v ∈ W p(·)(�T )′, we define the norm

‖v‖W p(·)(�T )′ = sup{〈〈v,w〉〉�T
|w ∈ W p(·)

0 (�T ), ‖w‖
W p(·)

0 (�T )
≤ 1}.

Notice, whenever (1.13) holds, we can write v = v0 −∑n
i=1 Divi , where Divi has to

be interpreted as a distributional derivate. By

w ∈ W (�T ) :=
{
w ∈ W p(·)(�T )|wt ∈ W p(·)(�T )′

}

we mean that there exists wt ∈ W p(·)(�T )′, such that

〈〈wt , ϕ〉〉�T
= −

∫

�T

w · ϕtdz for all ϕ ∈ C∞
0 (�T ),

see also [17]. The previous equality makes sense due to the inclusions

W p(·)(�T ) ↪→ L2(�T ) ∼= (L2(�T ))′ ↪→ W p(·)(�T )′

which allow us to identify w as an element of W p(·)(�T )′. Finally, from the definition
of the norm ‖·‖W p(·)(�T )′ , we can conclude that the following holds: if f ∈ W p(·)

0 (�T )

and g ∈ W p(·)(�T )′ we have

〈〈 f, g〉〉�T
≤ c(γ1, γ2)‖ f ‖W p(·)(�T )‖g‖W p(·)(�T )′, (1.14)

see [19]. Notice also that in the case p(·) = const., we deal with the standard
Lebesgue and Sobolev spaces. This means for example, if p(·) = γ1, then we have
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40 A. H. Erhardt

W γ1(�T ) = Lγ1(0, T ; W 1,γ1(�)). Consequently, the dual space of W γ1(�T ) is given
by W γ1(�T )′ = Lγ ′

1(0, T ; W −1,γ ′
1(�)).

1.3 Statement of the result and plan of the paper

Here, we mention our main results and briefly describe the strategy of the proof to
these results and the technical novelties of the paper. We start with some useful and
important preliminary results, see Sect. 2, beforewewill prove the compact embedding
of nonstandard p(z)-Sobolev spaces into nonstandard p(z)-Lebesgue spaces, see Sect.
3. Thiswill be our firstmain result, i.e. the compactness theorem in the sense ofAubin–
Lions and reads as follows.

Theorem 1.3 Let � ⊂ R
n an open, bounded Lipschitz domain with n ≥ 2 and

p(·) > 2n
n+2 satisfying (1.4), (1.5). Furthermore, define p̂(·) := max {2, p(·)}. Then,

the inclusion W (�T ) ↪→ L p̂(·)(�T ) is compact.

Theorem 1.3 is important for the strong convergence in p(z)-Lebesgue spaces and
therefore, for our existence results. In Sect. 4, we prove the existence of solutions to
the parabolic equation (1.1) under certain boundary and initial data conditions. First
of all, we establish the existence of a weak solution to the Dirichlet problem of (1.1),
i.e.

⎧⎪⎨
⎪⎩

∂t u − div a(z, Du) = f − div (|F |p(·)−2F) in �T ,

u = 0 on ∂� × (0, T ),

u(·, 0) = g(·, 0) on � × {0} .

(1.15)

The approach to prove the existence of solutions to theDirichlet problem is to construct
a solution, which solve the problem (1.15). We start by constructing a sequence of the
Galerkin’s approximations, where the limit of this sequence is equal to the solution in
(1.15). Then, we show that this approximate solution converges to a general solution,
wherewe used some energy bounds, which derive by the proof and finally, the compact
embeddingofTheorem1.3 yields the desired convergence of the approximate solutions
to general solutions. This yields

Theorem 1.4 Let � ⊂ R
n be an open, bounded Lipschitz domain and p : �T →

[γ1, γ2] satisfies (1.4), (1.5). Then, suppose that the vector-field a : �T ×R
n → R

n is
a Carathéodory function and satisfies, for a given function v ∈ C0([0, T ]; L2(�)) ∩
W p(·)

0 (�T ) with ∂tv ∈ Lγ ′
1(0, T ; W −1,γ ′

1(�)), the growth condition

|a(z, w)| ≤ c(γ2, L)
(
(1 + |w|)p(·)−1 + |v|p(·)−1

)
(1.16)

and the monotonicity property

ν(μ2 + |w + v|2 + |w0 + v|2) p(·)−2
2 |w − w0|2 ≤ (a(z, w) − a(z, w0)) · (w − w0)

(1.17)
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Compact embedding for p(x, t)-Sobolev spaces and existence theory 41

for all z ∈ �T and w,w0 ∈ R
n. Moreover, let (1.10) and g(·, 0) ∈ L2(�) hold.

Furthermore, define

M0 :=
∫

�T

1 + |F |p(·) + |v|p(·)dz + ‖ f ‖γ ′
1

Lγ ′
1 (0,T ;W−1,γ ′

1 (�))
+ 1 ≥ 1. (1.18)

Then, there exists an unique weak solution u ∈ C0([0, T ]; L2(�)) ∩ W p(·)
0 (�T ) with

∂t u ∈ W p(·)(�T )′ of (1.15) and this solution satisfies the following energy estimate

sup
0≤t≤T

∫

�

|u(·, t)|2dx +
∫

�T

|Du|p(·)dz ≤ c
(
‖g(·, 0)‖2L2(�)

+ M0

)
(1.19)

with u(·, 0) = g(·, 0) and a constant c = c(n, γ1, γ2, diam(�)).

Remark 1.5 We should mention the role of the function v of the preceding theorem.
We will need this function in (1.16), (1.17) or in (4.5), (4.6) later for the proof of
the next theorem. For the general existence result to the Dirichlet problem (1.15), we
would choose v equal to zero. But for the proof of the existence of weak solution
to the Cauchy–Dirichlet problem from below, we will re-write the Cauchy–Dirichlet
problem into an Dirichlet problem and v will play the role of the boundary value.
Then, this existence result derives immediately from Theorem 1.4 because of (1.16),
(1.17). ��
Finally, the existence of solutions to initial value problem (1.15) can be extend to
general boundary problems. Therefore, we consider the Cauchy–Dirichlet problem of
the parabolic problem (1.1):

⎧
⎪⎨
⎪⎩

∂t u − div a(z, Du) = f − div (|F |p(·)−2F) in �T ,

u = g on ∂� × (0, T ),

u(·, 0) = g(·, 0) on � × {0} ,

(1.20)

where g denotes the boundary data and satisfies

g ∈ C0([0, T ]; L2(�)) ∩ W p(·)(�T ) and ∂t g ∈ Lγ ′
1(0, T ; W −1,γ ′

1(�)). (1.21)

We use the result of Theorem 1.4 to the Cauchy–Dirichlet problem (1.20) to get
existence of solutions to (1.1) with general boundary data. Therefore, we have to
change the problem (1.20) into a problem comparing to (1.15). Then, we can conclude
the existence of solution to the modified problem. Hence, we get the existence result
to the primal Cauchy–Dirichlet problem (1.20). This result is stated in the following
Theorem.

Theorem 1.6 Let � ⊂ R
n be an open, bounded Lipschitz domain and p : �T →

[γ1, γ2] satisfies (1.4), (1.5). Then, suppose that the vector-field a : �T ×R
n → R

n is
a Carathéodory function and satisfies the growth condition (1.2) and the monotonicity
condition (1.3). Moreover, let (1.10) fulfilled. Furthermore, the boundary data g satisfy
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42 A. H. Erhardt

(1.21). Then, there exists an unique weak solution u ∈ C0([0, T ]; L2(�))∩W p(·)
g (�T )

with ∂t u ∈ W p(·)(�T )′ of the parabolic Cauchy–Dirichlet problem (1.20) and this
solution satisfies the following energy estimate

sup
0≤t≤T

∫

�

|u(·, t)|2dx +
∫

�T

|Du|p(·)dz

≤ c
(
‖g(·, 0)‖2L2(�)

+ ‖g‖2L∞(0,T ;L2(�))
+ Mg

)
, (1.22)

where c = c(n, γ1, γ2, ν, L , diam(�)) and Mg is defined as follows

Mg :=
∫

�T

1 + |F |p(·) + |Dg|p(·)dz + ‖ f ‖γ ′
1

W γ1 (�T )′ + ‖∂t g‖γ ′
1

W γ1 (�T )′ + 1.

Remark 1.7 Here, we would like to mention that in [20] we need the existence theo-
rems 1.4 and 1.6. But we could also prove the existence of weak solutions to (1.15) and
(1.20), if we assume that a(·) satisfies the growth condition (1.2), coercivity condition
(1.7) and the monotonicity condition (a(z, w) − a(z, w0)) · (w − w0) ≥ 0 for all
z ∈ �T and w, w0 ∈ R

n , see also [17]. ��

2 Preliminaries

2.1 Convolution and smoothing

Here, we introduce tools that will allow us to build smooth approximations to given
functions. First, we will consider the so-called Friedrich’s mollifier. This mollifier can
be used to smooth a function in space and time. Therefore, let δ ∈ C∞(Rn+1) be the
Friedrich’s mollifying kernel

δ(z) :=
{

κ exp
(
− 1

1−|z|2
)

if |z| < 1,

0 if |z| ≥ 1,
and

∫

Rn+1
δ(z)dz = 1,

where κ = const. and δ(z) ≥ 0. Furthermore, we extend the given function v ∈
W p(·)(�T ) by zero to the whole Rn+1 and define

vh(z) :=
∫

Rn+1
v(s)δh(z − s)ds with δh(s) = 1

hn+1 δ
( s

h

)
, h > 0.

The next two propositions are stated in [10] and show some properties of Friedrich’s
mollified functions.

Proposition 2.1 If u ∈ W p(·)
0 (�T ) with exponent function p(z) satisfying (1.4), (1.5),

then ‖uh − u‖W p(·)(�T ) −→ 0 as h ↓ 0 and

‖uh‖W p(·)(�T ) ≤ c
(‖u‖W 1,1(�T ) + ‖u‖W p(·)(�T )

)
.
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Proposition 2.2 If u ∈ W p(·)
0 (�T ) with exponent function p(z) satisfying (1.4), (1.5)

and ut ∈ W p(·)(�T )′, then (uh)t ∈ W p(·)(�T )′, and for every φ ∈ W p(·)
0 (�T )

〈〈(uh)t , φ〉〉�T
−→ 〈〈ut , φ〉〉�T

as h ↓ 0.

Since, W 1,γ2
0 (�) is separable, it is a span of a countable set of linearly independent

functions {φk} ⊂ W 1,γ2
0 (�). Moreover, we have the dense embedding W 1,γ2

0 (�) ⊂
L2(�) for any γ2 > 2n

n+2 , see e.g. [29,30]. Therefore, without loss of generality, we
may assume that this system forms an orthonormal basis of L2(�).

Moreover, since weak solutions u of parabolic equations possess only weak reg-
ularity properties with respect to the time variable t , i.e. they are not assumed to be
weakly differentiable, in principle it is not possible to use the solution u itself (also dis-
regarding boundary values) as a test-function in the weak formulation of the parabolic
equation. In order to be able to test the equation properly, we smooth the solution u
with respect to the time direction t using the so-called Steklov averages. Hence, we
introduce the following: the Steklov averages of a function f ∈ L1(�T ) are defined
as

[ f ]h(x, t) :=
⎧⎨
⎩

1
h

∫ t+h

t
f (x, s)ds for t ∈ (0, T − h),

0 for t ∈ [T − h, T ),

(2.1)

for x ∈ �, for all t ∈ (0, T ) and 0 < h < T . Assuming that u ∈ C0([0, T ]; L2(�))∩
W p(·)(�T ) is a weak solution to the parabolic equation (1.1) the Steklov average [u]h

satisfies the corresponding equation

∫

�×{t}
∂t ([u]h) · ϕ + [a(·, Du)]h · Dϕdx =

∫

�×{t}
[ f ]h · ϕ + [F p(·)−2F]h · Dϕdx

(2.2)

for a.e. t ∈ (0, T ) and all ϕ ∈ C∞
0 (�).

2.2 Poincaré type estimate

Our next problem is, that we need a Poincaré inequality. It is only possible to use
the elliptic Poincaré inequality slicewise for a.e. times t . For parabolic problems with
nonstandard growth, it is not allowed to apply such an estimate, not even slicewise.
There exists just a “Luxemburg-version”, see [7], i.e. ‖u‖L p(x)(�) ≤ c‖Du‖L p(x)(�) for

all u ∈ W 1,p(x)
0 (�), where c > 0. But we need a “classical” Poincaré type inequality.

The desired result is given by the following lemma, which is stated in [19].

Lemma 2.3 ([19], Lemma 3.9) Let � ⊂ R
n a bounded Lipschitz domain and

γ2 := sup�T
p(·). Assume that u ∈ C0([0, T ]; L2(�)) ∩ W p(·)

0 (�T ) and the
exponent p(·) satisfies the conditions (1.4), (1.5). Then, there exists a constant
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44 A. H. Erhardt

c = c(n, γ1, γ2, diam(�), ω(·)), such that the two versions of the Poincaré type esti-
mate are valid:

∫

�T

|u|p(·) dz ≤ c

(
‖u‖

4γ2
n+2

L∞(0,T ;L2(�))
+ 1

)(∫

�T

|Du|p(·) + 1 dz

)
(2.3)

and

‖u‖γ1

L p(z)(�T )
≤ c

(
‖u‖

4γ2
n+2

L∞(0,T ;L2(�))
+ 1

)(∫

�T

|Du|p(·) + 1 dz

)
. (2.4)

3 Proof of the compact embedding: compactness theorem

In this chapter, we will show some properties concerning distributional nonstandard
Sobolev spaces. For usual Sobolev spaces W 1,p(�), these results are given in [29,
Chapter III], [30, Chapter III]. Moreover, we would like to mention that in [17, The-
orem 7.1] the authors proved a very similar assertion to Lemma 3.1.

Since L2(�) is a Hilbert space which is identified with its dual L2(�) ∼= (L2(�))′
and in which L p(·,t)(�) is dense and continuously embedded ∀t ∈ [0, T ], where
p(·, t) ≥ 2, see [16, Lemma 5.5], we have L p(·,t)(�) ↪→ L2(�) ↪→ L p′(·,t)(�) for
all t ∈ [0, T ]. The fact that L2(�) ∼= (L2(�))′ can be demonstrated by the Riesz
representation theorem. We denote the dual of W 1,p(·,t)

0 (�) by W 1,p(·,t)(�)′ and the

natural pairing between W 1,p(·,t)(�)′ and W 1,p(·,t)
0 (�) by 〈·, ·〉. Moreover, we have

the embeddings W 1,p(·,t)
0 (�) ⊂ L2(�) and (L2(�))′ ⊂ W 1,p(·,t)(�)′. Therefore, we

can conclude that W 1,p(·,t)
0 (�) ↪→ L2(�) ∼= (L2(�))′ ↪→ W 1,p(·,t)(�)′, where the

injections are compact. This also allows us to identify the duality product 〈·, ·〉 with
the inner product between L2(�) and W 1,p(·,t)

0 (�), i.e.

f (v) = 〈 f, v〉 = 〈 f, v〉L2(�) =
∫

�

f · vdx

whenever f ∈ L2(�) ⊂ W 1,p(·,t)(�)′ and v ∈ W 1,p(·,t)
0 (�) and t ∈ [0, T ]. Next, we

consider the Banach space

W0(�T ) :=
{
w ∈ W p(·)

0 (�T )|wt ∈ W p(·)(�T )′
}

.

Let a < 0 < T < b. We shall construct an extension of each u ∈ W0(�T ) to
ũ ∈ W0(�I ), where I := (a, b). First extend u to (a, 0) and (T, b) (e.g. by symmetry).
Let � ∈ C∞

0 (a, b) with � = 1 on (0, T ). We define ũ = u · � and note that ũ ∈
W0(�I ) and ũ = u on (0, T ). Therefore, ‖u‖W (�T ) ≤ ‖ũ‖W (�I ) ≤ C(�)‖u‖W (�T ),

where C(�) depends only on � and ũ = 0 in a neighborhood of a and b. Next, we
regularize ũ by the mollifier uh(t) = ∫

R
ũ(s)δh(t − s)ds, where δh(s) = 1

h δ
( s

h

)
, δ ∈

C∞
0 (−1, 1), δ ≥ 0 and

∫
R

δ(s)ds = 1. It follows that uh ∈ C∞(�I ) and uh(·, a) =
0 = uh(·, b) for sufficiently small h > 0. Moreover, we have uh → ũ in W0(�I )with
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‖uh‖W (�I ) ≤ ‖ũ‖W (�I ), cf. Propositions 2.1 and 2.2. By the preceding identification
of spaces we have

1

2

d

dt
‖uh(·, t)‖2L2(�)

= 1

2

d

dt
〈uh(·, t), uh(·, t)〉L2(�) =

∫

�

∂t uh(·, t) · uh(·, t)dx

and this yields 1
2‖uh(·, t)‖2

L2(�)
≤ ‖∂t uh(·, s)‖W p(·,t)(�×(a,t))′‖uh(·, s)‖W p(·,t)(�×(a,t))

≤ ‖uh‖2W (�I )
for all a ≤ t ≤ b. Since {uh} is a Cauchy sequence in W0(�I ), such an

estimate on differences uh −uk from the sequence shows that it converges (uniformly)
to ũ in C0([0, T ]; L2(�)). Thus, we obtain the following:

Lemma 3.1 Let n ≥ 2. Assume that p : �T → [γ1, γ2] satisfies (1.4), (1.5). Then
W (�T ) is contained in C0([0, T ]; L2(�)). Moreover, if u ∈ W0(�T ) then t �→
‖u(·, t)‖2

L2(�)
is absolutely continuous on [0, T ],

d

dt

∫

�

|u(·, t)|2dx = 2 〈∂t u(·, t), u(·, t)〉 , for a.e. t ∈ [0, T ],

where 〈·, ·〉 denotes the duality pairing between W 1,p(·,t)(�)′ and W 1,p(·,t)
0 (�). More-

over, there is a constant c such that ‖u‖C0([0,T ];L2(�)) ≤ c‖u‖W (�T ) for every
u ∈ W0(�T ).

The proof of the compactness theorem will be based on the following interpolation
lemma, which is established in [19]. Here, we consider p > 2n/(n + 2) and we
will utilize the fact that we have open, bounded Lipschitz domains � ⊆ R

n , the
dense embeddings W 1,p(�) ⊂ L2(�) and (L2(�))′ ⊂ W −1,p′

(�). Moreover, the
injection of W 1,p(�) into Lq(�) is compact, provided the exponents satisfy 1 ≤
q < p∗ if 2n

n+2 < p < n and q ≥ 1 if p ≥ n, where p∗ := np/(n − p) is
the Sobolev exponent of p. Further, we want to infer from the Interpolation Lemma
3.2 a Gagliardo–Nirenberg inequality. This Gagliardo-Nirenberg inequality we use
to conclude the desired compact embedding between W (�T ) and L p̂(·)(�T ) with
p̂(·) := max {2, p(·)}, see the Aubin–Lions type Theorem 1.3.

Lemma 3.2 ([19], Lemma 3.6) Let p, r > 1 and � ⊂ R
n be an open, bounded

Lipschitz domain with n ≥ 2. Moreover, suppose that the exponent q satisfies the
following conditions q ∈ [1, p∗) if 1 < p < n or q ∈ [1,∞) if n ≤ p < ∞
with the Sobolev exponent p∗ := np

n−p , if p < n. Then, for each η > 0, there exists
some constant Cη depending on η, p, q, r and �, such that the following interpolation
inequality holds:

‖v‖Lq (�) ≤ η‖v‖W 1,p(�) + Cη‖v‖W−1,r (�) ∀ v ∈ W 1,p(�) ∩ W −1,r (�). (3.1)

Our next aim is to conclude a needed version of (3.1). Therefore, we consider a
bounded Lipschitz domain A ⊂ R

n and suppose that, v ∈ W 1,p(A) ∩ W −1,r (A) for
some p > 2n

n+2 and r > 1. Notice that, the Sobolev’s embedding implies v ∈ L2(A).
Next, we consider q and s, such that 2 < s < q < p∗ with p∗ = np

n−p if p < n and
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p∗ = any number > 1 if p ≥ n. Now, we apply Hölder’s inequality with exponents
q−s
q−2 and s−2

q−2 to ‖v‖s
Ls (�). This yields

‖v‖s
Ls (�) =

∫

�

|v|2 q−s
q−2 |v|s−2 q−s

q−2 dx ≤
(∫

�

|v|2dx

) q−s
q−2

(∫

�

|v|qdx

) s−2
q−2

.

At this stage, we apply (3.1) to the last term on the right-hand side of the previous
estimate. Hence, we have

‖v‖Ls (�) ≤
(∫

�

|v|2dx

) q−s
q−2

1
s (

η‖v‖W 1,p(�) + Cη‖v‖W−1,r (�)

)q s−2
q−2

1
s . (3.2)

Moreover, in the case p ≤ 2, we have again by Lemma 3.2

‖v‖L2(�) =
(∫

A
|v|2dx

) 2−p
4

(∫

A
|v|2dx

) p
4

≤
(∫

A
|v|2dx

) 2−p
4 (

η‖v‖W 1,p(�) + Cη‖v‖W−1,r (�)

) p
2 . (3.3)

Now, we are in the situation to prove our compactness theorem 1.3 in the sense of
Aubin and Lions.

Proof of Theorem 1.3 Let {uk} be a bounded sequence in W (�T ). W (�T ) is reflexive.
This is obvious, since W p(·)(�T ) and W p(·)(�T )′ are reflexive Banach spaces. Hence,
there is a subsequence, which we denote again by {uk}, such that uk ⇀ u weakly in
W (�T ). Therefore, we have uk ⇀ u weakly in W p(·)(�T ) and ∂t uk ⇀ ∂t u weakly in
W p(·)(�T )′. We shall show that, up to a subsequence, uk → u strongly in L p̂(·)(�T ).
For this aim, we first have to conclude the strong convergence in L p̂(·) on subdomains
of�T with some restriction on the diameter of these subdomains and then, we observe
the strong convergence in L p̂(·) on�T by a covering argument. This is necessary, since
in the nonstandard case with p(z)-growth, there do not exist such global arguments
respectively estimates as in the standard case. For this reason, we have to bound the
maximal oscillation of the exponent p(·) and use this bound to restrict the diameter of
the subdomains of �T . Therefore, we fix R0 ∈ (0, 1], such that ω(R0) ≤ 1

4n and we
consider an open, bounded Lipschitz domain A ⊂ � and 0 ≤ t1 < t2 ≤ T , such that
diam(A) ≤ R0 and t2 − t1 ≤ R2

0. Next, we set p1 := infQ p(·) and p2 := supQ p(·),
where Q := A × (t1, t2). Then, we define

q :=
{ np1

n− 1
2 p1

if p1 < n,

2p2 if p1 ≥ n.
(3.4)

In the following, we will show that in the case p1 < n, there holds

p2 < q < p∗
1 . (3.5)
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The second inequality is obvious from the definition of q, while the first one follows
from (1.4) and the choice of R0:

p2 − q = p2 − np1
n − 1

2 p1
= n(p2 − p1) − 1

2 p1 p2

n − 1
2 p1

≤ nω(R0) − 1
2

n − 1
2 p1

≤
1
4 − 1

2

n − 1
2 p1

< 0.

Next, we prove that in the case p2 > 2, there holds

q(p2 − 2)

q − 2
≤ p1. (3.6)

In the case p1 ≥ n, this follows immediately from (1.4) and the fact that ω(R0) ≤ 1,
since

q
(p2 − 2)

q − 2
− p1 ≤ 2ω(R0)p2 − 4p2 + 2p1

2p2 − 2
≤ 2ω(R0)p2 − 2p2

2p2 − 2
≤ 0.

In the case p1 < n, we first observe that q > 2, which is a consequence of (1.4), the
choice of R0, the fact that p2 > 2 and the following chain of inequalities:

2 − q = 2 − np1
n − 1

2 p1
= 2n − p1 − np1

n − 1
2 p1

≤ 2n − np2 + nω(R0) − p1
n − 1

2 p1

≤ nω(R0) − p1
n − 1

2 p1
≤

1
4 − p1

n − 1
2 p1

< 0.

Again from (1.4) and the choice of R0, we obtain

q(p2 − 2)

q − 2
− p1 ≤ np1ω(R0) − p21

np1 − 2n + p1
≤

p1
4 − p21

np1 − 2n + p1
< 0,

which proves (3.6) also in the case p1 < n. Therefore, we consider the exponent q
from (3.4), which satisfies (3.5) and 2 ≤ p̂(·) ≤ q on Q. Notice that we are allowed
to assume that 2 ≤ p̂(·) ≤ q on Q, since p2 < q in the case p1 < n by (3.5) and
2p2 = q in the case p1 ≥ n by (3.4). Finally, we assume without loss of generality
that u = 0.

First, we want to show that uk(·, t) → 0 in W −1,p′
2(A) for each t ∈ [t1, t2]. This

will be done for t = t1, with any other case being similar. For t ∈ [t1, t2] we have that

uk(·, t1) = uk(·, t) −
∫ t

t1
∂t uk(·, τ ) dτ.
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Integration over [t1, s] with respect to t yields for any s ∈ [t1, t2] the following

uk(·, t1) = 1

s − t1

∫ s

t1
uk(·, t)dt − 1

s − t1

∫ s

t1

∫ t

t1
∂t uk(·, τ ) dτdt

= 1

s − t1

∫ s

t1
uk(·, t)dt − 1

s − t1

∫ s

t1
(s − t)∂t uk(·, t)dt = ak + bk .

Since ∂t uk is bounded in W p(·)(Q)′ and W p(·)(Q)′ ⊂ L1(t1, t2; W −1,p′
2(A)), for any

ε > 0, we can choose s close to t1, such that

‖bk‖W−1,p′
2 (A)

≤
∫ s

t1
‖∂t uk‖W−1,p′

2 (A)
dt ≤ ε

2
.

Next,we conclude from uk ⇀ 0weakly inW p(·)(Q) that ak ⇀ 0weakly inW 1,p1(A),
as k → ∞. Therefore, ak → 0 strongly in Lq(A) for all q < p∗

1 in the case p < n
and q < ∞ in the case n ≤ p, as k → ∞ by compactness. Since 2 < p∗

1 = np1
n−p1

for p1 < n by (3.5), we can conclude from the fact that ak → 0 strongly in Lq(A),
also ak → 0 strongly in L2(A), as k → ∞. Next, we can infer from the continuous
embedding L2(A) ↪→ W −1,p′

2(A) and the strong convergence of ak in L2(A), that
ak → 0 in W −1,p′

2(A), i.e. we have for sufficiently large k that ‖ak‖W−1,p′
2 (A)

≤ ε
2 .

Finally, we have also shown that uk(·, t1) → 0 in W −1,p′
2(A), as k → ∞. Second,

observe that the continuity of

W (Q) ↪→ C([t1, t2]; W −1,p′
2(A))

shows that {‖uk‖C([t1,t2];W−1,p′
2 (A))

} is bounded, i.e. ‖uk‖C([t1,t2];W−1,p′
2 (A))≤ c‖uk‖W (Q). Since uk is bounded, we can obtain by the Dominated Convergence

Theorem, see [24, Theorem 5, p. 648] respectively [29, Theorem 1.4, Chapter III],
that

uk → 0 in L p1(t1, t2; W −1,p′
2(A)), as k → ∞.

Our next aim is to prove, that uk → 0 in L p̂(·)(Q), as k → ∞. This will be a
consequence of the fact, that uk → 0 in Lmax{p2,2}(Q). We start with the case p2 > 2.
Here, we recall the definition of q from (3.4). Due to (3.5), we are allowed to apply
(3.2) with (p1, p2, p′

2) instead of (p, s, r). This yields, for η > 0 that

∫

Q
|uk |p2dz ≤

∫ t2

t1

(∫

A
|uk(·, t)|2dx

) q−p2
q−2

×
(
η‖uk(·, t)‖W 1,p1 (A) + Cη‖uk(·, t)‖

W−1,p′
2 (A)

)q
(p2−2)

q−2
dt

≤ 2q−1
∫ t2

t1

(
η

q
(p2−2)

q−2 ‖uk(·, t)‖q
(p2−2)

q−2

W 1,p1 (A)
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+ C
q

(p2−2)
q−2

η ‖uk(·, t)‖q
(p2−2)

q−2

W−1,p′
2 (A)

)
dt × sup

t1<t<t2
‖uk(·, t)‖2

q−p2
q−2

L2(A)
.

Now, we recall (3.6), which allows us to apply Hölder’s inequality and thus obtain,
that

∫ t2

t1
‖uk(·, t)‖q

(p2−2)
q−2

W 1,p1 (A)
dt ≤ c

(∫ t2

t1
‖uk(·, t)‖p1

W 1,p1 (A)
dt

) q(p2−2)
p1(q−2)

≤ c

(∫

Q
|uk |p(·) + |Duk |p(·) + 1 dz

) q(p2−2)
p1(q−2)

≤ c

(
‖uk‖

p2
q(p2−2)
p1(q−2)

W p(·)(Q)
+ 1

)
≤ c

(
‖uk‖p2

W p(·)(Q)
+ 1

)

with a constant c = c(p1, p2, q), where we also used (1.9), (3.6) and that t2 − t1 ≤
R2
0 ≤ 1 and |A| ≤ αn Rn

0 ≤ c. Plugging this into the previous estimate, we gain

∫

Q
|uk |p2dz ≤ sup

t1<t<t2
‖uk(·, t)‖2

q−p2
q−2

L2(A)

[
c(p1, p2, q)η

q
p2−2
q−2

(
‖uk‖p2

W p(·)(Q)
+ 1

)

+ c(q)C
q

(p2−2)
q−2

η

∫ t2

t1
‖uk(·, t)‖q

(p2−2)
q−2

W−1,p′
2 (A)

dt

]
.

Further, since uk is bounded in W p(·)(�T ) and by Lemma 3.1, we can infer that

∫

Q
|uk |p2 dz ≤ c1 · η

q
p2−2
q−2 + c2

∫ t2

t1
‖uk(·, t)‖q

(p2−2)
q−2

W−1,p′
2 (A)

dt, (3.7)

where c1 = c1(n, γ1, γ2, supk∈N ‖uk‖L∞(t1,t2;L2(A)), supk∈N ‖uk‖W p(·)(Q)) and c2 =
c2(η, n, γ1, γ2, supk∈N ‖uk‖L∞(t1,t2;L2(A))). Since, the dependencies on p1, p2 and q
is continuous, it can be replaced by a dependencies on γ1 and γ2. Next, we consider
the case p2 ≤ 2. Here, we use (3.3) applied with (p, r) replaced by (p1, p′

2) to infer
that

∫

Q
|uk |2dz ≤

∫ t2

t1

(∫

A
|uk(·, t)|2dx

)1− p1
2

×
(
η‖uk(·, t)‖W 1,p1 (A) + Cη‖uk(·, t)‖

W−1,p′
2 (A)

)p1
dt

≤ 2p1−1ηp1 sup
t1<t<t2

‖uk(·, t)‖1−
p1
2

L2(A)

(
‖uk‖p1

W p(·)(Q)
+ 1

)

+ cC p1
η sup

t1<t<t2
‖uk(·, t)‖1−

p1
2

L2(A)
‖uk‖p1

L p1 (t1,t2;W−1,p′
2 (A))

123



50 A. H. Erhardt

with a constant c = c(p1, p2), where we utilized ‖uk‖W 1,p1 (Q) ≤ c‖uk‖W p(·)(Q)

by the compact embedding W p(·)(Q) ↪→ W 1,p1(Q). Here, we have also used that
t2 − t1 ≤ R2

0 ≤ 1 and |A| ≤ αn Rn
0 ≤ c. Thus, since uk is bounded in W p(·)(�T ) and

by Lemma 3.1, we can infer that

∫

Q
|uk |2 dz ≤ c1 · ηp1 + c2‖uk‖p1

L p1 (t1,t2;W−1,p′
2 (A))

, (3.8)

where c1 = c1(n, γ1, γ2, supk∈N ‖uk‖L∞(t1,t2;L2(A)), supk∈N ‖uk‖W p(·)(Q)) and the
constant c2 depends on η, n, γ1, γ2, supk∈N ‖uk‖L∞(t1,t2;L2(A))). Since, uk → 0 in

L p1(t1, t2; W −1,p′
2(A)) and the last term on the right-hand side of (3.7) and (3.8)

converges to zero, so

lim sup
k→∞

∫

Q
|uk |max{2,p2} dz ≤ c1 max

{
η

q
p2−2
q−2 , ηp1

}
,

where we also used the fact L p1(t1, t2; W −1p′
2(A)) ↪→ Lq

p2−2
q−2 (t1, t2; W −1p′

2(A)) by
(3.6). Since,η > 0 is chosen arbitrary, this upper limit is 0. This showsuk → 0 strongly
in Lmax{2,p2}(Q), as k → ∞ for every open, bounded Lipschitz domain Q = A ×
(t1, t2), provided the condition diam(A) ≤ R0 = R0(n, ω(·)) and t2 − t1 ≤ R2

0 holds.
Moreover, the compact embedding of L p2 into L p(·) implies that uk → 0 strongly in
L p̂(·)(Q), as k → ∞ for every open, bounded Lipschitz domain Q = A × (t1, t2),
provided the condition diam(A) ≤ R0 = R0(n, ω(·)) and t2 − t1 ≤ R2

0 holds. Since,
we have shown the desired strong convergence in L p̂(·) on subdomains Q of �T

with the restriction on the diameter of these Q, our next goal is to deduce the strong
convergence in L p̂(·) on �T . This will be done by a covering argument. Therefore,
we choose a family of dyadic cuboids {Ci }∞i=1 such that

⋃∞
i=1 Ci = R

n+1, where Ci

denotes the cuboid

C R0
2 ,

(
R0
2

)2(zi ) :=
{

x ∈ R
n, s ∈ R | |xi − x | <

1

2
R0, |ti − s| <

1

4
R2
0, 1 ≤ i ≤ n

}

with center in zi = (xi , ti ), side length 1
2 R0 and height

( 1
2 R0

)2
. These cuboids, we

use to partition the Rn+1 into dyadic cuboids Ci , where 1 ≤ i ≤ ∞. Since, Q ⊆ �T

was arbitrary, we can consider Qi = C̃i ∩ �T ⊆ �T , i = 1, . . . , M , such that
�T = ⋃M

i=1 Qi , where C̃i = CR0,(R0)2
(zi ). Since, every cuboid in Rn has a Lipschitz

boundary, Ci respectively C̃i are open, bounded domains and the intersection of two
open, bounded domains yields again an open, bounded domain, it follows that Qi are
open, bounded Lipschitz domains. Therefore, we can conclude that uk → u strongly
in L p̂(·)(Qi ), as k → ∞, for all i ∈ {1, . . . , M}. Moreover, the covering of �T yields
that uk → u strongly in L p̂(·)(�T ) and thus, W (�T ) ↪→ L p̂(·)(�T ) compact as
desired. This completes the proof. ��

123



Compact embedding for p(x, t)-Sobolev spaces and existence theory 51

4 Proof of Theorems 1.4 and 1.6

We start with the

Proof of Theorem 1.4 First of all, we construct a sequence of the Galerkin’s approxi-
mations, where the limit of this sequence is equal to the solution in (1.15). Therefore,
{φi (x)}∞i=1 ⊂ W 1,γ2

0 (�) is an orthonormal basis in L2(�). Now, we fix a positive
integer m and define the approximate solution to (1.15) as follows

u(m)(z) :=
m∑

i=1

c(m)
i (t)φi (x),

where the coefficients c(m)
i (t) are defined via the identity

∫

�

(
u(m)

t φi (x) +
(

a(x, t, Du(m)) − |F |p(·,t)−2F
)

Dφi (x) − f φi (x)
)
dx = 0,

(4.1)

for i = 0, . . . , m and t ∈ (0, T ) with the initial condition

c(m)
i (0) =

∫

�

g(·, 0)φidx, i = 1, . . . , m.

Then, the equation (4.1) togetherwith the initial boundary condition generates a system
of m ordinary differential equations:

⎧⎪⎨
⎪⎩

(
c(m)

i

)′
(t) = Fi

(
t, c(m)

1 (t), . . . , c(m)
m (t)

)
,

c(m)
i (0) =

∫

�

g(·, 0)φidx, i = 1, . . . , m,
(4.2)

where we abbreviated

Fi (t, ·) := −
∫

�

(a(·, t, Du(m)) − |F(·, t)|p(·,t)−2F(·, t))Dφi (x) − f (·, t)φi (x)dx,

since {φi (x)} is orthonormal in L2(�). From this starting point, we will conclude the
existence result to the Dirichlet problem (1.15). By [26, Theorem 1.44, p. 25]—see
also [26, p. 240 ff.]—we know that, there is for every finite system (4.2) a solution
c(m)

i (t), i = 1, . . . , m on the interval (0, Tm) for some Tm > 0. First, we multiply

the equation (4.1) by the coefficients c(m)
i (t), i = 1, . . . , m. Then, we need a priori

estimates that permit us to extend the solution to the whole domain (0, Tm). Therefore,
we integrate the equation over (0, τ ) for an arbitrarily τ ∈ (0, Tm). Next, we sum the
resulting equation over i = 1, . . . , m. Therefore, it follows

∫

�τ

∂t u
(m) · u(m) +

(
a(z, Du(m)) − |F |p(·)−2F

)
· Du(m) − f u(m)dz = 0 (4.3)
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for a.e. τ ∈ (0, Tm). Next, we convert the first term on the left-hand side of (4.3) as
follows

∫

�τ

∂t u
(m) · u(m)dz = 1

2

∫

�τ

∂t [u(m)]2dz

= 1

2

∫

�

|u(m)(·, τ )|2dx − 1

2

∫

�

|u(m)(·, 0)|2dx

≥ 1

2

∫

�

|u(m)(·, τ )|2dx − 1

2

∫

�

|g(·, 0)|2dx

for a.e. τ ∈ (0, Tm), since g(·, 0) ∈ L2(�), {φi }∞i=1 ⊂ L2(�) and

∫

�

|u(m)(·, 0)|2dx =
∫

�

∣∣
m∑

i=1

c(m)
i (0)φi (x)

∣∣2dx

=
∫

�

∣∣
m∑

i=1

∫

�

g(·, 0)φi (x)dxφi (x)
∣∣2dx

≤
∫

�

∣∣
∞∑

i=1

∫

�

g(·, 0)φi (x)dxφi (x)
∣∣2dx =

∫

�

|g(·, 0)|2dx,

cf. [19]. Therefore, it holds

∫

�τ

∂t u
(m) · u(m)dz ≥ 1

2

∫

�

|u(m)(·, τ )|2dx − 1

2
‖g(·, 0)‖2L2(�)

for a.e. τ ∈ (0, Tm). Now, we have from (4.3) that

1

2

∫

�

|u(m)(·, τ )|2dx +
∫

�τ

a(z, Du(m)) · Du(m)dz

≤ 1

2
‖g(·, 0)‖2L2(�)

+
∫

�τ

|F |p(·)−2F · Du(m) + f u(m)dz (4.4)

for a.e. τ ∈ (0, Tm). Using the coercivity condition (1.7) on left-hand side of (4.4) and
estimating the right-hand side of (4.4) by the absolute value and (1.14), then we get
the following estimate

1

2

∫

�

|u(m)(·, τ )|2dx + ν

c(γ1, γ2)

∫

�τ

|Du(m)|p(·)dz − c
∫

�τ

(1 + |v|p(·))dz

≤ 1

2
‖g(·, 0)‖2L2(�)

+
∫

�τ

|F |p(·)−1|Du(m)|dz + c‖ f ‖
W γ ′

1 (�τ )
‖u(m)‖W γ1 (�τ ),(4.5)

where c = c(γ1, γ2, ν, L). Now, we adopt Young’s inequality to the second term on
the right-hand side of (4.5) with the exponents p(·) and p(·)

p(·)−1 , where we use the
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factors ε
− 1

p(·) ·ε 1
p(·) = 1 and ε

− 1
γ1 ·ε 1

γ1 = 1, ε ∈ (0, 1) and get the following estimate

1

2

∫

�

|u(m)(·, τ )|2dx + ν

c(γ1, γ2)

∫

�τ

|Du(m)|p(·)dz − c
∫

�τ

1 + |v|p(·)dz

≤ 1

2
‖g(·, 0)‖2L2(�)

+
∫

�τ

p(·) − 1

p(·) ε
1

1−p(·) |F |p(·) + 1

p(·)ε|Du(m)|p(·)dz

+ ε
− 1

γ1 ‖ f ‖
Lγ ′

1 (0,τ ;W−1,γ ′
1 (�))

ε
1
γ1 ‖u(m)‖Lγ1 (0,τ ;W 1,γ1 (�))

≤ 1

2
‖g(·, 0)‖2L2(�)

+ γ2 − 1

γ1
ε

1
1−γ1

(∫

�τ

|F |p(·)dz + ‖ f ‖γ ′
1

Lγ ′
1 (0,τ ;W−1,γ ′

1 (�))

)

+ 1

γ1
ε

(∫

�τ

|Du(m)|p(·)dz +
∫

�τ

|u(m)|γ1 + |Du(m)|γ1dz

)
(4.6)

for a.e. τ ∈ (0, Tm) with a constant c = c(γ1, γ2, ν, L), where we used Young’s
estimate with exponents 1

γ1
+ γ1−1

γ1
= 1 for the last estimate. Next, we apply the

standard Poincaré inequality slicewise to get the following estimate

1

2

∫

�

|u(m)(·, τ )|2dx + ν

c(γ1, γ2)

∫

�τ

|Du(m)|p(·)dz − c
∫

�τ

1 + |v|p(·)dz

≤ 1

2
‖g(·, 0)‖2L2(�)

+ γ2 − 1

γ1
ε

1
1−γ1

(∫

�τ

|F |p(·)dz + ‖ f ‖γ ′
1

Lγ ′
1 (0,τ ;W−1,γ ′

1 (�))

)

+
(

1

γ1
+ c∗

)
ε

(∫

�τ

|Du(m)|p(·) + 1dz

)

with a constant c = c(γ1, γ2, ν, L) and the constant c∗, which depends on n, γ1, γ2
and diam(�), where we used

∫

�τ

|Du(m)|γ1dz ≤ c(γ2)
∫

�τ

|Du(m)|p(·) + 1dz.

This inequality can be converted as follows

∫

�

|u(m)(·, τ )|2dx + 2

(
ν

c
−

(
1

γ1
+ c∗

)
ε

)∫

�τ

|Du(m)|p(·)dz − c
∫

�τ

1+|v|p(·)dz

≤ ‖g(·, 0)‖2L2(�)
+ 2

γ2 − 1

γ1
ε

1
1−γ1

(∫

�τ

|F |p(·)dz + ‖ f ‖γ ′
1

Lγ ′
1 (0,τ ;W−1,γ ′

1 (�))

)
+c∗ε,

where c = c(γ1, γ2, ν, L) and c∗ = c(n, γ1, γ2, diam(�)). Next, we choose ε, such
that

2

(
ν

c(γ1, γ2)
−

(
1

γ1
+ c∗

)
ε

)
≥ ν

c(γ1, γ2)
.
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Hence, we have:

∫

�

|u(m)(·, τ )|2dx +
∫

�τ

|Du(m)|p(·)dz

≤ c‖g(·, 0)‖2L2(�)
+ c

(∫

�τ

|F |p(·) + |v|p(·) + 1dz‖ f ‖γ ′
1

Lγ ′
1−W−1,γ ′

1
+ 1

)
,

where c = c(n, γ1, γ2, ν, L , diam(�)). This estimate holds for a.e. τ ∈ (0, Tm).
Therefore, we have that u(m) is uniformly bounded in L∞(0, Tm; L2(�)) and Du(m)

is uniformly bounded in L p(·)(�Tm ). Now, we can estimate the right-hand side from
above by the bound M0 introduced in (1.18). This yields

sup
0≤t≤Tm

∫

�

|u(m)(·, τ )|2dx +
∫

�Tm

|Du(m)|p(·)dz ≤ c‖g(·, 0)‖2L2(�)
+ c · M0, (4.7)

where c = c(n, γ1, γ2, ν, L , diam(�)). Next, we apply the Poincaré type inequality
(2.4) to get an uniform L p(·)-bound for u(m) in the following way:

‖u(m)‖γ1

L p(·)(�Tm )
≤ c

(
‖u(m)‖

4γ2
n+2

L∞(0,Tm ;L2(�))
+ 1

)(∫

�Tm

|Du(m)|p(·) + 1dz

)

where c = c(n, γ1, γ2, diam(�), ω(·)). Using (4.7) then we have the following esti-
mate

‖u(m)‖L p(·)(�Tm ) ≤ c

[(
‖u(m)‖

4γ2
n+2

L∞(0,Tm ;L2(�))
+ 1

)(
‖g(·, 0)‖2L2(�)

+ M0

)] 1
γ1

where c = c(n, γ1, γ2, ν, L , diam(�), ω(·)). Applying again (4.7), we get the follow-
ing L p(·)-bound for u(m):

‖u(m)‖L p(·)(�Tm ) ≤ c
(
‖g(·, 0)‖2L2(�)

+ M0

)(
2γ2
n+2+1

)
1
γ1

with a constant c = c(n, γ1, γ2, ν, L , diam(�), ω(·)), where we finally used Young’s
inequality. Therefore, we have shown that u(m) is uniformly bounded in W p(·)(�Tm )

and L∞(0, Tm; L2(�)) independently of m. Thus, the solution of system (4.2) can be
continued to the maximal interval (0, T ).

Next, we want to derive an uniform bound for ∂t u(m) in W p(·)(�T )′. Therefore, we
define a subspace of the set of admissible test functions

Wm(�T ) :=
{

η : η =
m∑

i=1

diφi , di ∈ C1([0, T ])
}

⊂ W p(·)
0 (�T ).
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Then, we choose a test function

ϕ(z) =
m∑

i=1

di (t)φi (x) ∈ Wm(�T ) with di (0) = di (T ) = 0.

Note that ∂tϕ exists, since the coefficients di (t) lie in C1([0, T ]). Moreover, we
know that C1([0, T ], W 1,γ2

0 (�T )) ⊂ W p(·)
0 (�T ) and therefore, we have also ϕ ∈

W p(·)
0 (�T ). Thus, we can conclude by the definition of u(m) and (4.1) that

−
∫

�T

u(m)ϕtdz =
∫

�T

u(m)
t ϕdz = −

∫

�T

[a(z, Du(m))

− |F |p(·)−2F] · Dϕdz + 〈〈 f, ϕ〉〉�T
.

Then, we derive from the growth condition (1.16), the generalized Hölder’s inequality
(1.8), (1.14) and the fact that Lγ ′

1(0, T ; W −1,γ ′
1(�)) ⊂ W p(·)(�T )′ implies f ∈

W p(·)(�T )′, the following
∣∣∣∣
∫

�T

u(m)ϕtdz

∣∣∣∣ ≤
∫

�T

(
|a(z, Du(m))| + |F |p(·)−1

)
· |Dϕ|dz + 〈〈 f, ϕ〉〉�T

≤
∫

�T

(
|a(z, Du(m))| + |F |p(·)−1

)
· (|Dϕ| + |ϕ|) dz

+ c(γ1, γ2)‖ f ‖W p(·)(�T )′ ‖ϕ‖W p(·)(�T )

≤ c
[
‖(1 + |Du(m)|p(·)−1

+ |v|p(·)−1 + |F |p(·)−1)‖L p′(·)(�T )
+ ‖ f ‖W p(·)(�T )′

]

× [‖ϕ‖W p(·)(�T )

]
,

where c = c(γ1, γ2, L). Next, we consider the term

‖(1 + |Du(m)|p(·)−1 + |v|p(·)−1 + |F |p(·)−1)‖L p′(·)(�T )

and use (1.9) to get the following bound

‖(1 + |Du(m)|p(·)−1 + |v|p(·)−1 + |F |p(·)−1)‖L p′(·)(�T )

≤
(∫

�T

|(1 + |Du(m)|p(·)−1 + |v|p(·)−1 + |F |p(·)−1)|p′(·)dz + 1

) 1
γ1

≤
(∫

�T

(1 + |Du(m)|p(·) + |v|p(·) + |F |p(·))dz + 1

) 1
γ1

≤ c(γ1, γ2)(M0)
1
γ1 ≤ c(γ1, γ2,M0).
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Summarized, we have for every ϕ ∈ Wm(�T ) ⊂ W p(·)
0 (�T ) and an arbitrary m that

∣∣∣∣
∫

�T

u(m)ϕtdz

∣∣∣∣ ≤ c‖ϕ‖W p(·)(�T )

with a constant c = c(γ1, γ2, L , ‖ f ‖W p(·)(�T )′,M0), where c is independent of m.

This shows that u(m)
t ∈ W p(·)(�T )′ with the estimate

‖u(m)
t ‖W p(·)(�T )′ ≤ c(γ1, γ2, L , ‖ f ‖W p(·)(�T )′ ,M0).

Therefore, we have an uniform bound of u(m)
t in W p(·)(�T )′ and it follows that

{
u(m) ∈ W p(·)

0 (�T ) ⊆ Lγ1(0, T ; W 1,γ1
0 (�))

u(m)
t ∈ W p(·)(�T )′ ⊆ Lγ ′

2(0, T ; W −1,γ ′
2(�))

are bounded. This imply the following weak convergences for the sequence
{
u(m)

}
(up to a subsequence):

⎧⎪⎨
⎪⎩

u(m) ⇀∗ u weakly* in L∞(0, T ; L2(�)),

Du(m) ⇀ Du weakly in L p(·)(�T ,Rn),

u(m)
t ⇀ ut weakly in W p(·)(�T )′.

Moreover, by Theorem 1.3 we can conclude that the sequence
{
u(m)

}
(up to a subse-

quence) converges strongly in L p̂(·)(�T ) with p̂(·) := max {2, p(·)} to some function
u ∈ W (�T ). Thus, we get the desired convergences

{
u(m) → u strongly in L p̂(·)(�T )

u(m) → u a.e. in �T

for the sequence
{
u(m)

}
(up to a subsequence). Further, the growth assumption of

a(z, ·) and the energy estimate (4.7) imply that the sequence
{
a(z, Du(m))

}
m∈N is

bounded in L p′(·)(�T ,Rn). Consequently, after passing to a subsequence once more,
we can find a limit map A0 ∈ L p′(·)(�T ,Rn) with

a(z, Du(m)) → A0 as m → ∞. (4.8)

Our next aim is to show that A0 = a(z, Du) for almost every z ∈ �T . First of all,
we should mention that each of u(m) satisfies the identity (4.1) with a test function
ϕ ∈ Wm(�T ). This follows by the method of construction, see [7]. Then, we fix an
arbitrary m ∈ N. Thus, we have for every s ≤ m

−
∫

�T

u(m)
t ϕ + [a(z, Du(m)) + |F |p(·)−2F]Dϕ − f ϕdz = 0
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for all test functions ϕ ∈ Ws(�T ). Passing to the limit m → ∞, we can conclude that
for all test functions ϕ ∈ Ws(�T )

−
∫

�T

utϕ + [A0 + |F |p(·)−2F]Dϕ − f ϕdz = 0 (4.9)

with an arbitrary s ∈ N, by the convergence from above. Therefore, it follows that the
identity (4.9) holds for every ϕ ∈ W p(·)

0 (�T ). According to monotonicity assumption
(1.3), we know that for every w ∈ Ws(�T ), s ≤ m

∫

�T

[a(z, Du(m)) − a(z, Dw)]D(u(m) − w)dz ≥ 0. (4.10)

Moreover, it follows from (4.1), the conclusion from above and a test function ϕ =
u(m) − w with w ∈ Ws(�T ) that

−
∫

�T

u(m)
t ϕ + [a(z, Du(m)) + |F |p(·)−2F]Dϕ − f ϕdz = 0. (4.11)

Adding (4.10) and (4.11), we have

−
∫

�T

u(m)
t ϕ + [a(z, Du(m)) + |F |p(·)−2F]Dϕ − f ϕdz

+
∫

�T

[a(z, Du(m)) − a(z, Dw)]Dϕdz ≥ 0

with a test function ϕ = u(m) − w. This yields

−
∫

�T

u(m)
t ϕ + [a(z, Dw) + |F |p(·)−2F]Dϕ − f ϕdz ≥ 0.

Then, we test (4.9) with ϕ = u(m) − w and subtract the resulting equation from the
last estimate. Passing to the limit m → ∞, we arrive at

−
∫

�T

[A0 − a(z, Dw)]D(u − w)dz ≥ 0

for allw ∈ Ws(�T ). Since,Ws(�T ) ⊂ W p(·)
0 (�T ) is dense, we are allowed to choose

w ∈ W p(·)
0 (�T ). Hence, we choose w = u ± εζ with an arbitrary ζ ∈ W p(·)

0 (�T ).
This yields

−ε

∫

�T

[A0 − a(z, D(u ± εζ ))]Dζdz ≥ 0.
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Finally, passing to the limit ε ↓ 0, we can conclude that

∫

�T

[A0 − a(z, Du)]Dζdz = 0

for all ζ ∈ W p(·)
0 (�T ). This shows that

A0 = a(z, Du) for almost every z ∈ �T .

Moreover we have to show, that u(·, 0) = g(·, 0). First of all, we should mention that
we get from (4.9) and integration by parts the following

∫

�T

uϕt − [a(z, Du) + |F |p(·)−2F]Dϕ + f ϕdz =
∫

�

(u · ϕ)(·, 0)dx

for all ϕ ∈ W p(·)
0 (�T ) with ϕ(·, T ) = 0. Moreover, we can conclude (similar to

(4.11)) that

∫

�T

u(m)ϕt − [a(z, Du(m)) + |F |p(·)−2F]Dϕ + f ϕdz =
∫

�

(u(m) · ϕ)(·, 0)dx

for all ϕ ∈ W p(·)
0 (�T ) with ϕ(·, T ) = 0. Passing to the limit m → ∞ and using the

convergences from above we get

∫

�T

uϕt − [a(z, Du) + |F |p(·)−2F]Dϕ + f ϕdz =
∫

�

g(·, 0) · ϕ(·, 0)dx,

where u(m)(·, 0) → g(·, 0) as m → ∞, since

u(m)(·, 0) =
m∑

i=1

c(m)
i (0)φi (x)

=
m∑

i=1

∫

�

g(·, 0)φi (x)dxφi (x) →
∞∑

i=1

∫

�

g(·, 0)φi (x)dxφi (x) = g(·, 0)

asm → ∞. Furthermore,ϕ(·, 0) is arbitrary. Therefore,we can conclude that u(·, 0) =
g(·, 0).

Finally, we show the uniqueness of the weak solution. Therefore, we assume that
there exist two weak solution u and u∗ ∈ C0([0, T ]; L2(�)) ∩ W p(·)

0 (�T ) with
∂t u, ∂t u∗ ∈ W p(·)(�T )′ of the Dirichlet Problem (1.15). Thus, we have the following
weak formulations

∫

�T

[u · ϕt − a(z, Du) · Dϕ] dz = −
∫

�T

[
f · ϕ + |F |p(·)−2F · Dϕ

]
dz
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and

∫

�T

[u∗ · ϕt − a(z, Du∗) · Dϕ] dz = −
∫

�T

[
f · ϕ + |F |p(·)−2F · Dϕ

]
dz

with the admissible test function ϕ = u − u∗ ∈ W p(·)
0 (�T ), since W p(·)

0 (�T )′ is the
dual of W p(·)

0 (�T ). Hence, we can conclude that

∫

�T

[(u − u∗) · (u − u∗)t − (a(z, Du) − a(z, Du∗)) · D(u − u∗)] dz = 0.

Using the monotonicity condition (1.3), we derive at

0 ≥
∫

�T

(u − u∗) · (u − u∗)tdz = 1

2

∫

�T

∂t (u − u∗)2dz.

Finally, we have that 0 ≥ 1
2‖u(t) − u∗(t)‖2L2(�)

≥ 0 for every t ∈ (0, T ], since
u(·, 0) = u∗(·, 0) = g(·, 0). This shows the conclusion of the Theorem. ��

The proof of Theorem 1.6 is very short and the conlusion of Theorem 1.6 derives
immediately from Theorem 1.4 as follows.

Proof of Theorem 1.6 First, we define a modified vector-field ã(z, w) := a(z, w +
Dg(z)) for all z ∈ �T and w ∈ R

n . Moreover, we let v ∈ L∞(0, T ; L2(�)) ∩
W p(·)

0 (�T ) be a solution to the following initial value problem

⎧⎪⎨
⎪⎩

∂tv − div ã(z, Dv) = f − div (|F |p(·)−2F) − ∂t g in �T

v = 0 on ∂� × (0, T )

v = g(·, 0) − g on � × {0} .

(4.12)

The existence of the solution is guaranteed by Lemma 1.4, since we have f − ∂t g ∈
Lγ ′

1(0, T ; W −1,γ ′
1(�)). It is easy to show, that u = v + g is the desired solution to the

boundary value problem (1.20). From the energy estimate (1.19) with u replaced by
v, we get the following energy estimate

sup
0≤t≤T

∫

�

|v(·, t)|2dx +
∫

�T

|Dv|p(·)dz ≤ c‖v(·, 0)‖L2(�) + c · M0,

where M0 is introduced in (1.18) with v replaced by g and f replaced by f − ∂t g.
Using the fact that v = u − g, we get the energy estimate (1.22). Therefore, we can
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conclude that

sup
0≤t≤T

∫

�

|u(·, t)|2dx − 2 sup
0≤t≤T

∫

�

|g(·, t)|2dx +
∫

�T

|Du|p(·) − c(γ2)|Dg|p(·)dz

≤ c(γ2)

[
sup

0≤t≤T

∫

�

|v(·, t)|2dx +
∫

�T

|Dv|p(·)dz

]

≤ c‖g(·, 0)‖2L2(�)
+ c · M0,

since |Du|p(·) ≤ 2γ2−1
[|D(u − g)|p(·) + |Dg|p(·)] and therefore, |Du|p(·) −

2γ2−1|Dg|p(·) ≤ 2γ2−1|D(u − g)|p(·) and |u|2 − 2|g|2 ≤ 2|u − g|2. This yields the
energy estimate (1.22). Finally, we show the uniqueness of the weak solution. There-
fore, we assume that there exist two weak solution u and u∗ ∈ C0([0, T ]; L2(�)) ∩
W p(·)

g (�T ) with ∂t u, ∂t u∗ ∈ W p(·)(�T )′ of the Cauchy–Dirichlet Problem (1.20).
Thus, we consider again the difference of the weak formulations with the admissible
test function ϕ = u − u∗ ∈ W p(·)

0 (�T ), since W p(·)
0 (�T )′ is the dual of W p(·)

0 (�T ).
Hence, we can conclude that

∫

�T

[(u − u∗) · (u − u∗)t − (a(z, Du) − a(z, Du∗)) · D(u − u∗)] dz = 0.

Using the monotonicity condition (1.3), we derive at

0 ≥
∫

�T

(u − u∗) · (u − u∗)tdz = 1

2

∫

�T

∂t (u − u∗)2dz.

Finally, we have that 0 ≥ 1
2‖u(t) − u∗(t)‖2L2(�)

≥ 0 for every t ∈ (0, T ], since
u(·, 0) = u∗(·, 0) = g(·, 0). This completes the proof. ��
Acknowledgment This work has been supported by the DFG project DU315/2-1 Elliptic and parabolic
obstacle problems with irregular obstacles. Moreover, the author is grateful that he was advert to the paper
[17], since this paper was not know himself up to now.

References

1. Acerbi, E., Mingione, G.: Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math.
584, 117–148 (2005)

2. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch.
Rational Mech. Anal. 156(2), 121–140 (2001)

3. Acerbi, E., Mingione, G.: Regularity results for a class of quasiconvex functionals with nonstandard
growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30(2), 311–339 (2001)

4. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Rational
Mech. Anal. 164(3), 213–259 (2002)

5. Acerbi, E., Mingione, G., Seregin, G.A.: Regularity results for parabolic systems related to a class of
non-Newtonian fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(1), 25–60 (2004)

6. Alkhutov, YuA, Zhikov, V.V.: Existence theorems for solutions of parabolic equations with a vari-
able order of nonlinearity. (Russian) Tr. Mat. Inst. Steklova 270(2010), Differentsialnye Uravneniya i
Dinamicheskie Sistemy, p. 21–32; translation in. Proc. Steklov Inst. Math. 270(1), 15–26 (2010)

123



Compact embedding for p(x, t)-Sobolev spaces and existence theory 61

7. Antontsev, S., Shmarev, S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Mat.
53(2), 355–399 (2009)

8. Antontsev, S., Shmarev, S.: Evolution PDEs with Nonstandard Growth Conditions. Atlantis Studies in
Differential Equations. Atlantis Press, Amsterdam (2015)

9. Antontsev, S., Shmarev, S.: Parabolic equations with anisotropic nonstandard growth conditions. Free
Bound. Probl. 60(2), 33–44 (2007)

10. Antontsev, S., Shmarev, S.: Vanishing solutions of anisotropic parabolic equations with variable non-
linearity. J. Math. Anal. Appl. 361(2), 371–391 (2010)

11. Antontsev, S., Shmarev, S.: A model porous medium equation with variable exponent of nonlinearity:
existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515–545 (2005)

12. Antontsev, S., Zhikov, V.: Higher integrability for parabolic equations of p(z) Laplacian type. Adv.
Differ. Equ. 10(9), 1053–1080 (2005)

13. Baroni, P.: New contributions to nonlinear Calderón–Zygmund theory. PhD Thesis, Scuola Normale
Superiore (2013)

14. Baroni, P., Bögelein, V.: Calderón–Zygmund estimates for parabolic p(x, t)-Laplacian systems. Rev.
Mat. Iberoam. 30(4), 1355–1386 (2014)

15. Bögelein, V., Duzaar, F.: Higher integrability for parabolic systems with non-standard growth and
degenerate diffusions. Publ. Mat. 55, 201–250 (2011)

16. Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces
L p(·) and W k,p(·). Math. Nachr. 268, 31–34 (2004)
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27. Ru̇žička,M.: Electrorheological fluids:modeling andmathematical theory. Springer,Heidelberg (2000)
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