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Abstract Wegive a description of theMilnor fiber and themonodromyof a singularity
of the form f + zg = 0, where f and g define germs of plane curve singularities and
have no common components. In particular, this gives a description of the boundary
of the Milnor fiber. The description depends only on the topological type of the two
plane curve germs defined by f and g. As a corollary, we give a simple formula for
the monodromy zeta function and the Euler characteristic of the fiber in terms of an
embedded resolution of f and g.
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1 Introduction

Let � : (C3, 0) → (C, 0), (x, y, z) �→ f (x, y) + zg(x, y) be the germ of a function,
where f, g : (C2, 0) → (C, 0). We require that f and g have no common factors
and that both germs are singular (if either f or g is nonsingular, see Sect. 3). We
determine the diffeomorphism type of the Milnor fiber F�, as well as the monodromy
zeta function, in terms of a simultaneous embedded resolution graph of f and g. For
a precise statement, see Theorem 3.3 and its corollaries.

B Baldur Sigurðsson
baldur@renyi.hu

1 Alfréd Rényi Institute of Mathematics, 13-15 Reáltánoda u., 1053 Budapest, Hungary

2 Department of Mathematics, Central European University, Zrínyi u. 14, 1051 Budapest, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13163-015-0179-5&domain=pdf


226 B. Sigurðsson

The result yields, in particular, a description of the boundary ∂F�. This boundary
is known to be a plumbed manifold, see [9] and citations therein. This result was
extended in [4] for certain real analytic map germs.

Singularities of the above type play an important role in the investigations of sand-
wiched singularities, see [2].

In Sect. 2 we recall some topological properties of hypersurface singularities with
emphasis on non-isolated singularities and the singular Milnor fiber, as well as some
properties of plane curve singularities. Finally, we recall the notion of a 4 dimensional
handlebody and fix some notation for surgery.

In Sect. 3 we construct a subset T f,g of a common embedded resolution of f and
g from tubular neighbourhoods around some divisors. We obtain the space Ff,g by
performing surgery along certain embedded disks in T f,g . This surgery does not change
the homotopy type. Our main theorem states that Ff,g has the same diffeomorphism
type as theMilnor fiber F�. Furthermore, Ff,g can be decomposed into a union of sets
on which the monodromy can be completely described. As a corollary, we obtain a
simple formula for the monodromy zeta function and the Euler characteristic χ(F�).

Section 4 contains the proof of the main statement of the article, Theorem 3.3.

2 Hypersurface singularities

2.1 General results

In this subsection we recall some of the general properties of the Milnor fiber of a
holomorphic germ f : (Cn+1, 0) → (C, 0), the monodromy associated to such a
germ, and other invariants related to these two.

Let f : (Cn+1, 0) → (C, 0) be a hypersurface singularity, denote by Bδ the closed
ball with radius δ around the origin in C

n+1, and by Dε the closed disk around the
origin in C with radius ε. D will denote an arbitrary closed disk in the complex plane.
Let V f = {z ∈ C

n+1 : f (z) = 0} and S f = {z ∈ V f : ∂ f = 0}. The link of f is
defined as K = V f ∩ ∂Bδ for 0 < δ � 1.

TheMilnor fiber Ff of f is by definition the fiber f −1(ε)∩Bδ for 0 < ε � δ � 1.
Then Ff is a smooth 2n dimensional manifold, and so has the homotopy type of a
CW complex. In [8], Milnor proves that Ff is homotopy equivalent to a finite n-
dimensional CW-complex. Moreover, if s is the dimension of the singular locus S f ,
then Ff is (n − s − 1)-connected, as proved in [6].

Let E = f −1(∂Dε) ∩ Bδ . The function E → ∂Dε , z �→ f (z) is a locally trivial
fiber bundle with fiber Ff . If T = {z ∈ ∂Bδ : | f (z)| < ε}, we can define another fiber
bundle ∂Bδ\T → ∂D1, z �→ f (z)/| f (z)|. These two fiber bundles are isomorphic.
In fact, there is a bundle-isomorphism E → ∂B\T which restricts to the identity on
∂T . In particular, we have a diffeomorphism

Ff
∼= {z ∈ ∂Bδ\T : f (z)/| f (z)| = 1}. (2.1)

The singular fiber of f is defined as

Ff,sing = {z : |z| = δ, | f (z)| > 0, f (z)/| f (z)| = 1} ∪ K .
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The Milnor fiber of the singularity f (x, y) + zg(x, y) = 0 227

Usually, Ff,sing is not a smooth manifold. By the description of Ff in eq. (2.1), we
have an inclusion ι : Ff ↪→ Ff,sing . If f is an isolated singularity, ι is a homotopy
equivalence, as proved in [8]. For non-isolated singularities this does generally not
hold.

Remark 2.1 In the above definition of theMilnor fiber, and in the following discussion
of the Milnor fibration, one may replace the standard ball Bδ by a neighbourhood of
the form Bρ

δ = {z ∈ C
n+1 : ρ(z) ≤ δ} where ρ is any real analytic function ρ :

(Cn+1, 0) → [0,∞[ satisfying ρ−1(0) = {0}, see e.g. [7]. In fact, in the case n = 2,
onemay take instead of Bδ the ball B

α,β
δ = {(x, y, z) ∈ C

3 : ‖(x, y)‖α ≤ δ, |z|β ≤ δ}
for some α, β ∈ Z>0. In Lemma 4.3 we will assume that the Milnor fiber is given as
a subset of such a ball for some well chosen α, β. By replacing δ with δβ , we may in
fact assume that the Milnor fiber Ff is given by f = ε, ‖(x, y)‖ ≤ δα/β and |z| ≤ δ.

2.2 The zeta function of the monodromy

The monodromy of the Milnor fibration is a diffeomorphism m f : Ff → Ff with
the property that this bundle is isomorphic to the bundle given by Ff × I/((p, 0) ∼
(m f (p), 1)) → I/(0 ∼ 1), (p, t) �→ t . The monodromy is determined by the bundle
up to isotopy, and the bundle is determined up to bundle isomorphism by the mon-
odromy. Themonodromy induces linear isomorphisms hi : Hi (Ff ;C) → Hi (Ff ;C).

We call the product

ζ f (t) =
∞∏

i=0

det(I − thi )
(−1)i+1

the zeta function associatedwith the singularity f . This product iswell defined because
Ff is a finite CW complex, and so dimC H∗(Ff ;C) < ∞. The zeta function behaves
multiplicatively in the following sense.

Let C be a subset of Ff so that dim H∗(C;C) < ∞ and m f restricts to a homeo-
morphism mC : C → C . Let us call such a subset good with respect to m. Then mC

induces a linear automorphism hC,i on Hi (C;C) and we define

ζC (t) =
∞∏

i=0

det(I − thC,i )
(−1)i+1

.

The following propositions are well known. For the first one, see e.g. [3], I. 4.3. The
second one can be read from the results of in [1], but is easier to prove by hand.

Proposition 2.2 Assume that A, B ⊂ Ff so that A, B, A∩ B are good subsets of F f

and the interiors of A and B cover F f . Then we have ζ f (t) = ζA(t)ζB(t)ζA∩B(t)−1.

Proposition 2.3 We have χ(Ff ) = − deg(ζ f ), where we extend deg multiplicatively
to the field of rational function, i.e. deg(a/b) = deg(a) − deg(b) for a, b ∈ C[t],
b �= 0.
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228 B. Sigurðsson

The monodromy m f can be extended to a homeomorphism m f,sing : Ff,sing →
Ff,sing , which is called the singular monodromy. In fact, by defining Ff,sing,θ in the
same way as Ff,sing , only replacing the condition f/| f | = 1 by f/| f | = θ , we get a
subspace ∪θ Ff,sing,θ × {θ} ⊂ S2n+1 × S1. The projection onto S1 is a locally trivial
fiber bundle with fiber Ff,sing; its monodromy is the singular monodromy.

2.3 Plane curves

In the case n = 1, f is a plane curve singularity. For a detailed introduction
to plane curves see [10]. For a more topological treatment of general open book
decompositions, see e.g. [3] I. 3 and I. 4. Note that the first reference deals mainly
with the reduced case, whereas the second one allows arbitrary multiplicities. Write
f = f α1

1 f α2
2 . . . f αk

k where f1, . . . , fk are the k different irreducible factors of f . In
this case, K is a link in ∂Bδ . Let T be a tubular neighbourhood around K and T the
corresponding closed tubular neighbourhood. There exists a projection c : T → K
which is a trivial D-bundle, this is just the normal bundle of the link. Write further
K = ∪k

i=1Ki , where Ki = {z ∈ ∂Bδ : fi = 0}, and T = ∪k
i=1Ti , where Ti is

the component of T containing Ki . Choosing ε > 0 small enough, we can choose
T = {z ∈ ∂Bδ : | f (z)| < ε}. Then ∂Ff ⊂ ∂T . The projection c can be chosen in
such a way that the restriction ci = c|F f ∩∂ T̄i

: Ff ∩ ∂Ti → Ki is a covering map.
This map can be described in terms of the embedded resolution graph of f ; we recall
some of its properties.

Let � f = (V, E) be the embedded resolution graph of some fixed embedded res-
olution of f (see [10] for definition and properties). Here V is the set of vertices and
E the set of edges. Write V = W � A f where A f consists of the arrowhead vertices
of � and W consists of the nonarrowhead vertices. The elements of A f correspond
to the branches of f so there is a natural correspondence between the arrowhead ver-
tices of � and the components of K . We will make no distinction between the indices
i = 1, . . . , k and the corresponding a ∈ A f .

For each a ∈ A f there exists a uniquewa ∈ W so that (wa, a) ∈ E . The map f has
multiplicity αa on a, letmwa be its multiplicity onwa . Then Ff ∩Ta has gcd(αa,mwa )

components, and restricting ca to any of these components gives a covering of degree
αa/ gcd(αa,mwa ). The singular fiber Ff,sing of f is homeomorphic to the space Ff / ∼
where the equivalence relation ∼ is given by z1 ∼ z2 if and only if z1, z2 ∈ Ff ∩ Ta
for some a, and ca(z1) = ca(z2).

Themonodromym f : Ff → Ff can be chosen so that it preserves this equivalence
relation, that is, x1 ∼ x2 if and only if m(x1) ∼ m(x2). Therefore, we get a home-
omorphism Ff,sing → Ff,sing induced by the monodromy. It is clear that under the
identifications already made, this is nothing else than the singular monodromy already
constructed. Note that Ff,sing = Ff ∪ B where both B and Ff ∩ B are homotopically
equivalent to the disjoint union of copies of S1 (here, the set B is a disjoint union of sets
of the form S1 × R where R is a union of segments in the plane with one endpoint at
the origin). Moreover, these homotopy S1’s contract to actual copies of oriented S1’s.
The singular monodromy m f,sing restricts to a homeomorphism Ff → Ff which
coincides with the monodromy m f . Also, m f,sing permutes the connected compo-
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The Milnor fiber of the singularity f (x, y) + zg(x, y) = 0 229

nents of B and Ff ∩ B, respecting the orientation on the first homology. Thus, the
induced maps on the homologies of B and Ff ∩ B are zero in degree > 1, and can
be represented by the same permutation matrix in degrees zero and one. These cancel
out to give ζB(t) = ζFf ∩B(t) = 1, and therefore, by Proposition 2.2,

Proposition 2.4 If f : (C2, 0) → (C, 0) defines a plane curve singularity, then
ζ f (t) = ζ f,sing(t).

2.4 Handles and surgery

Wewill use handles to describe the Milnor fiber. More precisely, we will use 4 dimen-
sional handles of index 2 in our construction. Chapter 4 of [5] gives a good presentation
of the necessary theory.

Let X be a 4-manifold with boundary and φ : (∂D) × D → ∂X an embedding.
We obtain a new manifold X ∪φ D × D by taking the disjoint union X � (D × D)

and then identifying any point x ∈ (∂D)× D with φ(x) ∈ ∂X . The map φ induces an
isomorphismbetween the normal bundles of (∂D)×{0} in (∂D)×D andφ((∂D)×{0})
in ∂X . Since (∂D) × {0} ⊂ (∂D) × D already comes with a canonical framing, this
isomorphism can be specified by a framing on φ((∂D) × {0}). The diffeomorphism
type of the resulting manifold is determined by the following data (see for example
[5]):

• The embedding φ|(∂D)×{0} of (∂D) × {0} ∼= S1 into ∂X .
• The framing of the normal bundle of φ|(∂D)×{0}.

We will now fix some notation for surgery along embedded disks. We will assume
that all maps respect orientation when appropriate. Let X be an oriented 4 dimensional
manifold with boundary and ι : D̄ ↪→ X an embedding of the closed disk. We
assume that the boundary ∂ D̄ is embedded into the boundary ∂X , and that ι(D̄) is
transversal to ∂X . We can find a parametrisation ψ : D̄ × D̄ → X of a closed tubular
neighbourhood of ι(D̄) so that ψ(0, z) = ι(z), and ψ |D̄×∂ D̄ is a parametrisation of
a tubular neighbourhood of ι(∂ D̄) ⊂ ∂X . Define X ′ = X\ψ(D × D̄). For k ∈ Z

let X ι,k = X ′ ∪tk D̄ × D̄, where the glueing map tk : D̄ × ∂ D̄ → X ′ is given by
tk(x, y) = ψ(x, xk y).

Definition 2.5 We call X ι,k constructed above the kth twist of X along ι(D̄).

Note that X ι,k is obtained by thinking of ψ(D̄ × D̄) as a handle, removing it, and
then attaching it again via a different glueing map. This construction is very similar
to Dehn surgery. In fact, ∂X ι,k is nothing else than ∂X , to which a Dehn surgery with
coefficient 1/k has been applied along ι(∂ D̄).

3 Description of the fiber

In this section we start by fixing some notation for an embedded resolution of the
plane curves f and g. Using this data, we define subsets of the resolution which, after
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a simple surgery provide theMilnor fiber by Theorem 3.3. Let f, g : (C2, 0) → (C, 0)
be any plane curve singularities without common factors and define

�(x, y, z) = f (x, y) + zg(x, y).

Before going through these constructions, we make a remark on the case when f or g
is nonsingular, as well as on the singular locus of �. Clearly, if f is nonsingular, then
� is nonsingular as well. If g is nonsingular, we may assume g(x, y) = y. Writing
f (x, y) = f0(x)+ y f1(x, y), we find f0 �= 0 since f, g have no common components.
Thus, if k is the order of f0, then it has an kth root x̂ . Replacing the coordinates x, y, z
with x̂, y, z+ f1(x, y), we find that� is equivalent to xn + yz, i.e. is of type An . Now,
assuming that f, g are both singular, it is clear that the singular locus of � contains
the z axis. Furthermore, we have ∂z� = g, so � restricts to f along S�. We therefore
get f = g = 0 along S�, which implies that the singular set is precisely the z axis.

3.1 An embedded resolution of f and g

Consider a fixed common embedded resolutionφ : V → C
2 of f and g. The resolution

graph of this embedded resolution will be denoted by �. Denote its set of vertices by
V and the set of edges by E . We write V = W � A where W is the set of non-
arrowhead vertices and A the set of arrowhead vertices. We decompose A further as
A = A f � Ag , where the elements of A f and Ag correspond to components of the
strict transform of f and g respectively. A vertex v ∈ V corresponds to a component
Ev of the exceptional divisor φ−1(0), or the strict transform of f or g. In each case,
we denote by mv the multiplicity of f on Ev , and lv the multiplicity of g on Ev . In
particular, mv = 0 if and only if v ∈ Ag and lv = 0 if and only if v ∈ A f .

Let f ′ = f ◦ φ, g′ = g ◦ φ and F ′
f = ( f ′)−1(ε) ∩ φ−1(Bδ) = φ−1(Ff ). The map

V \ φ−1(0) → C
2\{(0, 0)}, r → φ(r) is a diffeomorphism. In particular, it restricts

to a diffeomorphism F ′
f → Ff .

We have a map φ × idC : V × C → C
3 which restricts to a diffeomorphism

(V \φ−1(0)) × C → C
3\{(0, 0, z) : z ∈ C}. We set �′ = � ◦ (φ × idC), and

F ′
� = (φ × idC)−1(F�). Clearly, F ′

� is diffeomorphic to F�.

3.2 Construction of the fiber

Using the resolution graph � defined above, we now construct a space which, as we
will see in the next subsection, is diffeomorphic to the Milnor fiber. For each w ∈ W ,
choose a small tubular neighbourhood Tw around Ew in V and a map bw : Tw → Ew

which is a smooth open disk bundle. Denote by Tw the corresponding closed tubular
neighbourhood. These can be chosen so that they satisfy the following properties:

• If w,w′ ∈ W and (w,w′) ∈ E , then we have b−1
w (Ew ∩ Ew′) = Ew′ ∩ Tw and

b−1
w (Ew ∩ Tw′) = Tw ∩ Tw′ .

• If w ∈ W , a ∈ A and (w, a) ∈ E , then b−1
w (Ew ∩ Ea) = Ea ∩ Tw.
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The Milnor fiber of the singularity f (x, y) + zg(x, y) = 0 231

Then the set T = ∪w∈WTw is the plumbed 4-manifold with plumbing graph �.
If w,w′ ∈ W and e = (w,w′) ∈ E , then we let Te = Tw ∩ Tw′ . If w ∈ W and

a ∈ A so that e = (w, a) ∈ E , then we pick a small disk-shaped neighbourhoodUa in
Ew around Ew ∩ Ea and let Ta = Te = b−1

w (Ua). Then Ta is a tubular neighbourhood
around Ea in T .

TheMilnor fiber F� can be described in terms of the embedded resolution graph �,
with the additional arrowhead vertices, and all vertices decorated by the multiplicities
of f ′ and g′. This description will depend on which of the two functions f ′ and g′ has
higher multiplicities on the exceptional divisors. The following definition makes this
precise.

Definition 3.1 • Let W1 = {w ∈ W : mw ≤ lw} and W2 = W\W1. Let �i be the
subgraph of � generated by the set Wi . Define Ti = ∪w∈Wi Tw.

• Let A f,i = {a ∈ A f : wa ∈ Wi } and T f,i = ∪a∈A f,i Ta . Repeat this with f
replaced by g.

• Choose a small ε > 0 and let Tε be a small tubular neighbourhood around f ′−1(ε)∩
T .

• Let T ′ be a small tubular neighbourhood around the exceptional divisor inside T .
This is chosen after choosing ε. In particular, T

′ ∩ T ε = ∅.
• Let T f,g = [T f,1\T ′] ∪ T ε ∪ [T 2\(T ′ ∪ Tg,2)], where denotes closure.
• Let T ′

g be a tubular neighbourhood around the strict transform of g, chosen small
with respect to the above.

Definition 3.2 We define Ff,g to be a twisting of T f,g along the strict transform of g.
More precisely, for any a ∈ Ag , the set Ea ∩ T f,g is a union of mw disks embedded in
T f,g as in Sect. 2.4, where w ∈ W so that (a, w) ∈ E . Take the la th twist along each
of these disks.

3.3 Main theorem and corollaries

We keep here the notation defined in the previous subsections.

Theorem 3.3 The Milnor fiber F� is diffeomorphic to the space F f,g constructed
above. The monodromy can be chosen to satisfy the following

• The set T f,1\T ′ is invariant under m� and the restriction is homotopic to the
identity.

• We have m�|Ff = m f

• The set T2\(T ′ ∪ T g,2) is invariant under m� and the restriction is homotopic to
the identity.

• For any a ∈ Ag,2, the monodromy m� permutes the mwa handles corresponding
to a cyclically.

The proof of Theorem 3.3 is postponed until Sect. 4.

Corollary 3.4 For w ∈ W , let δw, f be the number of vertices inW ∪ A f connected
to w by an edge.
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232 B. Sigurðsson

(i) The Euler characteristic of F� is given by the formula

χ(F�) =
∑

w∈W1

mw(2 − δw, f ) +
∑

a∈Ag,2

mwa .

(ii) The zeta function associated to � is given by the formula

ζ�(t) =
⎛

⎝
∏

w∈W1

(1 − tmw)δw, f −2

⎞

⎠

⎛

⎝
∏

a∈Ag,2

(1 − tmwa )−1

⎞

⎠ (3.1)

Proof of corollary By Proposition 2.3, it is enough to prove Eq. (3.1).
Consider first the action ofm� on T f,g\T2. Using a similar argument as in Sect. 2.3,

we see that the zeta function of the restriction is the same as that of the restriction to
Ff ∩ T 1\T2. An A’Campo type argument shows that this zeta function is

∏

w∈V(�1)

(1 − tmw)δw, f −2. (3.2)

Consider now the set T 2 ∩ T f,g . It has the homotopy type of a 3-manifold with
some solid tori removed. In particular, χ(T 2\T ′) = 0.We can now use the same proof
as that of Corollary 3.5(ii) to see that the zeta function of the restriction to T f,g ∩ T 2
is (

∏
a∈Ag,2

(1 − tmwa )−1).

The intersection (T f,g\T2) ∩ (T f,g ∩ T 2) is a disjoint union of circles which are
cyclically permuted by themonodromy. The zeta function of themonodromy restricted
to these circles is therefore 1.

Finally, using Proposition 2.2, we can glue these zeta functions together to get
Eq. (3.1). ��
Corollary 3.5 (i) If mw ≤ lw for all w ∈ W , then F� and F f,sing have the same

homotopy type and ζ� = ζ f .
(ii) Ifmw > lw for allw ∈ W , then F� has the samehomotopy type as∨m−1S2, where

m = ∑
a∈Ag(�2)

mwa . The zeta function is given by ζ�(t) = ∏
a∈Ag

(1 − tmwa ).

Proof In (i) we have T2 = ∅. Twisting the handles corresponding to elements a ∈ Ag

does not alter the homotopy type. Therefore, F� has, by Theorem 3.3, the same
homotopy type as T ε ∪ T f,1. Homotopically, this space is the same as Ff , where we
have glued the boundary components to some circles. This can easily be seen as the
same construction of Ff,sing . Furthermore, this homotopy equivalence can be seen as
invariant under the actions of m� and m f , proving ζ� = ζ f,sing and thus ζ� = ζ f by
Proposition 2.4. For a second proof of this statement, one may compare A’Campo’s
formula for ζ f with Corollary 3.4.

In the case of (ii), A f,1 = ∅. We have A = T 2\(T ′ ∪ Tg,2) and T 2 = T . Also,

T \T ′
is homotopically just ∂T = S3 because the graph � describes a modification

of the smooth germ (C2, 0). In fact, T \T ′ is a collar neighbourhood around ∂T ,
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The Milnor fiber of the singularity f (x, y) + zg(x, y) = 0 233

so T \T ′ = S3 × I . Furthermore, for a ∈ Ag , the pair (T \T ′, T a ∩ (T \T ′)) is
isomorphic to the pair (S3 × I, S × I ) where S ⊂ S3 is a solid torus. Therefore, A is
homotopically S3 with some solid tori removed, one for each element of Ag . What’s
more, the attaching spheres of the handles are meridians of these tori. But removing a
solid torus from a 3manifold and addingm handles attached to meridians is equivalent
to removing m spheres from the original manifold. This gives the same as ∨m−1S2.

The statment about ζ� follows from Corollary 3.5 ��
Example 3.6 Let f (x, y) = xd and g = yd where d ≥ 2. Then we can choose the
resolution V so thatV has a single element, sayV = {v}. Thenmv = lv = d, so we can
apply Corollary 3.5(i). The Milnor fiber F� associated to � has the same homotopy
type as Ff,sing , which is up to homotopy a bouquet of d − 1 two-spheres. Note that in
spite of this, � is not isolated. The zeta function of this singularity is ζ(t) = td − 1.

4 Proof of Theorem 3.3

In this final section we prove Theorem 3.3. To do so, we project the embedded res-
olution V × C → C

3 down to V , and study the image of the fiber F ′
�. Denote the

projection by p. Choose r ∈ V with the property that g′(r) �= 0. Assume further that
there exists a z ∈ C such that �′(r, z) = ε. We can solve this equation for z, namely

z = ε − f ′(r)
g′(r)

.

This means that p restricts to an injection F ′
�\(Stg ×C) → V , where Stg is the strict

transform of g. Define a function Z : V \Stg → C by Z(r) = (ε − f ′(r))/g′(r). This
way, we get a diffeomorphism F ′

�\Stg × C → X where

X = {r ∈ V \Stg : |Z(r)| ≤ δ}.

Weobtain a description of F�
∼= F ′

� by considering the sets F ′
�∩ p−1(T \Tg) and F ′

�∩
p−1(T g), and how they glue together along their intersection. In fact, the following
theorem is a reformulation of Theorem 3.3 in this language. Proving Theorem 4.1
therefore finishes the proof of Theorem 3.3.

Theorem 4.1 The following items determine the Milnor fiber and the monodromy.

(i) Let e = (a, w) ∈ E where a ∈ A f,1 and w ∈ W . There is a diffeomorphism
between p(F ′

�)∩T e and T e\T ′ inducing identity on F ′
f ∩∂T e and its normal

bundle in ∂T e. The set F ′
� ∩ p−1(T e) is invariant under the monodromy, up

to homotopy the monodromy action is trivial on this set.
(ii) The set p(F ′

�) ∩ [T 1\(T f ∪ T ′
g ∪ T2)] is a tubular neighborhood around

F ′
f ∩ [T 1\(T f ∪ T ′

g ∪ T2)] in T1\(T f ∪ T ′
g ∪ T2).

The set F ′
� ∩ p−1[T 1\(T f ∪ T ′

g ∪ T2)] is invariant under the monodromy. It can
be chosen to coincide with m f on the subset F ′

f ∩ [T 1\(T f ∪ T ′
g ∪ T2)] which

is a strong homotopy retract.
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(iii) There is a diffeomorphism between p(F ′
�) ∩ T 2\T ′

g and T 2\(T ′ ∪ T ′
g) inducing

identity on F ′
f ∩ ∂(T ′ ∪ T ′

g) and its normal bundle in ∂(T ′ ∪ T ′
g). This set is

invariant under the monodromy; it’s action is trivial up to homotopy.
(iv) Let e = (a, w) ∈ E where a ∈ Ag and w ∈ W . The set p−1(T

′
g) ∩ F ′

� is a
disjoint union of mw 4 dimensional 2-handles glued to the manifold p(F ′

�)\T ′
g.

The attaching spheres are those boundary components of F ′
f ∩(T \T ′

e)which are

in T
′
e. The normal bundle of the attaching spheres has a canonical trivialisation

since each component is the boundary of a disk in T ′
e . The handles are attached

with the (−la)th framing. These handles are invariant under the monodromy, its
action permutes them cyclically.

Proof of (i) We can choose coordinates around the point Ew ∩ Ea so that f ′(u, v) =
umvn and g(u, v) = ul , where m = mw, n = ma and l = lw. We can also suppose
that T e = {(u, v) : |u|, |v| ≤ ρ} where ρ is some number so that ε � ρ. By choices
made, we have m ≤ l and n > 0.

Consider the space T̃e = {(u, ṽ) : |u|, |ṽ|1/n < ρ} and the map πe : T e → T̃e
given by (u, v) �→ (u, ṽ) = (u, vn). We have then maps

Ze(u, v) = umvn − ε

ul
, Z̃e(u, ṽ) = um ṽ − ε

ul

satisfying Z̃e◦πe = Ze. The function |Z̃e|2 has the divisor um ṽ = ε as a nondegenerate
criticalmanifold of index 0. This holds on T̃e aswell as ∂ T̃e.Wewill show that |Z̃e|2 has
no other critical manifolds (in the interior or on the boundary) in the preimage |Z̃e|2 ≤
δ2. This will show that the set F̃e = πe(p(F ′

�)∩Te) is a tubular neighbourhood around
the submanifold given by um ṽ = ε, that is, πe(F ′

f ). Note first that the coordinate u

takes nonzero values on F̃e, since Ze has a pole along the exceptional divisor. We have
then ∂ṽZe(u, ṽ) = um−l �= 0 on F̃e. This shows that |Z̃e|2 has no critical points in
the interior T̃e, nor on the part of the boundary given by |u| = ρ. For the rest of the
boundary, we will show that if |ṽ| = ρn , then ∂u Ze �= 0. But we have

∂u Z̃e = (m − l)um−l−1ṽ + lu−l−1ε = ((m − l)um ṽ + εl)u−l−1.

If m = l, then this shows that the partial derivative does not vanish. Assuming m < l
we find that ∂u Z̃e(u, ṽ) = 0 implies um = −εl/((m − l)ṽ). This implies

|Z̃e(u, ṽ)| = | − εl
(m−l)ṽ − ε|

| − εl
(m−l)ṽ |l/m =

∣∣∣∣
l

(m − l)ρn
− 1

∣∣∣∣

∣∣∣∣
(m − l)ρ

l

∣∣∣∣
−l/m

ε1−l/m,

so that |Ze(u, ṽ)| is large, since ε is small and l > m. In particular, |Z̃e| > δ.
We have now showed that F̃e is a tubular neighbourhood around the divisor um ṽ =

ε. But the same is true about the set T̃e\πe(T ′). Thus, we have a diffeomorphism
ψ̃e : F̃e → T̃e\πe(T ′) and we can assume that ψ̃e equals the identity on a small
neighbourhood around the divisor um ṽ = ε. Now, the set {ṽ = 0} ∩ F̃e is an annulus
given by |u| ≥ |ε/δ|1/ l . One can now easily see that the map ψ̃e can also be chosen
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to map this annulus into πe(Ea) = {ṽ = 0}. Finally, by considering the symmetries
of F̃e and T̃e, one can assume that ψ̃e commutes with multiplying ṽ by a primitive nth
root of unity. This, combined with the fact that Fe = π−1

e (F̃e), shows that ψ̃e transfers
to a diffeomorphism ψe : Fe → Te. ��
Lemma 4.2 The map F ′

� ∩ [(T 1\(T f ∪ T2)) × C] → D̄δ , (r, z) �→ z is proper, with
surjective derivative everywhere. The same holds for its restriction to the boundary.

Proof Themap is proper, since its domain is compact. The surjectivity of the derivative
requires more attention:

Let (r0, z0) ∈ F ′
� ∩ [(T 1\(T f ∪ T2)) × C]. Then, we have three cases: in the first,

there is a unique w ∈ W1 so that r0 ∈ Tw. Secondly, there might be exactly two
elements w,w′ ∈ W1 such that r0 ∈ Tw ∩ Tw′ . Thirdly, we might have r0 ∈ Te for
some e = (w, a) ∈ E for some w ∈ W1 and a ∈ Ag,1. In any case, we can find
coordinates u, v in a neighbourhood U around r0 in V such that f ′(u, v) = umvl and
g′(u, v) = αulvk for m = mw, l = lw and some non-vanishing function α : U → C.
We havem ≤ l, and one out of three, depending on the cases above: n = k = 0, n ≤ k
or n = 0,k > 0. In any case, we have n ≤ k.

By the inverse function theorem, the map F ′
� ∩ U → C

2, (u, v, z) → (v, z) is a
coordinate chart, provided that ∂u�′ �= 0 on F ′

� ∩U . We have

∂u�
′(u, v, z) = ∂u(u

mvn + zαulvk) = mum−1vn + z((∂uα)ulvk + αlul−1vk)

= um−1vn(m + zul−mvk−n(∂uαu + αl)).

The function ul−mvk−n(∂uαu + αl) is continuous, and therefore bounded on U (we
can assume that U is relatively compact). Since |z| ≤ δ, we get

|zul−mvk−n(∂uαu + αl)| � m.

proving that ∂u�
′ �= 0 on F ′

� ∩ (U × C). Therefore, the function z is a part of a
coordinate system around (r0, z0). In particular, its derivative is surjective.

For the last statement, the same reasoning applies; the equation ∂u�
′ �= 0 implies

that z (as two real variables) gives part of a coordinate system on the boundary. We
omit the details. ��
Proof of (ii) The argument in the proof of Lemma 4.2 can be transferred directly to
the boundary components p(F ′

�)∩∂T g,1.We can therefore use Ehresmann’s fibration
theorem to get that the restriction of Z to the set p(F ′

�) ∩ [T 1\(T f ∪ Tg ∪ T2)] is a
locally trivial fibration over Dδ . Since Dδ is contractible, this fibration is trivial. The
fiber over 0 ∈ Dδ is simply F ′

f ∩ [T 1\(T f ∪ Tg ∪ T2)]. Therefore, the set p(F ′
�) ∩

[T 1\(T f ∪ Tg ∪ T2)] is a product F ′
f ∩ [T 1\(T f ∪ Tg ∪ T2)] × D. This proves the

statement. ��
Lemma 4.3 We may assume that the inequality | f ′/g′| < δ/2 holds in T 2\(T1 ∪Tg).

Proof Let x, y be some generically chosen coordinates onC2. Assume that theMilnor
fibration is given inside a ball of the form Bδ = Bα,β

δ for some α, β ∈ Z>0 as in
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Remark 2.1. We may then assume that F ′
� is given by inequalities ‖(x ′, y′)‖ ≤ δβ/α ,

where x ′, y′ are the pullbacks of x, y, and |Z | < δ. In T 2\(T1 ∪ Tg), the function
f ′/g′ vanishes along E by definition of W2. Since x ′ and y′ vanish along E only we
have | f ′/g′| ≤ C‖(x ′, y′)‖α/β in T 2 for some C > 0 and for a suitably small α/β.
Multiplying f with 2C−1, however, gives an equivalent singularity because the germ
C−1 f + zg = C−1( f + Czg) is equivalent with the germ f + zg via the coordinate
change (x, y, z) ↔ (x, y,Cz). Combining the two inequalities obtained so far yields
| f ′/g′| < 2δ. ��
Proof of (iii) We start by investigating the intersection of p(F ′

�) with the smaller set
T 2\(T1 ∪ Tg). The remaining parts will be considered separately.

As before, we have

p(F ′
�) ∩ T 2\(T1 ∪ Tg) = {r ∈ T 2\(T1 ∪ Tg) : |Z(r)| ≤ δ}.

We will start by showing that |Z |−1 is a Morse–Bott function in T 2\(T1 ∪ Tg) which
defines a small tubular neighbourhood around the exceptional divisor. More precisely,
let

N = {r ∈ T 2\(T1 ∪ Tg) : |Z(r)|−1 < δ−1}.

We will prove that N is a tubular neighbourhood around the exceptional divisor in
T 2\(T1 ∪ Tg), and that it can be made arbitrarily small by shrinking ε. The restriction
of g′ to T 2\(T1 ∪ Tg) is a holomorphic function vanishing exactly on the exceptional
divisor. Therefore, the set {r ∈ T 2\(T1 ∪ Tg) : |g′(r)| ≥ 2ε/δ} is the complement of
a small neighbourhood around the exceptional divisor. If r ∈ T 2\(T1 ∪ Tg) satisfies
|g′(r)| ≥ 2ε/δ, we get

|Z(r)| =
∣∣∣∣
f ′(r) − ε

g′(r)

∣∣∣∣ ≤
∣∣∣∣

ε

g′(r)

∣∣∣∣ +
∣∣∣∣
f ′(r)
g′(r)

∣∣∣∣ .

By the choice of r , we have ε/|g′(r)| < δ/2. By Lemma 4.3, we also have
| f ′(r)/g′(r)| ≤ δ/2. Therefore, we get |Z(r)| ≤ δ. We have proven

N ⊂ N ′ := {r ∈ V : |g′(r)| ≤ 2ε/δ}\(T1 ∪ Tg).

The set N ′ above can be made arbitrarily small, as a neighbourhood around the excep-
tional divisor. To show that N is a tubular neighbourhood, we will prove that the
derivative of Z does not vanish in N ′ outside the exceptional divisor. Choose coor-
dinates u, v around r ∈ V such that f ′(u, v) = umvl and g′(u, v) = αulvk where
m = mw, l = lw for some w ∈ W2 for which r ∈ Tw and either there is a w′ ∈ W2
so that n = mw′ and k = lw′ , or n = l = 0. In any case, we have m > l and n ≥ k.
We calculate:

∂u Z(r) = ∂

∂u

umvn − ε

αulvk
= mum−1vnαulvk − (umvn − ε)((∂uα)ul − αlul−1)vk

(αulvk)2
.
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Simplifying, we get ∂u Z(r) �= 0 if and only if

mumvnα − (umvn − ε)((∂uα)u − αl) �= 0. (4.1)

By assumption, we have |Z(r)| > δ, that is, |umvn − ε| > δ|αulvk |. Thus, we prove
Eq. (4.1) by showing that

|mum−lvn−k | < δ|(∂uα)u − αl|. (4.2)

The number |(∂uα)u − αl| is bounded from below independently of δ and ε, because
|u| is small with respect to αl, which is bounded below. The functions |um−lvn−k | and
g′(u, v) have the same zero set, thus there is a C, γ ∈ R+ so that |mum−nvl−k | <

C |g′(u, v)|γ ≤ C(2ε/δ)γ � δ. This proves Eq. (4.2). Hence, the set N is a tubular
neighborhood around the exceptional divisor in T 2\(T2 ∪ Tg).

Now consider an edge e = (w1, w2) ∈ E where wi ∈ Wi . We want to prove
that there is a diffeomorphism between Te ∩ p(F ′

�) and T e\T ′ fixing the intersection
F ′
f ∩ ∂T e and its normal bundle inside ∂T e.

Consider coordinates u, v on Te so that f = umvn and g = ulvk . Let τ1, τ2 ∈ C

with |τ1| = 1. Then the set {(u, v) ∈ T e : Arg(u) = τ1, Arg(v) = τ2, |Z(u, v)| ≤ δ}
is a disk. In fact:

• If τm1 τ n2 �= 1, then |Z |2 restricts to a Morse function on the manifold {(u, v) :
Arg(u) = τ1, Arg(v) = τ2}. There are no critical points on the interior. Restricting
Z to the boundary of this submanifold, we get exactly one critical point with index
zero and at most one with index one.

• If τm1 τ n2 = 1, then|Z |2 restricts to a Morse–Bott function on the submanifold
{(u, v) : Arg(u) = τ1, Arg(v) = τ2}, the critical set being the intersection with
F ′
f .

Proving these two statements is a simple exercise, it boils down to showing that certain
partial derivatives do not vanish. The results show that each fiber of the argument map
(τ1, τ2) is abstractly a disk. One is therefore free to choose a diffeomorphism from
this disk to the set of points (u, v) where the argument of each coordinate is fixed, to
the set of points with corresponding arguments in T e ⊂ T ′. This can be done in such
a way that we get a diffeomorphism with the desired properties.

The last thing we need to consider is the set p(F ′
�)∩ (T g,2\T ′

g,2). Let a be inAg,2.

We have local coordinates u, v on Ta so that f = um and g = ulvk , where m = mwa ,
l = lmw and k = ma . The set p(F ′

�) ∩ (T a\T ′
a) can be given by equations |Z | ≤ δ

and |v| ≥ η for some η � ε, that is,

{
(u, v) ∈ T a :

∣∣∣∣
um − ε

ulvk

∣∣∣∣ ≤ δ, |v| ≥ η

}

We proved already, that the intersection p(F ′
�) ∩ {|v| = ρa} is the complement of a

tubular neighbourhoodaround the exceptional divisor in the set {|v| = ρa}. Take apoint
(u0, v0) ∈ p(F ′

�)∩ T a\T ′
a . From the formula Z(u, v) = (um − ε)/(ulvk) we see that
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the segment between (u0, v0) and (u0, (ρa/|v0|)v0) is contained in p(F ′
�)∩ (T a\T ′

a).
From this, one quickly observes that the inclusion p(F ′

�) ∩ (T a\T ′
a) → T a\T ′

a is
isotopic to the inclusion of (T a\T ′

a)\T ′ fixing a neighborhood around both F ′
f ∩

(T a\T ′
a) and {|v| = ρa}.

Finally, all these diffeomorphisms glue together to the desired map.
For the monodromy, we notice that the diffeomorphism type of the pair

(F ′
�,θ , p

−1(T 2\(T1 ∪ Tg)) ∩ F ′
�,θ ), where θ ∈ S1 and F ′

�,θ = �′−1(θε), is inde-

pendent of θ , that is, p−1(T 2\(T1∪Tg))∩ F ′
�,θ is a subbundle of the Milnor fibration.

The description of this fiber above is independent of θ however, and therefore gives a
trivialisation of the bundle. Therefore, the monodromy acts trivially, up to homotopy,
on this subset. ��
Proof of (iv) Let a ∈ Ag . As before, we consider coordinates u, v on T a so that f ′ =
um and g′ = ulvk . Then Ha := F ′

� ∩ p−1(T
′
a) is the set of points (u, v, z) satisfying

|z| ≤ δ, |v| ≤ η for some η � ε and the equality�′ = ε. We show first that abstractly,
this set is a disjoint union of bidisks. Clearly, themapπa = (v, z) : Ha → Dη×Dδ is a
proper surjection which maps boundary points to boundary points. Also, the preimage
of (0, 0) is the set {(u, 0, 0) : um = ε}, and so contains exactly m points. By the
implicit function theorem, if ∂u�

′ �= 0 on H , the map πa is a local diffeomorphism,
and so a covering map. Furthermore, since the bidisk is contractible, such a covering
map must be a product. We get

∂�′(u, v, z) = ∂u(u
m + zulvk) = mum−1 + zlul−1vk .

The function |mum−1| is bounded from below by a positive number on Ha , since it
is continuous and does not vanish. Similarly, the function |zlul−1| is bounded from
above. Taking η small enough, we get |mum−1| > |zlul−1vk | on Ha . This gives
∂u�

′ �= 0 as required.
We have now shown that F ′

� is given by glueing handles (such as h) to T f,g\T ′
g in

the way described in Sect. 2.4. We only have to determine the twisting coefficient. We
already have a parametrization of the handle h by (u, v). The handle already contained
in T f,g is parametrized by (u − ξ, v), where ξ is some mth root of unity. Denote this
parametrization by ψ : D̄ × D̄ → T f,g .

Now, for any r ∈ h with coordinates (z, v) we have p(r) = (U (z, v), v) where

zU (z, v)lvk = U (z, v)m − ε

and we assume that U (z, v) is in a small neighbourhood around some mth root of ε.
This shows that the twisting coefficient used to glue h is k, as stated.

To finish the proof, we must consider the action of the monodromy on the handles
corresponding to a ∈ Ag,2. But the central disks of these handles are given by F ′

f . It
follows that they are permuted cyclically. ��
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