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394 S. J. Dilworth et al.

1 Introduction

In this short note,we calculate theLebesgue constants associatedwith the t-greedy, and
the Chebyshev t-greedy, algorithms in Banach spaces (thus measuring the efficiency
of these approximation methods, in the worst case).

Throughout this paper, X is a separable infinite dimensional Banach space. A family
(ei , e∗

i )∈∈N ⊂ X × X∗ is called a bounded biorthogonal system if:

1. X = span [ei : i ∈ N].
2. e∗

i (e j ) = 1 if i = j , e∗
i (e j ) = 0 otherwise.

3. 0 < inf i min{‖ei‖, ‖e∗
i ‖} ≤ supi max{‖ei‖, ‖e∗

i ‖} < ∞.

For brevity, we refer to (ei ) as a basis. Note that Condition (3) is referred to as (ei )
being seminormalized. In this note, only seminormalized bases are considered.

It is easy to see that, for any x ∈ X , limi e∗
i (x) = 0, and supi |e∗

i (x)| > 0, unless
x = 0.

Bases as above are quite common. It is known [7, Theorem 1.27] that, for any c > 1
any separable Banach space has a bounded biorthogonal system (a Markushevitch
basis) with 1 ≤ ‖ei‖, ‖e∗

i ‖ ≤ c, and X∗ = spanw∗ [e∗
i : i ∈ N].

To consider the problem of approximating x ∈ X by finite linear combinations of
ei ’s, introduce some notation. For x ∈ X set supp x = {i ∈ N : e∗

i (x) �= 0}. For finite
A ⊂ N, set PAx = ∑

i∈A e
∗
i (x)ei . If A

c = N\A is finite, write PAx = x − PAc x .
The best n-term approximation for x ∈ X is defined as

σn(x) = inf| supp y|≤n
‖x − y‖,

while the best n-term coordinate approximation is

σ̃n(x) = inf|B|≤n
‖x − PBx‖.

It is easy to see that limn σn(x) = 0, and

σn(x) = inf| supp y|=n
‖x − y‖ and σ̃n(x) = inf|B|=n

‖x − PBx‖

(the second equality is due to the fact that limi e∗
i (x) = 0).

We also consider the n term residual approximation

σ̂n(x) = ‖x − P[1,n]x‖.

We say that (ei ) is a Schauder basis if limn σ̂n(x) = 0 for every x ∈ X (in this case,
also limn σ̃n(x) = 0). Many commonly used bases (such as the Haar basis or the
trigonometric basis in L p, for 1 < p < ∞) are, in fact, Schauder bases.

Note that calculating σn(x) and σ̃n(x) is next to impossible, since all coordinates
of x are in play. Therefore, one can naively look for a good n-term approximant of
x by considering the n largest (or “nearly largest”) coefficients. This is done using
the weak greedy algorithm. To define this algorithm, fix the relaxation parameter
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Lebesgue constants 395

t ∈ (0, 1]. Consider a non-zero x ∈ X . A set A ⊂ N is called t-greedy for x if
inf i∈A |e∗

i (x)| ≥ t supi /∈A |e∗
i (x)| (by the above, A is finite).When there is no confusion

about x , we shorten this term to t-greedy set. Suppose ρ = ρx : N → N is a t-greedy
ordering—that is, {ρ(1), . . . , ρ(n)} is t-greedy for every n. In general, a t-greedy
ordering is not unique. Note that {ρ(n) : n ∈ N} = Sx := {n ∈ N : e∗

n(x) �= 0} if the
setSx is infinite. On the other hand, if |Sx | = m < ∞, then {ρ(1), . . . , ρ(m)} = Sx

while ρ(i) /∈ Sx for i > m.
An n-term t-greedy approximant of x is defined as Gt

n(X) = PAn x , where An =
{ρ(1), . . . , ρ(n)}, and ρ is a t-greedy ordering for x . We define an n-term Chebyshev
t-greedy approximantCGt

n(x) as y ∈ span [ei : i ∈ An] so that ‖x−y‖ isminimal.We
stress that these approximants are not unique, and a fortiori, the operators x �→ Gt

n(x)
and x �→ CGt

n(x) are not linear.
For more information on greedy approximation algorithms, we refer the reader to

the survey papers [13,18], as well as to the recent monograph [14].
When t = 1, we omit it, and use the terms “greedy set”, (“Chebyshev”) “greedy

approximant”, as well as notation Gn(x) and CGn(x). A basis (ei ) is called quasi-
greedy if its quasi-greedy constant is finite:

K = sup
‖x‖=1

sup
n∈N

sup ‖Gn(x)‖ < ∞,

with the inner sup taken over all realizations ofGn(x). In [17] it was shown that a basis
is quasi-greedy if and only if limn Gn(x) = x for any x ∈ X , and any (equivalently,
some) choice of the sequence Gn(x). By [9], for a quasi-greedy basis we also have
limn Gt

n(x) = x for any x ∈ X , and any choice of the sequence Gt
n(x).

The goal of this paper is to estimate the efficiency of the t-greedy and t-Chebyshev
greedy methods (in the worst case), by comparing ‖x − Gt

n(x)‖ and ‖x − CGt
n(x)‖

with the best n-term approximation σn(x), and similar quantities. This is done through
estimating the Lebesgue constants and its relatives:

The Lebesgue constant L(n, t) = sup
x∈X,σn(x) �=0

‖x − Gt
n(x)‖

σn(x)
.

The Chebyshevian Lebesgue constant Lch(n, t) = sup
x∈X,σn(x) �=0

‖x − CGt
n(x)‖

σn(x)
.

The residual Lebesgue constant Lre(n, t) = sup
x∈X,σ̂n(x) �=0

‖x − Gt
n(x)‖

σ̂n(x)
.

We stress that the suprema in the above inequalities are taken over all x ∈ X , and all
possible realizations of the (Chebyshev) weakly greedy algorithm. A basis is called
greedy if supn L(n, 1) < ∞, and partially greedy if supn Lre(n, 1) < ∞.

To estimate the Lebesgue constants, we quantify some properties of (ei ). We use
the left and right democracy functions φl(k) = inf |A|=k ‖∑

i∈A ai‖ and φr (k) =
sup|A|=k ‖∑

i∈A ai‖ (sometimes, φr is also referred to as the fundamental function).
We define the democracy parameter
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396 S. J. Dilworth et al.

µ(n) = max
k≤n

φr (k)

φl(k)
= sup

|A|=|B|≤n

‖∑
i∈A ei‖

‖∑
i∈B ei‖ .

Following [12], define the disjoint democracy parameter

µd(n) = sup
|A|=|B|≤n,A∩B=∅

‖∑
i∈A ei‖

‖∑
i∈B ei‖ .

Clearly,µd(n) ≤ µ(n). By [10, Lemma 13],µ(n) ≤ 2Kµd(n). Related to the democ-
racy parameter of a basis (ei ) is its conservative parameter:

c(n) = sup

{‖∑
i∈A ei‖

‖∑
i∈B ei‖ : max A ≤ n < min B, |A| = |B|

}

.

Clearly c(n) ≤ µd(n). The norms of coordinate projections in a basis (ei ) are
quantified by the unconditionality parameter and complemented unconditionality
parameter: k(n) = sup|A|≤n ‖PA‖, resp. kc(n) = sup|A|≤n ‖I − PA‖ (clearly
|k(n) − kc(n)| ≤ 1).

The investigation of Lebesgue constants for greedy algorithms dates back to the
earliest works on greedy algorithms, with some relevant ideas appearing already in
[8]. In [12], the Lebesgue constants of the Haar basis in the BMO, and the dyadic
BMO, were computed. More recently, in [15,16], the Lebesgue constants for tensor
product bases in L p-spaces (in particular, for the multi-Haar basis) were calculated.
The Lebesgue constants for the trigonometric basis L p (which is not quasi-greedy)
are also known, see e.g. [13, Section 1.7]. The recent paper [4] estimates the Lebesgue
constants for bases in L p spaces with specific properties (such as being uniformly
bounded). Lebesgue constants for redundant dictionaries are studied in [14, Section
2.6].

This paper is structured as follows: in Sect. 2, we gather some preliminary facts
about quasi-greedy bases. In Sect. 3, we estimate L(n, t) in terms of K, µd(n), k(n),
and t . For t = 1, related results were obtained in [5]. However, the Lebesgue constant
was not explicitly calculated there. Retracing the computations, one obtains worse
constants than those given by Theorem 3.1. Corollary 3.5 gives an upper estimate
for the Lebesgue constant of quasi-greedy bases in Hilbert spaces, by combining
Theorem 3.1 with the recent results of Garrigos and Wojtaszczyk [6]. Further, we
estimate the Lebesgue constant for general (not necessarily quasi-greedy) systems in
Proposition 3.6.

In Sect. 4, we estimate Lch(n, t). The estimates involve only t , K, and µd(n).
Finally, in Sect. 5, we provide upper and lower bounds for Lre(n, t), involving t , K,
and c(n). The main results are given in Theorems 4.1 and 5.1, respectively.

Most of the work in this paper is done in the real case. In Sect. 5, we indicate that
the complex versions of the results of this paper also hold, albeit perhaps with different
numerical constants.

Remark 1.1 After the first version of this article was circulated, the referee brought
the recent paper [10] to the attention of the authors. There, order-of-magnitude esti-
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mates for the Lebesgue constant, and the Chebyshevian Lebesgue constant (similar to
our Theorems 3.1, 4.1) are given. Our results have the advantage of establishing the
dependence of the Lebesgue constants not only ofµd(n) and k(n), but also ofK and t .

2 Preliminary results

In this section we prove two lemmas, which will be needed throughout the paper, and
may be of interest in their own right. First we sharpen some results from [9, Section 2].

Lemma 2.1 Suppose (ei ) ⊂ X is a basis with a quasi-greedy constant K. Consider
x ∈ X, and let A be a t-greedy set for x. Then ‖PAx‖ ≤ (1 + 4t−1K)K‖x‖.
Proof For the sake of brevity, set ai = e∗

i (x). Let M = mini∈A |ai |, then |ai | ≤ t−1M
for i /∈ A. Define B = {i : |ai | > t−1M} and C = {i : |ai | ≥ M}. Then B ⊂ A ⊂ C ,
and PAx = PBx + PA\Bx . By the definition of K, ‖PBx‖ ≤ K‖x‖, and ‖PCx‖ ≤
K‖x‖. Write PCx = ∑

i∈C ai ei .
Now define the basis (e′

i ) by setting

e′
i =

{
sign (ai )ei i ∈ C

ei otherwise.

As this basis has the same quasi-greedy constant as (ei ), Lemma 6.1(2) shows that
M‖∑

i∈C e′
i‖ ≤ 2K‖x‖. For i ∈ C , set

bi =
{

|ai | i ∈ A\B
0 otherwise

.

For any i , |bi | ≤ t−1M , hence, by Lemma 6.1(1)

∥
∥
∥
∥
∥
∥

∑

i∈A\B
ai ei

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

∑

i∈C
bi e

′
i

∥
∥
∥
∥
∥

≤ 2t−1MK

∥
∥
∥
∥
∥

∑

i∈C
e′
i

∥
∥
∥
∥
∥

≤ 4t−1K2‖x‖.

By the triangle inequality, ‖PAx‖ ≤ ‖PBx‖ + ‖PA\Bx‖. ��
Lemma 2.2 Suppose (ei ) is a K-quasi-greedy basis in X. Consider x ∈ X, and let
ai = e∗

i (x), for i ∈ N. Suppose a finite set A ⊂ N satisfies mini∈A |ai | ≥ M. Then
M‖∑

i∈A sign (ai )ei‖ ≤ 2K2‖x‖. Furthermore, M‖∑
i∈A ei‖ ≤ 4K2‖x‖.

Proof Consider the set B = {i : |ai | ≥ M} (clearly A ⊂ B). By [5, Lemma 10.1],
‖∑

i∈A sign (ai )ei‖ ≤ K‖∑
i∈B sign (ai )ei‖. By Lemma 6.1(2), ‖∑

i∈B sign (ai )ei‖
≤ 2K‖x‖/M . To establish the “moreover” part, let A+ = {i ∈ A : sign (ai ) = 1}, and
A− = {i ∈ A : sign (ai ) = −1}. By the above, M‖∑

i∈A+ sign (ai )ei‖ ≤ 2K2‖x‖,
and the same holds for A−. Complete the proof using the triangle inequality. ��
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398 S. J. Dilworth et al.

We close this section with a brief discussion about the values of µd(n), k(n),
and c(n). It was shown in [2,5] that, for a K-quasi-greedy basis, k(n) ≤ C log(en),
where the constant C depends on the particular basis. For bases in L p spaces, sharper
estimates were obtained in [6]. It is easy to see that c(n) ≤ µd(n) ≤ Cn, where C
depends on a basis. These estimates are optimal: indeed, an appropriate enumeration
of the canonical (normalized and 1-unconditional) basis in c0 ⊕2 �1 gives c(n) ≥ cn.

3 The Lebesgue constant

In this section, we use some of the techniques of [5] to estimate the Lebesgue constants
L(n, t).

Theorem 3.1 For any K-quasi-greedy basis,

max
{
kc(n), t−1µd(n)

} ≤ L(n, t) ≤ 1 + 2k(n) + 8t−1K3µd(n).

The proof of the theorem relies on several lemmas, whose proofs closely resemble
those given in [5] (Lemma 3.4 yields better upper estimates).

Lemma 3.2 For any K-quasi-greedy basis, L(n, t) ≥ t−1µd(n).

Proof Fix n ∈ N and ε > 0. Find A, B ⊂ N, so that A ∩ B = ∅, |A| = |B| = k ≤ n,
and

∥
∥
∥
∥

∑

i∈A

ei

∥
∥
∥
∥ ≥ (µd(n) − ε)

∥
∥
∥
∥

∑

i∈B
ei

∥
∥
∥
∥.

Pick a set C , disjoint from A and B, so that |C | = n − k. Consider

x = (t + ε)
∑

i∈B∪C
ei +

∑

i∈A

ei .

Then (t + ε)
∑

i∈B∪C ei is a t-greedy approximant of x , for which ‖x − Gt
n(x)‖ =

‖∑
i∈A ei‖. However, |A ∪ C | = n, hence

σn(x) ≤ σ̃n(x) ≤ ‖x − PA∪C x‖ = (t + ε)

∥
∥
∥

∑

i∈B
ei

∥
∥
∥.

Thus,

L(n, t) ≥ ‖x − Gt
n(x)‖

σn(x)
= (t + ε)−1 ‖∑

i∈A ei‖
‖∑

i∈B ei‖ ≥ µd(n) − ε

t + ε
.

As ε can be arbitrarily small, the desired estimate follows. ��
Lemma 3.3 For any basis, L(n, t) ≥ kc(n).
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Proof Clearly L(n, t) ≥ L(n, 1). By [5, Proposition 3.3], L(n, 1) ≥ kc(n). ��
Lemma 3.4 For any K-quasi-greedy basis, L(n, t) ≤ k(n) + kc(n) + 8t−1K3µd(n).

Proof For x ∈ X , let ai = e∗
i (x), and fix ε > 0. Suppose A ⊂ N is a t-greedy set

for x , of cardinality n. Find z ∈ X , supported on a set B of cardinality n, so that
‖x − z‖ < σn(x) + ε. Let M = supi /∈A |ai |, then |ai | ≥ tM whenever i ∈ A. By the
triangle inequality,

‖x − PAx‖ ≤ ‖x − PBx‖ + ‖PA\Bx‖ + ‖PB\Ax‖.

We have

‖PA\Bx‖ = ‖PA\B(x − z)‖ ≤ k(n)‖x − z‖,

and

‖x − PBx‖ = ‖x − PBx + z − PBz‖ = ‖(1 − PB)(x − z)‖ ≤ kc(n)‖x − z‖.

It remains to estimate the third summand, in the non-trivial case of |B\A| = k > 0.
For i ∈ B\A, |ai | ≤ M , hence by Lemma 6.1(1) (see also [3, Lemma 2.1]),

‖PB\Ax‖ =
∥
∥
∥

∑

i∈B\A
ai ei

∥
∥
∥ ≤ 2MK‖

∑

i∈B\A
ei‖.

By Lemma 2.2, M ≤ 4t−1K2‖∑
i∈A\B ei‖−1‖x − z‖. Thus,

‖PB\Ax‖ ≤ 2MK
∥
∥
∥

∑

i∈B\A
ei

∥
∥
∥ ≤ 8t−1K3

‖∑
i∈B\A ei‖

‖∑
i∈A\B ei‖‖x − z‖

≤ 8t−1K3µd(n)‖x − z‖.

As ‖x − z‖ can be arbitrarily close to σn(x), we are done. ��
We use Theorem 3.1 to estimate the Lebesgue constant for quasi-greedy bases in

a Hilbert spaces. Recall that a basis (ei ) is called hilbertian (besselian) if there exists
a constant c so that, for every finite sequence of scalars (αi ). we have

∑
i |αi |2 ≥

c‖∑
i αi ei‖2 (resp. ∑i |αi |2 ≤ c‖∑

i αi ei‖2).
Corollary 3.5 For any quasi-greedy basis in a Hilbert space, there exists α ∈ (0, 1)
and C > 0 so that, for any n ∈ N and t ∈ (0, 1), L(n, t) ≤ C(t−1 + (log(en))α).
If, moreover, the basis is either besselian or hilbertian, then there exists α ∈ (0, 1/2)
with the above property.

Proof By [6], there exists c1 > 0, andα as above, so thatk(n) ≤ c1(log(en))α . By [17,
Theorem 3], µ(n) ≤ c2, for some constant c2. To finish the proof, apply Theorem 3.1.

��
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400 S. J. Dilworth et al.

We conclude this section with an estimate for L(n, t) for bounded Markushevitch
bases which are not necessarily quasi-greedy. Let 1 ≤ p ≤ q ≤ ∞. We say that (ei )
satisfies weak upper p- and lower q-estimates if there exists K > 0 such that for all
x ∈ X ,

1

K
‖(e∗

i (x))‖q,∞ ≤ ‖x‖ ≤ K‖(e∗
i (x))‖p,1,

where, letting (a∗
n) denote the decreasing rearrangement of the sequence (|an|),

‖(an)‖q,∞ := sup
n≥1

n1/qa∗
n

and

‖(an)‖p,1 :=
∑

n≥1

n1/p−1a∗
n

are the usual Lorentz sequence norms. Note that p = 1 and q = ∞ are just the �1 and
c0 norms, respectively.

The following result slightly extends [17, Theorem 5] by incorporating the weak-
ness parameter t and replacing upper �p-and lower �q -estimates by weaker Lorentz
sequence space estimates.

Proposition 3.6 Suppose (ei ) satisfies weak upper p- and lower q-estimates. Then
there exists D := D(p, q, K ) such that

L(n, t) ≤
{
Dn1/p−1/q/t, p �= q

D log n/t, p = q.

Proof First suppose q > p. Let x ∈ X and set ai := e∗
i (x). Let A be a t-greedy set

for x , with |A| = n, and let Gt
n(x) := ∑

i∈A ai ei . Given ε > 0, choose B ⊂ N, with
|B| = n, such that ‖x − ∑

i∈B bi ei‖ ≤ σn(x) + ε. For convenience, set bi = 0 if
i /∈ B. By the triangle inequality,

‖x − Gt
n(x)‖ ≤ ‖x −

∑

i∈B
bi ei‖ + ‖

∑

i∈B
bi ei −

∑

i∈A

ai ei‖

≤ σn(x) + ε + ‖
∑

i∈B
bi ei −

∑

i∈A

ai ei‖. (3.1)
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Lebesgue constants 401

Setting C = C(p, q) := (1/p − 1/q)1/q−1/p, we obtain:

∥
∥
∥

∑

i∈A

(bi − ai )ei
∥
∥
∥ ≤ K‖(bi − ai )i∈A‖p,1

≤ KCn1/p−1/q‖(bi − ai )i∈A‖q,∞
≤ K 2Cn1/p−1/q‖x − ∑

i∈B bi ei‖
≤ K 2Cn1/p−1/q(σn(x) + ε). (3.2)

Similarly,

∥
∥
∥

∑

i∈B\A
bi ei

∥
∥
∥ ≤

∥
∥
∥

∑

i∈B\A
(bi − ai )ei

∥
∥
∥ +

∥
∥
∥

∑

i∈B\A
ai ei

∥
∥
∥

≤ K 2Cn1/p−1/q(σn(x) + ε) +
∥
∥
∥

∑

i∈B\A
ai ei

∥
∥
∥. (3.3)

We clearly have |A \ B| = |B \ A|. As A is t-greedy set for x , we have minA\B |ai | ≥
t maxB\A |ai |. Therefore,

∥
∥
∥

∑

i∈B\A
ai ei

∥
∥
∥ ≤ KCn1/p−1/q‖(ai )i∈B\A‖q,∞

≤ KCn1/p−1/q

t
‖(ai )i∈A\B‖q,∞

≤ K 2Cn1/p−1/q

t
‖x −

∑

i∈B
bi ei‖

≤ K 2Cn1/p−1/q

t
(σn(x) + ε). (3.4)

Since ε > 0 is arbitrary, combining (3.1)–(3.4) gives

‖x − Gt
n(x)‖ ≤

(
1 + 2K 2C + K 2C

t

)
n1/p−1/qσn(x),

and hence L(n, t) ≤
(
1+ 2K 2C + K 2C

t

)
n1/p−1/q . The case p = q is similar except

Cn1/p−1/q is replaced by 1 + log n throughout. ��
Corollary 3.7 Let 1 ≤ p < ∞ and let (ei ) be a bounded Markushevitch basis such
that φr (k) ≤ Ck1/p for some C > 0. Then L(n, t) ≤ C ′n1/p/t , for some constant C ′.

Proof Any basis satisfies the lower ∞-estimate. In order to apply Proposition 3.6, we
need to show that (ei ) has a weak upper p-estimate.

By the triangle inequality ‖∑
i∈A ±ei‖ ≤ 2Cn1/p for all A ⊂ N with |A| = n.

Suppose, for x ∈ X , the sequence an = e∗
n(x) satisfies

∑
n n

1/p−1a∗
n = γ . Let (ni )

be a non-decreasing enumeration of this sequence – that is, |ani | = a∗
i for every i .
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402 S. J. Dilworth et al.

Set εi = sign (ani ), ci = a∗
i − a∗

i+1, and yi = ∑i
j=1 ε j en j . Note that, for every i ,

i1/p − (i − 1)1/p ≤ i1/p−1, hence

(2C)−1
∑

i

|ci |‖yi‖ ≤
∑

i

(a∗
i − a∗

i+1)i
1/p =

∑

i

a∗
i (i

1/p − (i − 1)1/p) ≤ γ.

Consequently,
∑

i ci yi converges in X . For every i , we have e∗
i (

∑
i ci yi ) = e∗

i (x),
hence

∑
i ci yi = x . By the above, ‖x‖ ≤ 2Cγ . ��

Remark 3.8 The estimates of Proposition 3.6 and Corollary 3.7 are sharp, even for
unconditional (hence quasi-greedy) bases. For q > p, consider the canonical basis
of �q ⊕q �p (c0 ⊕∞ �p if q = ∞). This basis clearly possesses the lower q- and
upper p-estimates, with constant 1. Denote the bases of �q and �p by (ei ) and ( fi )
respectively. Fix c > 1, and let x = ∑n

i=1

(
ctei + fi

)
. One possible realization of the

t-greedy algorithm gives Gt
m(x) = ct

∑n
i=1 ei , hence ‖x − Gt

m(x)‖ = n1/p. On the
other hand, σn(x) ≤ σ̃n(x) ≤ ‖ct ∑n

i=1 ei‖ = ctn1/q . As c can be arbitrarily close to
1, we obtain L(n, t) ≥ n1/p−1/q/t , showing the optimality of Proposition 3.6. Note
that φr (k) = k1/p, hence, for q = ∞, we witness the optimality of Corollary 3.7.

We can also show the optimality of Proposition 3.6 for p = q = 2, once more
for quasi-greedy basis. By [6, Theorem 3.1 and Corollary 3.11], there exists a quasi-
greedy democratic basis in c0⊕�1⊕�2, so that φr (n) ∼ φl(n) ∼ √

n. The weak upper
2-estimate follows from the proof of Corollary 3.7, whereas the weak lower 2-estimate
follows from Lemma 6.1(2). Furthermore, [6, Corollary 3.11] gives k(n) ≥ c log n
for this basis (c is a constant). By Theorem 3.1, L(n, t) ≥ k(n) − 1.

Remark 3.9 We also present two examples of sharpness of Proposition 3.6 for bases
which are not quasi-greedy. Throughout, we use somewell-known facts about Lorentz
spaces, see e.g. the survey [1].

First pick p ∈ (1, 2). Set q = p/(p − 1) and γ = 2/p − 1 (so 1/p = (1 + γ )/2,
and 1/q = 1 − 1/p = (1 − γ )/2). Consider the measures μ and ν on [−π, π ],
by setting dμ = |t |−γ dt and dν = |t |γ dt . The trigonometric system forms a
non-quasi-greedy Schauder basis in both L2(μ) and L2(ν), see e.g. [11]. Denote
by e1, e2, . . . ( f1, f2, . . .) the trigonometric basis in L2(μ) (resp. L2(ν)), enumerated
as 1, eit , e−i t , e2i t , e−2i t , . . ..

First concentrate on the basis (ei ) in L2(μ). Clearly this basis satisfies the lower
2-estimate:

∥
∥
∥

∑

i

αi ei
∥
∥
∥
L2(μ)

≥ π−γ

(∫ π

−π

∣
∣
∑

i

αi ei
∣
∣2 dt

)1/2

= √
2π1/2−γ

(
∑

i

|αi |2
)1/2

.

Next show that φr (n) ∼ n1/p (once this is established, the weak upper p-estimate
will follow, as in the proof of Corollary 3.7). The lower estimate on φr is proved in
[6, Lemma 3.7]. For the upper estimate, recall the well-known fact that

∫ |φψ | ≤∫
φ∗ψ∗ (φ∗ and ψ∗ are decreasing rearrangments of φ and ψ respectively). Con-

sequently, if f is a function of [0, π ] with 0 ≤ f ≤ n2, and
∫

f (t) dt = n, then∫
f (t)t−γ dt ≤ n1+γ /(1−γ ) (the equality is attained when f (t) = n21[0,1/n]). Now
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suppose A ⊂ N has cardinality n. Applying our observation to f = |∑ j∈A e j |2, we
obtain ‖∑

j∈A e j‖L2(μ) ≺ n(1+γ )/2 = n1/p.
Use [6, Lemma 3.7] to find ε1, . . . , ε2n+1 ∈ {−1, 1} so that ‖∑

i εi ei‖L2(μ) ∼ √
n,

while ‖∑
i ei‖L2(μ) ∼ n1/p. Let B = {i : εi = 1} and C = {i : εi = −1}. For

ε > 0 set x = (1 + ε)
∑

i∈B ei − ∑
i∈C ei . For ε < 1/n we have ‖x‖ ∼ √

n, yet
‖x − G|B|(x)‖ = ‖∑

i∈C ei‖ ∼ n1/p. Consequently, L(|B|, 1) � |B|1/p−1/2. By the
above, |B| ∼ n. Thus, the estimates on L(n, t) obtained in Proposition 3.6 are optimal
for this basis.

In the second example the optimality of these estimates is shown for a basis with
a weak upper p-estimate, and a weak lower q-estimate. Following [6, Section 3],
define the Schauder basis (g j ) in L2(μ) ⊕2 L2(ν) by setting, for k ∈ N, g2k−1 =
(ek + fk)/

√
2 and g2k = (ek − fk)/

√
2. By the proof of [6, Proposition 3.10], for

any odd n we can have ‖∑2n
k=1 gk‖ ∼ n1/q , yet ‖∑n

k=1 g2k−1‖ ∼ n1/p. As in the
previous paragraph, we conclude that L(n, 1) � n1/p−1/q .

Next show that (g j ) satisfies the weak upper p-estimate, and the weak lower q-
estimate. Consider

x =
∑

k

(
αkg2k−1+βkg2k

) = 1√
2

(∑

k

(αk+βk)ek

)

⊕2

(∑

k

(αk−βk) fk

)

. (3.5)

We have to show that

‖(α1, β1, α2, β2, . . .)‖q,∞ ≺ ‖x‖ ≺ ‖(α1, β1, α2, β2, . . .)‖p,1. (3.6)

Start by recalling that, for any sequence (γi ),

‖(γi )‖q,∞ ≺
( ∑

i

|γi |2
)1/2

= ‖(γi )‖2 ≺ ‖(γi )‖p,1. (3.7)

The basis ( fk) satisfies the upper 2-estimate:

∥
∥
∥

∑

i

αi fi
∥
∥
∥
L2(ν)

≤ πγ

( ∫ π

−π

∣
∣
∑

i

αi fi
∣
∣2 dt

)1/2

= √
2π1/2+γ

(∑

i

|αi |2
)1/2

.

Thus, by (3.7), (3.5), and the triangle inequality for ‖ · ‖p,1,

‖x‖ ≺ ‖(αk + βk)‖p,1 + ‖(αk − βk)‖2 ≺ ‖(αk + βk)‖p,1 + ‖(αk − βk)‖p,1

∼ ‖(αk)‖p,1 + ‖(βk)‖p,1 ≺ ‖(α1, β1, α2, β2, . . .)‖p,1,

yielding the right hand side of (3.6).
Next note that ( fi ) satisfies the weak lower q-estimate. Indeed, the functions

f ′
i (t) = ei (t)|t |γ are biorthogonal to (ei ) in L2(μ). By duality, the sequence ( f ′

i )

satisfies the weak lower q-estimate. Now observe thatU : L2(μ) → L2(ν) : f ′
i → fi
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is an isometry. Moreover, (ei ) satisfies the lower 2-estimate, hence the weak lower
q-estimate as well. As ‖ · ‖q,∞ is a quasi-norm, we obtain

‖x‖ � ‖(αk + βk)‖2 + ‖(αk − βk)‖q,∞ � ‖(αk + βk)‖q,∞ + ‖(αk − βk)‖q,∞ ∼
‖(αk)‖q,∞ + ‖(βk)‖q,∞ � ‖(α1, β1, α2, β2, . . .)‖q,∞.

This yields the left hand side of (3.6).

4 The Chebyshevian Lebesgue constant

Theorem 4.1 For any K-quasi-greedy basis,

µd(n)

2tK
≤ Lch(n, t) ≤ 20K3µd(n)

t
.

As a corollary, we recover a result from [2].

Corollary 4.2 Any almost greedy basis is semi-greedy.

Recall that (ei ) is almost greedy if there exists a constant C so that ‖x −Gn(x)‖ ≤
C σ̃n(x) for any n ∈ N and x ∈ X , and semi-greedy if there exists a constant C so that
‖x − CGn(x)‖ ≤ Cσn(x), for any n and x .

Proof By [2], a basis is almost greedy if and only if it is quasi-greedy and democratic
(that is, supn µ(n) < ∞). In this case supn Lch(n, 1) < ∞, hence the basis is semi-
greedy. ��

Below, we shall use the “truncation function”

FM : R → R : t �→

⎧
⎪⎨

⎪⎩

−M t < −M

t −M ≤ t ≤ M

M t > M

.

Abusing the notation slightly, we shall write

FM (x) = x −
∑

i

(
e∗
i (x) − FM

(
e∗
i (x)

))
ei .

The sum above converges, since the set {i ∈ N : |e∗
i (x)| > M} is finite. Moreover,

FM (x) is the only element y ∈ X with theproperty that, for every i , e∗
i (y) = FM (e∗

i (x)).
By [2, Proposition 3.1], ‖FM (x)‖ ≤ (1 + 3K)‖x‖.
Proof (The upper estimate in Theorem 4.1) For x ∈ X let ai = e∗

i (x), and fix ε > 0.
Suppose a set A ⊂ N of cardinality n is t-greedy for x . Let M = maxi /∈A |ai |, then
mini∈A |ai | ≥ tM . We have to show that there existsw ∈ X so that supp(x −w) ⊂ A,
and ‖w‖ ≺ 20t−1K3µd(n)(σn(x) + ε).
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Pick z = ∑
i∈B bi ei , where |B| ≤ n, and ‖x − z‖ < σn(x) + ε. Set y = x − z and

yi = e∗
i (y) =

{
ai − bi i ∈ B

ai i /∈ B
.

We claim that w = PAFM (y) + PAc x has the desired properties. Indeed, x − w is
supported on A. To estimate ‖w‖, note that, for i /∈ B, yi = ai . For i /∈ A,FM (ai ) = ai ,
hence, for i /∈ A ∪ B, ai = FM (yi ). Thus,

w = FM (y) +
∑

i∈B\A
(ai − FM (yi ))ei . (4.1)

We use [2, Proposition 3.1] to estimate on the first summand:

‖FM (y)‖ ≤ (1 + 3K)‖y‖ = (1 + 3K)‖x − z‖. (4.2)

To handle the second summand, set k = |B\A|. For i ∈ B\A, |ai | ≤ M , hence
|ai − FM (yi )| ≤ 2M . By Lemma 6.1(1),

∥
∥
∥
∥
∥
∥

∑

i∈B\A
(ai − FM (yi ))ei

∥
∥
∥
∥
∥
∥

≤ 4MK

∥
∥
∥
∥
∥
∥

∑

i∈B\A
ei

∥
∥
∥
∥
∥
∥

. (4.3)

On the other hand, for i ∈ A\B, ai = yi , and |ai | ≥ tM , hence by Lemma 2.2,

M ≤ t−1 4K2‖x − z‖
‖∑

i∈A\B ei‖ .

Plugging this into (4.3), we get:

∥
∥
∥
∥
∥
∥

∑

i∈B\A
(ai − FM (yi ))ei

∥
∥
∥
∥
∥
∥

≤ 16

t

‖∑
i∈B\A ei‖

‖∑
i∈A\B ei‖K

3‖x − z‖ ≤ 16

t
µd(n)K3‖x − z‖.

Together with (4.2), we obtain:

‖w‖ ≤
(16

t
µd(n)K3 + 1 + 3K

)
‖x − z‖ ≤ 20K3µd(n)

t
(σn(x) + ε).

As ε can be arbitrarily close to 0, we are done. ��
Proof (The lower estimate in Theorem 4.1) Fix n ∈ N and ε > 0. Find A, B ⊂ N, so
that A ∩ B = ∅, |A| = |B| = k ≤ n, and

∥
∥
∥
∥

∑

i∈A

ei

∥
∥
∥
∥ ≥ (µd(n) − ε)

∥
∥
∥
∥

∑

i∈B
ei

∥
∥
∥
∥.
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Pick a set C , disjoint from A and B, so that |C | = n − k. Consider

x = (t + ε)
∑

i∈B∪C
ei +

∑

i∈A

ei .

We can find a Chebyshev t-greedy approximant CGt
n(x) supported on B ∪ C , and

then y = x − CGt
n(x) = ∑

i∈A ei + ∑
i∈B∪C yi ei . Let D = {i ∈ B ∪ C : |yi | ≥ 1}.

Both
∑

i∈A ei + ∑
i∈D yi ei and

∑
i∈D yi ei are greedy approximants of y, hence

max

{∥
∥
∥
∥

∑

i∈A

ei +
∑

i∈D
yi ei

∥
∥
∥
∥,

∥
∥
∥
∥

∑

i∈D
yi ei

∥
∥
∥
∥

}

≤ K‖y‖.

By the triangle inequality, ‖∑
i∈A ei‖ ≤ 2K‖y‖. Thus,

‖x − CGt
n(x)‖ ≥ 1

2K

∥
∥
∥
∥

∑

i∈A

ei

∥
∥
∥
∥ ≥ µd(n) − ε

2(t + ε)K

∥
∥
∥
∥(t + ε)

∑

i∈B
ei

∥
∥
∥
∥

= µd(n) − ε

2(t + ε)K
‖x − PA∪C x‖ ≥ µd(n) − ε

2(t + ε)K
σ̃n(x) ≥ µd(n) − ε

2(t + ε)K
σn(x)

(since |A ∪ C | = n). As ε can be arbitrarily small, we are done. ��

5 The residual Lebesgue constant

Theorem 5.1 For any K-quasi-greedy basis,

t−1c(n) ≤ Lre(n, t) ≤ 1 + 4K2 + 8t−1K3c(n).

Proof (The upper estimate in Theorem 5.1) For x ∈ X set ai = e∗
i (x). Suppose A is a

t-greedy subset of N, of cardinality n, and set B = [1, n]. Let M = mini∈A |ai |, then
|ai | ≤ t−1M for i /∈ A. By the triangle inequality,

‖x − Gt
n(x)‖ = ‖PAc x‖ ≤ ‖x − PBx‖ + ‖PA\Bx‖ + ‖PB\Ax‖. (5.1)

Let y = PBc x , then ‖y‖ = σ̂n(x). For i ∈ A\B, we have |e∗
i (y)| ≥ M , hence by

Lemma 2.2, M‖∑
i∈A\B ei‖ ≤ 4K2‖y‖. By Lemmas 2.2 and 6.1(1),

‖PB\Ax‖ ≤ 2t−1MK

∥
∥
∥
∥

∑

i∈B\A
ei

∥
∥
∥
∥ ≤ 2t−1MKc(n)

∥
∥
∥
∥

∑

i∈A\B
ei

∥
∥
∥
∥ ≤ 8t−1K3c(n)‖y‖.

Plug the above results into (5.1) to obtain the upper estimate for Lre(n, t). ��
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Proof (The lower estimate in Theorem 5.1) Fix ε > 0, and find sets A ⊂ [1, n] and
B ⊂ [n + 1,∞) so that |A| = k = |B|, and

c(n) − ε <
‖∑

i∈A ei‖
‖∑

i∈B ei‖ .

Consider x = ∑n
i=1 ei + (t + ε)

∑
i∈B ei . Then B ∪ ([1, n]\A) is a t-greedy set

for x , hence one can run the t-greedy algorithm in such a way that ‖x − Gt
n(x)‖ =

‖∑
i∈A ei‖. On the other hand, σ̂n(x) = ‖P[n+1,∞)x‖ = (t + ε)‖∑

i∈B ei‖. The
lower estimate follows from comparing these two quantities. ��

Appendix: The complex case

The results above are stated for the real case. The complex case is similar, but the
constants are different. As customary, we set

sign z =
{
z/|z| z �= 0

0 z = 0
.

The following result is present (implicitly or explicitly) in [5, Appendix] (the better-
known real case is in [3, Lemmas 2.1 and 2.2]):

Lemma 6.1 Suppose (ei ) is a K-quasi-greedy basis in a Banach space X.

1. If A is a finite set, then ‖∑
i∈A ai ei‖ ≤ 4

√
2Kmaxi |ai |‖∑

i∈A ei‖. Moreover, if
the ai ’s are real, then ‖∑

i∈A ai ei‖ ≤ 2Kmaxi |ai |‖∑
i∈A ei‖.

2. Suppose A is a greedy set for x ∈ X. Let M = mini∈A |e∗
i (x)|. Then

M

8
√
2K2

‖
∑

i∈A

ei‖ ≤ M

2K
‖
∑

i∈A

sign
(
e∗
i (x)

)
ei‖ ≤ ‖x‖.

For M > 0, define

FM : C → C : z �→
{
sign (z)M |z| > M

z |z| ≤ M
.

For x ∈ X , we set FM (x) = x − ∑
i

(
e∗
i (x) − FM (e∗

i (x)))ei (the sum converges, and
e∗
i (FM (x)) = FM (e∗

i (x)) for every i). As in [2, Proposition 3.1], one can prove:

Lemma 6.2 In the above notation, ‖FM (x)‖ ≤ (1 + 3K)‖x‖.
As in Sect. 2, we obtain:

Lemma 6.3 Suppose (ei ) ⊂ X is a basis with a quasi-greedy constant K, and a set
A is t-greedy for x ∈ X. Then ‖PAx‖ ≤ (1 + 8

√
2t−1K)K‖x‖.
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Lemma 6.4 Suppose (ei ) is a K-quasi-greedy basis in X. Consider x ∈ X, and let
ai = e∗

i (x), for i ∈ N. Suppose a finite set A ⊂ N satisfies mini∈A |ai | ≥ M. Then
M‖∑

i∈A sign (ai )ei‖ ≤ 2K2‖x‖. Furthermore, M‖∑
i∈A ei‖ ≤ 8K2‖x‖.

Proof Consider C = {i : |ai | ≥ M} (note that A ⊂ C). For the brevity of notation,
let e′

i = sign (ai )ei (if ai = 0, let e′
i = ei ). Clearly the basis (e′

i ) is K-quasi-greedy.
Set y = ∑

i∈C e′
i . By Lemma 6.1(2), M‖y‖ ≤ 2K‖x‖. For ε > 0, let

yε =
∑

i∈A

e′
i + (1 + ε)

∑

i∈C\A
e′
i =

∑

i∈C
e′
i + ε

∑

i∈C\A
e′
i .

By the triangle inequality, ‖yε‖ ≤ ‖y‖ + ε
∑

i∈C\A ‖ei‖. Furthermore, ‖∑
i∈A e

′
i‖ ≤

K‖yε‖. As ε is arbitrary, we establish the first statement of the lemma.
The reasoning above also shows that M‖∑

i∈B e′
i‖ ≤ 2K2‖x‖ for any B ⊂ A. Let

S be the absolute convex hull of the elements
∑

i∈B e′
i—that is,

S =
{ ∑

B⊂A

tB
∑

i∈B
e′
i :

∑

B⊂A

|tB | ≤ 1

}

.

Weclaim that
∑

i∈A ei = ∑
i∈A ωi e′

i ∈ 4S here |ωi | = 1.Otherwise, byHahn-Banach
Separation Theorem, there exists a sequence (bi )i∈A ∈ C

|A| so that | ∑i∈B bi | < 1
whenever B ⊂ A, yet |∑i∈A ωi bi | > 4. Let B+ = {i ∈ A : �bi ≥ 0} and B− = {i ∈
A : �bi < 0}.

∑

i∈B+
�bi ≤

∣
∣
∣
∣

∑

i∈B+
bi

∣
∣
∣
∣ ≤ 1,

and similarly,
∑

i∈B−(−�bi ) ≤ 1. Therefore,

∑

i∈A

|�bi | =
∑

i∈B+
|�bi | +

∑

i∈B−
|�bi | ≤ 2.

The same way, we show that
∑

i∈A |�bi | ≤ 2. Consequently,

∣
∣
∣
∣

∑

i∈A

ωi bi

∣
∣
∣
∣ ≤

∑

i∈A

|bi | ≤
∑

i∈A

(|�|bi | + |�bi |
) ≤ 4,

yielding a contradiction. This establishes the second statement of our lemma. ��
These results allow us to emulate the proofs of previous sections, and to estimate

the Lebesgue constants:

Theorem 6.5 Suppose (ei ) is a K-quasi-greedy basis in a complex Banach space X.
Then:
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1.

max
{
kc(n), t−1µd(n)

} ≤ L(n, t) ≤ 1 + 2k(n) + 32
√
2t−1K3µd(n).

2.

µd(n)

2tK
≤ Lch(n, t) ≤ 100K3µd(n)

t
.

3.

t−1c(n) ≤ Lre(n, t) ≤ 1 + 8K2 + 32
√
2t−1K3c(n).
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