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Abstract The dicritical divisors of a pencil at a simple point of a surface constitute
an important tool in affine algebraic geometry, i.e., in the study of polynomial rings.
These dicriticals may be viewed as certain nodes of the singularity tree of a generic
member of the pencil. Dedekind’s generalization of Gauss Lemma plays a significant
role.
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1 Introduction

In this paper we shall connect the dicritical divisors of a pencil at a simple point of a
surface with certain nodes in the singularity tree of the generic member of the pencil.
For the definition of dicritical divisors and other terminology to be used in this paper
see Sect. 2 and Remark (4.0) of [11] as well as Sects. 2 to 4 of [13] which may be
viewed as a preamble to the present paper. For singularity trees see Fig. 5 on page
426 of [4] and Fig. 18.2 on page 132 of [6]. The original analytical theory of dicritical
divisors was developed by many authors such as Artal-Bartolo [17], Lê-Weber [22]
and Mattei-Moussu [23], and then it was algebracized in [9–12, 14–16]. For basic
background material see my papers and books [1–3, 5–8] and the books of Nagata
[25] and Zariski-Samuel [27].

In Sect. 2 we discuss the ideal theory as we pass from a ring S to the polyno-
mial ring S[t] to the localization St = S[t]N where N is the multiplicative set of
all polynomials whose coefficients generate the unit ideal in S. In Lemma 2.2 we
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cite the McCoy Lemma and in Lemma 2.4 we cite Dedekind’s version of Gauss
Lemma. In Lemma 2.7, for a regular local ring S of any dimension n, we relate the
QDTs = Quadratic Transforms of S to the QDTs of St . In Theorem 2.9 we specialize
to the n = 2 case. In Sect. 3 we use this together with the material of [13] to give a
bijection of the dicriticals of a pencils to the maximal pines of the singularity tree of
its generic member. It may be noted that Theorem 3.2 of Sect. 3 is one of the main
results of this paper. In Sects. 4 and 5, after discussing completions and classification
of valuations, we give a bijection from maximal pines to analytic branches.

Thanks are due to Heinzer, Luengo, Sathaye, and Shannon for valuable discus-
sions. The possibility of relating dicriticals to branches was first suggested by Lu-
engo.

2 Extension of the quadratic tree

Given any two-dimensional regular local domain R, consider the rational function
field Lt = L(t) where t is an indeterminate over the quotient field L of R. In the
beginning of Sect. 2 of [13] we introduced the following eight subsets of ρ(L) = the
set of all subrings of L and ρ(Lt ) = the set of all subrings of Lt :

D(R)� = set of all prime divisors of R.
Q(R) = the quadratic tree of R.
Q(R)� = Q(R)

∐
D(R)� = the full quadratic tree of R.

Qt(R) = {St : S ∈ Q(R)} = t-extension of the quadratic tree of R.
Q(R, I ) = the ideal tree of a nonzero ideal I in R.
P(R, I ) = the singularity tree of a nonzero ideal I in R.
Q(R, z) = Q(R,JR(z)) = the ideal tree of 0 �= z ∈ L in R.
P(R,F ) = P(R,FR) = the singularity tree of 0 �= F ∈ R in R.

Here D(R)� is the set of all DVRs S with quotient field L such that S dominates R

and is residually transcendental over R, while Q(R) is the set of all two dimensional
regular local domains S with quotient field L such that S dominates R. Moreover,
Q(R, I ) is the set of all T ∈ Q(R) at which the transform (R,T )(I ) is a nonprincipal
ideal, while P(R, I ) is the set of all T ∈ Q(R) at which the transform (R,T )(I ) is
a nonunit ideal. We also introduced the j -th levels Dj(R)�, . . . ,Pj (R,F ) of these
sets. Recall that the map ρt : ρ(L) → ρ(Lt ) is given by S �→ St = the localization
of the polynomial ring S[t] at the multiplicative set of all those members of S[t]
whose coefficients generate the unit ideal in S. In Nagata’s notation (page 18 of [25]),
St = S(t).

As a first step in describing Qt(R), we prove the following Lemma 2.1 which was
stated as item (4.1) in Sect. 4 of [13] without a detailed proof.

Lemma 2.1 Let S ∈ ρ(L) be a local domain. Then St is a local domain which dom-
inates S, and we have dim(St ) = dim(S) with M(St ) = M(S)St and St ∩ L = S.
Moreover, if S is a regular local domain then so is St .

Proof By (T30) on page 233 of [8] we see that M(S)S[t] is a prime ideal in S[t]
whose height equals the height of M(S) in S. Also St is the localization of S[t]
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at M(S)S[t]. Therefore we get everything except the inclusion St ∩ L ⊂ S. Now
L contains the quotient field E of S and we have St ⊂ E(t) with E(t) ∩ L = E,
and hence St ∩ L ⊂ St ∩ E. Therefore it suffices to show that St ∩ E ⊂ S. Now any
nonzero element w of E can be expressed as w = u/v with u �= 0 �= v in S; moreover,
w ∈ St ⇔ uSt ⊂ vSt , whereas w ∈ S ⇔ uS ⊂ vS. Consequently it suffices to show
that for any u �= 0 �= v in S with uSt ⊂ vSt we have uS ⊂ vS. Therefore it is enough
to prove that for any ideal I in S we have (ISt ) ∩ S = I , because we can apply this
with I = uS and I = vS. Hence it suffices to show that for any ideal I in S, upon
letting J = IS[t], we have (IS[t]) ∩ S = I and (JSt ) ∩ S[t] = J . Out of this the
first equation directly follows from the above (T30). In the following Lemma 2.2
Supplement to (T30), we shall show that if I = ∩1≤i≤hQi is any irredundant primary
decomposition of I in S then IS[t] = ∩1≤i≤h(QiS[t]) is an irredundant primary
decomposition of IS[t] in S[t]. In our case it follows that all the associated (minimal
or not) primes of J are contained in the prime ideal P = M(S)S[t] in D = S[t] and
hence the second equation (JDP )∩D = J follows from the following fact proved in
Sect. §7.1 of Lecture L4 of [8]: if a prime ideal P in a noetherian domain D contains
all the associated primes of an ideal J in D then (JDP ) ∩ D = J . �

Lemma 2.2 (Supplement to (T30)) [The statement and proof of Lemma 2.2 are
taken from Lemma 14 on pages 85–86 of Cohen’s famous paper [18] on which I
was weaned; I am reproducing it here for the benefit of the reader; I include an al-
ternative proof communicated [26] by Sathaye.] For the univariate polynomial ring
D = S[t] over any (not necessarily noetherian) ring S we have the following.

(1) For any ideal I in S we have ID = I [t] where I [t] denotes the set of all polyno-
mials f = f (t) all whose coefficients belong to I .

(2) Any finite ideal intersection I = ∩1≤i≤hQi in S gives the finite ideal intersec-
tion ID = ∩1≤i≤h(QiD) in D. Moreover, if no Qi can be deleted from the first
intersection then no QiD can be deleted from the second intersection.

(3) If for some i, Qi is a primary ideal in S with Pi = radSQi then QiD is a primary
ideal in D with PiD = radD(QiD).

(4) If fg = 0 with 0 �= f ∈ D and g ∈ D then cg = 0 for some 0 �= c ∈ S. This is
called MCCOY’S Lemma [24] with implicit stipulation that c be a monomial in
the coefficients of f and g. The stipulation is explicit in Sathaye’s proof which is
similar to Forsythe’s [20].

Proof (1) Was noted in (C12) on page 235 of [8], and noetherianness was not used in
its proof. (2) Follows from (1). To prove (3) assume q = Qi is primary with radSq =
p = Pi . Then clearly qD ⊂ pD and every element of pD has some power belonging
to qD. It remains to show that fg ∈ qD with f �∈ pD ⇒ g ∈ qD. Let f = ∑

fit
i

and g = ∑
gj t

j with fi, gj in S, and suppose that f0, . . . , fm−1 belong to p but
fm does not. Let a be the ideal in S generated by f0, . . . , fm−1. Then (i) ak ⊂ q

for some k ∈ N+; we fix the smallest such k. Let qi = (q : ak−i )S for 0 ≤ i ≤ k.
Then (ii) fg ∈ qD ⊂ qi+1D for 0 ≤ i < k. Moreover we have (iii) aqi ⊂ qi+1 for
0 ≤ i < k. Because k is the smallest, by (O8)(1•) on page 110 of [8] we see that (iv)
for 0 ≤ i < k, the ideal qi+1 is p-primary. (Cohen forgot to fix k to be the smallest.)
Next we claim that (v) for 0 ≤ i < k we have g ∈ qiD ⇒ g ∈ qi+1D. So let 0 ≤ i < k



738 S.S. Abhyankar

be such that g ∈ qiD; suppose if possible that g �∈ qi+1D; let gn be the first gj not in
qi+1; now the coefficient of tm+n in fg equals

· · · + fm−1gn+1 + fmgn + fm+1gn−1 + · · ·
and by (ii) this belongs to qi+1; all terms following fmgn are in qi+1; so are those
preceding it since g ∈ qiD ⇒ gj ∈ qi and by (iii) aqi ⊂ qi+1; thus fmgn ∈ qi+1
which is impossible by (iv) since fm �∈ p and gn �∈ qi+1. Clearly q0 = S with qk = q,
and hence by (v) and induction on i we get g ∈ q.

To prove (4) let f,g in D be such that fg = 0 �= f . We want to show cf = 0 for
some 0 �= c ∈ S. Let S1 be the smallest subring of S containing the coefficients of
f and g. Then S1 noetherian and we can try to find c in S1. So replacing S by S1
we may assume S to be noetherian. Let (0) = ∩1≤i≤hQi be an irredundant primary
decomposition in S with Pi = radSQi . By (2) and (3), PiD are the associated primes
of 0 in D and hence, by (3) on page 217 of [8], g ∈ PiD for some i and so all
the coefficients of g belong to Pi and therefore, by (1) on page 216 of [8], they are
annihilated by a single nonzero c in S.

Sathaye’s Proof of (3). If gj belongs to q for all j then we have nothing to show.
So assume the contrary and let gn be the earliest gj not belonging to q. Now

f = u − v with u = fmtm + fm+1t
m+1 + · · · and v = −f0 − · · · − fm−1t

m−1,

where f0, . . . , fm−1 belong to p but fm does not. By (i) we get vk ∈ qD; here k need
not be the smallest. Also

(
uk − vk

)
g = fg

(
uk−1 + uk−2v + · · · + vk−1) ∈ qD

and hence ukg ∈ qD. Moreover

ukg = f k
mgnt

mk+n + higher degree terms + an element of qD

but f k
mgn �∈ q which is a contradiction. Therefore g ∈ qD.

Sathaye’s Proof of (4). We induct on deg(f ) − ord(f ). Obvious when deg(f ) −
ord(f ) = 0 because then we can take c to be the unique nonzero coefficient of f .
If fgj = 0 for all j then figj = 0 for all i, j , and we can take c = fi for any
nonzero fi . Henceforth suppose fgj �= 0 for some j ; fix the smallest such j and
let f ′ = fgj ; now f ′g = 0 �= f ′ with deg(f ′) ≤ deg(f ) and ord(f ′) ≥ ord(f ); if
ord(f ′) = ord(f ) = μ then, because fgj ′ = 0 for all j ′ < j , we would get that the co-
efficient of tμ+j in fg is fμgj and hence nonzero. This would contradict the equation
fg = 0; therefore ord(f ′) > ord(f ) and hence deg(f ′)−ord(f ′) < deg(f )−ord(f ).
Consequently by the induction hypothesis there is a nonzero monomial c in the co-
efficients of f ′ and g such that cg = 0. Since f ′ = fgj , c is a monomial in the
coefficients of f and g. �

Lemma 2.3 (First Supplement to Lemma 2.1) Lemma 2.1 remains true for any
field L without assuming it to be the quotient field of a two dimensional regular local
domain.

Proof This is obvious because in the proof of Lemma 2.1 we never used the assump-
tion that L is the quotient field of a two dimensional regular local domain.
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In Lemma 2.7 we shall prove the equation St ∩ L = S of Lemma 2.1 in a more
general context. For this purpose, in Lemmas 2.4 and 2.5 we shall visit a beautiful
paper of Dedekind. �

Dedekind’s Gauss Lemma 2.4 [The statement and proof of Lemmas 2.4 and 2.5 are
taken from pages 36–38 of Dedekind’s paper [19]; also see Heinzer–Huneke [21].]
For any polynomial f = f (t) in an indeterminate t with coefficients in a ring S

let C(f ) denote the ideal in S generated by all the coefficients of f . Let a, b in
S[t] and m,n in N be such that deg(a) ≤ m and deg(b) ≤ n. Then C(a)nC(ab) =
C(a)n+1C(b).

Proof Writing

a =
∑

0≤μ≤m

aμtm−μ and b =
∑

0≤ν≤n

bμtn−ν and ab =
∑

0≤λ≤m+n

cλt
m+n−λ

with aμ, bν, cλ in S, and putting aμ = 0 for all μ ∈ Z \ {0, . . . ,m}, we get

(1)
∑

0≤ν≤n

aλ−νbν = cλ for 0 ≤ λ ≤ m + n.

Applying Cramer’s Rule (E4.1) on page 164 of [8] to the above equation for λ = ri
with 1 ≤ i ≤ n, where r = (r0, . . . , rn) ∈ {0, . . . ,m + n}n+1, we get

(2) αrbν = βrν with αr = det(A) and βrν = det
(
B(ν)

)
for 0 ≤ ν ≤ n

where the (n + 1) × (n + 1) matrices A = (Aij ) and B(ν) = (B
(ν)
ij ) are given by

(3) Aij = ari−j and B
(ν)
ij =

{
Aij if j �= ν

cri if j = ν.

(1) shows C(ab) ⊂ C(a)C(b) and hence C(a)nC(ab) ⊂ C(a)n+1C(b). (3) tells us
that B(ν) ∈ C(a)nC(ab) and hence (2) gives ({αr : r ∈ {0, . . . ,m + n}n+1}S)C(b) ⊂
C(a)nC(ab). Therefore it suffices to show that C(a)n+1 = {αr : r ∈ {0, . . . ,m +
n}n+1}S. But this follows from Lemma 2.5 below. �

Dedekind’s Basis Lemma 2.5 Let m,n in N. Let Hmn be the Z-module consist-
ing of all homogeneous polynomials of degree n + 1 in indeterminates X0, . . . ,Xm

with coefficients in Z. For every r = (r0, . . . , rn) ∈ Imn = {0, . . . ,m + n}n+1 let
αr = det(A(r)) where A(r) = (A

(r)
ij ) is the (n + 1) × (n + 1) matrix with A

(r)
ij =

Xri−j where Xμ = 0 for all μ ∈ Z \ {0, . . . ,m}. For every r ∈ Imn let σ(r) =
(σ0(r), . . . , σn(r)) ∈ Z

n+1 be given by putting σi(r) = ri − i for 0 ≤ i ≤ n. Let
Jmn = {r ∈ Imn : r0 < r1 < · · · < rn}. Let Kmn = {r ∈ Jmn : σ(r) ∈ {0, . . . ,m}n+1}.
Then |Kmn| =

(
m+n+1

n+1

)
and {αr : r ∈ Kmn} is a free Z-module basis of Hmn.

Proof For r, s in Kmn let r > s in Kmn mean that for some l ∈ {0, . . . , n} we have
r0 = s0, . . . , rl−1 = sl−1, rl > sl . This converts Kmn into a linearly ordered set. Let
Mmn be the set of all monomials of degree n + 1 in X0, . . . ,Xm. Now |Kmn| =(
m+n+1

n+1

) = |Mmn| and hence we get a bijection τ : Kmn → Mmn by putting τ(r) =∏
0≤i≤n Xri−i . This converts Mmn into a linearly ordered set. Now for any r ∈ Kmn,
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the principal diagonal of αr is τ(r) and every other term of αr is smaller than τ(r).
It follows that for every r ∈ Kmn we have τ(r) = ∑

s∈Kmn:s<r prsαs with prs ∈ Z.
Therefore {αr : r ∈ Kmn} is a free Z-module basis of Hmn. �

Before reading Definition 2.6 needed for parts (4) and (5) of Lemma 2.7, the reader
may like to review blowing up and quadratic transformations by browsing in pages
134–161 and 536–577 of [8]. Special attention may be given to the material on pages
559–566 of [8] which may be used tacitly. As a precursor to this material see (1.4) on
pages 16–21 of [3] and Sect. 14 on pages 72–74 of [2].

Definition 2.6 For any regular local domain S we put Q1(S) = W(S,M(S))� and
Q1(S)i = W(S,M(S))�i and we call these the first layer of the total quadratic tree
of S and the i—the component of the first layer of the total quadratic tree of S

respectively. Note that Q1(S)i is a set of i-dimensional regular local domains which
dominate S and have the same quotient field as S, and we have the disjoint union
Q1(S) = ∐

i∈N
Q1(S)i . Moreover, upon letting n = dim(S) we have: Q1(S)0 = ∅ or

{QF(S)} according as n > 0 or n = 0, Q1(S)1 = {o(S)} if n > 0, Q1(S)i = an infinite
set if 2 ≤ i ≤ n, and the set Q1(S)i is in a natural bijective correspondence with
the set (Pn−1

H(S))
δ
n−i of all (n − i)-dimensional irreducible subvarieties of the modelic

projective space (Pn−1
H(S))

δ as defined on page 158 [8]. Recall that for any ideal J in a
domain A, the set of all prime ideals P in A with J ⊂ P is denoted by vspecAJ , and
let us put V(A,J ) = {T ∈ V(A) : JT �= T } = {AP : P ∈ vspecAJ }, where V(A) is
the set of all localizations AP at the various prime ideals P in A, and where vspecAJ

is the set of all prime ideals P in A for which J ⊂ P .

Lemma 2.7 (Second Supplement to Lemma 2.1) For any subring S of any field L,
without assuming S to be a local domain, we have the following.

(1) St ∩ L = S.
(2) The map ρt : ρ(L) → ρ(Lt ) given by S �→ St is an inclusion preserving map of

the set ρ(L) of all subrings of L into the set ρ(Lt ) of all subrings of Lt = L(t).
(3) Assume that S is quasilocal. Then St is quasilocal with M(St ) = M(S)St such

that St dominates S with H(St ) = K(τ) where K = HSt (S) = a field which is
naturally isomorphic to H(S) and τ = HSt (t) = a transcendental element over
K . If T ∈ ρ(L) is a quasilocal domain dominating S then T t is a quasilocal
domain dominating St .

(4) Assume that S is a regular local domain whose dimension is a positive integer n.
Then for 1 ≤ i ≤ n we have ρt (Q1(S)i) ⊂ Q1(S

t )i and for every T ′ ∈ Q1(S
t )i

with T ′ �∈ ρt (Q1(S)i), upon letting T = T ′ ∩ L, we have T ∈ Q1(S)i−1 and
T ′

� ρt (T ) ∈ V(T ′). Observe that the containment ρt (Q1(S)i) ⊂ Q1(S
t )i is

induced by a natural bijection of these sets onto the sets (Pn−1
K )δn−i ⊂ (Pn−1

K(τ)
)δn−i

where K(τ) is as in (3) above. In particular, for 2 ≤ i ≤ n we have |Q1(S
t )i \

ρt (Q1(S)i)| = ∞.
(5) Assume that S is a regular local domain whose dimension is a positive integer n.

Let x1, . . . , xn be generators of M(S). Let

A = S[x2/x1, . . . , xn/x1] and A′ = St [x2/x1, . . . , xn/x1].



Dicriticals of pencils and Dedekind’s Gauss lemma 741

Then we have the following.

(i) For any P ∈ vspecA(x1A), upon letting P ′ = PA′, we have P ′ ∈ vspecA′(x1A
′)

with htAP = htA′P ′ and P ′ ∩ A = P with (AP )t = A′
P ′ . In particular x1A ∈

vspecA(x1A) and x1A
′ ∈ vspecA′(x1A

′) with htA(x1A) = 1 = htA′(x1A
′) and

(x1A
′) ∩ A = x1A.

(ii) Let Q� ∈ vspecA′(x1A
′) be such that for every Q ∈ vspecA(x1A) we have

(AQ)t �= A′
Q� . Then upon letting Q� = Q� ∩ A, we have Q� ∈ vspecA(x1A)

with htAQ� = (htA′Q�) − 1 and we have AQ� = A′
Q� ∩ L with A′

Q� � (AQ�)t ∈
V(A′

Q�).

(iii) For 2 ≤ i ≤ n we have |U ′
i \ U ′′

i | = ∞ where U ′
i = {P ′ ∈ vspecA′(x1A

′) :
htA′P ′ = i} and U ′′

i = {PA′ : P ∈ Ui} with Ui = {P ∈ vspecA(x1A) : htAP =
i}.

Note (6) In the proof of (5)(ii), instead of using the assumption that (AQ)t �= A′
Q�

for every Q ∈ vspecA(x1A), we shall only use the weaker assumption that (AQ�)t �=
A′

Q� where Q� = Q� ∩ A.
Note (7) As a familiar example of t-extension, if S is the valuation ring Rv of a

valuation v of a subfield K of L and Y = t , then St is the valuation ring Rw of the
valuation w of K(Y) as defined in (J9) on page 80 of [8]; w is sometimes called the
Gauss extension of v.

Note (8) Some of the proofs, especially the following proof of (5), inspire a relative
and hence more general definition of t-extension. Namely, given any subrings S ⊂ A

of the field L, we may introduce the subring (S,A)t of L(t) as the localization of
A[t] at the multiplicative set N of all a = ∑

ait
i ∈ S[t] such that the ideal in S

generated by all the coefficients ai is the unit ideal S. As an example, if A is the
multivariate polynomial ring K[X1, . . . ,Xm] over a subfield S = K of L then (S,A)t

is the polynomial ring K(t)[X1, . . . ,Xm] over the field K(t).

Proof of (1) As in the above proof of Lemma 2.1, it suffices to show that for any ideal
I in S, upon letting J = IS[t], we have (IS[t]) ∩ S = I and (JSt ) ∩ S[t] = J . The
first equation follows from (T30) on page 233 of [8] by observing that the noetherian-
ness of the rings R and S was not used in much of the proof. The noetherianness was
not used in the related comment (C12) on page 235 of [8] either, and hence J = I [t]
where I [t] denotes the set of all polynomials f (t) all whose coefficients belong to I .
Now St = S[t]N where N is the multiplicative set of all a ∈ S[t] whose coefficients
generate the unit ideal in S. Therefore by Sect. §7 of Lecture L4 of [8] we see that
(JSt ) ∩ S[t] = J iff: b ∈ S[t] with ab ∈ J for some a ∈ N ⇒ b ∈ J . Hence we are
done by taking C(a) = S in Lemma 2.4. �

Proof of (2) Follows from (1). �

Proof of (3) Follows by noting that, as in the proofs of Lemmas 2.1 and 2.2, upon
letting P = M(S)S[t], we have that P is a prime ideal in S[t] with P ∩ S = M(S)

and St = S[t]P . �

Proof of (4) Let x1, . . . , xn be generators of M(S). Then
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W
(
S,M(S)

)� =
⋃

1≤j≤n

V(Aj , xjAj ) and

W
(
St ,M

(
St

))� =
⋃

1≤j≤n

V
(
A′

j , xjA
′
j

)

where

Aj = S[x1/xj , . . . , xj−1/xj , . . . , xn/xj ] and

A′
j = St [x1/xj , . . . , xj−1/xj , . . . , xn/xj ]

and hence we are reduced to (5). �

Proof of (5) Let

A∗ = A[t] and P ∗ = PA∗.

By (T30) and (C12) on pages 233–235 of [8] we get

(1*) P ∗ = P [t] ∈ vspecA∗
(
x1A

∗) with htAP = htA∗P ∗ and P ∗ ∩ A = P.

Consider polynomials

f =
∑

fit
i ∈ L[t] with fi ∈ L and g =

∑
git

i ∈ L[t] with gi ∈ L.

By definition (AP )t = {f/g : fi, gi inAP for all i but gj �∈ PAP for some j}; for any
such f,g we can find r ∈ A \ P such that the elements rfi, rgi belong to A for all i;
now f/g = (rf )/(rg) with rf ∈ A∗ and rg ∈ A∗ \ P ∗ because rgj �∈ P for some j ;
consequently f/g ∈ A∗

P ∗ ; thus (AP )t ⊂ A∗
P∗. Conversely, any element of A∗

P ∗ can be
written as f/g with f,g in A∗ with g �∈ P ∗ = P [t]; it follows that fi, gi are in A for
all i but gj �∈ P for some j ; therefore f/g ∈ (AP )t ; thus A∗

P ∗ ⊂ (AP )t . This proves
that

(2*) (AP )t = A∗
P ∗ .

By (T157) on page 560 of [8] we see that x1A ∈ spec(A) with (x1A) ∩ S = M(S)

and hence

(3*) x1A ∈ vspecA(x1A) and Q ∩ S = M(S) for all Q ∈ vspecA(x1A).

Concerning the rings A∗ ⊂ A′ we claim that:

(4*) for any Q ∈ vspecA(x1A) upon letting Q∗ = QA∗ we have Q∗ = Q[t] ∈
vspecA∗(x1A

∗) with htAQ = htA∗Q∗ and Q∗ ∩ A = Q;
(5*) and upon letting Q′ = Q∗A′ we have Q′ ∈ vspecA′(x1A

′) with htA∗Q∗ =
htA′Q′ and Q′ ∩ A∗ = Q∗ with A∗

Q∗ = A′
Q′ ;

(6*) moreover q∗ �→ q′ = q∗A′ gives a bijection φ of W ∗ = {p∗ ∈ vspecA∗(Q∗) :
p∗ ∩A = Q} onto W ′ = {p′ ∈ vspecA′(Q′) : p′ ∩A = Q} such that q′ ∩A∗ = q∗;

(7*) and if q′ ∈ W ′ is such that (AQ)t �= A′
q′ then we have htAQ = (htA′q′) − 1 and

AQ = A′
q′ ∩ L with A′

q′ � (AQ)t ∈ V(A′
q′).

Now (5)(i) follows from (1*) to (5*) where in (4*) and (5*) we take Q = P .
Likewise (5)(ii) follows from (6*) and (7*) by taking (Q,q′) = (Q�,Q�).
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So we proceed to prove (4*) to (7*). (4*) is (1*) with Q = P . Let N be the multi-
plicative set of all g such that gi ∈ S for all i but gj �∈ M(S) for some j . By definition
St = S[t]N and hence we get the equation A′ = A∗

N which we shall use tacitly. By
(3*) and (4*) we have N ⊂ A∗ \Q∗ and hence by (T10) and (T12) on page 139 of [8]
we get (5*). By (3*) we see that for every q∗ ∈ W ∗ we have N ⊂ A∗ \ q∗ and hence,
in view of (5*), by (T12) on page 139 of [8] we get (6*). To prove (7*) let q′ ∈ W ′
be such that (AQ)t �= A′

q′ . By (2*) and (5*) we have (AQ)t = A′
Q′ and hence, in

view of (T15) on page 144 of [8], we get A′
q′ � (AQ)t ∈ V(A′

q′). Now (6*) and the
inclusion A′

q′ � A′
Q′ give the inclusion Q∗

� q∗ and hence, in view of (4*) and (5*)
together with the equation Q∗ ∩ A = Q = q∗ ∩ A, by (C13) on page 235 of [8] we
get htAQ = (htA′q′) − 1. By (1*) we get (AQ)t ∩ L = AQ; we also have the inclu-
sions AQ ⊂ A′

q′ ⊂ (AQ)t where the first one comes out of the equation q′ ∩ A = Q;
therefore AQ = A′

q′ ∩ L.
To prove (5)(iii) consider the polynomial rings

B = K[Z2, . . . ,Zn] ⊂ K(τ)[Z2, . . . ,Zn] = B ′

in indeterminates Z2, . . . ,Zn over the fields K ⊂ K(τ) mentioned in the above
item (3). By (Q35.5) on pages 559–566 of [8], there exist unique epimorphisms
Θ : A → B and Θ ′ : A′ → B ′ with ker(Θ) = x1A and ker(Θ ′) = x1A

′ such that
Θ ′(x2/x1, . . . , xn/x1) = (Z2, . . . ,Zn) with Θ ′(r) = Θ(r) for all r ∈ A and Θ ′(s) =
HSt (s) for all s ∈ St . Clearly Θ(Ui) and Θ ′(U ′

i ) are the sets of all prime ideals of
height i − 1 in B and B ′ respectively. The rest is obvious. �

Definition 2.8 Getting back to the quotient field L of a two dimensional regular local
domain R, and referring to Sect. 3 of [13] for definitions concerning subsets of Q(R),
we add some more. Recall that a thicket at R is a bush B at R such that for every
T ∈ B we have Q1(T ) ∩ B �= ∅. By analogy, we define an antithicket at R to be a
nonempty bush B at R such that for every T ∈ B we have |Q1(T ) \ B| = ∞.

Given any nonempty bush B at R and any S in Q(R), upon letting (Rj )0≤j≤ν to
be the unique finite QDT sequence of R with S = Rν , we define the antecedent of S

in B (relative to R) to be Rμ where μ is the largest nonnegative integer ≤ ν such that
Rμ ∈ B; we denote this μ by χR(S,B) or χ(S,B).

By the halo of any positive dimensional regular local domain S we mean the DVR
o(S).

Theorem 2.9 Given any two dimensional regular local domain R, considering the
rational function field L(t) in an indeterminate t over the quotient field L of R, the
map ρt : ρ(L) → ρ(Lt ) given by S �→ St relates the sets Q(R)� and Q(Rt)� thus.

(2.9.1) For any S ∈ Q(Rt ) we have:

S ∈ Qt(R) ⇔ S ∩ L ∈ Q(R) ⇔ (S ∩ L)t = S ⇔ dim(S ∩ L) = 2.

(2.9.2) For any S ∈ Qj(R
t ) with j ∈ N we have:

S ∈ Qt(R) ⇔ S ∩ L ∈ Qj(R) ⇔ S ∩ L �∈ Dj(R)� ⇔
dim(S ∩ L) �= 1.
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(2.9.3) Qt(R) is an antithicket at Rt and the map Q(R) → Qt(R) given by
S �→ St is a domination preserving and inclusion preserving bijection. For any
S ∈ Q(Rt) \ Qt(R), letting T = χ(S,Qt (R)), we have S ∩ L = o(T ∩ L).

(2.9.4) For any finite QDT sequence (Sj )0≤j≤ν of Rt let μ = χ(Sν,Q
t (R)) with

Rj = Sj ∩ L and Vj = o(Sj ) ∩ L. Then (Rj )0≤j≤ν is a finite QDT sequence of R

such that for 0 ≤ j ≤ μ we have Vj = o(Rj ) with (Vj )
t = o(Sj ) and (Rj )

t = Sj , and
for μ < j ≤ ν we have Rj = Vj = Vμ.

Proof By a simple induction on the layer index j in Qj(R) and Qj(R
t ), everything

follows from Lemma 2.7 by using the following observations. Let V be a DVR with
quotient field L, let T be a quasilocal domain such that T dominates Rt and V =
T ∩ L, and let S be a quasilocal domain which dominates T . Then S dominates R

and hence L �⊂ S. Also V ⊂ S and hence V = S ∩ L because V is a maximal subring
of L. �

3 Dicriticals and shoots

Again let R be a two dimensional regular local domain with quotient field L, let t

be an indeterminate over L, and let ρt : ρ(L) → ρ(Lt ) be the map given by S �→ St

where ρ(L) is the set of all subrings of L and ρ(Lt ) is the set of all subrings of
Lt = L(t). For describing how ρt maps the ideal tree of a pencil into the singularity
tree of its generic member, let us continue the project of adding definitions started in
Definition 2.8.

Definition 3.1 Let B be a bush at R. Note that every pine S = (Sj )0≤j<∞ of B is
the subpine of a unique maximal pine S∗ of B; we denote S∗ by B(S) and call it the
pine-closure of S in B . By U(B) we denote the set of all maximal pines of B .

Let B ⊂ B be bushes at R. By a shoot of (B,B) we mean a pine S = (Sj )0≤j<∞
of B such that S0 ∈ B with S1 �∈ B and (Q1(S0) ∩ B) \ {S1} ⊂ B; by S(B,B) we
denote the set of all shoots of (B,B). By a graft of (B,B) we mean T ∈ B such
that T is the base of some (obviously unique) shoot S of (B,B); we denote S by
(B,B)(T ) and call it the sprout of T in (B,B), and we denote B(S) by (B,B)(T )∗
and call it the maximal sprout of T in (B,B); by T(B,B) we denote the set of all
grafts of (B,B).

If B ⊂ B are bushes at R, we say that B is a subbush of B or B is an overbush of
B . If moreover B is a nonempty finite antithicket at R and B is a thicket at R such
that every maximal pine S

∗
of B is the pine-closure of a unique shoot S of (B,B)

then we say that B is a wellpined subbush of B at R, and B is a wellpined overbush
of B at R; we denote S by (B,B)(S

∗
)′ and call it the truncation of S

∗
in (B,B). If

B is a wellpined subbush of B at R and I is a nonzero ideal in R such that for every
shoot S = (Sj )0≤j<∞ of (B,B) we have M(S1) = (z, x)S1 with (R,S1)(I ) = zS1

and M(S0)S1 = xS1 then we say that B is a wellshot subbush of B at (R, I ), and
B is a wellshot overbush of B at (R, I ). Note that if B is a wellpined subbush of
B then S �→ B(S) gives a bijection S(B,B) → U(B) whose inverse is given by
S

∗ �→ (B,B)(S
∗
)′.
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Descriptively speaking, as our main result we shall show that, for a two-generated
primary pencil at R, letting Q be the t-extension of its ideal tree and letting P be the
singularity tree of its generic member Φ , we have that Q is a wellshot subbush of P

at (Rt ,ΦRt). Moreover the t-transforms of the big stars (see definition below) of the
pencil are the grafts of (Q,P ) and the t-transforms of the dicritical divisors of the
pencil are the halos of these grafts. In particular, the dicritical divisors of the pencil
are in a bijective correspondence with the shoots of the singularity tree of the generic
member, which themselves are in a bijective correspondence with the maximal pines
of the singularity tree.

Symbolically speaking we have the following Theorem where for the definitions
of the set B(R,J ) of big stars of the pencil J and the set D(R,J ) of its dicritical
divisors we refer to Sect. 2 of [11], for the definitions of a strongly square free
stable thicket and the breadth of a thicket we refer to Sect. 3 of [13], and for the
concept of pine-closure and the definitions of the set U of all maximal pines and the
set S of all shoots we refer to the above four paragraphs.

Theorem 3.2 Let F �= 0 �= G in R be such that J = (F,G)R is M(R)-primary and
let Q = ρt (Q(R,J )) and P = P(Rt ,Φ) where Φ = F + tG. Then Q is a wellshot
subbush of P at (Rt ,ΦRt) and we have ρt (B(R,J )) = T(Q,P ) and hence S �→ St

gives a bijection B(R,J ) → T(Q,P ). Moreover the singularity tree P of the generic
member Φ of the pencil J is a strongly square free stable thicket at (Rt ,ΦRt). Fur-
thermore, the above bijection B(R,J ) → T(Q,P ), when composed with the inverses
of the bijections B(R,J ) → D(R,J ) and S(Q,P ) → T(Q,P ) given by S �→ o(S)

and pine �→ its base respectively, gives a bijection D(R,J ) → S(Q,P ) which, when
composed with the bijection S(Q,P ) → U(P ) given by pine �→ its pine-closure,
gives a bijection D(R,J ) → U(P ).

Proof Follows from (4.1)(ii) of [11], (3.1) and (4.6) of [13], and (2.9) above. In
greater details, (4.6.3) of [13] tells us that Q is a wellshot subbush of P , whereas
(4.1)(ii) of [11] together with (4.6) of [13] imply that ρt (B(R,J ) ∩ Qj(R)) =
T(Q,P ) ∩ Qj(R

t ) for every j ∈ N, and so on. �

4 Completions and quadratic transforms

To continue the discussion started in Definition 2.6, referring to pages 7–11 of [3]
and pages 248–270 of [27] for definitions and basic properties of completions of
local rings and complete local rings, note that the completion of a local ring R is a
complete local ring R̂ which is an overring of R such that, every z ∈ R̂ can be written
as lim zn = z with zn ∈ R, i.e., z − zn ∈ M(R̂)u(n) with positive integers u(n) → ∞
as n → ∞, and

(*) M(R)iR̂ = M(R̂)i and M(R̂)i ∩ R = M(R)i for all i ∈ N.

This gives a natural isomorphism g(R) → g(R̂), where g(R) = grad(R) = graded
ring of R. Also nonzerodivisors in R stay nonzerodivisors in R̂ and hence we get the
subset monomorphism QR(R) → QR(R̂) of total quotient rings, i.e., we may regard
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QR(R) as a subring of QR(R̂) or, equivalently, QR(R̂) as an overring of QR(R); for
sets A ⊂ B the subset map A → B is given by z �→ z; note that QR(R) ∩ R̂ = R. R

is analytically irreducible means R̂ is a domain, and then the quotient field QF(R̂)

may be regarded as an overfield of the quotient field QF(R).
By a local homomorphism we mean a ring homomorphism f : R → R† where R

and R† are local rings with f (M(R)) ⊂ M(R†); f uniquely extends to its comple-
tion f̂ : R̂ → R̂† by which we mean a local homomorphism such that f̂ (z) = f (z)

for all z ∈ R. We call f a subcompletion of R if f is a subset map and f̂ is an
identity map; in other words, if R† dominates R and R̂ = R̂†; note that then (*) holds
with R̂ replaced by R† and hence we get an isomorphism g(R) → g(R†) which we
denote by g(f ). Note that if f : R → R† is a subcompletion of R then f extends to a
subset monomorphism f † : QR(R) → QR(R†) with QR(R) ∩ R† = R, and we have
dim(R) = dim(R†) with emdim(R) = emdim(R†), and hence R is regular iff R† is
regular. For all this see pages 9 and 10 of [3].

Assumption 4.1 Let p = proj denote the set of all nonmaximal homogeneous prime
ideals. Assuming R to be a local domain of dimension n ∈ N+, as on pages 534–
577 of [8], there is a natural bijection δR : p(g(R)) → (W(R,M(R)))�, which is
a generalization of the bijection δ : κ[X,Y ]hmi → Q1(R) given in (2B)(3) of [13].
For any subcompletion f : R → R† of R with local domain R†, by putting together
the three bijections δR,g(f ), δR† we obtain a bijection f ′

1 : (W(R,M(R)))� →
(W(R†,M(R†)))� called the first quadratic derivative of f . Assuming R to be
regular, for every S ∈ (W(R,M(R)))� and S† = f ′

1(S) ∈ (W(R†,M(R†)))�, we
have that S and S† are regular local domains of equal positive dimension m ≤ n such
that S† dominates S, M(S)S† = M(S†), and HS†(S) = H(S†); therefore by (10.1)
on page 238 of [3] we see that the subset map S → S† is a subcompletion of S.

Assumption 4.2 Assume that R is a two dimensional regular local domain and let f :
R → R† be any subcompletion of R. In Assumption 4.1 we defined the first quadratic
derivative of f as a bijection f ′

1 : Q1(R)� → Q1(R
†)�. Iterating the procedure we

define the j -th quadratic derivative of f as a bijection f ′
j : Qj(R)� → Qj(R

†)�

for all j ∈ N. Putting these together we define the quadratic derivative of f as a
bijection f ′ : Q(R)� → Q(R†)� such that, for any T ∈ Q(R)� and T † = f ′(T ) ∈
Q(R†)�, T † dominates T and the subset map fT : T → T † is a subcompletion of T .
Note that if T ∈ Qj(R)� for some j ∈ N then T † = fj (T ) ∈ Qj(R

†)�; moreover, if
T ∈ Qj(R) then for any S ∈ Qi(T )� with i ∈ N we have (fT )′i (S) = f ′

j+i (S), and in

particular f ′
j (o(T )) = o(T †). Also note that the common quotient field L of all the

members of Q(R)� is a subfield of the common quotient field L† of all the members
of Q(R†)�, and for all T ∈ Q(R)� we have L ∩ f ′(T ) = T . Now let (x, y) be any
generators of M(R) and let κ be any coefficient set of R. Then, upon letting the
bijection δ : κ[X,Y ]hmi → Q1(R) be as in (2B)(3) of [13] and δ† : κ[X,Y ]hmi →
Q1(R

†) be the corresponding bijection for R†, for every λ ∈ κ[X,Y ]hmi we have
f ′

1(δ(λ)) = δ†(λ). Moreover by slightly modifying the proof of the Tangent Lemma
given on pages 140–141 of [6] we get the:
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Generalized Tangent Lemma 4.3 In the situation of Assumptions 4.1 and 4.2 let
K = H(R). Given any 0 �= F ∈ M(R) let F = F(X,Y ) ∈ K[X,Y ] = g(R) be the
initial form of F relative to R,x, y, and let F(X,Y ) = F̂

∏
1≤i≤h HR(F i)(X,Y )ei be

the factorization described in the beginning of (2C) of [13]. If R is complete then there
exist nonzero elements F1, . . . ,Fh in M(R) such that info(Fi) = F̂HR(F i)(X,Y )ei

or info(Fi) = HR(F i)(X,Y )ei according as i = 1 or 2 ≤ i ≤ h. In other words, if R

is complete and F is irreducible then h = 1.

By Cohen Structure Theorem, given on pages 106–112 of [25], every one-
dimensional complete local domain of embedding dimension ≤ 2 can be written as a
homomorphic image of a two-dimensional complete regular local domain modulo a
nonzero principal prime ideal, and hence Lemma 4.3 is equivalent to saying that for
any one-dimensional complete local domain S of embedding dimension ≤ 2 we have
|p(g(R))| = 1, i.e., |W(R,M(R))�| = 1. Here is a:

More General Tangent Lemma 4.4 Let S be a one-dimensional complete local
domain of any embedding dimension, and let S′ be the integral closure of S in its
quotient field LS . Then S′ is a complete DVR which dominates S and is a finite
S-module. Moreover W(S,M(S)) = {S′,LS} and |p(g(S))| = 1. Also there exists
a unique nonnegative integer μ together with an infinite sequence S = S0 ⊂ S1 ⊂
· · · ⊂ Sμ = S′ = Sμ+1 = Sμ+2 = . . . of one-dimensional complete local domains
with quotient field LS such that for all j ∈ N we have that Sj+1 dominates Sj and
W(Sj ,M(Sj )) = {Sj+1,LS} with |p(g(Sj ))| = 1, and for 0 ≤ j < μ we have that Sj

is nonregular with Sj �= Sj+1.

Proof By items 1.19 to 1.24 of [2] and items (17.8), (30.3), (30.5), (32.1) of [25]
we see that S is a pseudogeometric henselian ring and hence S′ is a complete DVR
which dominates S and is a finite S-module. In view of Assumption 4.1 and the above
references, the rest is now clear. �

Lifting Lemma 4.5 In the situation of Assumption 4.2 let q : R → S be a local
epimorphism where S is a one-dimensional local domain with quotient field LS such
that |p(g(S))| = 1. Let ker(q) = I . Then P1(R, I ) and W(S,M(S))� consist of
singletons R1 and S1 and, upon letting I1 = (R,R1)(I ), there exists a unique local
epimorphism q1 : R1 → S1 with ker(q1) = I1 such that q1(z) = q(z) for all z ∈ R.

Proof Although the proof is “straightforward,” for understanding this Sect. 4, the
reader may profit by studying §4 on pages 108–148 of [3]. �

Iterated Tangent Lemma 4.6 In the situation of Assumption 4.2, assume that R is
complete and let q : R → S be a local epimorphism where S is a one-dimensional
local domain with quotient field LS . Let ker(q) = I . Then there exists a unique infinite
sequence (Sj )0≤j<∞ of one-dimensional complete local domains with quotient field
LS such that S0 = S and, for all j ∈ N, Sj+1 dominates Sj and W(Sj ,M(Sj )) =
{Sj+1,LS} with |p(g(Sj ))| = 1. Moreover there exists a unique nonnegative integer
μ such that for 0 ≤ j < μ we have that Sj is nonregular with Sj �= Sj+1, and for
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all j ≥ μ we have that Sj is regular with Sj = Sμ. Also there exists a unique infinite
QDT sequence (Rj )0≤j<∞ of R such that Pj (R, I ) = {Rj } for all j ∈ N. Finally,
upon letting Ij = (R,Rj )(I ), for every j ∈ N there exists a unique local epimorphism
qj : Rj → Sj with ker(qj ) = Ij and q0 = q such that qj+1(z) = qj (z) for all z ∈ Rj .

Proof S is complete by (17.8) of [25]. Hence everything follows from Assump-
tion 4.2 to Lemma 4.5. �

Pine Lemma 4.7 In the situation of Assumption 4.2, assume that R† = R̂. For 0 �=
φ ∈ M(R) let us write φ = φ̃φ

ε1
1 . . . φ

εβ

β where β, ε1, . . . , εβ are positive integers,

φ̃ is a unit in R†, and φ1, . . . , φε are pairwise coprime irreducible elements in R†.
Let I = φR and Ii = φiR

†. Then, for 1 ≤ i ≤ β , there exist unique infinite QDT
sequences (Rij )0≤j<∞ and (R

†
ij )0≤j<∞ of R and R† respectively such that, for all

j ∈ N, we have: Pj (R
†, Ij ) = {R†

ij }, R
†
ij dominates Rij , L ∩ R

†
ij = Rij , and the

subset monomorphism Rij → R
†
ij is a subcompletion of Rij . Moreover, for all j ∈ N,

we have Pj (R
†, IR†) = {R†

ij : 1 ≤ i ≤ β} with Pj (R, IR) = {Rij : 1 ≤ i ≤ β} and,

for 1 ≤ i ≤ β , we have (R†,R
†
ij )(IR†) = ((R,Rij )(I ))R

†
ij with ((R†,R

†
ij )(IR†)) ∩

Rij = (R,Rij )(I ). Also there exists j0 ∈ N such that for every integer j ≥ j0 we

have (R†,R
†
ij )(I ) = (R†,R

†
ij )(I

εi

i ) with ord
R

†
ij
(R†,R

†
ij )(Ii) = 1 for 1 ≤ i ≤ β , and

R
†
ij �= R

†
i′j with Rij �= Ri′j for all i �= i′. Finally, for 1 ≤ i ≤ β , (R

†
ij )j0≤j<∞ and

(Rij )j0≤j<∞ are pines of the bushes P † = P(R†, IR†) and P = P(R, I ) and their
pine-closures in these bushes are exactly all the distinct members of U(P †) and U(P )

respectively.

Proof Follows from Assumption 4.2 to Lemma 4.6. �

Note 4.8 In Lemma 4.7, φ1, . . . φβ are called the analytic branches of φ. By taking
φ to be a bivariate polynomial φ(X,Y ) over a field and R to be the local ring of
the origin in the (X,Y )-plane, this reduces to the idea of analytic branches of the
plane curve φ(X,Y ) = 0 at the origin (0,0). In the situation of Theorem 3.2, by
taking φ = Φ and R = Rt , it follows that the set U(P ) of maximal pines of P is in a
natural bijective correspondence with the set of analytic branches of Φ and hence in
particular β is the breadth of its singularity tree P ; the part of (3.2) asserting that P

is strongly square free says that ε1 = · · · = εβ = 1.

5 Analytic branches and maximal pines

Let R be a two dimensional regular local domain with quotient field L, coefficient
set κ , and residue field K = H(R). Let (x, y) be generators of M(R). We now refine
the concepts of infinite pillar and pillar from the end of Sect. 2 of [11]. We use the
refinement to decompose a QDT sequence into packets called flips, nonflips, and
so on. This enables us to codify the classification of valuations dominating R as in
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my Princeton Book [2]. In particular it characterizes analytic branches via nonreal
valuations which correspond to what we call infinite pseudopillars.

Let S = (Sj , xj , yj , κj )0≤j<∞ be any infinite QDT sequence of (R,x, y, κ);
we define its height h(S) by putting h(S) = ∞. As suggestive abbreviation, a
positive integer j is called an X-operation or Y -operation or translation of
S according as (xj , yj ) = (xj−1, yj−1/xj−1) or (xj , yj ) = (xj−1/yj−1, yj−1) or
(xj−1, yj−1/xj−1) �= (xj , yj ) �= (xj−1/yj−1, yj−1); it is called a nontranslation of
S if it is not a translation of S, i.e., if it is either an X-operation or a Y -operation of
S; in these terms the reference to S may be omitted when it is clear from the context.
We define the translation index t (S) ∈ N of S by letting t (S) be the largest posi-
tive integer which is a translation with the understanding that if there is no positive
integer which is a translation then t (S) = 0 and if there are infinitely many posi-
tive integers which are translations then t (S) = ∞. We call S an infinite X-pillar at
(R,x, y, κ) if every positive integer is an X-operation. We call S an infinite Y -pillar
at (R,x, y, κ) if every positive integer is a Y -operation. We call S an infinite pro-
topillar at (R,x, y, κ) if S is either an infinite X-pillar at (R,x, y, κ) or an infinite
Y -pillar at (R,x, y, κ). We call S an infinite retropillar at (R,x, y, κ) if every pos-
itive integer is a nontranslation, infinitely many positive integers are X-operations,
and infinitely many positive integers are Y -operations. We call S an infinite pillar
at (R,x, y, κ) if (Sj )0≤j<∞ is an infinite pillar at (R,x) (as defined at the end of
Sect. 2 of [11]), i.e., if every positive integer j is either an X-operation or a trans-
lation. We define the pillar number n(S) ∈ N ∪ {∞} of S by letting n(S) be the
smallest nonnegative integer π such that (Sπ+j , xπ+j , yπ+j , κπ+j )0≤j<∞ is either
an infinite pillar at (Sπ , xπ , yπ , κπ ) or an infinite Y -pillar at (Sπ , xπ , yπ , κπ ) with
the understanding that if there is no such π then n(S) = ∞. If n(S) �= ∞ then clearly

(Sn(S)+j , xn(S)+j , yn(S)+j , κn(S)+j )0≤j<∞
is an infinite pillar or infinite Y -pillar at (Sn(S), xn(S), yn(S), κn(S)) which we call the
top of S; in this case we call (Sj , xj , yj , κj )0≤j≤n(S) the bottom of S; if n(S) = ∞
then S is its own bottom and it has no top. If n(S) = ∞ �= t (S) then we call

(St(S)+j , xt (S)+j , yt (S)+j , κt (S)+j )0≤j<∞ and (Sj , xj , yj , κj )0≤j≤t (S)

the head and tail of S respectively, and we note that the head of S is an infinite
retropillar at (St(S), xt (S), yt (S), κt (S)); in other cases we leave the head and tail un-
defined. We call S an infinite pseudopillar at (R,x, y, κ) if n(S) ∈ N. We call S an
infinite antipillar at (R,x, y, κ) if n(S) = ∞. It will turn out that infinite pseudopil-
lars in P(R,F ) correspond to analytic branches of F ∈ R×.

Let S = (Sj , xj , yj , κj )0≤j≤ν be a finite QDT sequence of (R,x, y, κ); we define
its height h(S) by putting h(S) = ν; note that the above four terms, X-operation, . . . ,
nontranslation, are now defined for every positive integer j ≤ ν. We define the trans-
lation index t (S) ∈ N of S by letting t (S) be the largest positive integer ≤ ν which
is a translation with the understanding that if there is no such positive integer which
is a translation then t (S) = 0. We call S a preflip at (R,x, y, κ) if ν > 0 and every
positive integer ≤ ν is a nontranslation. We call S an X-preflip at (R,x, y, κ) if S is a
preflip at (R,x, y, κ) and ν is an X-operation. We call S a Y -preflip at (R,x, y, κ) if
S is a preflip at (R,x, y, κ) and ν is a Y -operation. We call S an X-flip at (R,x, y, κ)
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if S is a preflip at (R,x, y, κ) and every positive integer ≤ ν is an X-operation. We
call S a Y -flip at (R,x, y, κ) if S is a preflip at (R,x, y, κ) and every positive integer
≤ ν is a Y -operation. We call S a protoflip at (R,x, y, κ) if S is either an X-flip at
(R,x, y, κ) or a Y -flip at (R,x, y, κ). We call S a retroflip at (R,x, y, κ) if S is pre-
flip at (R,x, y, κ) but S is neither an X-flip at (R,x, y, κ) nor a Y -flip at (R,x, y, κ).
We call S a pillar at (R,x, y, κ) if (Rj )0≤j≤ν is a pillar at (R,x), i.e., if every pos-
itive integer j ≤ ν is either an X-operation or a translation. We call S a nonflip at
(R,x, y, κ) if either ν = 0, or S is a finite pillar at (R,x, y, κ) with ν > 0 and ν is a
translation. We call S a flip at (R,x, y, κ) if: ν ≥ 2, every positive integer j < ν is
a nontranslation, some positive integer j < ν is a Y -operation, and ν is a translation.
We define the pillar number n(S) ∈ N of S by letting n(S) be the smallest nonneg-
ative integer π such that (Sπ+j , xπ+j , yπ+j , κπ+j )0≤j≤ν−π is a pillar or a Y -flip at
(Sπ , xπ , yπ , κπ ); we call (Sn(S)+j , xn(S)+j , yn(S)+j , κn(S)+j )0≤j≤ν−n(S) the top of S,
and we call (Sj , xj , yj , κj )0≤j≤n(S) the bottom of S. We call

(St(S)+j , xt (S)+j , yt (S)+j , κt (S)+j )0≤j≤ν−t (S) and (Sj , xj , yj , κj )0≤j≤t (S)

the head of S and tail of S respectively; note that the head of S either has height
zero, or is a protoflip, or is a retroflip. We define the pillar length of S to be a
positive integer l(S), its height sequence q(S) = qi(S)0≤i≤l(S) where qi(S) ∈ N with
0 = q0(S) ≤ · · · ≤ ql(S)(S) and ql(S)−1(S) = t (S) ≤ ν = ql(S)(S) with l(S) > 2 ⇒
ql(S)−2(S) < ql(S)−1(S), and its flip sequence (S(i))1≤i≤l(S) where

S(i) = (Sqi−1(S)+j , xqi−1(S)+j , yqi−1(S)+j , κqi−1(S)+j )0≤j≤qi (S)−qi−1(S)

for 1 ≤ i < l(S)

is a nonflip or flip at (Sqi−1(S), xqi−1(S), yqi−1(S), κqi−1(S)) according as i is odd or even
and

S(l(S)) = the head of S.

Again let S = (Sj , xj , yj , κj )0≤j<∞ be any infinite QDT sequence of (R,x, y, κ).
Assuming either n(S) �= ∞ or t (S) �= ∞, we define the pillar length of S to be a
positive integer l(S), its height sequence q(S) = qi(S)0≤i≤l(S) where q0(S) = 0 and
ql(S)(S) = ∞ and qi(S) ∈ N with qi(S) ≤ qi+1(S) for 0 ≤ i < l(S) and ql(S)−1(S) =
t (S) with l(S) > 2 ⇒ ql(S)−2 < ql(S)−1, or ql(S)−1(S) = n(S), according as t (S) �= ∞
or t (S) = ∞, and its flip sequence (S(i))1≤i≤l(S) where

S(i) = (Sqi−1(S)+j , xqi−1(S)+j , yqi−1(S)+j , κqi−1(S)+j )0≤j≤qi (S)−qi−1(S)

for 1 ≤ i < l(S)

is a nonflip or flip at (Sqi−1(S), xqi−1(S), yqi−1(S), κqi−1(S)) according as i is odd or even
and

S(l(S)) = the head or top of S according as t (S) �= ∞ or t (S) = ∞.

Finally assuming n(S) = ∞ = t (S) we define the pillar length l(S) = ∞ of S, its
height sequence q(S) = qi(S)0≤i<∞ where qi(S) ∈ N with 0 = q0(S) ≤ q1(S) ≤
q2(S) ≤ . . . , and its flip sequence (S(i))0≤i<∞ where

S(i) = (Sqi−1(S)+j , xqi−1(S)+j , yqi−1(S)+j , κqi−1(S)+j )0≤j≤qi (S)−qi−1(S) for all i ∈ N+
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is a nonflip or flip at (Sqi−1(S), xqi−1(S), yqi−1(S), κqi−1(S)) according as i is odd or even.
The unique existence of the quantities l(S), q(S), S(i) is easily established by

looking at the three or four cases separately.

Real valuations 5.1 In the situation of Assumption 4.2, assume that R† = R̂. Let
W(L/R) be the set of all valuation rings V with quotient field L such that V domi-
nates R and H(V ) is algebraic over HV (R). For basic information on valuations see
[1] and [2], as well as (0.1) and (10.5) of [3]; the said (0.1) says that the union of
an infinite QDT sequence of two dimensional regular local domains is a valuation
ring, and the said (10.5) says that a valuation dominating an analytically irreducible
local domain can be extended to its completion. By (0.1) of [3] we see that every
V ∈ W(L/R) can be uniquely expressed as V = ∪j∈NS(V )j where (S(V )j )0≤j<∞
is an infinite QDT sequence of R; let us denote the corresponding infinite QDT se-
quence (S(V )j , x(V )j , y(V )j , κ(V )j )0≤j<∞ of (R,x, y, κ) by S(V ). By (0.1) of [3]
we see that V �→ S(V ) gives a bijection of W(L/R) onto the set W of all infinite QDT
sequences of (R,x, y, κ). Upon letting S†(V )j = f ′(S(V )j ), by Assumption 4.2
we see that (S†(V )j , x(V )j , y(V )j , κ(V )j )0≤j<∞ is an infinite QDT sequence of
(R†, x, y, κ); we denote this sequence by S†(V ). Upon letting V † = ∪j∈NS†(V )j by
(0.1) of [3] we see that V † ∈ W(L†/R†), and V �→ V † gives a bijection W(L/R) →
W(L†/R†); this provides an alternative proof of a special case of (10.5) of [3]. Now
the value group Gv , of the valuation v whose valuation ring is a given member V

of W(L/R), is either irrational (i.e., real but not rational), or rational nondiscrete
(i.e., rational but not isomorphic to Z), or discrete (i.e., isomorphic to Z), or nonreal
(i.e., lexicographically ordered pairs of integers); we attach these adjectives of Gv to
V . We observe that: (1) V is irrational ⇔ n(S(V )) = ∞ �= t (S(V )) ⇔ n(S†(V )) =
∞ �= t (S†(V )) ⇔ V † is irrational, (2) V is rational nondiscrete ⇔ n(S(V )) = ∞ =
t (S(V )) ⇔ n(S†(V )) = ∞ = t (S†(V )) ⇔ V † is rational nondiscrete,

Nonreal valuations 5.2 In the situation of (5.1) we observe that:
(3) V is discrete or nonreal ⇔ n(S(V )) �= ∞ ⇔ n(S†(V )) �= ∞ ⇔ V † is nonreal

⇔ S†(V ) = P(R†,F ε) for some irreducible F ∈ M(R†)× and some ε ∈ N+.
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